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Abstract—In the evolving landscape of vehicular technol-
ogy, autonomous and connected features lead to heightened
connectivity among vehicles, intelligent devices, and infras-
tructures, broadening the vulnerability to cyber-attacks within
the Internet of Vehicles (IoV) systems. Intrusion Detection
Systems (IDSs) leverage Machine Learning (ML) to detect
these malicious intrusions, but they face challenges from data
poisoning attacks, given the critical role of training data in
threat modeling. The vulnerability of training data emerges
as a significant threat vector during ML model training. This
study introduces a hash function-enabled ensemble ML training
framework tailored for IDS, mitigating data poisoning attacks
during model training. We test and validate our framework
using hash-enabled ensemble ML algorithms—including ran-
dom forests, support vector machines, and decision trees—on
the benchmark CICIDS 2017 dataset. Results demonstrate
that the hash-enabled random forests model guarantees a
misclassification rate below 0.5%.

I. INTRODUCTION

Amidst the swift evolution of autonomous and connected
technologies, vehicles are progressively assimilating into an
expansive ecosystem comprising other vehicles, smart de-
vices, and infrastructure. This amalgamation proffers myriad
advantages, including augmented road safety, streamlined
traffic regulation, and refined driving experiences. However,
this pervasive connectivity also uncovers novel vulnerabil-
ities, potentially exposing the Internet of Vehicles (IoV)
systems to cyber threats [1]. IoV systems, anchored in
flawless communication and coordination amongst vehicles
and their environment, are susceptible to nefarious cyber
incursions. Such intrusions can harness the interconnectivity
of vehicles to subvert operational coherence, imperil safety,
and infringe upon the confidentiality of vehicle occupants.
Hence, there is an unequivocal necessity to architect stal-
wart defense stratagems to insulate IoV systems from cy-
ber adversities [2]. Conventional IDSs predominantly lean
on pre-established rules or signatures, circumscribing their
prowess in pinpointing nascent or mutating threat paradigms.
In contravention of this restraint, Machine Learning (ML)
methodologies have emerged as frontrunners in sculpting
IDSs adept at navigating capricious threat landscapes. This
manuscript delineates the formulation of an IDS framework
predicated on a hash-augmented ensemble model deploying
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Random Forest Machine Learning. The advocated framework
endeavors to discern many attack vectors in IoV networks
by harnessing the synergy of ensemble learning and hash-
ing modalities. Ensemble learning amalgamates multiple
ML prototypes to elevate detection precision while hashing
modalities intensify the proficiency of pattern correlation
within voluminous datasets. A paramount impediment in
ML-driven IDSs is the security appraisal of such paradigms,
especially in mission-critical domains like IoV systems.
The adulteration of training datasets, termed data poisoning,
emerges as a profound menace, potentially jeopardizing
the efficacy and trustworthiness of ML architectures. Such
malevolent data manipulations have been evidenced across
diverse ML algorithms. In retaliation to these challenges, the
mooted hash ensemble IDS paradigm not solely accentuates
detection acuity but also contends with the susceptibilities
of ML frameworks to data poisoning onslaughts. With the
integration of rigorous hashing mechanisms and ensemble
education, the architecture seeks to proffer a robust and
tenacious bulwark against cyber adversaries in IoV ma-
trices. The cardinal ambition of this investigation is to
cultivate a sophisticated IDS blueprint adept at pinpointing
and neutralizing cyber incursions within IoV architectures.
The propounded hash ensemble construct emerges as a
promising conduit to fortify vehicular cyber defenses and
amplify the inherent robustness of IoV frameworks. This
treatise aspires to manifest the efficacy and applicability of
the proffered paradigm in tangible operational environments
through exhaustive appraisals and elucidations.
The primary contributions of this paper are as follows:

o Introduction of an innovative framework fusing ensem-
ble learning and hashing techniques for enhanced IoV
attack detection.

o Assurance of ML model reliability in IoV systems by
safeguarding training datasets against malicious modi-
fications.

o Amplification of detection accuracy for diverse cyber-
attacks through the adoption of ensemble learning.

o Validation of the framework’s effectiveness and re-
silience via real-world IoV applications and examination
on the CICIDS2017 dataset [3].
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The rest of the paper is organized as follows: Section II
reviews pertinent related works on the robustness of IDS in
IoV. Section III introduces the systems architecture. Section
IV elucidates data preparation, the implementation, and the
result analysis of the hash-based ensemble random forest
models. Finally, Section V offers concluding remarks based
on our findings.

