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Abstract—In the evolving landscape of vehicular technol-
ogy, autonomous and connected features lead to heightened
connectivity among vehicles, intelligent devices, and infras-
tructures, broadening the vulnerability to cyber-attacks within
the Internet of Vehicles (IoV) systems. Intrusion Detection
Systems (IDSs) leverage Machine Learning (ML) to detect
these malicious intrusions, but they face challenges from data
poisoning attacks, given the critical role of training data in
threat modeling. The vulnerability of training data emerges
as a significant threat vector during ML model training. This
study introduces a hash function-enabled ensemble ML training
framework tailored for IDS, mitigating data poisoning attacks
during model training. We test and validate our framework
using hash-enabled ensemble ML algorithms—including ran-
dom forests, support vector machines, and decision trees—on
the benchmark CICIDS 2017 dataset. Results demonstrate
that the hash-enabled random forests model guarantees a
misclassification rate below 0.5%.

I. INTRODUCTION

Amidst the swift evolution of autonomous and connected

technologies, vehicles are progressively assimilating into an

expansive ecosystem comprising other vehicles, smart de-

vices, and infrastructure. This amalgamation proffers myriad

advantages, including augmented road safety, streamlined

traffic regulation, and refined driving experiences. However,

this pervasive connectivity also uncovers novel vulnerabil-

ities, potentially exposing the Internet of Vehicles (IoV)

systems to cyber threats [1]. IoV systems, anchored in

flawless communication and coordination amongst vehicles

and their environment, are susceptible to nefarious cyber

incursions. Such intrusions can harness the interconnectivity

of vehicles to subvert operational coherence, imperil safety,

and infringe upon the confidentiality of vehicle occupants.

Hence, there is an unequivocal necessity to architect stal-

wart defense stratagems to insulate IoV systems from cy-

ber adversities [2]. Conventional IDSs predominantly lean

on pre-established rules or signatures, circumscribing their

prowess in pinpointing nascent or mutating threat paradigms.

In contravention of this restraint, Machine Learning (ML)

methodologies have emerged as frontrunners in sculpting

IDSs adept at navigating capricious threat landscapes. This

manuscript delineates the formulation of an IDS framework

predicated on a hash-augmented ensemble model deploying

Random Forest Machine Learning. The advocated framework

endeavors to discern many attack vectors in IoV networks

by harnessing the synergy of ensemble learning and hash-

ing modalities. Ensemble learning amalgamates multiple

ML prototypes to elevate detection precision while hashing

modalities intensify the proficiency of pattern correlation

within voluminous datasets. A paramount impediment in

ML-driven IDSs is the security appraisal of such paradigms,

especially in mission-critical domains like IoV systems.

The adulteration of training datasets, termed data poisoning,

emerges as a profound menace, potentially jeopardizing

the efficacy and trustworthiness of ML architectures. Such

malevolent data manipulations have been evidenced across

diverse ML algorithms. In retaliation to these challenges, the

mooted hash ensemble IDS paradigm not solely accentuates

detection acuity but also contends with the susceptibilities

of ML frameworks to data poisoning onslaughts. With the

integration of rigorous hashing mechanisms and ensemble

education, the architecture seeks to proffer a robust and

tenacious bulwark against cyber adversaries in IoV ma-

trices. The cardinal ambition of this investigation is to

cultivate a sophisticated IDS blueprint adept at pinpointing

and neutralizing cyber incursions within IoV architectures.

The propounded hash ensemble construct emerges as a

promising conduit to fortify vehicular cyber defenses and

amplify the inherent robustness of IoV frameworks. This

treatise aspires to manifest the efficacy and applicability of

the proffered paradigm in tangible operational environments

through exhaustive appraisals and elucidations.

The primary contributions of this paper are as follows:

• Introduction of an innovative framework fusing ensem-

ble learning and hashing techniques for enhanced IoV

attack detection.

• Assurance of ML model reliability in IoV systems by

safeguarding training datasets against malicious modi-

fications.

• Amplification of detection accuracy for diverse cyber-

attacks through the adoption of ensemble learning.

• Validation of the framework’s effectiveness and re-

silience via real-world IoV applications and examination

on the CICIDS2017 dataset [3].
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The rest of the paper is organized as follows: Section II

reviews pertinent related works on the robustness of IDS in

IoV. Section III introduces the systems architecture. Section

IV elucidates data preparation, the implementation, and the

result analysis of the hash-based ensemble random forest

models. Finally, Section V offers concluding remarks based

on our findings.

