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Abstract: Previously, the analysis of atomic force microscopy (AFM) images allowed us to distin-
guish normal from cancerous/precancerous human epithelial cervical cells using only the fractal
dimension parameter. High-resolution maps of adhesion between the AFM probe and the cell sur-
face were used in that study. However, the separation of cancerous and precancerous cells was ra-
ther poor (the area under the curve (AUC) was only 0.79, whereas the accuracy, sensitivity, and
specificity were 74%, 58%, 84%, respectively). At the same time, the separation between premalig-
nant and malignant cells is the most significant from a clinical point of view. Here, we show that the
introduction of machine learning analysis of the adhesion maps allows distinguishing precancerous
and cancerous cervical cells with a rather good precision (AUC, accuracy, sensitivity, and specificity
are 0.93, 83%, 92%, 78%, respectively). Substantial improvement in sensitivity is significant be-
cause of the unmet need in clinical practice to improve the screening of cervical cancer (a relatively
low specificity can be compensated by combining this approach with other currently existing
screening methods). The Random Forest decision tree algorithm was utilized in this study. The anal-
ysis was done using the data of six precancerous primary cell lines and six cancerous primary cell
lines, each derived from different humans. The robustness of the classification was verified by K-
fold cross-validation (K=500). The results are statistically significant at p< 0.0001. Statistical signifi-
cance was determined using the random shuffle method as a control.

Keywords: cancer detection; machine learning; atomic force microscopy (AFM); scanning probe mi-
croscopy (SPM)

1. Introduction

Morbidity and mortality associated with cervical cancer are substantially decreased
when cancer is detected early [1-3]. Thus, the search for new approaches to early diagnosis
is of great significance. Cervical cancer is the second most frequent type of cancer among
women worldwide with approximately 288,000 deaths per year; more than 14,000 women
were diagnosed with this disease in 2022 in the US along [4-6]. The mortality rate is sec-
ond only to that for breast cancer. Early detection of cervical cancer using the Papanico-
laou (Pap) smear test has decreased mortality from cervical cancer by 70 - 80% [5,7]. Early
detection is based on the identification of neoplastic cells in stained preparations obtained
from the uterine cervix [7].

It should be noted that recently introduced DNA-HPV tests are broadly used these
days. It is a good screening test because approximately 95% of cases of this cancer corre-
late with the presence of human papillomavirus (HPV). However, the accuracy of cancer
detection (sensitivity) of DNA-HPYV tests is low. For example, only 43% of HPV-positive
females diagnosed in Massachusetts (USA) from 2004 to 2014 had cervical cancer [8].
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Recent studies have shown that DNA-HPV tests are particularly ineffective among young
women who have this virus much more frequently than cervical cancer. Thus, the interest
in Pap smear tests is growing again.

The main advantages of Pap smear cytological test are their simplicity and minimal
invasiveness (the cells are obtained from the cervix using a combination of a spatula and
brush). Despite the impressive success of these tests, their sensitivity for detecting prein-
vasive cervical lesions is far from desirable, with a mean sensitivity of only 47% (range 30
- 80%). The sensitivity of the cytological tests for invasive carcinoma (cancer cells) is not
perfect, ranging from 16% to 82% in different studies [5,9]. According to the American
Cancer Society data, each year in the United States alone, approximately 3.6 million cyto-
logical tests are classified as equivocal, out of which only 8% of women will have prein-
vasive (high-grade squamous intraepithelial) lesions, and 0.4% will have carcinoma as
found in further testing that involves invasive tissue biopsies. This means that more than
3.3 million biopsies per year may be unnecessary if a more accurate screening of cervical
cancer is invented. In addition to the relatively low sensitivity of the cytological tests and
moderate reproducibility of the diagnosis, there are sampling and laboratory errors. Fi-
nally, there are inherent problems of the identification of malignant cells with cytological
test methodology. More accurate tests may substantially decrease the cost and patient in-
convenience of screening by eliminating additional steps of colposcopy [10] . However,
further improvement of cytological tests may have fundamental restrictions inherent to
the limitations of morphologic analysis by means of optical microscopy.

Here we used a method of analysis of the cervical epithelial cells by means of atomic
force microscopy (AFM). This microscopy has a substantial resolution advantage (200-
5000 times) compared with optical microscopy. It is superior to even electron microscopy
when applied to soft materials. There have been multiple partially successful attempts to
use surface analysis of cell images to identify cancer cells [11,12]. The AFM technique has
been previously used to study cells [13-16] [17,18], including cancerous cervical cells
[19,20]. Recently introduced AFM modalities such as Peak Force QNM, HarmoniX, Ring-
ing mode, etc. allow obtaining different properties physical properties of the cell surface,
which is impossible to obtain with any other microscopy.