II. RELATED WORK

The escalating connectivity in IoV systems has accentu-
ated concerns related to their security, driving significant
research focus. Among the prevalent methods, ML tech-
niques for intrusion detection in vehicular networks have
been a mainstay. Notwithstanding their value, existing studies
present certain gaps. Islam et al. [4] showcased an anomaly
detection framework for vehicular ad-hoc networks utilizing
a fusion of unsupervised and supervised learning. Though
this framework registered commendable accuracy, it was
contingent upon the caliber of training data, potentially com-
promising adaptability to emergent threats. In contrast, Ma
et al. [5] presented a deep learning-powered real-time intru-
sion detection for IoV. Their system highlighted formidable
detection rates with minimal false positives, signifying deep
learning’s prowess in this domain. Yet, vulnerabilities to data
poisoning attacks were unaddressed.

Addressing data poisoning, Li et al. [6] unveiled a
Deep Reinforcement Learning (DRL) framework tailored
for crowd-sensing systems. They circumvented particular
poisoning challenges by employing a biphasic DRL algo-
rithm for data selection during training. Nonetheless, the
method posed computational challenges and made potentially
compromising assumptions regarding adversarial knowledge.
Several other researchers [7]-[11] suggested weighted en-
semble strategies, yet these remain susceptible to manip-
ulative attacks targeting training data weights. Sun et al.
[12] introduced an adaptive mechanism countering data
poisoning in federated ML systems. Preliminary evaluations
on synthetic datasets registered superiority over peers in
accuracy and robustness metrics. However, certain caveats
like untested real-world performance and potential compu-
tational intensiveness linger. Chen et al. [13] presented a
rigorous review of data poisoning attacks in IoV contexts.
Despite its comprehensiveness, this study narrowed its scope
to ToV-specific poisoning attacks and omitted contemporary
advancements. Yerlikaya and Bahtiyar [14] delivered a holis-
tic literature review centered on ML algorithmic vulnerabil-
ities to data poisoning, encapsulating attack techniques, and
ramifications. The analysis, though insightful, was restricted
to data poisoning, sidelining other attack modalities.

As a defense against poisoning, Anisetti et al. [15]. ad-
vanced a hashing mechanism to condense training data. How-
ever, this compression possibly compromised the integrity of
the data and the consequent IDS accuracy.

The hash ensemble IDS framework proposed herein as-
pires to remediate these gaps, enhancing intrusion detection

accuracy in IoV systems. Recognizing the imperative of
thoroughly assessing ML models’ security, especially in
mission-critical applications, this work hopes to augment this
evaluative paradigm significantly.

III. ARCHITECTURE
A. The network and threat model

The Internet of Vehicles (IoV) architecture in Fig. 1 has
transformed the automotive industry, enabling vehicles to
communicate internally and externally. Internally, cars use
the Controller Area Network (CAN) bus, a robust com-
munication protocol specifically designed for automotive
environments. The CAN bus oversees the transmission of sig-
nals between various electronic control units (ECUs) within
the vehicle. A gateway is essential in facilitating external
communications with infrastructures and other vehicles, serv-
ing as the convergence point between internal and external
networks. This becomes especially vital as we move towards
a more connected world with Vehicle-to-Everything (V2X)
communications, where vehicles continuously interact with
their surrounding environment. Given the sensitive nature
of this data exchange, security becomes paramount. Hence,
integrating an intrusion detection system (IDS) within the
gateway is crucial. This IDS can detect and mitigate real-
time data modifications or poisoning attacks. Such attacks,
whether from internal or external sources, can compromise
the vehicle’s functionality and safety. By leveraging a hash-
based ensemble random forest model, the IDS provides an
added layer of security. This model allows for quick and
accurate detection of any discrepancies in data transmission,
ensuring a safer and more secure IoV ecosystem.

B. Hash-based ensemble random forest enabled IDS

The working process of the hash-based ensemble random
forest enabled IDS is depicted in Fig. 2, and step by step
evolution is given below:

Dataset Splitting: The initial dataset is bifurcated into
training (80%) and testing datasets (20%). The training
dataset instructs the machine learning model, while the
testing dataset assesses its efficiency.

