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Abstract—Continuous Integration (CI) platforms have widely
adopted caching to speed up CI task executions by storing
and reusing dependent packages. Unfortunately, CI cache
also exposes new attack surfaces when cache objects are
shared across trust boundaries. In this paper, we systematically
investigate potential security threats of CI cache features in
seven mainstream CI platforms (CIPs). We find that existing
CIPs have isolation issues in their cache sharing and inheritance
strategies, potentially raising cache poisoning and data leakage
problems. By exploiting these vulnerable mechanisms, we
further uncover four attack vectors enabling attackers to
stealthily inject malicious code into the cache or steal sensitive
data. Even worse, many CIPs provide vulnerable o�cial cache
templates that will mistakenly store and expose sensitive data
in the cache by default. To understand the potential impact of
our disclosed threats, we develop an analysis tool and conduct
a large-scale measurement on open-source repositories. Our
measurement results show that many popular repositories
are potentially a�ected by these attacks. We also identify 78
repositories that expose their high-value secrets in cache objects
and are at risk of secret leakage. We have duly reported
identified vulnerabilities to corresponding stakeholders and
received positive responses.

1. Introduction
Continuous Integration (CI) is a software development

practice for automated code build, integration, and testing.
CI provides an e�cient approach to integrating the work of
di�erent developers, greatly simplifies their daily work, and
shortens the software development period. It is reported that
70% of organizations have adopted CI workflow to package
and release new software versions [1].

CI’s e�ciency, particularly task execution e�ciency, is
one key consideration for developers [2]. One of the most
e�ective ways to make CI tasks faster is caching [3], which
has been widely used and supported by almost all mainstream
CI services [4]. For example, CI cache can store dependent
packages during the execution of a CI task. Then, subsequent
CI tasks can reuse these package files from the cache instead
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of re-downloading them from the package registries (e.g.,
npm and PyPI).

As CI plays an important role in software development,
its security is essential to ensure software security. If attackers
can break the CI workflow, they can inject malicious code
into the software package to launch various software supply
chain attacks [5], [6], [7]. Moreover, sensitive data (e.g.,
secrets) is often used and stored in CI. Improperly configured
CI with weak isolation mechanisms might leak sensitive
data, causing serious security risks [8]. Furthermore, the
improper usage of CI cache can also raise severe security
threats. For example, if CI caches are not properly separated
among di�erent trust levels (e.g., di�erent repositories),
attackers can implant malicious code in the shared cache
to attack other victim repositories. While extensive research
e�orts have been conducted on CI security [4], [8], [9], [10],
unfortunately, little attention has been paid on cache related
security threats in CI services.

In this paper, we conduct the first systematic study
toward understanding security threats in CI caches. We
identify two widely adopted CI caching mechanisms that
can potentially lead to serious security risks. The first one is
cache sharing: in many CI services, repositories (potentially
from di�erent users) might share the same CI cache. A
cache object generated by a repository may be used by
other repositories. Attackers can initiate a cache poisoning
attack by generating a cache object (e.g., package) containing
malicious code, which may be injected into victim software
without accessing their repositories. The second vulnerable
mechanism is cache inheritance: a forked repository might
inherit its parent repository’s cache without any configuration
needed. Although the inheritance is one-way only (i.e., read-
only), it enables a CI task triggered by a pull request from a
forked repository to potentially exfiltrate sensitive data (e.g.,
secrets) from the parent repository.

We analyze the cache implementation of seven commonly
used CI Platforms (CIPs), comprising three built-in CIPs
(GitHub Actions, GitLab CI, and Bitbucket Pipelines) and
four independent CIPs (CircleCI, TravisCI, TeamCity, and
Jenkins), across three major Code Hosting Platforms (CHPs)
(GitHub, GitLab, and Bitbucket). We carefully examine their
mechanisms of cache authentication, storage, isolation, and
inheritance. We identify four major cache-related security



issues in existing CIPs: (1) Improper write-up: a low-level
permission CI job (e.g., triggered by a pull request from the
forked repository) can potentially poison caches used by high-
level permission CI jobs. (2) Improper read-up: a low-level
permission CI job can read cache objects sourced from a
high-level permission CI job, causing sensitive data leakage.
(3) Improper token permission: the token for cache access
authentication (i.e., Tcache) may not be properly limited to
the cache of the originated repository, leading to privilege
escalation. (4) Improper cache eviction: some CIPs might not
timely evict cache objects. A cache object will remain valid
even after its creator has lost related privileges (e.g., a fired
employee or the old owner of a transferred project). This
issue potentially allows such attackers to implant malicious
code (e.g., a backdoor) in the cache and a�ect the repository
even after they have left.

From our analysis, we find that all seven CIPs have
problems with their cache isolation strategies. Three CIPs
(i.e., GitLab CI, CircieCI, and TravisCI) provide vulnerable
o�cial cache templates, which include misconfigured cache
rules. These templates will mistakenly store sensitive data
in the cache, such as Maven registry login credentials
and Cargo registry API tokens. Moreover, we find that
many binary tools (e.g., docker, aws), CI plugins (e.g.,
docker/login-action), and customized scripts used
in CI tasks will also implicitly store secrets to cached files
during task execution. Finally, we find that TravisCI and
CircleCI use over-privileged Tcache. Attackers can steal the
Tcache by initiating a pull request and further manipulate
the victim’s cache objects directly. Based on these security
threats, we further propose four attacks against CI cache,
enabling attackers to access unauthorized resources, steal
tokens, and implant malicious code into software artifacts.

To evaluate the potential impact of our proposed attacks,
we design and develop an analysis tool, CAnalyzer, to conduct
a large-scale measurement on the three CHPs. CAnalyzer col-
lects open-source repositories and their metadata (such as
cache usage and permission settings) from CHPs, including
data from January 2017 to January 2023. Then it utilizes pre-
defined rules to detect potential cache vulnerabilities, such as
privilege escalation and cache poisoning. CAnalyzer further
uses variable analysis and data flow analysis to find sensitive
files (i.e., files containing secrets) in the cache to detect data
leakage vulnerabilities.

Our measurement results show that 78 repositories leak
highly sensitive secrets in the CI cache, such as software sign-
ing certificates used to sign database management software
with over 100 million downloads, and credentials used to
publish popular Docker images with millions of downloads.
Besides, many repositories, including some very popular
repositories and repositories from large organizations (e.g.,
Microsoft and Google), are potentially vulnerable to other
uncovered threats. We have disclosed our findings to impacted
stakeholders and received positive feedback.

In summary, the major contributions of this work include:
÷ We present the first systematic study on cache-related

security threats in CI services. We identify several risks
involving cache sharing and isolation and find that existing

mainstream CIPs are all susceptible to these security risks,
which could result in severe consequences.

÷ We unveil four attack vectors allowing attackers to poison
the CI cache, inject malicious code (e.g., a backdoor), and
steal high-value sensitive data (e.g., secrets). We design
and develop a fine-grained analysis tool, CAnalyzer, to
conduct a large-scale measurement on three widely used
CHPs, revealing that our proposed attacks may present
significant security risks to CI users.

÷ We have disclosed all our findings to the impacted stake-
holders and received positive feedback.

2. Background

2.1. CI Introduction

A typical CI workflow involves several independent
stakeholders, including code hosting platforms (CHPs), CI
platforms (CIPs), and third party services (TPSs). CHPs
are widely used to manage source code in repositories.
Popular CHPs generally adopt role-based access control to
their repositories (e.g., owner and collaborator). CIPs are
responsible for executing CI tasks of a repository on runner
hosts. A CIP may either be integrated into a CHP (such as
GitHub Actions) or exist independently of CHPs (such as
CircleCI). Repository owners can configure CI tasks via a
configuration file (e.g., .travis.yml in TravisCI) or a web
portal (e.g., TeamCity). Two important configurable elements
of a CI task include: (1) Execution triggers, which specify the
events that will trigger a CI task. For instance, developers
can specify a push event or pull request as an execution
trigger. (2) Secrets, which can be used to access TPSs during
the CI task execution. On most CIPs, the recommended way
of using secrets is to define them as key-value pairs on CIP’s
web portal and use keys instead of values (e.g., plaintext
passwords) in the CI task configuration to avoid exposing
secrets [11], [12]. According to the CI task model, each
CI task consists of a set of jobs, which further contains a
sequence of steps. Each step includes one or more commands,
such as invoking shell tools. Among them, job is the smallest
unit of CI permissions [13], [14]. All steps in the same job
have the same permissions, but di�erent jobs of the same CI
task may have di�erent permissions. For example, GitHub
Actions starts a separate fresh virtual machine for each job
and only provides secrets to explicitly specified jobs.

2.2. CI Cache Categories

All mainstream CIPs support caching. CI cache can
be used in many scenarios, including among (1) di�erent
jobs of the same CI task; (2) di�erent CI tasks; and (3)
di�erent repositories. There are mainly two cache work
modes: proactive cache and passive cache.
Proactive Cache. Proactive cache means that developers
should explicitly enable the cache feature (e.g., ∂ in Listing 1)
and specify the cached files by cache rules (i.e., paths) in
the CI configuration file (e.g., ∑ and ∫ in Listing 1). At the



s3://travisci**/5724562189**/master/cache-**.tgz
S3 bucket name Repository id Branch Cache key

Figure 1: An example of cache object storage path in TravisCI.

same time, developers can specify a cache key (e.g., ∏ and π
in Listing 1) for the corresponding cache object. When a CI
task starts, based on the configuration file, CI services will
check (and obtain) the existing cache object for the specific
cache key. Similarly, before the CI task ends, CI services
will package the specified cached files into a compressed file
(i.e., cache object) and save it to the predefined location.