Previously, we have demonstrated the analysis of the AFM collected maps of adhe-
sion between the AFM probe and the surface of human cervical epithelial cells [21,22]. The
cells needed for this approach can be collected using methods similar to Pap smear cyto-
logical tests [22,23]. Essentially, the difference is in the use of different fixative, tempera-
ture, and time of fixation. The analysis has shown that it is possible to unambiguously
distinguish normal from cancerous/precancerous cells by just using one parameter of the
fractal dimension of the adhesion maps. Being definitely innovative, the practical utility
of such a finding was limited because the separation between precancerous and cancerous
cells was rather poor. Specifically, the area under the curve (AUC) was only 0.79, whereas
the accuracy, sensitivity, and specificity were 0.74, 0.58, 0.84, respectively. From the clini-
cal utility point of view, the separation between premalignant and malignant cells would
be the most significant because it leads to the improvement of the existing Pap smear tests.
It is rather difficult to distinguish between such cells using just optical microscopy.

Here, we show that the introduction of machine learning analysis of the adhesion
maps leads to a substantial improvement in the detection of cancer cells with respect to
the previous results based on just fractal dimension. The values of AUC, accuracy, sensi-
tivity, and specificity are 0.93, 83%, 92%, 78%, respectively). It has to be stressed that the
fund increase in sensitivity while keeping the number of missed cancerous low is the cur-
rently existing unmet need in clinical practice. With the sensitivity of 92%, the percent-
age of missed cancer cases (false negative rate) is only 7%, which much better than better
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than the modern invasive colposcopy tests [24]. The analysis is applied to the adhesion 99
maps collected on six primary precancerous and six primary cancerous cell lines; each cell 100
line is extracted from a different patient. 101

2. Results and Discussion 102

As has been found in the previous study [21,22], 10x10 um? is the most effective AFM 103
scan size to discriminate between normal and cancerous cells. Figure 1 shows examples 104
of typical height and adhesion images of this size for cancerous and precancerous cells. 105
The main conclusion from these images is the difficulty of discriminating between these 106
cell phenotypes by just visual judgment. To discriminate between normal and cancerous 107
cells in a quantitative way, it was suggested to look at the characteristics of fractal geom- 108
etry of the cell surface and their adhesion maps [21,22]. The same study showed that the 109
height images provide very little discriminating power compared to the adhesion maps. 110
Following this conclusion, we will not use the height images to analyze the differences 111
between cancerous and precancerous cells and focus on the adhesion images. 112

113

The most popular image recognition these days is deep learning, specifically convo- 114
lution neural networks (CNN)), see, e.g., [25]. However, this analysis works well if thereis 115
a sufficient number of images available for training. The AFM technique, being a relatively 116
slow microscopy, does not allow the generation of a very large number of images. It cre- 117
ates a number of challenges in building CNN algorithms when applied to the classifica- 118
tion of cells [26]. Furthermore, neural networks are particularly prone to overtraining. As 119
a result, we suggest using other machine learning algorithms, like decision trees. Specifi- 120
cally, we used a bootstrap of decision trees called Random Forest [27,28]. The important 121
part of our approach is the reduction of data space. Instead of analyzing 512 x 512 pixels 122
to characterize each AFM scan, we converted each scan into a set of "surface parameters”, 123
see the Method section for detail. Such parameters are used in engineering to describe 124
quality of surfaces [29]. We chose five surface parameters in addition to the fractal di- 125
mension parameter introduced in [21,22]. These parameters were chosen because they 126
demonstrated the biggest difference in their average values between cancer and normal 127
cells. These parameters (see, their description in detail in the methods section) represent 128
various characteristics of the surface roughness. 129
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Figure 1. Examples of typical 10x10 um? AFM images of precancerous and cancerous cells used in
the study.

Figure 2 demonstrates the entire process of data analysis. All AFM images of the ad-
hesion are converted into a set of the chosen six surface parameters. Then, the obtained
database is randomly split into the training and testing subsets. The split was chosen to
be 70 and 80% for the training and 30 and 20% for the testing subsets, respectively. The
final result is the same for these two particular particular splits. After creating the machine
learning algorithm by training Random Forest on the training subset, the statistical anal-
ysis of the obtained algorithm was done on the testing subset. The statistical analysis in-
cludes the ROC (receiver operating characteristic) curve and the confusion matrix. ROC
curve allows to define a range of sensitivity ("accuracy" of identification of cancer cells)
and specificity ("accuracy” of identification of absence of cancer cells), and the accuracy.
These quantities are defined as follows: sensitivity = TP/(TP+FN); specificity =
TN/(TN+FP); accuracy= (TN+TP)/(TP+FN+TN+FP), where TP, TN FP, EN are the true pos-
itive, true negative, false positive, and false negative components of the confusion matrix.