Training Set Creation: Three data types comprise the
training set:

o Benign Data: Represents standard, uncompromised

system operations.

o Attack Data: Originates from compromised or attacked

systems.

o Mixed Data: An amalgamation of benign and attack

data, this is employed to gauge model proficiency.

Model Generation: A machine learning model incorpo-
rating the Hash-based Ensemble framework is constructed.
This algorithm combines hash functions with random forests
for effective data categorization. Here, hash functions process
the data into a condensed format, facilitating the random
forest’s role in data classification. The hashing equation
ensures that features are randomly distributed into buckets,
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Fig. 1. Cyber-physical system of the intelligent transportation system.

and while there may be collisions (different features ending
up in the same bucket), this randomness can be beneficial
for training diverse trees in the ensemble.

Model Training N distinct Hash-based random forest
models, where N might be a modest number like 10 or 20,
are instructed using the (20%) training datasets. A supervised
learning approach directs this training.

Model Evaluation: Models cultivated in the training step
undergo testing, subject to varied attack percentages. By
manipulating the attack ratio from 0% to 100%, the model’s
precision is deduced from the quotient of accurate predictions
and total predictions.

Optimal Model Selection Employing the majority voting
technique, the best-performing model is identified. This
algorithm selects the label with the highest frequency for a
fresh data point. Due to its straightforwardness and efficacy,
majority voting ensures that the most apt model for precise
predictions is chosen.

C. Mathematical representation of hash-based ensemble
random forests models:

The majority voting equation for a hash-based ensemble of
random forests is articulated as follows: Let S be an input
string and M represent the ensemble model comprised of
several hash-based random forest models. Each model within
the ensemble is symbolized by M;, where ¢ iterates from
1 through N, with N signifying the cumulative count of
models in the ensemble. For each model, M; in M, apply the
corresponding hash function H;() to the instance X, which
produces a hash value H,(S). The hash value is calculated
from the eqn.1.

VAN
Anomaly/Attack m
L—1
H(S) =" f(S[i]ymodN )
=1

Where H(.S) is the hash value of the string S, f(s[i]) is the
hash value of the character S[i], L is the length of the string
S, and N is the number of models.

Using the model M; to predict the Class Label (CL) for
the hashed instance H,;(S). The CL can be defined as eqn.2

CL = M,.predict(H;(S)) (2)

Now, majority voting is typically performed by selecting
the class label that receives the highest number of votes from
the ensemble models. If there is a tie, additional tie-breaking
strategies can be employed, such as selecting the class label
with the highest confidence or considering the class label
predicted by the leader model. Mathematically, the majority
voting can be represented as eqn.3:

N
MV (S) = argmaxz Indicator(M;.pred(H;(S)) = CL)
oL =
3)

where MV (S) represents the final predicted class label
for the string S, argmax returns the C'L that maximizes

the expression Indicgéor(Mi.predict(Hi(S)) = CL is an
indicator function that equals 1 if the prediction of model M,
for the hashed instance H;(.S) is equal to class label C'L, and
0 otherwise, and vazl indicates the summing of indicator
functions over all models in the ensemble.
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Fig. 2. Process flow of the proposed hash-based ensemble mechanism using random forest models.

IV. DATA PREPARATION, EXPERIMENTAL SETTINGS, AND
RESULT ANALYSIS:

A. Data Preparation:

We utilized the CICIDS2017 dataset [3] to emulate a car’s
internal CAN bus and external gateway communications,
where our hash-ensembled, random forest-based IDS was
integrated. The dataset contains 2,257,797 network traffic
entries, with 1,499,522 standard and 758,275 attack records.
These records are divided into a training set of 1,599,265
and a testing set of 658,532.

The internal car dataset was derived from genuine network
traffic captured in a controlled setting using the CICFlowMe-
ter tool, transforming packet-level details into flow-level
data. In contrast, the external set simulated diverse network
activities, encompassing regular traffic and attack patterns.
Each network flow in the dataset is detailed with features
like statistical measures, protocol specifics, flow duration,
and service-related attributes, offering a comprehensive view
of network behaviors.

The dataset catalogs various traffic types, each labeled
appropriately, from benign to different attack modalities.
Notably, the training set was modified to mimic data poi-
soning attack patterns. The dataset also mirrors real-world
conditions, showcasing a class imbalance with benign traffic
predominating over malicious actions.