The cache storage can be (1) a local directory in the CI
runner host or (2) a distributed location of third-party storage
services (e.g., Figure 1 shows an example of TravisCI’s cache
storage path on AWS S3). If stored in local storage, the cache
objects can only be used for subsequent CI tasks running
on the same runner host. For distributed storage (e.g., S3),
the cache objects can be used by any subsequent CI tasks
(running on any runner hosts) with the valid access token
(i.e., Tcache). GitHub Actions, GitLab CI, Bitbucket Pipelines,
CircleCI, and TravisCI adopt proactive cache. Among them,
GitLab CI supports both local and distributed storage, while
the others only support distributed storage.
1 # GitHub Actions Cache Example
2 steps:
3 - name: Cache node modules
4 uses: actions/cache@v3 ∂ Enable cache
5 with:
6 path: ~/.npm ∑ Cache rules
7 key:
8 ${runner.os}-${hashFiles('**/package-lock.json')}

∏ Cache key
9 restore-keys: |

10 ${runner.os}-${hashFiles('**/package-lock.json')}
11 ${runner.os}
12

13 # GitLab CI Cache Example
14 job A:
15 cache:
16 key: keyA π Cache key
17 paths:
18 - vendor/ ∫ Cache rules
19

20 # TravisCI Cache Example
21 language: python
22 cache: pip ª Implicit cache key

Listing 1: Cache examples in CI services.

Passive Cache. Passive cache means a CI runner does not
actively clear the files generated during its CI task execution
and all subsequent CI tasks will automatically reuse these
files. Specifically, developers cannot explicitly specify which
files should be cached or which tasks can reuse their cached
files by configuration. TeamCity and Jenkins use passive
cache and both are local storage.

2.3. CI Cache Matching and Inheritance

Cache Matching. All proactive caches use a key-based
cache matching method. The cache key, which is gener-

ally explicitly specified by developers, can be hard-coded
or with variables. Hard-coded keys (e.g., keyA in π in
Listing 1) do not change synchronously with code updating
or operating environment switching. Alternatively, developers
can add variables in a cache key. As shown in ∏ in
Listing 1, there are two variables ${runner.os} and
${hashFiles(’**/package-lock.json’)}. The
first variable identifies the operating system of the run-
ner host; the second one is the hash value of the file
package-lock.json in the repository. Therefore, the
concatenated cache key remains unchanged only if the
CI task runs on a runner host with the same OS and
package-lock.json has not been modified. Moreover,
some CIPs support implicit cache keys, which are pre-
defined by CIPs. For example, TravisCI supports using
the keyword "cache: pip" (ª in Listing 1) to quickly
configure the cache of Python dependent packages (i.e.,
Ì/.cache/pip).

When restoring cached files, the CI service will query
whether the restore-key matches an existing cache object
(i.e., cache hit). If all restore-keys do not match any existing
cache objects (i.e., cache miss), the CI service will generate
a new cache object and map it with the task’s cache key.
Cache Inheritance. Some CIPs adopt a cache inheritance
strategy to enhance task execution e�ciency: a forked
repository might inherit its parent repository’s cache. For
example, GitHub Actions enforces cache isolation based on
branch. However, it allows a pull request to inherit caches
created in the base branch or the default branch (e.g., the
main branch) [15]. TravisCI also adopts a similar strategy,
allowing a pull request from a forked repository without its
own cache to inherit the parent’s cache. Specifically, TravisCI
first checks the cache of the pull request’s target branch,
then the parent repository’s default branch cache [16]. For
TeamCity and Jenkins which use passive cache, they only
isolate the cache based on runner host. Therefore, di�erent
branches and even di�erent repositories share the same cache
on one runner host.

3. CI Cache Implementation Demystified

Understanding the implementation details of the CI
cache is necessary to investigate its potential security threats.
However, the CI cache implementation on most CIPs is not
well documented. To demystify CI cache implementation,
we first carefully analyze CI cache documents and the source
code of several open-source CIP cache implementations (e.g.,
GitHub Actions). Then, we conduct black-box testing using
on-premise deployed CIP instances (i.e., deploy the CIPs on
our own machines) on seven CIPs. We use mitmproxy [17]
to analyze network tra�c generated during the execution of
a CI task. To investigate the cache storage, we set up CIPs
that support custom cache storage providers, using our own
cloud storage (rented from AWS S3).

For the testing, we first create several private repositories
with one CHP account (as the repositories’ owner). For
each repository, we set up a protected branch and a non-
protected branch. We further fork these repositories using



TABLE 1: Overview of CI cache implementations. � denotes
Passive Cache. ○ denotes Proactive Cache. 3 indicates the cache
can be shared among di�erent entities.

Cache Sharing AmongCIPs Mode Jobs Branches Repofork Repoother
GitHub Actions ○ 3 3

GitLab CI ○ 3 3< 3<

Bitbucket Pipelines ○ 3 3
CircleCI ○ 3 3 3<

TravisCI ○ 3 3† 3
Jenkins � 3 3 3 3‡

TeamCity � 3 3 3 3‡

* Require user configuration (not shared by default).
† Only supports one-way sharing from the default branch to other branches.
‡ Running on the same runner host.

di�erent CHP accounts (as normal developers). For all
branches, we create the same CI tasks using the same
configuration file: each CI task contains two jobs, with cache
enabled using a hard-coded cache key. We also set two
execution triggers for each CI task: a push event and a pull
request event from the forked repository. This setup allows
us to test the cache sharing/inheritance mechanisms across
jobs/branches/repositories.

Specifically, we run four rounds of testing. In the first
round, we initiate a code commit on the protected branch to
trigger a CI task and test whether the same cache is shared
by two jobs of the CI task (i.e., whether the later-executed
job can use the cached files stored by the earlier-executed
job). In the second round, we initiate a code commit on the
non-protected branch to trigger a CI task and test whether
the same cache is shared across di�erent branches (i.e., the
jobs of the CI task from the non-protected branch can use
the cached files of the protected branch). In the third round,
we initiate a pull request from the forked repository to the
parent repository and observe whether the CI task inherits
the parent repository’s cache. In the fourth round, we initiate
a code commit to another independent repository and record
whether it shares the cached files of previous repositories on
the same CI runner host. The overall features of di�erent
CIPs are shown in Table 1.

3.1. Cache Storage

Proactive Distributed Cache on CIP-Owned Cloud Stor-
age. GitHub Actions and Bitbucket Pipelines use proactive
distributed cache, uploading compressed cached files to
GitHub/Bitbucket-owned cloud storage. When a CI task
starts running, the two CIPs automatically generate a one-
time Tcache for the authentication of file transmission. The
token will expire immediately when the CI task ends.
Moreover, the two CIPs both adopt the write-once-read-many
(WORM) model [18] to protect the cache objects: once a
cache key is generated, its mapped cache object cannot be
changed [15]. Furthermore, the cache validity period of the
two CIPs is 7 days. Developers can also delete cache objects
manually before they expire.
Proactive Distributed Cache on Third-Party Cloud Stor-
age. For proactive distributed cache, GitLab CI, CircleCI,

and TravisCI use third-party cloud services (e.g., AWS S3)
as their cache storage.

As authentication is required for accessing S3, both
GitLab CI and TravisCI use AWS S3 presigned URLs [19] as
Tcache. Per AWS’s documents [20], there is no restriction on
what files can be uploaded to a presigned URL. Anyone who
knows a presigned URL can obtain temporary authorization
to access the designated file in S3. Specifically, GitLab CI
and TravisCI pre-allocate a storage location on S3 for cached
files associated with a given CI task. Then, presigned URLs
are generated and sent to a CI runner for downloading and
uploading the cache object. The validity period of Tcache is
1 hour for GitLab CI and 2 hours for TravisCI.

For CircleCI, it creates AWS Temporary Security Creden-
tials [21] as Tcache for the authentication. The token validity
period is 15 minutes. CircleCI’s document states that "Cache
is immutable on write. Once a cache is written for a specific
key, <redacted>, it cannot be written to again" [3].
Local Cache Storage. TeamCity and Jenkins adopt passive
local cache storage by default. During a CI task, both do
not actively clear the generated files. Thus, subsequent CI
tasks will automatically reuse the files left by the previous
CI tasks. Also, developers cannot explicitly specify cached
files in the CI configuration file. Besides, Jenkins provides a
plugin supporting proactive distributed cache storage (i.e.,
Job Cacher [22]), which can upload cache objects to AWS S3.
However, the number of users of this plugin is small (merely
1,000 installs per month [22]), compared with millions of
Jenkins users [23]. Thus, this paper focuses on analyzing
Jenkins’ passive local cache mode.

3.2. Cache Isolation and Sharing

From our four-round experiments, we find all seven CIPs
do not implement cache isolation at the job level. The caches
are shared among di�erent tasks and di�erent jobs of the
same branch of a repository. Moreover, we find that these
CIPs, except GitHub Actions, allow di�erent branches of a
repository to share the same cache. Among them, Bitbucket
Pipelines, CircleCI, TeamCity, and Jenkins enable this feature
by default. For GitLab CI, it only supports sharing cache
among non-protected branches by default, and considers
the cache isolation between protected and non-protected
branches as a security feature [24]. Users need to manually
enable cache sharing between non-protected and protected
branches. Moreover, TravisCI also requires users to actively
enable sharing cache among branches. Finally, we find that
TeamCity and Jenkins apply the runner host-level cache
isolation strategy. Di�erent repositories running on the same
runner share the same cache.

3.3. Cache Inheritance

We find that, all CIPs except Bitbucket Pipelines imple-
ment a cache inheritance mechanism. A CI task triggered
by a forked repository will inherit the cache object of its
parent repository unless there is an existing self-generated
cache object. GitHub Actions and TravisCI implement the



above inheritance by default. Since TeamCity and Jenkins
adopt passive cache mode and share cache at the host level,
obviously, they have the same inheritance mechanism when
the forked and parent repositories run on the same runner
host. For GitLab CI, it supports two execution modes [25]
for a CI task triggered by a pull request from the forked
repository: (1) running the task in the forked repository; (2)
running the task in its parent repository. In the latter mode,
the task can share the cache generated by the non-protected
branch of the parent repository. For CircleCI, developers can
modify the settings to allow cache sharing (i.e., inheritance)
between the parent repository and all its forked builds [26].