Because the machine learning algorithms are too complicated to be easily verified, it
is important to test the robustness of the obtained results. It is done by using the K-fold
cross-validation and verification of the absence of overtraining. To do the K-fold cross-
validation, we repeated the random split between testing and training databases 500 times
(we also observed that a further increase of the number of these splits to 1000x does not
change the obtained statistics). This way, we can calculate not only the average values of
the ROC curve and the components of the confusion matrix but also their standard devi-
ations. Technically, this approach verifies the absence of overtraining because the calcu-
lated statistics are done on the testing subsets that are completely separated from and
independent of the training ones.  For example, if the distribution of AUC is rather
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Figure 2. Schematics of machine learning (ML) analysis. Conversion of the AFM images into the
surface parameters; splitting the database into the training and testing subsets; developing an ML
algorithm using just the training subset; using the testing subset to do the statistical analysis of the
developed ML algorithm; and finally, cross-validation and verification of the lack of overtraining of
the developed approach.
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Figure 3. Results of the ML analysis of the difference between precancerous and cancerous cells. (a)
Confusion matrix, (b) ROC curves, and (c) histogram of the areas under the curve (AUC).

Figure 3 shows the result of the described analysis. The confusion matrix demon-
strates the average values of TP, TN FP, FN equal to 0.91, 0.78, 0.22, and 0.09, respectively.
AUC, accuracy, sensitivity, and specificity are 0.93, 83%, 92%, 78%, respectively. This is
a substantial improvement compared to the previously reported values of 0.79, 74%,
58%, 84%, respectively. Itisimportant to note that at first glance, the improvement might
not look that substantial because of a slight decrease in the specificity. However, it is the
increase in sensitivity that is urgently needed in clinical practice. As we described in the
Introduction, the existing screening tests for cervical cancer (Pap smear) are effective (de-
creased mortality from cervical cancer by 70 -80%) but insufficiently accurate (mean sen-
sitivity of only 47% (range 30 - 80%)). It leads to a high number of unnecessary invasive
biopsy (colposcopy). The other broadly used screening HPV tests demonstrate 95-100%
specificity, however, low in sensitivity (HPV tests do not detect cancer but just identify
people at high risk of getting this cancer). As was mentioned, only 43% of HPV-associ-
ated cancers diagnosed in Massachusetts females from 2004-2014 had cervical cancer. As
a result of the low sensitivity of the existing non-invasive tests, millions of invasive and
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expensive biopsies (colposcopies) are done each year. If there were a noninvasive screen- 183
ing test with 95% sensitivity, 3.1 million biopsies per year in the US (based on 2022 data) 184
could be unnecessary. Therefore, the fact that we observed a substantial improvement in 185
sensitivity (58% ->92%) is very promising. 186
187

It also should be noted that the most accurate measure of the improvement of the 188
method is the value of AUC. The other statistical parameters discussed here depend ona 189
particular threshold of probability of the classifier, which defines which class each tested 190
cell belongs. Moving this threshold, one can, for example, increase sensitivity at the ex- 191
pense of specificity. To avoid this ambiguity, one should remember the final goal of the 192
described method, the detection of the presence of cancer cells. Secondly, the method 193
should miss the cancer cases to the maximum possible extent. The latter is described by 194
the false negative rate, which is calculated as FN/(FN+TP). For the calculations presented 195
in this work, the false negative rate is within 7%. This is substantially better than the mod- 196
ern invasive colposcopy tests [24]. It can be improved even further by combining several 197
cells for the diagnosis. Nevertheless, it should be remembered that the present results are 198
done on cell lines. So, it is a proof of the concept. To claim the development of a new 199
clinical method, the present method has to be applied to cells obtained from actual pa- 200

tients. 201
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Figure 4. Further verification of the lack of overtraining of the ML algorithm used in this work: 203
shuffled class assignment of the data (a) Confusion matrix, (b) ROC curves, (c) histogram of the 204
areas under the curve (AUC). These AUC data are also used to find the statistical significance of the 205
results shown in Fig.3. 206