B. Experimental Setup:

Our hash-ensembled random forest implementation uti-
lizes ensemble models ranging from 10 to 20 individual mod-
els. This intricate design was executed using select Python

libraries, ensuring optimal compatibility and efficiency. Im-
portantly, to guarantee robust computational performance and
seamless execution of our models, we deployed the algorithm
on our dedicated cluster server. This server is equipped
with state-of-the-art hardware, featuring an 11th Generation
Intel® Core™ i9-11900KF processor that operates at a clock
speed of 3.50GHz across 16 cores. Complementing this
powerful CPU is a substantial Random Access Memory
(RAM) of 62.5GB, which ensures efficient data handling
and concurrent processing capabilities. Such a robust com-
putational environment accelerates our model’s training and
inference times and guarantees precision and consistency in
performance.

C. Result Analysis:

The performance of the framework was assessed using the
following metrics:

o Accuracy: Percentage of records correctly classified.

TP +TN
TP+TN+FP+FN

Accuracy =

o Precision: Percentage of records classified as positive
that are truly positive.

TP

P .. _
recision TP L FP

o Recall: Percentage of positive records that were cor-
rectly classified.

TP

Recall = —
A= TPYIFEN
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TABLE 1
EVALUATION RESULTS

Algorithm Accuracy%| Precision%| Recall%| Fl1-
score%
Hash-based ensemble | 99.60 99.70 99.50 99.60
framework using
random forest Models
Hash-based ensemble | 94.50 93.60 93.40 93.50
framework using Sup-
port Vector Machines
Hash-based ensemble | 95.40 96.50 93.30 94.87
framework using Deci-
sion Trees

o Fl-score: Weighted average of precision and recall.

2 x Precision x Recall
Fl-score =

Precision + Recall
Where:

e T'P (True Positives): Number of records correctly clas-
sified as positive.

e T'N (True Negatives): Number of records correctly
classified as negative.

o« F'P (False Positives): Number of records incorrectly
classified as positive.

e F'N (False Negatives): Number of records incorrectly
classified as negative.

Now, Table I presents the evaluation results of our pro-
posed hash-based ensemble framework utilizing Random
Forest models. Our findings indicate that this framework out-
performs other methods regarding accuracy, precision, recall,
and F1 score. Even when subjected to a poisoned dataset,
the system retains a superior level of accuracy, a testament
to the efficacy of the integrated hash function and ensemble
approach. The ensemble strategy, which encompasses multi-
ple random forest models, aggregates predictions. By relying
on a majority voting system, this diminishes the potential
impact of individual poisoned models or data instances.
Furthermore, hash-based indexing and partitioning ensure
the dataset’s even distribution among the ensemble models.
This strategic partitioning hinders direct manipulation of
the comprehensive dataset and acts as a defensive measure
against expansive poisoning attacks. Continuous performance
monitoring and validation are integral components of our
methodology to bolster the system’s resilience. This vigilant
oversight facilitates the early detection of anomalies or incon-
sistencies potentially caused by data poisoning. Furthermore,
periodic retraining and model updates fortify the system’s
defenses, making it adaptable to emergent attack paradigms.

Table II presents the attack percentage in each dataset
alongside the accuracy of five random forest models (RF1
through RF5) on benign samples only. Notably, all models
achieved 100% accuracy on the dataset, which lacks attacks.
As the attack percentage rises in other datasets, model
accuracy decreases, underscoring the impact of attacks on
classification performance.

TABLE II
TRAINED MODEL: BENIGN PERFORMANCE
Attack% RF1% | RF2% | RF3% | RF4% | RF5%
0 100.00 | 100.00 | 100.00 | 100 100.00
10 95.01 95.01 95.01 95.01 95.01
15 89.99 89.99 89.99 89.99 89.99
20 85.01 85.01 85.01 85.01 85.01
25 80.01 80.01 80.01 80.01 80.01
30 75.01 75.01 75.01 75.01 75.01
35 70.00 70.00 70.00 70.00 70.00
40 65.00 65.00 65.00 65.00 65.00
45 60.01 60.01 60.01 60.01 60.01
50 55.00 55.00 55.00 55.00 55.00
TABLE III
TRAINED MODEL: ATTACK PERFORMANCE