II. RELATED WORK

The escalating connectivity in IoV systems has accentu-

ated concerns related to their security, driving significant

research focus. Among the prevalent methods, ML tech-

niques for intrusion detection in vehicular networks have

been a mainstay. Notwithstanding their value, existing studies

present certain gaps. Islam et al. [4] showcased an anomaly

detection framework for vehicular ad-hoc networks utilizing

a fusion of unsupervised and supervised learning. Though

this framework registered commendable accuracy, it was

contingent upon the caliber of training data, potentially com-

promising adaptability to emergent threats. In contrast, Ma

et al. [5] presented a deep learning-powered real-time intru-

sion detection for IoV. Their system highlighted formidable

detection rates with minimal false positives, signifying deep

learning’s prowess in this domain. Yet, vulnerabilities to data

poisoning attacks were unaddressed.

Addressing data poisoning, Li et al. [6] unveiled a

Deep Reinforcement Learning (DRL) framework tailored

for crowd-sensing systems. They circumvented particular

poisoning challenges by employing a biphasic DRL algo-

rithm for data selection during training. Nonetheless, the

method posed computational challenges and made potentially

compromising assumptions regarding adversarial knowledge.

Several other researchers [7]–[11] suggested weighted en-

semble strategies, yet these remain susceptible to manip-

ulative attacks targeting training data weights. Sun et al.

[12] introduced an adaptive mechanism countering data

poisoning in federated ML systems. Preliminary evaluations

on synthetic datasets registered superiority over peers in

accuracy and robustness metrics. However, certain caveats

like untested real-world performance and potential compu-

tational intensiveness linger. Chen et al. [13] presented a

rigorous review of data poisoning attacks in IoV contexts.

Despite its comprehensiveness, this study narrowed its scope

to IoV-specific poisoning attacks and omitted contemporary

advancements. Yerlikaya and Bahtiyar [14] delivered a holis-

tic literature review centered on ML algorithmic vulnerabil-

ities to data poisoning, encapsulating attack techniques, and

ramifications. The analysis, though insightful, was restricted

to data poisoning, sidelining other attack modalities.

As a defense against poisoning, Anisetti et al. [15]. ad-

vanced a hashing mechanism to condense training data. How-

ever, this compression possibly compromised the integrity of

the data and the consequent IDS accuracy.

The hash ensemble IDS framework proposed herein as-

pires to remediate these gaps, enhancing intrusion detection

accuracy in IoV systems. Recognizing the imperative of

thoroughly assessing ML models’ security, especially in

mission-critical applications, this work hopes to augment this

evaluative paradigm significantly.

III. ARCHITECTURE

A. The network and threat model

The Internet of Vehicles (IoV) architecture in Fig. 1 has

transformed the automotive industry, enabling vehicles to

communicate internally and externally. Internally, cars use

the Controller Area Network (CAN) bus, a robust com-

munication protocol specifically designed for automotive

environments. The CAN bus oversees the transmission of sig-

nals between various electronic control units (ECUs) within

the vehicle. A gateway is essential in facilitating external

communications with infrastructures and other vehicles, serv-

ing as the convergence point between internal and external

networks. This becomes especially vital as we move towards

a more connected world with Vehicle-to-Everything (V2X)

communications, where vehicles continuously interact with

their surrounding environment. Given the sensitive nature

of this data exchange, security becomes paramount. Hence,

integrating an intrusion detection system (IDS) within the

gateway is crucial. This IDS can detect and mitigate real-

time data modifications or poisoning attacks. Such attacks,

whether from internal or external sources, can compromise

the vehicle’s functionality and safety. By leveraging a hash-

based ensemble random forest model, the IDS provides an

added layer of security. This model allows for quick and

accurate detection of any discrepancies in data transmission,

ensuring a safer and more secure IoV ecosystem.

B. Hash-based ensemble random forest enabled IDS

The working process of the hash-based ensemble random

forest enabled IDS is depicted in Fig. 2, and step by step

evolution is given below:

Dataset Splitting: The initial dataset is bifurcated into

training (80%) and testing datasets (20%). The training

dataset instructs the machine learning model, while the

testing dataset assesses its efficiency.

Training Set Creation: Three data types comprise the

training set:

• Benign Data: Represents standard, uncompromised

system operations.

• Attack Data: Originates from compromised or attacked

systems.

• Mixed Data: An amalgamation of benign and attack

data, this is employed to gauge model proficiency.

Model Generation: A machine learning model incorpo-

rating the Hash-based Ensemble framework is constructed.

This algorithm combines hash functions with random forests

for effective data categorization. Here, hash functions process

the data into a condensed format, facilitating the random

forest’s role in data classification. The hashing equation

ensures that features are randomly distributed into buckets,
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Fig. 1. Cyber-physical system of the intelligent transportation system.

and while there may be collisions (different features ending

up in the same bucket), this randomness can be beneficial

for training diverse trees in the ensemble.