3.4. Other Characteristics: Plugins

GitHub Actions and CircleCI support CI plugins [27],
[28], which represent a set of configurable and reusable pack-
ages that can be employed in any repository. In GitHub Ac-
tions, there is an o�cial plugin (i.e., actions/cache [29])
and some third-party plugins1 that provide the cache function.
As these third-party plugins are also developed based on
GitHub’s cache function, their cache storage locations and
authentication methods are the same as the o�cial one’s.
Developers can reference the o�cial or any third-party cache
plugins in the CI configuration file to use the cache function
in GitHub Actions.

Meanwhile, CI plugins can be parameterized with di�er-
ent options. We find that some plugins take secrets as
input parameters, which can be stored in files during plugin
execution. For example, the docker/login-action
plugin [31] from GitHub Actions read Docker Hub login
credentials as the input parameters and store them in the file
Ì/.docker/config.json.

4. Threat and Security Model

4.1. Threat Model

We consider a typical CI scenario adopted by an organi-
zation. The organization utilizes CHPs to maintain multiple
repositories. CI is used for software development, with
cache enabled. In this organization, employees have di�erent
permissions and authorization-levels for each repository.
For example, repository owners have full access to their
repositories. Collaborators have read (e.g., browse and create
pull requests) and write (e.g., edit source code, create git
tags, and merge pull requests) permissions, but cannot edit
repository settings. The organization uses secrets to
manage sensitive data used in CI tasks, as suggested by
all CIPs. The scenario is consistent with a recent research
paper on CI security [8].

We consider threats from normal users with limited
permissions or low authorization-levels. They attempt to
gain unauthorized access to resources (e.g., secrets) or to
distribute malicious code stealthily (e.g., injecting backdoors

1For example, Swatinem/rust-cache [30], a popular Rust cache plugin.

into the software built by CI tasks) by exploiting implementa-
tion flaws in CI cache. Thus, we assume all stakeholders (i.e.,
CHPs, CIPs, and TPSs) and their communication channels are
secured. We present several practical examples of adversaries
and their capabilities below:
÷ Unethical pull request initiator. Adversaries can submit a

pull request to execute code in the CI task of the targeted
repository. This assumption does not require the code to
be merged into the victim repository, since CI tasks might
be configured to be automatically triggered upon receiving
a pull request, but prior to the code merging [32].

÷ Unethical repository collaborator. Adversaries may be
collaborators on a specific repository within the victim
organization, with limited access (e.g., read and write) only
to the unprotected branch of the repository. They can modify
CI tasks of the authorized repository, such as build scripts
or unit test code. However, they are not authorized to access
protected branches, use secrets, or manipulate software
releases. They also have no permission to other repositories
in the organization. Particularly, we consider the capabilities
of this type of adversary based on the default settings in
CHPs. By default, in GitHub, GitLab, and Bitbucket, a
collaborator has the ability to create git tags [33]. Thus,
we consider an unethical repository collaborator has the
capability to create git tags. Nevertheless, GitHub and
GitLab provide additional tag protection functionalities [34],
[35]: if the repository owner has manually configured tag
protection rules, collaborators without permissions may be
unable to create a specific protected tag.

÷ Unethical repository owner. Adversaries gain ownership
of a single repository within the victim organization and
have full access to that repository. They can also modify
CI tasks of their own repository. However, they do not
have the necessary permissions to access other repositories
belonging to the victim organization.

4.2. Security Model of CI Cache

There is no unified and standardized security model in
CI services. Thus, we have extracted a basic security model
through a thorough examination of relevant open source
components and careful analysis of documentation.

We first define the permission level of a cache job
according to (1) whether it has the permission to access
secrets, (2) the permission level of the CI task initiator it
belongs to, and (3) whether it is running on a protected
branch. For example, a protected branch can usually only
be operated by trusted developers, while a non-protected
branch can be operated by any repository member. Similarly,
the parent repository can only be operated by repository
members, while the forked repository can be operated by
any developer with read permission of the parent repository.
The specific define rules are as follows:
÷ Rule 1. In the same repository, a job that can access CI

secrets has higher permission than a job that cannot do it.
÷ Rule 2. In the same repository, a job of the protected

branch has higher permission than a job of the non-protected
branch.



÷ Rule 3. A job of the parent repository has higher permission
than a job triggered by a pull request initiated by the forked
repository. This is because CIPs typically consider the latter
is initiated by less trusted users [36], [37].

Moreover, we mark a CI job that generates a cache object
as the source job and a CI job that uses a cache object as the
sink job. Source job and sink job can be di�erent jobs of (1)
the same task, (2) di�erent branches, or even (3) di�erent
repositories.

5. Identified Threats in CI Cache

Combining our proposed threat model and the extracted
security model, we present several potential security threats
that may arise from cache usage in CIPs. Through these
attacks, adversaries can access unauthorized resources, steal
secrets, and inject malicious code into software artifacts.

5.1. Improper Write-Up

There is a risk of cache poisoning if a cache object
sourced from (i.e., written by) a low-permission job is used
by a high-permission job. Once attackers have poisoned
the cache of the victim repository, malicious code may
be embedded during software building. Attackers can also
exploit the cache to tamper with dependent packages of the
unit test code. They can covertly run malicious code to steal
tokens and/or manipulate CI tasks’ results. Such a threat is
hard to detect because attackers do not pollute the unit test
code directly.

5.1.1. Cache Poisoning Attack
The cache poisoning attack can be divided into three

categories based on di�erent source/sink jobs. We consider
the attack with high risk as it enables cross-repository threats.
Cross Repository Cache Poisoning. TeamCity and Jenkins
adopt a runner host-level cache isolation strategy: repositories
running on the same runner host share the same cache.
Therefore, attackers (e.g., unethical pull request initiator or
unethical repository collaborator) can trigger a CI task of a
repository (with low-level permissions) to inject malicious
code into cached files (e.g., dependent packages). The
malicious code will a�ect victim repositories on the same
runner host if the cached files are used by their CI tasks.
Cross Branch Cache Poisoning. Except for GitHub Actions,
all other six CIPs allow di�erent branches of the same
repository to share the cache (GitLab CI and TravisCI require
user configuration as described in Section 3.2), making them
vulnerable to this type of attack. A typical attack scenario is
that attackers (e.g., unethical repository collaborators) only
have permission to a non-protected branch of the victim
repository. They can then initiate a CI task on the non-
protected branch and generate a malicious cache object.
Because the cache is shared across branches, the poisoned
cache object might be used even by a protected branch of
the victim repository.
Cross Job Cache Poisoning. We find that GitHub Actions
and GitLab CI can grant di�erent levels of permissions to

di�erent jobs of the same branch. For example, they can
restrict access to secrets to specific jobs (e.g., with high-level
permissions). However, attackers (e.g., unethical repository
collaborators) can bypass this restriction even with low-
level permissions only, because GitHub Actions and GitLab
CI share the same cache for all jobs of the same branch.
Attackers can exploit this vulnerability to poison the cache
generated by a low-level permission job (e.g., a unit test job)
and then steal secrets from high-level permission jobs (e.g.,
a release job) of the victim branch.

Note that popular package managers, such as npm and
pip, cannot defend against cache poisoning attacks through
their dependency lock and checksum verification [38], [39]
mechanisms. The dependency lock only ensures that de-
pendent packages use a specific version; and checksum
verification only verifies the integrity of the package file
downloaded from the package registries. Both mechanisms
cannot detect the case that attackers directly modify the
content of the package file (i.e., cached file) on the host
machine.

5.2. Improper Read-Up

There is a risk of data leakage when a cache sourced
from a high-permission job is used (e.g., read) by a low-
permission job. For instance, if the high-permission job
mistakenly caches a file containing sensitive information
(e.g., API tokens), the low-permission job can then access
the cache, read the file and potentially steal the tokens from
the victim. We find that all seven CIPs su�er from this risk.

One important data that may be leaked from the
cache is secrets, which is also a significant concern
of CI users [40]. We take a GitHub repository (i.e.,
openzipkin/zipkin-dependencies [41]) as an ex-
ample. This repository will publish a popular docker image
(over 10M downloads) with the same name [42] to Docker
Hub using its custom CI task of GitHub Actions. As Listing 3
shows, before executing the "docker push" command
(line 12), the CI task will execute the "docker login"
command (line 11) to log in to Docker Hub. The username
and token used for login are passed by CI secrets (line
14 and 15), which is the recommended way in GitHub
Actions [11]. After successfully logging in, the "docker
login" command will store the username and token (both
in plaintext) in the file Ì/.docker/config.json [43].
However, according to the cache rule (line 5), the task will
cache all files under the folder Ì/.docker/, including the
file containing docker login credentials. Thus, attackers can
access the cache, steal the credentials, and further perform
other malicious activities (e.g., push malicious images to
Docker Hub using the victim’s account).

5.2.1. Cache Leakage Attack
Unethical pull request initiators or unethical repository

collaborators can launch high-risk cache leakage attacks,
which could potentially leak secrets. Particularly, we find
that cache leakage might be caused by di�erent stakeholders
in multiple situations.