Attack% RF1% | RF2% | RF3% | RF4% | RF5%
0 0.00 0.00 0.00 0.00 0.00
10 4.99 4.92 4.96 4.92 4.92
15 10.01 9.94 9.98 9.94 9.91
20 14.96 14.91 14.94 14.91 14.88
25 19.96 19.91 19.91 19.91 19.88
30 24.97 24.92 24.92 24.92 24.89
35 29.98 29.93 29.91 29.91 29.88
40 34.97 34.92 349 34.9 34.87
45 39.97 39.91 39.88 39.88 39.85
50 4497 4491 44.87 44.87 44.84

Table III evaluates the models’ ability to detect attacks
based on specific metrics and thresholds. The performance
metrics indicate the detection rates of the random forest
models on attack samples only. All models registered a
0% detection rate for data devoid of attacks. As attacks
increased in other datasets, models exhibited enhanced de-
tection capabilities, with no benign instances misclassified.
While performance varied among models (RF1 to RF5), each
demonstrated consistent improvements in detection rates cor-
relating with the increasing percentage of attacks in datasets.

In Table IV, the models exhibit consistent accuracy rates
between 98.79% and 99.79% across varying datasets. The
accuracy remains stable even with increased attack percent-
ages, highlighting the models’ robustness. These results also
underscore the effectiveness of the trained random forest
models in discerning between benign and attack samples
within mixed datasets.

In Table V, we present the results of our ensemble model,

TABLE IV
TRAINED MODEL: MIXED PERFORMANCE

Attack% RF1% | RF2% | RF3% | RF4% | RF5%
0 99.66 | 99.79 | 99.59 | 99.69 | 99.49
10 99.61 99.71 99.48 | 99.41 99.38
15 99.63 | 99.6 99.44 | 99.26 | 99.29
20 99.65 | 99.56 | 99.39 | 99.04 | 99.24
25 99.62 | 99.51 99.34 | 98.71 99.15
30 99.64 | 99.43 | 99.36 | 98.58 | 99.12
35 99.59 | 99.23 | 99.3 98.39 | 99.04
40 99.57 | 99.11 99.24 | 98.19 | 98.96
45 99.53 | 9898 | 99.13 | 97.93 | 98.84
50 99.54 | 98.89 | 99.08 | 97.74 | 98.79
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TABLE V
MAJORITY VOTING PERFORMANCE RESULTS
RF1% | RF2% | RF3% | RF4% | RF5%
99.66 98.98 99.59 97.93 99.49

which was determined using a majority voting mechanism.
The ensemble approach primarily utilized the Max voting
method, exemplified by the random forest model outcomes.
This methodology amalgamates predictions from all con-
stituent models and identifies the one that consistently de-
livers the highest accuracy. The ensemble model harnesses
their collective insights by synergistically combining these
predictions, resulting in robust and reliable decisions.

Finally, in Fig.3, accuracy is employed as the principal
metric for assessing the performance of each model. The
model boasting the highest accuracy is discerned as the opti-
mally trained one, signifying its proficiency in distinguishing
instances as benign or malicious. Utilizing this criterion not
only pinpoints the model exhibiting superior performance but
also establishes a robust foundation for intrusion detection
within the given dataset.

Accuracy-Ensemble

99.5 1 /.—:\ B
93.0 1 \-—'\\, \——//f\l

98.5 4 —— O0p_attack

—— 5p_attack
98,0 4 — 10p_attack
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—+— 25p_attack
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Accuracy %
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Fig. 3. Max voting results from random forest models

V. CONCLUSION

This research introduces a hash-based ensemble frame-
work optimized for intrusion detection within the CICIDS
2017 dataset. By harnessing the diversity of hash functions
and the prowess of random forest models, we have elevated
intrusion detection’s precision, robustness, and accuracy. A
rigorous evaluation, through segregating the dataset into
training and test sets, ensures a thorough validation of
the framework’s intrusion detection capabilities. Our re-
sults, marked by high accuracy, precision, and recall, are
a testament to the efficacy of our approach. The majority
voting mechanism in the ensemble model fortifies decision-
making, while the iterative refinement of hash functions and

random forest hyper-parameters underscores the adaptability
and potency of the framework. Collectively, our hash-based
ensemble framework is a novel contribution to intrusion
detection, demonstrating enhanced detection accuracy and
emphasizing its pertinence in addressing pressing network
security challenges.
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