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cerous human epithelial cervical cells using high-resolution 3 

AFM imaging of adhesion maps 4 
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Abstract: Previously, the analysis of atomic force microscopy (AFM) images allowed us to distin- 9 

guish normal from cancerous/precancerous human epithelial cervical cells using only the fractal 10 

dimension parameter. High-resolution maps of adhesion between the AFM probe and the cell sur- 11 

face were used in that study. However, the separation of cancerous and precancerous cells was ra- 12 

ther poor (the area under the curve (AUC) was only 0.79, whereas the accuracy, sensitivity, and 13 

specificity were 74%, 58%, 84%, respectively). At the same time, the separation between premalig- 14 

nant and malignant cells is the most significant from a clinical point of view. Here, we show that the 15 

introduction of machine learning analysis of the adhesion maps allows distinguishing precancerous 16 

and cancerous cervical cells with a rather good precision (AUC, accuracy, sensitivity, and specificity 17 

are 0.93,  83%, 92%, 78%, respectively). Substantial improvement in sensitivity is significant be- 18 

cause of the unmet need in clinical practice to improve the screening of cervical cancer (a relatively 19 

low specificity can be compensated by combining this approach with other currently existing 20 

screening methods). The Random Forest decision tree algorithm was utilized in this study. The anal- 21 

ysis was done using the data of six precancerous primary cell lines and six cancerous primary cell 22 

lines, each derived from different humans. The robustness of the classification was verified by K- 23 

fold cross-validation (K=500). The results are statistically significant at p< 0.0001. Statistical signifi- 24 

cance was determined using the random shuffle method as a control. 25 

Keywords: cancer detection; machine learning; atomic force microscopy (AFM); scanning probe mi- 26 

croscopy (SPM) 27 

 28 

1. Introduction 29 

Morbidity and mortality associated with cervical cancer are substantially decreased 30 

when cancer is detected early [1-3]. Thus, the search for new approaches to early diagnosis 31 

is of great significance. Cervical cancer is the second most frequent type of cancer among 32 

women worldwide with approximately 288,000 deaths per year; more than 14,000 women 33 

were diagnosed with this disease in 2022 in the US along  [4-6]. The mortality rate is sec- 34 

ond only to that for breast cancer. Early detection of cervical cancer using the Papanico- 35 

laou (Pap) smear test has decreased mortality from cervical cancer by 70 - 80% [5,7]. Early 36 

detection is based on the identification of neoplastic cells in stained preparations obtained 37 

from the uterine cervix [7].  38 

 39 

It should be noted that recently introduced DNA-HPV tests are broadly used these 40 

days. It is a good screening test because approximately 95% of cases of this cancer corre- 41 

late with the presence of human papillomavirus (HPV). However, the accuracy of cancer 42 

detection (sensitivity) of DNA-HPV tests is low. For example, only 43% of HPV-positive 43 

females diagnosed in Massachusetts (USA) from 2004 to 2014 had cervical cancer [8]. 44 
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Recent studies have shown that DNA-HPV tests are particularly ineffective among young 45 

women who have this virus much more frequently than cervical cancer. Thus, the interest 46 

in Pap smear tests is growing again. 47 

 48 

The main advantages of Pap smear cytological test are their simplicity and minimal 49 

invasiveness (the cells are obtained from the cervix using a combination of a spatula and 50 

brush). Despite the impressive success of these tests, their sensitivity for detecting prein- 51 

vasive cervical lesions is far from desirable, with a mean sensitivity of only 47% (range 30 52 

- 80%). The sensitivity of the cytological tests for invasive carcinoma (cancer cells) is not 53 

perfect, ranging from 16% to 82% in different studies [5,9]. According to the American 54 

Cancer Society data, each year in the United States alone, approximately 3.6 million cyto- 55 

logical tests are classified as equivocal, out of which only 8% of women will have prein- 56 

vasive (high-grade squamous intraepithelial) lesions, and 0.4% will have carcinoma as 57 

found in further testing that involves invasive tissue biopsies. This means that more than 58 