O�cial Cache Service with Vulnerable Custom Cache
Rules. Developers often use CIP’s o�cial cache service, but
they might mistakenly add paths including sensitive files
to the cache rules. One vulnerable example is the above-
mentioned openzipkin/zipkin-dependencies. As
another example, a popular database management tool (with
100M+ downloads), liquibase [44], has this type of issue too.
Its CI configuration file (as shown in Listing 2) shows it uses
GitHub Actions’ o�cial cache service (i.e., actions/cache).
During the execution of its CI task, the tool’s software
signing certificates and their passwords will be passed in via
CI secrets, and then written into two files2,3. However,
according to the custom cache rules (i.e., ./**/target),
both files will be cached. If the cache is leaked and accessed
by other users, it will potentially cause severe damage.
1 name: Package Artifacts
2 steps:
3 - name: Built Code Cache
4 uses: actions/cache@v3.3.1
5 with:
6 key: built-code-${{github.run_number}}-${{
7 github.run_attempt}}
8 path: ./**/target ◊ Cache rule
9 - name: Build & Sign Artifacts

10 env:
11 INSTALL4J_APPLE_KEY:

${{secrets.INSTALL4J_APPLE_KEY}}
12 INSTALL4J_APPLE_KEY_PASSWORD:

${{secrets.INSTALL4J_APPLE_KEY_PASSWORD}} ◊
Define secret variables

13 INSTALL4J_WINDOWS_KEY:
${{secrets.INSTALL4J_WINDOWS_KEY}}

14 INSTALL4J_WINDOWS_KEY_PASSWORD:
${{secrets.INSTALL4J_WINDOWS_KEY_PASSWORD}}

15 run: |
16 mkdir -p liquibase-dist/target/keys
17 echo "Saving apple key"
18 echo "$INSTALL4J_APPLE_KEY" | base64 -d >

liquibase-dist/target/keys/datical_apple.p12
◊ Write a secret variable to file

19 echo "Saving windows key"
20 echo "$INSTALL4J_WINDOWS_KEY" | base64 -d >

liquibase-dist/target/keys/datical_windows.pfx
◊ Write a secret variable to

file

Listing 2: The CI configuration file (i.e., create-release.yml) of
liquibase/liquibase, which writes secret variables (i.e., software
signing keys) to the files via shell commands (line 18 and 20).

Vulnerable O�cial Cache Templates. Many CIPs pro-
vide pre-configured CI cache templates (e.g., predefined
keywords). If these templates’ cache rules include sensitive
files, developers may inadvertently and unknowingly expose
sensitive data. After carefully scrutinizing CIPs’ o�cial cache
templates, we find that multiple templates are misconfigured
and their users potentially su�er from serious data leakage
risks. We list all vulnerable o�cial cache templates in
Table 2: the Gradle templates of GitLab CI and CircleCI, the

2liquibase-dist/target/keys/datical_apple.p12
3liquibase-dist/target/keys/datical_windows.pfx

Maven templates of CircleCI and TravisCI, and the Cargo
template of TravisCI are vulnerable to this threat. Particularly,
these templates by default cache all files in the package
managers’ configuration folders, which include configuration
files that contain sensitive data. For example, Maven’s
configuration folder (i.e., Ì/.m2/) contains a subfolder (i.e.
Ì/.m2/repository/) for storing dependent packages
and a configuration file (i.e. Ì/.m2/settings.xml) that
may store Maven credentials. However, both CircleCI and
TravisCI cache all files in the configuration folder, potentially
causing credentials leakage.
1 steps:
2 - name: Cache Docker
3 uses: actions/cache@v2
4 with:
5 path: ~/.docker ◊ Cache rule.
6 key:${runner.os}-docker-${hashFiles('**/Dockerfile')}
7 restore-keys: ${{runner.os}}-docker
8 - name: Docker Push
9 run: |

10 build-bin/git/login_git &&
11 build-bin/docker/configure_docker_push && ◊

Executes docker login command.
12 build-bin/docker_push ◊ Executes docker push

command.
13 env:
14 DOCKERHUB_USER: ${{secrets.DOCKERHUB_USER}}
15 DOCKERHUB_TOKEN: ${{secrets.DOCKERHUB_TOKEN}}

Listing 3: The CI configuration file (i.e., docker_push.yml) of
openzipkin/zipkin-dependencies.

Vulnerable Third-Party Cache Plugins. Except for the
o�cial cache service, there are third-party cache plugins
in GitHub Actions. These plugins may also provide pre-
configured cache rules to simplify configuration. Similarly, if
their rules are misconfigured, sensitive files may be cached
without developers’ awareness. For example, a popular third-
party cache plugin, Swatinem/rust-cache, which is
used by more than 2,800 repositories, provides preconfigured
cache rules (i.e., Ì/.cargo/). For some Rust-related CI
tasks, they will execute the command "cargo login"
to log into the Cargo registry for publishing packages.
Unfortunately, the command will write the login token (in
plaintext) into the file Ì/.cargo/credentials [52],
and then the file will be cached according to the plugin’s
rules, potentially leading to token leakage. A real vulnerable
example is a popular package, jsonc-parser [53], with more
than 640K downloads in Cargo registry. Once attackers steal
its token, they can inject malicious code into the package,
causing a serious software supply chain threat.

5.3. Improper Token Permission

For CIPs adopting distributed cache storage mode, they
all use a token (i.e., Tcache) to authorize and control cache
access. To avoid potential privilege escalation, Tcache should
be limited to the cache of the originated repository, without
any permissions to caches of any other repositories. Moreover,
if a CIP’s cache is designed as read-only, its Tcache should



TABLE 2: Vulnerable o�cial cache templates.
CIPs Templates Cache Rules Sensitive Files Sensitive Data

GitLab CI Gradle [45]< .gradle/ .gradle/gradle.properties Project configuration properties, e.g., registry credentials [46].
CircleCI Maven [47] Ì/.m2/ Ì/.m2/settings.xml Configurations of the Maven tool, e.g., authentication secrets [48].
CircleCI Gradle [49] Ì/.gradle/Ì/.gradle/gradle.properties Project configuration properties, e.g., registry credentials [46].
TravisCI Maven [50] Ì/.m2/ Ì/.m2/settings.xml Configurations of the Maven tool, e.g., authentication secrets [48].
TravisCI Cargo [51] Ì/.cargo/ Ì/.cargo/credentials The API token of Cargo registry used to publish packages [52].

* Although GitLab CI only allows caching files under the current directory, there is still a risk in the Gradle o�cial cache template because it changes the
Gradle home directory (i.e., GRADLE_USER_HOME="$(pwd)/.gradle") [45].

not have permission to modify cache objects. However, we
find that TravisCI and CircleCI have token permission issues.
In both CIPs, the Tcache for pull requests has permission to
modify the parent repository’s cache objects.

5.3.1. Cache Privilege Escalation Attack
If over-privileged Tcache is leaked (e.g., via the attacks

proposed in [8]), attackers (e.g., unethical pull request
initiators) can exploit it to escalate their privileges and cause
damage beyond expectations (high-risk).
TravisCI. Since TravisCI uses AWS S3 presigned URLs
as Tcache, anyone who obtains the presigned URL can
temporarily access specific files in S3. Meanwhile, TravisCI
adopts a three-level cache inheritance strategy for a pull
request from a forked repository. It will check caches in
sequence: (1) the pull request cache, (2) the pull request’s
target branch cache (in the parent repository), and (3) the
parent repository’s default branch cache. We find that a CI
task triggered by a pull request from a forked repository
always generates all three presigned URLs for the above
possible caches. Moreover, all of these presigned URLs will
be passed to the CI runner and then written to a file (i.e.,
Ì/.casher/bin/casher) in the runner host. The runner
checks the existence of caches in order and restores the first
downloadable cache to the local host. However, by adding
code in the CI configuration file or into the codebase (e.g.,
unit test code) used in a CI task and then initiating a pull
request from the forked repository, attackers can easily access
the file, obtain the three presigned URLs, and further illegally
manipulate (e.g., read and/or write) the parent repository’s
default and target branch caches.
CircleCI. CircleCI uses AWS temporary security creden-
tials [21] as Tcache for the authentication of cache objects
uploading and downloading. Since CircleCI saves Tcache
in the CI runner’s memory and the runner runs with root
privileges [54], attackers can adopt similar attacking methods
in TravisCI, i.e., adding code in the CI configuration file
or into the codebase, then they can steal the Tcache directly
from the runner process by reading its memory.

Even worse, CircleCI’s Tcache is over-privileged. Al-
though CircleCI explicitly states that its cache is immutable
on write [3], we find that CircleCI’s Tcache has permission to
modify cache objects. Furthermore, we find that its Tcache can
traverse all the caches of the victim repository to read/write
arbitrarily without any limitation. Thus, attackers can initiate
a pull request from the forked repository to the victim
repository, steal Tcache, and then arbitrarily modify cache
objects of any branch of the victim repository.

5.4. Improper Cache Eviction

We find that some CIPs do not evict cache objects
properly when the permission of a repository member has
changed. Specifically, even if users have lost their access
privileges to a repository (e.g., fired employees), their cache
objects are still valid and might be used by the repository.
This improper cache eviction enables attackers to continue
attacking a victim repository (e.g., implant a backdoor in
the cache) even after losing their access privileges.

We identify three practical scenarios where untimely
cache eviction can cause security threats. (1) User permission
revocation: when a user’s permission is revoked, cache
objects created by this user are not promptly deleted. (2) git
tag deletion: a tagged cache is not timely deleted when
the corresponding tag is deleted. Particularly, git tag
is a crucial feature commonly employed for marking new
release versions. GitHub Actions provides a distinct cache
isolation strategy for each git tag [55]: a cache generated
by a specific git tag can only be shared and used by the
same git tag. However, tags can be created, deleted, and
then recreated. We find that the cache associated with a tag
remains intact even after the tag is deleted. Therefore, an
attacker can create multiple tags to generate multiple caches
and subsequently delete the tags before losing the access
permission. When subsequent benign developers recreate any
of the above tags, the triggered CI task will use the poisoned
cache. (3) Repository ownership transfer. All the three CHPs
provide the repository transfer function: transferring the
ownership of a repository to another user. To avoid path
collision and unintended cache sharing among di�erent
repositories, some CIPs use repository id (from CHPs) to
generate the object path in the cache storage (as shown in
Figure 1). However, the repository id remains unique and
unchanged in each CHP, even though the repository’s owner
has been changed. This mechanism will cause serious threats
if CIPs do not invalidate the cache generated by the old
owner: the new owner will automatically and unknowingly
use the cache generated by the old owner when running a
CI task. Unfortunately, we find GitHub Actions, GitLab CI,
CircleCI, and TravisCI are all vulnerable to this threat.