Although the Random Forest method is known not to have serious problems with 207
overtraining, it is instructional to further verify the absence of overtraining. To do that, 208
we use the method suggested in [30]. Furthermore, this method will allow us to find the 209
statistical significance of the obtained results. In this method, it was suggested that a 210
correct non-overtrained algorithm should give the correct AUC of 0.5 (no-classification 211
value) for a completely randomized test set. The same should be seen for the confusion 212
matrix. To exclude a coincidental choice of the correct class assignment, the process of 213
randomization was repeated 500 times as well (the same idea as in the K-fold cross-vali- 214
dation). Figure 4 demonstrates the results of such calculations. The area under ROC curve 215
is indeed equal to 0.5 with rather high precision. The average accuracy is also around 50%. 216

217

The described above data obtained on the completely randomized test sets can also 218
be used to find the statistical significance of the results of this work. To do that, we suggest 219
using the AUC data obtained on the actual training data set and the AUC data obtained 220
using the same algorithm but applied to the complete randomized test sets. Since the 221
method correctly identified the absence of any signal (randomness of the class associa- 222
tion), it can be considered as a control data set. Using ANOVA one-side statistical testand 223
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the data generated for 500-fold cross-validation, we found that the obtained results are 224
statistically significant at the confidence level p< 0.0001. 225
226

Let us now discuss the nature of the observed differences between precancerous and 227
cancerous cells. The difference in the pericellular layer of cancerous and normal cells has 228
been reported in the literature [31] using atomic force microscopy, in particular, the mo- 229
dality capable of imaging the distribution of the adhesion. This is novel because it gives 230
unique information about the cell surface, which includes not only the surface morphol- 231
ogy of cells but also the maps of the adhesive properties of cells. And because it is novel, 232
there are no biochemical information available that connects such properties with known 233
biochemical pathways. The previously observed difference in the cell microvilli of cancer- 234
ous cells [20] is unlikely to be the only reason responsible for the observed difference be- 235
cause such structures are detectable by electronic and even optical microscopy, which has 236
been broadly used in multiple reports in which no substantial difference between normal 237
or cancer cells was found. In addition, the topographical AFM images of the cell surface, 238
in which the microvilli and microridges are perfectly seen, did not show a statistically 239
significant difference between cancer and normal cells [21,22]. 240
The complexity of the challenge to link the observed data to the biochemical pro- 241
cesses inside the cell was demonstrated in ref. [22] by the analysis of fractal dimensions, 242
in particular, the concept of multi-practicality. Fractals are complex disorderly patterns 243
that typically occur under far-from-equilibrium conditions [32] and/or emerge from chaos 244
[33].  Fractal shapes are found in the large-scale structure of the Universe [34], continen- 245
tal coastlines [35], trees [36], grain structures of materials[37], clouds [38], and even artistic =~ 246
creations [39]. There are many models describing the emergence of fractal geometry 247
[33,40]. However, neither of the models explains the emergence of fractal geometry on 248
cells. Therefore, we expect it to be a challenge for the future. As of now, it can be used for 249
practical medical applications like the detection of cancer, specifically, in combination 250

with the existing screening HPV and Pap smear tests. 251
3. Methods 252
Cells and AFM imaging 253

The cell lines, AFM imaging, and sample preparation were descired in our previous 254
works [21,22]. Here we just briefly describe it. Twelve different human cervical epithelial 255
cell lines were prepared from tissues collected from the transformation zone of the cervix 256
from six cancer and six healthy patients. The human tissues were received from the Co- 257
operative Human Tissue Network. Cells were extracted by a two-stage enzymatic diges- 258
tion with dispase enzyme to remove the epithelium and then trypsin to disperse the indi- 259
vidual epithelial cells [41]. To prepare precancerous (immortal) cells, normal cells (ex- 260
tracted from healthy individuals) were transfected and then immortalized using HPV-16 261
virus. After a number of passages, all non-immortilized cells died out after 60-150 popu- 262

lation doublings. All cells were used for experiments when cells were subconfluent (263
<50% confluency). Created this way precancerous CX-16-2, 164, 16-11, 16-12, 16-14, 16— 264
15, and cancerous CXT-2, 3, 5, 6,7,8 cell lines were used for the AFM imaging. In total, 265
images of 64 cancerous cells and 108 precancerous cells were used in this study. The data 266
used in this work can be downloaded from the online database [42]. 267
268

For the AMF study, cells were fixed with Karnovsky's fixative as described in [21,22]. 269