3.3 million biopsies per year may be unnecessary if a more accurate screening of cervical 59 

cancer is invented. In addition to the relatively low sensitivity of the cytological tests and 60 

moderate reproducibility of the diagnosis, there are sampling and laboratory errors. Fi- 61 

nally, there are inherent problems of the identification of malignant cells with cytological 62 

test methodology. More accurate tests may substantially decrease the cost and patient in- 63 

convenience of screening by eliminating additional steps of colposcopy [10] . However, 64 

further improvement of cytological tests may have fundamental restrictions inherent to 65 

the limitations of morphologic analysis by means of optical microscopy.   66 

 67 

Here we used a method of analysis of the cervical epithelial cells by means of atomic 68 

force microscopy (AFM). This microscopy has a substantial resolution advantage (200- 69 

5000 times) compared with optical microscopy. It is superior to even electron microscopy 70 

when applied to soft materials. There have been multiple partially successful attempts to 71 

use surface analysis of cell images to identify cancer cells [11,12]. The AFM technique has 72 

been previously used to study cells [13-16] [17,18], including cancerous cervical cells 73 

[19,20]. Recently introduced AFM modalities such as Peak Force QNM, HarmoniX, Ring- 74 

ing mode, etc. allow obtaining different properties physical properties of the cell surface, 75 

which is impossible to obtain with any other microscopy.  76 

 77 

Previously, we have demonstrated the analysis of the AFM collected maps of adhe- 78 

sion between the AFM probe and the surface of human cervical epithelial cells [21,22]. The 79 

cells needed for this approach can be collected using methods similar to Pap smear cyto- 80 

logical tests [22,23]. Essentially, the difference is in the use of different fixative, tempera- 81 

ture, and time of fixation. The analysis has shown that it is possible to unambiguously 82 

distinguish normal from cancerous/precancerous cells by just using one parameter of the 83 

fractal dimension of the adhesion maps. Being definitely innovative, the practical utility 84 

of such a finding was limited because the separation between precancerous and cancerous 85 

cells was rather poor. Specifically, the area under the curve (AUC) was only 0.79, whereas 86 

the accuracy, sensitivity, and specificity were 0.74, 0.58, 0.84, respectively. From the clini- 87 

cal utility point of view, the separation between premalignant and malignant cells would 88 

be the most significant because it leads to the improvement of the existing Pap smear tests. 89 

It is rather difficult to distinguish between such cells using just optical microscopy.  90 

 91 

Here, we show that the introduction of machine learning analysis of the adhesion 92 

maps leads to a substantial improvement in the detection of cancer cells with respect to 93 

the previous results based on just fractal dimension. The values of AUC, accuracy, sensi- 94 

tivity, and specificity are 0.93, 83%, 92%, 78%, respectively). It has to be stressed that the 95 

fund increase in sensitivity while keeping the number of missed cancerous low is the cur- 96 

rently existing unmet need in clinical practice.  With the sensitivity of 92%, the percent- 97 

age of missed cancer cases (false negative rate) is only 7%, which much better than better 98 
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than the modern invasive colposcopy tests [24]. The analysis is applied to the adhesion 99 

maps collected on six primary precancerous and six primary cancerous cell lines; each cell 100 

line is extracted from a different patient.  101 

2. Results and Discussion 102 

As has been found in the previous study [21,22], 10x10 µm2 is the most effective AFM 103 

scan size to discriminate between normal and cancerous cells. Figure 1 shows examples 104 

of typical height and adhesion images of this size for cancerous and precancerous cells.  105 

The main conclusion from these images is the difficulty of discriminating between these 106 

cell phenotypes by just visual judgment. To discriminate between normal and cancerous 107 

cells in a quantitative way, it was suggested to look at the characteristics of fractal geom- 108 

etry of the cell surface and their adhesion maps [21,22]. The same study showed that the 109 

height images provide very little discriminating power compared to the adhesion maps. 110 