5.4.1. Cache Backdoor Attack
We propose a new attack exploiting the above mechanism.

Threat Model. The threat model is slightly di�erent from
our general model. We assume that at first an attacker has
write access to a repository (e.g., as a repository owner
or collaborator), which does not contain malicious code.



Later the attacker loses access to the victim repository. This
scenario is not rare: for example, the attacker is a disgruntled
employee who is leaving an organization.

Attackers can implant malicious code (e.g., a backdoor)
in the cache (e.g., a dependent package), while the original
repository looks perfectly benign. After the attacker loses ac-
cess privileges (e.g., repository ownership transfer), because
the attacker-generated cache objects are not invalidated by
CIPs, the backdoor will be injected into the artifact when the
new user (i.e., victim) executes a CI task of the repository.
Such a threat will not disappear until the poisoned cached
file expires, is deleted, or is overwritten by a benign one.

We find that the above mentioned attack can pose a threat
to a large number of repositories, including many repositories
from large organizations. However, as attackers must have at
least collaborator permissions and the attack time windows
is limited, we consider this attack as low-risk. We present a
detailed analysis in Section 7.4.

6. Measurement

To investigate the current security status of the cache
usage in the open source community, we design CAnalyzer to
conduct a large-scale measurement on the three mainstream
CHPs. Overall, CAnalyzer first collects repositories with
CI-enabled from CHPs. Then, CAnalyzer distills various
properties of each repository, such as CI cache rules and
secrets usage. Finally, based on the risks identified in this
paper, CAnalyzer locates a�ected repositories.

6.1. Data Collection

To obtain a comprehensive set of repositories with
various combinations of CIPs and CHPs, we adopt multiple
strategies for data collection. First, all CIPs except TeamCity
support configuring CI via configuration files. Thus, we
identify a repository’s CIP by examining its CI configuration
file and exclude TeamCity from our measurement. Second,
for repositories on GitLab and Bitbucket, we retrieve all
publicly available repositories and their contents through
CHPs’ public APIs [56], [57], [58], [59]. Third, in the case
of repositories on GitHub, we extract repositories using
GitHub Actions from the GHArchive data [60] by analyzing
github_bot events, similar to previous works [4], [8]. In
addition, we utilize GitHub Activity Data on BigQuery [61]
to gather information on repositories that employ other CIPs.
Overall, the counts of collected repositories with di�erent
CIPs enabled are: GitHub Actions (683,125), GitLab CI
(306,159), Bitbucket Pipelines (29,169), CircleCI (123,075),
TravisCI (554,961), and Jenkins (19,798). The data was
collected on January 2023.

6.2. Basic Threat Analysis

CAnalyzer detects potential threats according to the
predefined rules, as detailed below.
Repository Parser. First, we analyze a repository’s CI
configuration file to identify the CI service used by the

repository, the cache service (if used), and the usage of
CI secrets. Second, for repositories hosted on GitHub, we
obtain the branch protection settings of public repositories
through the GitHub API [62], and analyze their events in
the GHArchive historical data [60]. Specifically, we extract
"repository id" (i.e., the unique/unchanged identifier
of a repository) and "user id" of the repository owner
(i.e., the unique/unchanged identifier of a GitHub user [63])
from these events. By analyzing the change of the historical
owners’ user ids of a repository, we can identify whether
the owner of the repository has been transferred between
di�erent users. Similarly, we extract MemberEvent from the
GHArchive data to identify all historical collaborators in each
repository. Due to permission restrictions [64], we are unable
to obtain the current list of collaborators for a repository
using the GitHub API. Fortunately, we find that the pull
request data of a repository includes the current role of its
initiator (i.e., whether a user is currently a collaborator), so
we collect pull requests through the GitHub API [65] to filter
out users who are currently collaborators.
Cache Parser. CAnalyzer extracts all used cache keys
from the CI configuration files. We track the data flow of
configuration-related variable references to ensure correct
cache key-object mappings. Then, the cache key is used as
an identifier to locate the cache source job and sink job.
Moreover, we also analyze how secrets (if used) are
referenced in each job.
Vulnerability Detection. Based on the analysis in Sec-
tion 5.3.1, we consider repositories using TravisCI or Cir-
cleCI’s cache feature to be vulnerable to the Cache Privilege
Escalation Attack.

For Cache Poisoning Attack, there are three types of
threats. We consider: (1) repositories that use Jenkins have
the risk of cross repository cache poisoning; (2) repositories
using CircleCI’s cache feature and sharing the same cache
key among di�erent branches have the risk of cross branch
cache poisoning (we cannot accurately detect vulnerable
repositories using other CIPs, as discussed in Section 7.3);
(3) repositories using GitHub Actions or GitLab CI and
sharing the same cache key among di�erent permission-level
jobs in the same branch have the risk of cross jobs cache
poisoning.

For Cache Backdoor Attack, we assess the potential
impact of (1) unethical collaborators by analyzing the col-
laborator removal events in popular repositories; (2) tagged
cache reuse by analyzing the git tag trigger events; (3)
ownership transfer based on the number of repository transfer
events, especially the transfer from a personal account to an
organizational account.

6.3. Data Leakage Analysis

The usage of secrets is complicated, simple attribute
extraction and CI configuration file analysis cannot accu-
rately identify data leakage problems caused by the cache.
Therefore, we design and implement a specialized data
leakage analysis module. Overall, we first identify all possible
secrets related variables, then further locate sink files that



may contain secrets. Finally, CAnalyzer detects data leakage
according to whether these sink files are cached in an either
explicit or implicit way.
Secret Variable Identification. All CIPs support se-
cret variables and users can reference them in CI con-
figuration files. For example, GitHub Actions adopts
${{secrets.SECRET_NAME}} format, while others
adopt formats like ${SECRET_NAME}. Thus, we extract
secret variables by parsing their corresponding formats. CAn-
alyzer further filters out non-secret variables (i.e., variables
declared in CI configuration files but with literal values) as
well as CIP’s predefined variables. The remaining variables
are considered secret variables.

Second, all the above CIPs use yaml data language [66]
in their CI configuration files. Thus, by parsing these files,
CAnalyzer extracts the Mapping operator, which can map a
scalar (i.e., secrets) to another scalar (i.e., a variable derived
from secrets). Then CAnalyzer identifies mapping operations
and further locates variables related to secrets.
Secrets Sink File Tracing. Next, we attempt to identify files
that secrets might be written to. After some manual analysis,
we focus on three commonly used patterns of secret variables:
(1) Used directly as parameters to shell commands in the
CI configuration file (e.g., echo $SECRET > file). (2)
Used by other files in the repository (e.g., script files), which
are invoked in the CI configuration file with secret variables
as parameters. (3) For GitHub Actions and CircleCI, secret
variables may also be referenced by third-party plugins.

If a command reads secrets and explicitly writes them
to a file (e.g., using redirection operators such as >, >>),
we consider the output file as sensitive. For implicit writing
caused by shell tools (e.g., the command "cargo login
$TOKEN"), we employ a semi-automated approach to test
whether these tools will potentially write sensitive data to
files. First, we extract all candidate shell tools in CI tasks that
take secrets as input. We also record their corresponding shell
commands. Second, since a shell tool will likely generate sen-
sitive files during specific command executions, we generate
a set of call templates by parsing the parameters of the shell
commands. For instance, for a concrete shell command such
as docker login -u $USERNAME -p $PASSWORD,
we derive the corresponding template as docker login
-u $1 -p $2. CAnalyzer then automatically conducts tests
on candidate shell tools utilizing the generated templates. To
precisely monitor generated sensitive files, we use strace [67]
to dynamically trace and record all file write operations
during the execution. After the test, CAnalyzer further
analyze the contents of the recorded files to determine if
they contain any sensitive value. Specifically, we first search
plaintext secrets in all files, and further use Tru�eHog
[68], an open-source credentials detection tool, to scan the
files for any sensitive data. In this way, we can e�ectively
identify sensitive data derived from secrets. For instance,
CAnalyzer can handle the case where the OAuth token is
obtained through username/password and stored in a file. If
sensitive values are detected within any files, we consider
that the shell tool has the potential to generate sensitive files
under the corresponding template.

It should be noted that many test templates need valid
input for successful execution. One of the most common
type of input is authentication credentials for cloud services.
For example, to execute the command az login -u $1
-p $2, we need to provide the correct user name (i.e., $1)
and API token (i.e., $2) of the Azure cloud services. As it is
di�cult to automate this step, we manually identify 43 cloud
services from 1,835 templates of the top 100 most widely-
used shell tools. Subsequently, we manually create accounts
for these services and generate necessary parameters, such
as API tokens, to ensure the successful execution of their
test templates.

Similarly, for the case where secrets are referenced by
third-party plugins, we extract all plugins that take secret
variables as input parameters and generate test templates.
However, unlike shell tools, plugins cannot run independently
without the CI execution context. Thus, we generate a CI
task for each test template and execute the CI task using our
own self-hosted runner. During the execution, we employ
kprobes [69] to monitor the files created throughout the
process. Then, we check whether sensitive files are generated
after the execution. Similar to shell tools, plugins may also
require parameters for successful executions. Therefore, we
manually generate the requisite parameters for testing the
top 100 most widely-used plugins in our collected dataset.
Based on the results, we summarize the rules (shown in
Section 7.1) for detecting secrets sink files.
Data Leakage Detection. Only when secrets sink files
are cached, there is a risk of secret data leakage. Thus,
CAnalyzer uses explicit cache analysis and implicit cache
analysis to extract the cache rules in CI tasks. Then, CAna-
lyzer conducts cache reachability analysis to verify whether
secrets sink files are stored in the cache.

For explicit cache, developers explicitly specify which
files should be cached by cache rules in the CI configuration
file (as mentioned in Section 2.2), thus we simply parse the
rules following each CIP’s documents [70], [71], [72], [73]
and check whether a sensitive file is matched by cache rules
(i.e., stored in cache objects).