In brief, cells cultured in 60 mm Petri dishes were washed twice with PBS buffer, and then 270
treated with 4ml of Karnovsky’s fixative overnight at 4°C. Fixed cells were flushed from 271
Karnovsky’s fixative with 5 ml of DI water twice (one time for several hours). For imaging, 272
cells were dried using a freeze dryer and stored in a desiccator. As we showed in ref. 273
[22], cells should be imaged under humidity not exceeding 60-65%. The actual imaging 274
was done under the relative humidity not exceeding 50%. A Nanoscope™ Dimension 275
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3100 AFM (Veeco/Bruker-Nano, Inc., Santa Barbara, CA) with Nanoscope V controller 276
working in HarmoniX mode was employed. A standard cantilever holder with HarmoniX 277
standard cantilevers for operation in air were used. 278

Surface parameters used in the study 279

The surface parameters used in this work include Surfaces Area Ratio (Sdr), Root 280
Mean Square Gradient (5dq), Reduced Summit Height (Spk), and the fractal dimension. 281
On the top of it, we also used two fractal dimensions introduced in our previous work 282
[21,22], Sfd_top, and Sfd_bottom, which are the fractal dimensions calculated for the surface 283
features above and below 300 nm in size, respectively. Below, we give the formulas for 284

the calculation of the used surface parameters. 285
286

The Surfaces Area Ratio (Sdr) represents the increase of the interfacial surface area rel- 287
ative to the area of the projected (flat) x, y plane: 288

M-2N-2
(Z ZAk,j ~1)(N-1)6x5y
S = kOlOM1N155 100%

where Awu is defined as: 290

291

A, (\/5)/ + ('xk’yl) (xkaJ’m))z +\/5y2"’(Z(xkna%)_Z(xk+1=yl+1))2j'

( 5y + (xk,yl)_z(xk+19yl))2+\/5y2+(Z(xk7yl+1)_z(xk+lﬂyl+l))2j

292
293
The Root Mean Square Gradient (Sdq) is the RMS-value of the surface slope within the 294
sampling area. It is defined as: 295
296
2 2
g = 1 Aff Z(xk’yl)_z(xk—l’yl) + Z(xk’yl)_z(xk’yl—l)
| ————

i (M_l)(N_l) k=0 [=0 5)6 5_)/ 297
298
299

Reduced Summit Height (Spk). This parameter is calculated using an algorithm in an 300
implicit way. It is calculated based on the bearing area ratio curve. To find it, one needs to 301
draw a line fitted to the 40% segment of the curve that results in the lowest decline (using 302
the least mean squares). Man, this line is extrapolated until it crosses the vertical axes of 303
the bearing area ratio curve for 0% and 100%. Then, two horizontal lines are drawn 304
through the intersection points. Finally, a straight line that starts at the intersection point 305
between the bearing area ratio curve and the upper horizontal line and ends on the 0% 306
axis should be drawn in a way that the area of the obtained triangle is the same as the area 307
between the horizontal line and the bearing area ratio curve. Using the same algorithm, a 308
line between the lower horizontal line and the 100% axis should be drawn. The Reduced 309
Summit Height (Spk) is the value of the height of the upper left triangle. 310

Fractal dimensions. Calculation of the fractal dimensions was done with the help of 311
SPIP software following the method described in [40]. The method is based on the use of 312

two-dimensional Fourier transformation: 313
N lN -1 )
—127z ux/ N +vy/N,
F(uv)=— Z Y z(xy)e
y x=0 y=0 314

where Nx, Ny are the number of pixels in the x, y directions and u, v the discrete Fourier 315
indexes=0,1,2,.. Nviandv=0,1,2... Ny1. 316
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The obtained career spectrum was averaged over all possible directions to convert
this spectrum into 1D. The resulting spectrum is only a function A(Q) of reciprocal space
coordinate Q or the inverse lateral size of the geometrical features on the AFM image. The
fractal dimension was calculated using the expected power-law behavior A(Q) ~ QV. Specifi-
cally, the fractal dimension was defined as 2-b. Two fractal dimensions were calculated,
below (Sfd_top) and above (Sfd_bottom) Q=1/300 nm. Both fractal dimensions were used
in the machine learning analysis described in this work as two separate parameters.

It has to be noted that ideologically, the use of the surface parameters to analyze the
maps of adhesion is a substantial departure from the classically considered surface pa-
rameters. When we use the previously suggested formulas, they contain a mix of quan-
tities of different dimensions. Although it does not imply any specific restrictions when
these parameters are used in machine learning, obviously, the answer should depend on
which particular units we use. For example, many parameters will be different if we use
the presentation of adhesion force in N (Newtons), uN, or nN. Therefore, the choice of
particular units has to be consistent along all measurements. Specifically, here, we found
that the largest difference between cancerous and precancerous cells was observed when
the adhesion force is used in nanoNewtons, and the spatial dimensions are in the nanome-
ters.
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