Following this conclusion, we will not use the height images to analyze the differences 111 

between cancerous and precancerous cells and focus on the adhesion images.  112 

 113 

The most popular image recognition these days is deep learning, specifically convo- 114 

lution neural networks (CNN), see, e.g., [25]. However, this analysis works well if there is 115 

a sufficient number of images available for training. The AFM technique, being a relatively 116 

slow microscopy, does not allow the generation of a very large number of images. It cre- 117 

ates a number of challenges in building CNN algorithms when applied to the classifica- 118 

tion of cells [26]. Furthermore, neural networks are particularly prone to overtraining. As 119 

a result, we suggest using other machine learning algorithms, like decision trees. Specifi- 120 

cally, we used a bootstrap of decision trees called Random Forest [27,28]. The important 121 

part of our approach is the reduction of data space. Instead of analyzing 512 x 512 pixels 122 

to characterize each AFM scan, we converted each scan into a set of "surface parameters", 123 

see the Method section for detail. Such parameters are used in engineering to describe 124 

quality of surfaces  [29].  We chose five surface parameters in addition to the fractal di- 125 

mension parameter introduced in [21,22]. These parameters were chosen because they 126 

demonstrated the biggest difference in their average values between cancer and normal 127 

cells. These parameters (see, their description in detail in the methods section) represent 128 

various characteristics of the surface roughness.  129 
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 130 

Figure 1. Examples of typical 10x10 µm2 AFM images of precancerous and cancerous cells used in 131 
the study. 132 

Figure 2 demonstrates the entire process of data analysis. All AFM images of the ad- 133 

hesion are converted into a set of the chosen six surface parameters. Then, the obtained 134 

database is randomly split into the training and testing subsets. The split was chosen to 135 

be 70 and 80% for the training and 30 and 20% for the testing subsets, respectively. The 136 

final result is the same for these two particular particular splits. After creating the machine 137 

learning algorithm by training Random Forest on the training subset, the statistical anal- 138 

ysis of the obtained algorithm was done on the testing subset. The statistical analysis in- 139 

cludes the ROC (receiver operating characteristic) curve and the confusion matrix. ROC 140 

curve allows to define a range of sensitivity ("accuracy" of identification of cancer cells)  141 

and specificity ("accuracy" of identification of absence of cancer cells), and the accuracy. 142 

These quantities are defined as follows: sensitivity = TP/(TP+FN);  specificity = 143 

TN/(TN+FP); accuracy= (TN+TP)/(TP+FN+TN+FP), where TP, TN FP, FN are the true pos- 144 

itive, true negative, false positive, and false negative components of the confusion matrix.  145 

 146 

Because the machine learning algorithms are too complicated to be easily verified, it 147 

is important to test the robustness of the obtained results. It is done by using the K-fold 148 

cross-validation and verification of the absence of overtraining. To do the K-fold cross- 149 

validation, we repeated the random split between testing and training databases 500 times 150 

(we also observed that a further increase of the number of these splits to 1000x does not 151 

change the obtained statistics). This way, we can calculate not only the average values of 152 

the ROC curve and the components of the confusion matrix but also their standard devi- 153 

ations.  Technically, this approach verifies the absence of overtraining because the calcu- 154 

lated statistics are done on the testing subsets that are completely separated from and 155 

independent of the training ones.   For example, if the distribution of AUC is rather 156 
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narrow (small standard deviation compared to the average), the algorithmic approach has 157 

no overtraining. 158 

 159 

Figure 2. Schematics of machine learning (ML) analysis. Conversion of the AFM images into the 160 
surface parameters; splitting the database into the training and testing subsets; developing an ML 161 
algorithm using just the training subset; using the testing subset to do the statistical analysis of the 162 
developed ML algorithm; and finally, cross-validation and verification of the lack of overtraining of 163 
the developed approach. 164 

 165 

Figure 3. Results of the ML analysis of the difference between precancerous and cancerous cells. (a) 166 
Confusion matrix, (b) ROC curves, and (c) histogram of the areas under the curve (AUC). 167 

Figure 3 shows the result of the described analysis. The confusion matrix demon- 168 

strates the average values of TP, TN FP, FN equal to 0.91, 0.78, 0.22, and 0.09, respectively. 169 