For implicit cache (i.e., a repository’s CI configuration file
does not contain any cache rules directly, but it does contain
a cache plugin with built-in cache rules), we find that such
implicit cache exists in GitHub Actions, Bitbucket Pipelines,
and TravisCI. For Bitbucket Pipelines and TravisCI, their
implicit cache rules are listed in the documents. For example,
in Bitbucket Pipelines, cache: maven implicitly specifies
the cache rule of Ì/.m2/repository. We thus parse
each cache template following its document. For GitHub
Actions, it supports plugins: both the o�cial and third-party
plugins can read and write cache. Thus, we extract all plugins
from the collected repositories using GitHub Actions and
then download their source code. If a plugin’s source code
contains @actions/cache (the interface to import cache),
we consider the plugin with cache function and further extract
the candidate cache rules automatically from its code. Finally,
we manually confirm its implicit cache rules.
Cache Reachability Analysis. There are two special sce-
narios that can prevent sensitive files from being cached,



even if the files have been specified by cache rules. The
first scenario involves the creation of a sensitive file within
some specific callbacks. For example, scripts executed in
the after_deploy phase of TravisCI occur after the
cache saving [74], so files generated during this phase
will not be stored in the cache. A concrete example is the
gluon-lang/gluon repository [75]. We have manually
checked each CIP’s documentation to identify and exclude
such callbacks. The second scenario is conditional caching,
where the creation of sensitive files and cache saving must sat-
isfy specific conditions. If these two conditions are mutually
exclusive, there is no security risk. A real case can be ob-
served in the dprint/dprint-plugin-typescript
repository [76]: the condition for storing cache (i.e., not
cache for git tag creation) is incompatible with the condition
for generating sensitive files (i.e., only when a git tag is
created). If cache creation or cache saving is unconditional,
or both conditions can be satisfied at the same time, we
consider that a cache is reachable. We extract conditions in
the cache code block and the sensitive file code block from
the CI configuration file. Then we utilize pyDatalog [77] to
evaluate the truth value of these conditions, and consider the
cache is reachable (i.e., vulnerable) only if both conditions
can be satisfied.

6.4. Ethical Considerations

All experiments are conducted in an ethical way. First, all
vulnerability analyses and threat validations are done on our
own repositories/projects. We do not launch attack on any
vulnerable repositories. Instead, we use our own account to
create fresh new repositories, and copy the CI configuration
file of the vulnerable repositories for data leakage risk testing.
Second, we never test vulnerable credentials in real scenarios,
which could be unethical. Instead, to ensure successful
execution, we have made necessary changes that do not a�ect
the verification (e.g., replacing vulnerable credentials with
our testing ones) to the CI configuration file. We also use our
own resources to test/verify the related risks (e.g., privilege
escalation and cache poisoning). No experiments are con-
ducted on third-party repositories/projects or any resources
that do not belong to us. Finally, after the experiments,
we have timely disclosed all our findings to corresponding
stakeholders (details in Section 8.2). We also follow the
90-day disclosure deadline policy [78] whereby issues can
be made public after 90 days.

6.5. Limitations

Firstly, our work goes beyond open-source repositories as
we also consider common organization scenarios. However,
we can only measure public repositories and cannot assess
the security risks of private projects, particularly, those
projects inside organizations. Secondly, the measurement
study reveals repositories that could be potentially vulnerable
by the default setting, in which collaborators can create git
tags. As mentioned in our threat model, in practice, collabo-
rators cannot create a specific protected tag if the repository

owner has manually set comprehensive tag protection rules
However, due to permission restrictions by CHPs, we do
not have access to the full settings of a repository (e.g.,
whether a repository has set tag protection rules is only
available to repository member with admin privileges [79] in
GitHub). Thus, our measurement study reveals repositories
that could be potentially vulnerable by the default setting (i.e.,
without proper tag protection rules). But the exploitability of
these “potentially vulnerable repositories” depends on their
specific permission settings. Thirdly, our experiments on sink
files only examined the latest versions of shell tools and CI
plugins. However, in real CI tasks, various versions might
be employed, potentially causing false positives/negatives.
Finally, our secrets sink file analysis is partially done by
manual and only covers the most popular targets (i.e., the
top 100 shell tools and the top 100 CI plugins) that use
secrets. Thus, the actual situation might be even worse
than our results.

7. Measurement Results

We adopt CAnalyzer to understand the potential impact
of cache related threats in the open source community. For all
uncovered “potentially vulnerable repositories”, we conduct
manual verification to confirm their vulnerability based on the
default setting as discussed in Section 6.5. We acknowledge
that launching a successful attack on these repositories may
require the attacker to acquire additional permissions or gain
trust, as certain security policies might be enabled.

7.1. Cache Leakage Attack

Among the top 100 most-used shell tools, 26 of them
write sensitive data into files when executing specific com-
mands. Table 3 shows some of them. Meanwhile, 9 GitHub
Actions (partially shown in Table 4) and 13 CircleCI plugins
(out of the top 100 most used) read secrets as input and
write secrets into files. Further analysis indicates that: (1) the
most common scenario for writing secrets (e.g., API tokens
and login credentials) to files is to access protected cloud
services (such as Docker Hub and AWS). Many tools/plugins
store authentication credentials in a specific file for future
use (e.g., automatic login and authorization). Usually, this
behavior is well documented in tools/plugins’ manuals. (2)
The second scenario is writing sensitive parameters into
the configuration file. For example, yarn config set
npmAuthToken command writes the npm authentication
token as a configuration item, and docker trust key
load command copies a private key into docker’s config-
uration file directory. Even worse, these tools’ documents
typically do not describe these operations in detail, and thus
users may be unaware that sensitive files are created and
cached. (3) The third scenario is writing sensitive data to the
tool’s execution log. For example, npx vercel −−token
command writes the vercel API token in plaintext to the
Ì/.npm/_logs/*.log file. Unfortunately, this behavior
is usually not well-documented either. Table 7 in Appendix



TABLE 3: Top 5 shell tools used in CI tasks that create sensitive files.
Tools Commands Generated Sensitive Files Sensitive Data

$ docker login Ì/.docker/config.json Docker registry login credentials.docker
$ docker trust key load Ì/.docker/trust/private/*.key Private key for signing/verifying Docker images.

npm $ npm login Ì/.npmrc npm registry login credentials.
$ aws configure set aws_secret_access_key Ì/.aws/credentials AWS services access key secret.aws
$ aws configure set aws_access_key_id Ì/.aws/credentials AWS services access key id.

npx $ npx vercel −−token Ì/.npm/_logs/*.log Vercel services access credentials.
poetry $ poetry config http-basic.pypi __token__ Ì/.config/pypoetry/auth.toml PyPI registry login credentials.

TABLE 4: Top 5 GitHub Actions plugins used in CI tasks that create sensitive files.
Plugins Plugin Input Parameters Generated Sensitive Files Sensitive Data

docker/login-action password Ì/.docker/config.json Docker registry login credentials.
FirebaseExtended/action-hosting-deploy firebaseServiceAccount /tmp/tmp-*.json Firebase services API token.
crazy-max/ghaction-import-gpg gpg_private_key Ì/.gnupg/private-keys-v1.d/*.key GPG private key.
akhileshns/heroku-deploy heroku_api_key Ì/.netrc Heroku services API token.
hashicorp/setup-terraform cli_config_credentials_token Ì/.terraformrc Terraform services API token.

shows a comprehensive list of tools/plugins used in the CI
task that create sensitive files.
Vulnerable Custom Cache Rules (DL1). We find that
37 GitHub Actions, 12 TravisCI, and 3 CircleCI reposito-
ries use risky cache rules and will cache files containing
secrets. The most commonly leaked secrets is the login
credentials of the Maven registry (contained in the setting
file Ì/.m2/settings.xml): 22 repositories write this
file to CI caches. Among these repositories, 3 actively
write secrets to the setting file using commands (e.g.,
"echo") and store them in the cache. Meanwhile, 19 repos-
itories use a third-party plugin of GitHub Actions (i.e.,
whelk-io/maven-settings-xml-action) to write
the "password" parameter to the file. However, the plugin’s
document does not clearly state that when using the plugin,
the file Ì/.m2/settings.xml should not be cached.
Therefore, users might be unaware of the risk of credential
data leakage. Similarly, the login credentials of the Cargo
registry (contained in the file Ì/.cargo/credentials)
are also leaked by 16 repositories using GitHub Actions and
4 repositories using TravisCI. Moreover, we find two reposi-
tories using TravisCI leak AWS login credentials and two
repositories using GitHub Actions leak vercel API creden-
tials through the log files (i.e., Ì/.npm/_logs/*.log)
created by the npx vercel −−token command.

Table 5 shows some repositories at risk, includ-
ing several very popular repositories. For example,
liquibase/liquibase, a popular database manage-
ment tool that has been downloaded over 100M times [80],
leaks its software signing certificates. If attackers steal the
credentials, they can release packages containing malicious
code stealthily, potentially a�ecting a large number of users.
We provide a Proof of Concept (PoC) repository4 of this
repository along with detailed reproduce steps. Note that this
vulnerability has been confirmed and fixed by the liquibase
team, who rewarded us with a gift.
Vulnerable O�cial Cache Templates (DL2). We find
that vulnerable o�cial cache templates are widely used
by 792 GitLab CI, 1,316 CircleCI, and 6,966 TravisCI

4https://github.com/cicache-poc/liquibase__liquibase

repositories. If these repositories’ CI tasks use CI se-
crets, they potentially leak their credentials. In the data
we collected, we have identified one real repository
(i.e., chalharu/rust-nearly-eq [81]) using TravisCI
stores the file containing the secrets in the cache and leads
to credential data leakage.
Vulnerable Third-Party Cache Plugins (DL3). For GitHub
Actions, we find 76 third-party cache plugins from a col-
lection of 33,354 plugins. After manual verification, we
confirm that the plugin swatinem/rust-cache, used
by more than 2,800 di�erent repositories, su�ers from this
problem. Its default cache rules (Ì/.cargo/) will store the
file Ì/.cargo/credentials into the cache. We have
further identified 25 repositories a�ected. Some of them and
their corresponding packages in the Cargo registry are shown
in Table 5.