Model Training N distinct Hash-based random forest

models, where N might be a modest number like 10 or 20,

are instructed using the (20%) training datasets. A supervised

learning approach directs this training.

Model Evaluation: Models cultivated in the training step

undergo testing, subject to varied attack percentages. By

manipulating the attack ratio from 0% to 100%, the model’s

precision is deduced from the quotient of accurate predictions

and total predictions.

Optimal Model Selection Employing the majority voting

technique, the best-performing model is identified. This

algorithm selects the label with the highest frequency for a

fresh data point. Due to its straightforwardness and efficacy,

majority voting ensures that the most apt model for precise

predictions is chosen.

C. Mathematical representation of hash-based ensemble

random forests models:

The majority voting equation for a hash-based ensemble of

random forests is articulated as follows: Let S be an input

string and M represent the ensemble model comprised of

several hash-based random forest models. Each model within

the ensemble is symbolized by Mi, where i iterates from

1 through N , with N signifying the cumulative count of

models in the ensemble. For each model, Mi in M , apply the

corresponding hash function Hi() to the instance X , which

produces a hash value Hi(S). The hash value is calculated

from the eqn.1.

H(S) =

L−1∑

i=1

f(S[i])modN (1)

Where H(S) is the hash value of the string S, f(s[i]) is the

hash value of the character S[i], L is the length of the string

S, and N is the number of models.

Using the model Mi to predict the Class Label (CL) for

the hashed instance Hi(S). The CL can be defined as eqn.2

CL = Mi.predict(Hi(S)) (2)

Now, majority voting is typically performed by selecting

the class label that receives the highest number of votes from

the ensemble models. If there is a tie, additional tie-breaking

strategies can be employed, such as selecting the class label

with the highest confidence or considering the class label

predicted by the leader model. Mathematically, the majority

voting can be represented as eqn.3:

MV (S) = argmax
CL

N∑

i=1

Indicator(Mi.pred(Hi(S)) = CL)

(3)

where MV (S) represents the final predicted class label

for the string S, argmax
CL

returns the CL that maximizes

the expression Indicator(Mi.predict(Hi(S)) = CL is an

indicator function that equals 1 if the prediction of model Mi

for the hashed instance Hi(S) is equal to class label CL, and

0 otherwise, and
∑N

i=1
indicates the summing of indicator

functions over all models in the ensemble.
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Fig. 2. Process flow of the proposed hash-based ensemble mechanism using random forest models.

IV. DATA PREPARATION, EXPERIMENTAL SETTINGS, AND

RESULT ANALYSIS:

A. Data Preparation:

We utilized the CICIDS2017 dataset [3] to emulate a car’s

internal CAN bus and external gateway communications,

where our hash-ensembled, random forest-based IDS was

integrated. The dataset contains 2,257,797 network traffic

entries, with 1,499,522 standard and 758,275 attack records.

These records are divided into a training set of 1,599,265

and a testing set of 658,532.

The internal car dataset was derived from genuine network

traffic captured in a controlled setting using the CICFlowMe-

ter tool, transforming packet-level details into flow-level

data. In contrast, the external set simulated diverse network

activities, encompassing regular traffic and attack patterns.

Each network flow in the dataset is detailed with features

like statistical measures, protocol specifics, flow duration,

and service-related attributes, offering a comprehensive view

of network behaviors.

The dataset catalogs various traffic types, each labeled

appropriately, from benign to different attack modalities.

Notably, the training set was modified to mimic data poi-

soning attack patterns. The dataset also mirrors real-world

conditions, showcasing a class imbalance with benign traffic

predominating over malicious actions.

B. Experimental Setup:

Our hash-ensembled random forest implementation uti-

lizes ensemble models ranging from 10 to 20 individual mod-

els. This intricate design was executed using select Python

libraries, ensuring optimal compatibility and efficiency. Im-

portantly, to guarantee robust computational performance and

seamless execution of our models, we deployed the algorithm

on our dedicated cluster server. This server is equipped

with state-of-the-art hardware, featuring an 11th Generation

Intel® Core™ i9-11900KF processor that operates at a clock

speed of 3.50GHz across 16 cores. Complementing this

powerful CPU is a substantial Random Access Memory

(RAM) of 62.5GB, which ensures efficient data handling

and concurrent processing capabilities. Such a robust com-

putational environment accelerates our model’s training and

inference times and guarantees precision and consistency in

performance.

C. Result Analysis:

The performance of the framework was assessed using the

following metrics:

• Accuracy: Percentage of records correctly classified.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: Percentage of records classified as positive

that are truly positive.

Precision =
TP

TP + FP

• Recall: Percentage of positive records that were cor-

rectly classified.