AUC, accuracy, sensitivity, and specificity are 0.93,  83%, 92%, 78%, respectively. This is 170 

a substantial improvement compared to the previously reported values of 0.79,  74%, 171 

58%, 84%, respectively.  It is important to note that at first glance, the improvement might 172 

not look that substantial because of a slight decrease in the specificity. However, it is the 173 

increase in sensitivity that is urgently needed in clinical practice.  As we described in the 174 

Introduction, the existing screening tests for cervical cancer (Pap smear) are effective (de- 175 

creased mortality from cervical cancer by 70 -80%) but insufficiently accurate (mean sen- 176 

sitivity of only 47% (range 30 - 80%)). It leads to a high number of unnecessary invasive 177 

biopsy (colposcopy).  The other broadly used screening HPV tests demonstrate 95-100% 178 

specificity, however, low in sensitivity (HPV tests do not detect cancer but just identify 179 

people at high risk of getting this cancer).  As was mentioned, only 43% of HPV-associ- 180 

ated cancers diagnosed in Massachusetts females from 2004-2014 had cervical cancer. As 181 

a result of the low sensitivity of the existing non-invasive tests, millions of invasive and 182 
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expensive biopsies (colposcopies) are done each year. If there were a noninvasive screen- 183 

ing test with 95% sensitivity, 3.1 million biopsies per year in the US (based on 2022 data) 184 

could be unnecessary. Therefore, the fact that we observed a substantial improvement in 185 

sensitivity (58% -> 92%) is very promising. 186 

 187 

It also should be noted that the most accurate measure of the improvement of the 188 

method is the value of AUC. The other statistical parameters discussed here depend on a 189 

particular threshold of probability of the classifier, which defines which class each tested 190 

cell belongs. Moving this threshold, one can, for example, increase sensitivity at the ex- 191 

pense of specificity. To avoid this ambiguity, one should remember the final goal of the 192 

described method, the detection of the presence of cancer cells. Secondly, the method 193 

should miss the cancer cases to the maximum possible extent. The latter is described by 194 

the false negative rate, which is calculated as FN/(FN+TP). For the calculations presented 195 

in this work, the false negative rate is within 7%. This is substantially better than the mod- 196 

ern invasive colposcopy tests [24]. It can be improved even further by combining several 197 

cells for the diagnosis. Nevertheless, it should be remembered that the present results are 198 

done on cell lines. So, it is a proof of the concept. To claim the development of a new 199 

clinical method, the present method has to be applied to cells obtained from actual pa- 200 

tients. 201 

 202 

Figure 4. Further verification of the lack of overtraining of the ML algorithm used in this work: 203 
shuffled class assignment of the data (a) Confusion matrix, (b) ROC curves,  (c) histogram of the 204 
areas under the curve (AUC). These AUC data are also used to find the statistical significance of the 205 
results shown in Fig.3. 206 

Although the Random Forest method is known not to have serious problems with 207 

overtraining, it is instructional to further verify the absence of overtraining. To do that, 208 

we use the method suggested in [30]. Furthermore, this method will allow us to find the 209 

statistical significance of the obtained results.  In this method, it was suggested that a 210 

correct non-overtrained algorithm should give the correct AUC of 0.5 (no-classification 211 

value) for a completely randomized test set. The same should be seen for the confusion 212 

matrix. To exclude a coincidental choice of the correct class assignment, the process of 213 

randomization was repeated 500 times as well (the same idea as in the K-fold cross-vali- 214 

dation). Figure 4 demonstrates the results of such calculations. The area under ROC curve 215 

is indeed equal to 0.5 with rather high precision. The average accuracy is also around 50%. 216 