7.2. Cache Privilege Escalation Attack

Repositories using TravisCI or CircleCI’s cache function
are potentially vulnerable to this threat. Our measurement re-
sults show that 105,757 (19.06%) repositories using TravisCI
and 9,458 (7.68%) repositories using CircleCI enable the
cache function.

We select representative target repositories for further
analysis. We rank vulnerable repositories hosted on GitHub
based on their star counts and select the top 1,000 as
targets. Then we analyze their complete pull request histories
using the GitHub API [82]. The results show that 570
(57.00%) of the target repositories have accepted and merged
pull requests from forked repositories. These repositories
include very popular repositories and repositories from large
organizations like Facebook, Google, and Twitter. Table 6
shows some of the a�ected repositories and their cache usage
(i.e., using cache for storing dependent packages and/or build
intermediates).

7.3. Cache Poisoning Attack

Since Jenkins shares cache at the runner host level, all
19,798 repositories that use Jenkins are at risk of cross-
repository cache poisoning. Note that TeamCity is also

https://github.com/cicache-poc/liquibase__liquibase


TABLE 5: Some vulnerable repositories, their sensitive data at risk, and the potential consequences.
Repositories CIPs Types Sensitive Data Possible Consequences of Secrets Leakage

liquibase/liquibase GitHub Actions DL1 Software signing certificates Publish a malicious version of the victim software (100M+ downloads).
openzipkin/zipkin-
dependencies

GitHub Actions DL1 Docker Hub login credentials Publish a malicious version of the victim docker image (10M+ downloads).

dprint/jsonc-parser GitHub Actions DL3 Cargo registry credentials Publish a malicious version of the victim package (664K downloads).
chalharu/rust-nearly-eq TravisCI DL2 Cargo registry credentials Publish a malicious version of the victim package (89K downloads).
SBJson/SBJson CircleCI DL1 CocoaPods registry credentials Publish a malicious version of the victim package (3.7K stars on GitHub).

TABLE 6: Some repositories vulnerable to the Cache Privilege Es-
calation Attack and their caches’ usage. Dep.-Dependent Packages,
Inter.-Build Intermediates.

Repositories (# of Stars) CIPs Dep. Inter.

facebook/react-native (109K) CircleCI 3 3
fastlane/fastlane (36.9K) CircleCI 3 3
aria2/aria2 (30.2K) TravisCI 3
pytorch/fairseq (21.9K) CircleCI 3
google/TensorNetwork (1.7K) TravisCI 3
twitter/bijection (0.6K) TravisCI 3

vulnerable, but we are unable to collect related data, as
mentioned in Section 6.1.

For cross-branch cache poisoning, we evaluate reposi-
tories with CircleCI on GitHub (which publicly provides
branch protection data). While both CircleCI and TravisCI
get integrated with GitHub and are vulnerable to cross-branch
cache poisoning, cross-branch cache sharing is disabled by
default in TravisCI. We find that 2,854 of 9,643 (29.60%)
repositories using CircleCI on GitHub have at least one
protected branch. Among them, 1,505 (52.73%) have enabled
the cache function and 935 (32.76%) share the same cache
between a protected branch and a non-protected branch,
which are vulnerable to cross-branch cache poisoning.

For cross-job cache poisoning, we analyze 100,986 and
14,807 repositories with cache-enabled that use GitHub
Actions and GitLab CI respectively. We find that 23,037
(22.81%) repositories using GitHub Actions and 594 (4.01%)
repositories using GitLab CI have at least two di�erent levels
of permissions under the same branch jobs. Among them,
15,942 and 469 repositories share the same cache objects
(i.e., using the same cache keys) in jobs with di�erent levels
of permissions respectively, which are at risk of cross-job
cache poisoning.

7.4. Cache Backdoor Attack

Collaborator Removal. Collaborators can be removed from
a repository by its owner. Unethical repository collaborators
can implant a backdoor into the CI cache before losing
their access privileges, we thus measure the number of
collaborator removal events as an indicator of this threat.
We find that, among the top 5,000 most-starred repositories
on GitHub [83], 2,193 (43.86%) of them utilize CI services.
Out of these, 994 repositories (45.33%) got a total of 9,900
collaborator removal events, resulting in an average of 10
collaborators being removed per repository. For example, the
repository microsoft/PowerToys has a total of 108

collaborators removed. The results indicate that collaborator
revocation is common and the cache backdoor attack could
be a practical security threat.
Git Tag Creation. We conduct a case study by analyz-
ing repositories on GitHub using GitHub Actions. Among
683,125 collected repositories, 91,099 (13.34%) repositories
employ the git tag trigger, which triggers the execution
of a CI task upon the creation of a git tag. Based on
the GHArchive data [60], we find that 69,372 (76.15%)
repositories permit at least one collaborator to create tags,
indicating that it is very common for a collaborator to create
a tag to trigger the execution of a CI task (potentially for
launching backdoor attacks).
Repository Transfer. The backdoor attack could also a�ect
repositories that are transferred between di�erent users. We
thus evaluate its impact using all collected GitHub reposi-
tories from the GHArchive data [60], with their historical
owner data included. Among 1,129,876 repositories using
CI services on GitHub, we find 42,069 (3.72%) repositories
that have been transferred between di�erent users. Particu-
larly, 32 of the top 100 most-starred repositories [83] have
been transferred. For example, vuejs/vue, the 7th most-
starred repository with 203K stars, has been transferred from
yyx990803 (personal account, uid is 499550) to vuejs
(organizational account, uid is 6128107).

In terms of a�ected organizations, a total of 29,514
repositories utilize CI services that have been transferred.
These repositories belong to 12,360 distinct organizations.
Among them, 14,664 were owned by a personal account user,
but later transferred to an organization. This type of transfer
is common even in large organizations. For example, Google
and Microsoft have 1,018 and 559 repositories utilizing
CI services on GitHub, respectively. Among them, 60 for
Google and 14 for Microsoft were transferred from other
users. The results indicate that repository ownership transfer
between di�erent users is very common. Thus, once the cache
backdoor attack is exploited, it can cause serious damage.

8. Countermeasures and Disclosure

8.1. Best Practices

Check it before save/use it. As cache may be shared among
di�erent levels of tasks (e.g., jobs, branches and repositories),
developers should carefully configure their cache rules to
prevent cache from saving any sensitive data. Definitely, it
is always not easy to require developers to set appropriate
cache rules to prevent both explicit and implicit cache leaks.



CIPs can adopt CI secrets checking mechanisms to find
and erase secrets in cache, similar to the secure variables
masking approach used in build logs [12]. However, replacing
secrets in the cache is not always a good idea, as it may
disrupt the CI task. Instead, we can integrate CAnalyzer into
a CI plugin or git plugin for detecting potential secret leakage
before the CI caching, thus serving as a timely warning for
developers. In addition, the use of in-toto/SLSA attestations
that track cache state can prevent cache files from tampering
(i.e., cache poisoning attack) [84], [85].
Use explicit cache isolation. CIPs should adopt better
default cache isolation strategies. For CIPs like TeamCity
and Jenkins that apply a runner host-level isolation strat-
egy, cached files are shared on the same host by default.
Developers may be unaware of their implicit cache sharing
mechanisms and leak private data accidentally. CIPs can
provide cache isolation-related control keywords and ask
developers to explicitly define their cache sharing range.
Also, disabling implicit cache sharing mechanism can better
protect developers from unknowingly leaking sensitive data.
Refine cache permission design. The token Tcache should
follow the principle of least privilege. The Tcache should
be only limited to the cache of the specific branch of the
originated repository. If CIPs choose the WORM model [18],
they should carefully grant one-time write permissions to
Tcache. In addition, CIPs should optimize authorization with
third-party cloud storage services based on the provided
security features. For example, AWS S3 provides the Content-
MD5 function [86] and S3 Object Lock [18], which can be
used to prevent cache objects from being modified.

8.2. Responsible Disclosure

We have promptly communicated with the impacted
CIPs to report their vulnerabilities. The CircleCI team have
confirmed the cache leakage attack and fixed it immediately.
Besides, they also confirmed the cache privilege escalation
attack and cross-branch cache poisoning attack. The GitHub
team have acknowledged the risk of cache backdoor attack
and claimed that they will make the repository transfer
functionality more strict in the future. The GitLab team
have acknowledged the problem of the cache leakage attack
and stated that they plan to refine the best practice proposal.
Moreover, the TeamCity and Jenkins teams both have con-
firmed the cache poisoning attack issue. They recommend
using ephemeral CI runners instead of continuous runners.
Furthermore, the Bitbucket and TravisCI teams are still
reviewing reported issues and considering mitigation.

For 78 vulnerable repositories that potentially leak secrets,
we have also tried our best to contact and inform their owners.
Particularly, we found the contact information of 47 (60.26%)
repositories from GitHub, software website, and several social
media platforms, including 42 emails and 5 social media
accounts (i.e., Twitter). We have notified these repository
owners by sending emails or private messages one by one.
So far, we have received a total of 40 replies, of which 22
have been fixed. For example, swatinem/rust-cache,

a popular Rust cache plugin, has confirmed and fixed its
vulnerable cache rules.