 217 

The described above data obtained on the completely randomized test sets can also 218 

be used to find the statistical significance of the results of this work. To do that, we suggest 219 

using the AUC data obtained on the actual training data set and the AUC data obtained 220 

using the same algorithm but applied to the complete randomized test sets. Since the 221 

method correctly identified the absence of any signal (randomness of the class associa- 222 

tion), it can be considered as a control data set. Using ANOVA one-side statistical test and 223 
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the data generated for 500-fold cross-validation, we found that the obtained results are 224 

statistically significant at the confidence level p< 0.0001. 225 

 226 

Let us now discuss the nature of the observed differences between precancerous and 227 

cancerous cells. The difference in the pericellular layer of cancerous and normal cells has 228 

been reported in the literature [31] using atomic force microscopy, in particular, the mo- 229 

dality capable of imaging the distribution of the adhesion. This is novel because it gives 230 

unique information about the cell surface, which includes not only the surface morphol- 231 

ogy of cells but also the maps of the adhesive properties of cells. And because it is novel, 232 

there are no biochemical information available that connects such properties with known 233 

biochemical pathways. The previously observed difference in the cell microvilli of cancer- 234 

ous cells [20] is unlikely to be the only reason responsible for the observed difference be- 235 

cause such structures are detectable by electronic and even optical microscopy, which has 236 

been broadly used in multiple reports in which no substantial difference between normal 237 

or cancer cells was found. In addition, the topographical AFM images of the cell surface, 238 

in which the microvilli and microridges are perfectly seen, did not show a statistically 239 

significant difference between cancer and normal cells [21,22].  240 

The complexity of the challenge to link the observed data to the biochemical pro- 241 

cesses inside the cell was demonstrated in ref. [22] by the analysis of fractal dimensions, 242 

in particular, the concept of multi-practicality. Fractals are complex disorderly patterns 243 

that typically occur under far-from-equilibrium conditions [32] and/or emerge from chaos 244 

[33].   Fractal shapes are found in the large-scale structure of the Universe [34], continen- 245 

tal coastlines [35], trees [36], grain structures of materials[37], clouds [38], and even artistic 246 

creations [39]. There are many models describing the emergence of fractal geometry 247 

[33,40]. However, neither of the models explains the emergence of fractal geometry on 248 

cells. Therefore, we expect it to be a challenge for the future. As of now, it can be used for 249 

practical medical applications like the detection of cancer, specifically, in combination 250 

with the existing screening HPV and Pap smear tests. 251 

3. Methods 252 

Cells and AFM imaging 253 

The cell lines, AFM imaging, and sample preparation were descired in our previous 254 

works [21,22]. Here we just briefly describe it. Twelve different human cervical epithelial 255 

cell lines were prepared from tissues collected from the transformation zone of the cervix 256 

from six cancer and six healthy patients. The human tissues were received from the Co- 257 

operative Human Tissue Network. Cells were extracted by a two-stage enzymatic diges- 258 

tion with dispase enzyme to remove the epithelium and then trypsin to disperse the indi- 259 

vidual epithelial cells [41]. To prepare precancerous (immortal) cells, normal cells (ex- 260 

tracted from healthy individuals) were transfected and then immortalized using HPV-16 261 

virus. After a number of passages, all non-immortilized cells died out after 60–150 popu- 262 

lation doublings.  All cells were used for experiments when cells were subconfluent ( 263 

<50% confluency). Created this way precancerous CX-16–2, 16–4, 16–11, 16–12, 16–14, 16– 264 

15, and cancerous CXT-2, 3, 5, 6,7,8 cell lines were used for the AFM imaging. In total, 265 

images of 64 cancerous cells and 108 precancerous cells were used in this study. The data 266 

used in this work can be downloaded from the online database [42]. 267 

 268 

For the AMF study, cells were fixed with Karnovsky's fixative as described in [21,22]. 269 

In brief, cells cultured in 60 mm Petri dishes were washed twice with PBS buffer, and then 270 

treated with 4ml of Karnovsky’s fixative overnight at 4°C. Fixed cells were flushed from 271 

Karnovsky’s fixative with 5 ml of DI water twice (one time for several hours). For imaging, 272 

cells were dried using a freeze dryer and stored in a desiccator.  As we showed in ref. 273 