9. Related Work

CI Security. Extensive studies have focused on optimizing
the build process of CI services [87], [88], [89], [90], [91]
and improper CI configurations [10], [92], [93], [94], [95],
which may allow attackers to access unauthorized resources
and bypass security checks. Koishybayev et al. [4] found
that 99.8% of workflows in popular CIPs are over-privileged
and developers may pass secrets in plaintext, posing a risk
of secret leakage. Li et al. [96] conducted a large-scale
measurement on GitHub and revealed lots of CI jobs were
abused for illicit cryptomining. Moreover, Gu et al. [8]
studied the authentication/authorization process of CI and
unveiled multiple security issues related to tokens. Our work
is closely related to [8], as we adopt a similar threat model.
However, we focus on the CI cache mechanism (which is
ignored by previous works) and have identified several new
cache-related security issues.
Cache Poisoning. Cache poisoning attacks have been well
studied in Web and DNS. For example, Jia et al. [97]
proposed a browser cache poisoning attack which enables
attackers to launch a Man-in-the-Middle (MitM) attack on
HTTPS sessions. There are many web cache poisoning/decep-
tion attacks on the web ecosystem, particularly the middle-
boxes (e.g., CDN and proxy) [98], [99], [100]. Klein [101]
and Kaminsky [102] introduced a series of sophisticated
cache poisoning attacks against DNS resolvers and DNS
servers. After that, several new DNS cache poisoning attacks
against resolvers were proposed, with di�erent assumptions
and attack requirements [103], [104], [105], [106], [107].
Di�erent from previous works targeting Web or DNS cache,
our work is the first systematic study on CI cache security.
Secret Leakage. Many previous works have studied secret
leakage in software developments [108], [109], [110], [111],
[112], such as leaked secrets detection in source code [108],
[113], [114], [115]. Saha et al. [115] designed a general
framework to detect secrets in GitHub repositories. Meli
et al. [113] performed a large-scale analysis of API keys
embedded directly in source code. Feng et al. [114] showed
that a huge number of passwords are leaked in public GitHub
repositories. Our work further complements these previous
research e�orts on studying secret leakage caused by CI
caching mechanism flaws. Particularly, even if developers
passed their secrets using secret variables to CI tasks, these
secrets will still be leaked due to CI caching flaws.

10. Conclusion

This paper systematically analyzes the design and imple-
mentation of CI cache and unveils several potential security
threats. We find that weak cache isolation and improper cache
inheritance commonly exist in mainstream CIPs. We uncover
four cache-related attack vectors that allow attackers to inject
malicious code or steal sensitive data. To understand the



potential impact in the real world, we develop an analysis tool
and conduct a large-scale measurement on the open-source
community. The results show that many popular repositories
and large organizations are potentially a�ected by these
attacks. Also, many repositories expose high-value secrets
in the CI cache. We have proposed potential mitigation,
duly disclosed the vulnerabilities to related stakeholders, and
received positive responses.
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Appendix A.

TABLE 7: The comprehensive list of shell tools and plugins used in CI tasks that create sensitive files, among the top 100 most-used shell
tools as well as the top 100 most-used plugins for GitHub Actions and CircleCI. * denotes shell tools, † denotes GitHub plugins, and ‡
denotes CricleCI plugins.

# Type Tools / Plugins Commands / Parameters Generated Sensitive Files Sensitive Data

$ docker login Ì/.docker/config.json Docker registry login credentials.
1 * docker $ docker trust key load Ì/.docker/trust/private/*.key

Private key for signing/verifying Docker
images.

2 * npm $ npm login Ì/.npmrc npm registry login credentials.
$ aws configure set
aws_secret_access_key Ì/.aws/credentials AWS services access key secret.

3 * aws $ aws configure set
aws_access_key_id Ì/.aws/credentials AWS services access key id.

4 * npx $ npx vercel ��token Ì/.npm/_logs/*.log Vercel services access credentials.

5 * poetry $ poetry config http-
basic.pypi __token__ Ì/.config/pypoetry/auth.toml PyPI registry login credentials.

6 * cargo $ cargo login Ì/.cargo/credentials API credentials for publishing Cargo
packages.

7 * yarn $ yarn config set npmAuth-
Token /usr/local/share/.yarnrc

API credentials for publishing npm pack-
ages.

8 * az $ az login Ì/.azure/msal_token_cache.json Azure Cloud services access credentials.
9 * b2 $ b2 authorize-account Ì/.b2_account_info Backblaze services access credentials.

Ì/.config/gcloud/logs/*.log
Ì/.config/gcloud/legacy_credentials/$account/.boto
Ì/.config/gcloud/configurations/config_default10 * gcloud $ gcloud auth login

Ì/.config/gcloud/legacy_credentials/$account/adc.json
Google Cloud services access credentials.

11 * nuget $ nuget setapikey Ì/.config/NuGet/NuGet.Config NuGet login credentials.
12 * oc $ oc login Ì/.kube/config Container services access credentials.
13 * helm $ helm registry login Ì/.config/helm/registry/config.json Container registry login credentials.

14 * composer $ composer config ��global
��auth Ì/.config/composer/auth.json API credentials for publishing Com-

poser packages.
15 * vercel $ vercel build ��token .vercel/output/builds.json Vercel services access credentials.
16 * heroku $ heroku login Ì/.netrc Heroku services access credentials.
17 * anaconda $ anaconda login Ì/.config/binstar/$host.token Anaconda services access credentials.

$ sfdx force:auth:device:login Ì/.sfdx/$account.json18 * sfdx $ sfdx force:auth:jwt:grant Ì/.sfdx/$account.json SalesForce services access credentials.

19 * vagrant $ vagrant cloud auth login Ì/.vagrant.d/data/vagrant_login_token Vagrant services access credentials.
20 * ibmcloud $ ibmcloud login Ì/.bluemix/config.json IBM Cloud services access credentials.
21 * cosign $ cosign login Ì/.docker/config.json Docker registry login credentials.
22 * skopeo $ skopeo login /run/user/0/containers/auth.json Container registry login credentials.
23 * cf $ cf login Ì/.cf/config.json Container registry login credentials.
24 * snyk $ snyk auth Ì/.config/configstore/snyk.json Snyk services access credentials.
25 * doctl $ doctl registry login Ì/.docker/config.json DigitalOcean registry access credentials.
26 * podman $ podman login /run/user/0/containers/auth.json Podman services access credentials.
27 † docker/login-action password Ì/.docker/config.json Docker registry login credentials.

28 † FirebaseExtended/action-
hosting-deploy firebaseServiceAccount /tmp/tmp-*.json Firebase services access credentials.

29 † crazy-max/ghaction-
import-gpg gpg_private_key Ì/.gnupg/private-keys-v1.d/*.key GPG private key.

30 † akhileshns/heroku-
deploy heroku_api_key Ì/.netrc Heroku services access credentials.

31 † hashicorp/setup-
terraform cli_config_credentials_token Ì/.terraformrc Terraform services access credentials.

32 † azure/docker-login password /home/runner/work/_temp/
docker_login_$timestamp/config.json Docker registry login credentials.

33 † r0adkll/sign-android-
release

releaseDirectory,
signingKeyBase64 ./$releaseDirectory/signingKey.jks Android app signing key.

34 † shimataro/ssh-key-
action key Ì/.ssh/id_rsa SSH Key.

35 † whelk-io/maven-
settings-xml-action servers Ì/.m2/settings.xml Maven registry access credentials.

36 ‡ circleci/aws-cli aws-secret-access-key Ì/.aws/credentials AWS services access credentials.
aws-secret-access-key Ì/.aws/credentials AWS services access credentials.37 ‡ circleci/aws-ecr dockerhub-password Ì/.docker/config.json Docker registry login credentials.

Ì/.aws/credentials38 ‡ circleci/aws-s3 aws-secret-access-key Ì/.aws/config AWS services access credentials.

Ì/.aws/credentials39 ‡ circleci/aws-ecs aws-secret-access-key Ì/.aws/config AWS services access credentials.

40 ‡ circleci/docker docker-password Ì/.docker/config.json Docker registry login credentials.
./keystorebase64-keystore
./keystore.properties41 ‡ circleci/android

google-play-key ./google-play-key.json
Google Play services access credentials.

42 ‡ circleci/kubernetes kubeconfig Ì/.kube/config Kubernetes services access credentials
Ì/gcp_cred_config.json
Ì/gcloud-service-key.json43 ‡ circleci/gcp-cli gcloud_service_key
Ì/.config/gcloud/$account/adc.json

Google Cloud services access credentials.

44 ‡ circleci/heroku api-key /tmp/orblog.txt Heroku services access credentials.
Ì/gcloud-service-key.json45 ‡ circleci/gcp-gcr gcloud_service_key Ì/.config/gcloud/legacy_credentials/$account/adc.json Google Cloud services access credentials.

Ì/gcloud-service-key.json46 ‡ circleci/gcp-gke gcloud_service_key Ì/.config/gcloud/legacy_credentials/$account/adc.json Google Cloud services access credentials.

Ì/gcloud-service-key.json47 ‡ circleci/gcp-cloud-run gcloud_service_key Ì/.config/gcloud/legacy_credentials/$account/adc.json Google Cloud services access credentials.

Ì/.aws/credentials48 ‡ circleci/aws-code-deploy aws-secret-access-key Ì/.aws/config AWS services access credentials.
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Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This work analyzes cache implementations of seven
popular continuous integration services to identify vulnerabil-
ities related to unauthorized access/modification of sensitive
cache objects. The authors find that di�erent CI services
use di�erent rules for sharing cache objects across job-
s/branches/repos, which can lead to attacks when combined
with poorly-written CI jobs. The paper lists di�erent attack
goals (improper write-up, improper read-up, improper token
permission, improper cache eviction). It describes which
cache directives (and platform defaults) can be used to
achieve these goals. The authors built the Canalyzer tool to
scan public repositories with CI jobs and cache directives to
address the vulnerabilities.

B.2. Scientific Contributions

÷ Independent Confirmation of Important Results with
Limited Prior Research.

÷ Identifies an Impactful Vulnerability.
÷ Creates a New Tool to Enable Future Science.
÷ Provides a Valuable Step Forward in an Established

Field.

B.3. Reasons for Acceptance

1) The paper illustrates a novel cache-based attack on
CI/CD systems and demonstrates that open-source
projects are vulnerable to those attacks.

2) The authors present the CAnalyzer tool that can be
used to scan public repositories for the vulnerabilities
illustrated in the paper.
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