[22], cells should be imaged under humidity not exceeding 60-65%. The actual imaging 274 

was done under the relative humidity not exceeding 50%. A Nanoscope™ Dimension 275 
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3100 AFM (Veeco/Bruker-Nano, Inc., Santa Barbara, CA) with Nanoscope V controller 276 

working in HarmoniX mode was employed. A standard cantilever holder with HarmoniX 277 

standard cantilevers for operation in air were used. 278 

Surface parameters used in the study 279 

The surface parameters used in this work include Surfaces Area Ratio (Sdr), Root 280 

Mean Square Gradient (Sdq), Reduced Summit Height (Spk), and the fractal dimension. 281 

On the top of it, we also used two fractal dimensions introduced in our previous work 282 

[21,22], Sfd_top, and Sfd_bottom, which are the fractal dimensions calculated for the surface 283 

features above and below 300 nm in size, respectively. Below, we give the formulas for 284 

the calculation of the used surface parameters.  285 

 286 

The Surfaces Area Ratio (Sdr) represents the increase of the interfacial surface area rel- 287 

ative to the area of the projected (flat) x, y plane: 288 
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where Akl is defined as: 290 
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The Root Mean Square Gradient (Sdq) is the RMS-value of the surface slope within the 294 

sampling area. It is defined as: 295 

 296 
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 299 

Reduced Summit Height (Spk). This parameter is calculated using an algorithm in an 300 

implicit way. It is calculated based on the bearing area ratio curve. To find it, one needs to 301 

draw a line fitted to the 40% segment of the curve that results in the lowest decline (using 302 

the least mean squares). Man, this line is extrapolated until it crosses the vertical axes of 303 

the bearing area ratio curve for 0% and 100%. Then, two horizontal lines are drawn 304 

through the intersection points. Finally, a straight line that starts at the intersection point 305 

between the bearing area ratio curve and the upper horizontal line and ends on the 0% 306 

axis should be drawn in a way that the area of the obtained triangle is the same as the area 307 

between the horizontal line and the bearing area ratio curve. Using the same algorithm, a 308 

line between the lower horizontal line and the 100% axis should be drawn. The Reduced 309 

Summit Height (Spk) is the value of the height of the upper left triangle. 310 

Fractal dimensions. Calculation of the fractal dimensions was done with the help of 311 

SPIP software following the method described in [40]. The method is based on the use of 312 

two-dimensional Fourier transformation: 313 

 

( ) ( ) ( )
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x y
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x yx y
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N N
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=  
, 314 

where Nx, Ny are the number of pixels in the x, y directions and u, v the discrete Fourier 315 

indexes =0, 1, 2, ... Nx-1 and v = 0, 1, 2 ... Ny-1. 316 
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 317 

The obtained career spectrum was averaged over all possible directions to convert 318 

this spectrum into 1D. The resulting spectrum is only a function A(Q) of reciprocal space 319 

coordinate Q or the inverse lateral size of the geometrical features on the AFM image. The 320 

fractal dimension was calculated using the expected power-law behavior A(Q) ~ Qb. Specifi- 321 

cally, the fractal dimension was defined as 2−b. Two fractal dimensions were calculated, 322 

below (Sfd_top) and above (Sfd_bottom)  Q=1/300 nm-1. Both fractal dimensions were used 323 

in the machine learning analysis described in this work as two separate parameters. 324 

 325 

It has to be noted that ideologically, the use of the surface parameters to analyze the 326 

maps of adhesion is a substantial departure from the classically considered surface pa- 327 

rameters.  When we use the previously suggested formulas, they contain a mix of quan- 328 

tities of different dimensions. Although it does not imply any specific restrictions when 329 

these parameters are used in machine learning, obviously, the answer should depend on 330 

which particular units we use. For example, many parameters will be different if we use 331 

the presentation of adhesion force in N (Newtons),  µN, or nN. Therefore, the choice of 332 

particular units has to be consistent along all measurements. Specifically, here, we found 333 

that the largest difference between cancerous and precancerous cells was observed when 334 

the adhesion force is used in nanoNewtons, and the spatial dimensions are in the nanome- 335 

ters. 336 
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