Recall =
TP

TP + FN
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TABLE I
EVALUATION RESULTS

Algorithm Accuracy% Precision% Recall% F1-
score%

Hash-based ensemble
framework using

random forest Models

99.60 99.70 99.50 99.60

Hash-based ensemble
framework using Sup-
port Vector Machines

94.50 93.60 93.40 93.50

Hash-based ensemble
framework using Deci-
sion Trees

95.40 96.50 93.30 94.87

• F1-score: Weighted average of precision and recall.

F1-score =
2× Precision × Recall

Precision + Recall

Where:

• TP (True Positives): Number of records correctly clas-

sified as positive.

• TN (True Negatives): Number of records correctly

classified as negative.

• FP (False Positives): Number of records incorrectly

classified as positive.

• FN (False Negatives): Number of records incorrectly

classified as negative.

Now, Table I presents the evaluation results of our pro-

posed hash-based ensemble framework utilizing Random

Forest models. Our findings indicate that this framework out-

performs other methods regarding accuracy, precision, recall,

and F1 score. Even when subjected to a poisoned dataset,

the system retains a superior level of accuracy, a testament

to the efficacy of the integrated hash function and ensemble

approach. The ensemble strategy, which encompasses multi-

ple random forest models, aggregates predictions. By relying

on a majority voting system, this diminishes the potential

impact of individual poisoned models or data instances.

Furthermore, hash-based indexing and partitioning ensure

the dataset’s even distribution among the ensemble models.

This strategic partitioning hinders direct manipulation of

the comprehensive dataset and acts as a defensive measure

against expansive poisoning attacks. Continuous performance

monitoring and validation are integral components of our

methodology to bolster the system’s resilience. This vigilant

oversight facilitates the early detection of anomalies or incon-

sistencies potentially caused by data poisoning. Furthermore,

periodic retraining and model updates fortify the system’s

defenses, making it adaptable to emergent attack paradigms.

Table II presents the attack percentage in each dataset

alongside the accuracy of five random forest models (RF1

through RF5) on benign samples only. Notably, all models

achieved 100% accuracy on the dataset, which lacks attacks.

As the attack percentage rises in other datasets, model

accuracy decreases, underscoring the impact of attacks on

classification performance.

TABLE II
TRAINED MODEL: BENIGN PERFORMANCE

Attack% RF1% RF2% RF3% RF4% RF5%

0 100.00 100.00 100.00 100 100.00
10 95.01 95.01 95.01 95.01 95.01
15 89.99 89.99 89.99 89.99 89.99
20 85.01 85.01 85.01 85.01 85.01
25 80.01 80.01 80.01 80.01 80.01
30 75.01 75.01 75.01 75.01 75.01
35 70.00 70.00 70.00 70.00 70.00
40 65.00 65.00 65.00 65.00 65.00
45 60.01 60.01 60.01 60.01 60.01
50 55.00 55.00 55.00 55.00 55.00

TABLE III
TRAINED MODEL: ATTACK PERFORMANCE

Attack% RF1% RF2% RF3% RF4% RF5%

0 0.00 0.00 0.00 0.00 0.00
10 4.99 4.92 4.96 4.92 4.92
15 10.01 9.94 9.98 9.94 9.91
20 14.96 14.91 14.94 14.91 14.88
25 19.96 19.91 19.91 19.91 19.88
30 24.97 24.92 24.92 24.92 24.89
35 29.98 29.93 29.91 29.91 29.88
40 34.97 34.92 34.9 34.9 34.87
45 39.97 39.91 39.88 39.88 39.85
50 44.97 44.91 44.87 44.87 44.84

Table III evaluates the models’ ability to detect attacks

based on specific metrics and thresholds. The performance

metrics indicate the detection rates of the random forest

models on attack samples only. All models registered a

0% detection rate for data devoid of attacks. As attacks

increased in other datasets, models exhibited enhanced de-

tection capabilities, with no benign instances misclassified.

While performance varied among models (RF1 to RF5), each

demonstrated consistent improvements in detection rates cor-

relating with the increasing percentage of attacks in datasets.

In Table IV, the models exhibit consistent accuracy rates

between 98.79% and 99.79% across varying datasets. The

accuracy remains stable even with increased attack percent-

ages, highlighting the models’ robustness. These results also

underscore the effectiveness of the trained random forest

models in discerning between benign and attack samples

within mixed datasets.

In Table V, we present the results of our ensemble model,

TABLE IV
TRAINED MODEL: MIXED PERFORMANCE

Attack% RF1% RF2% RF3% RF4% RF5%

0 99.66 99.79 99.59 99.69 99.49
10 99.61 99.71 99.48 99.41 99.38
15 99.63 99.6 99.44 99.26 99.29
20 99.65 99.56 99.39 99.04 99.24
25 99.62 99.51 99.34 98.71 99.15
30 99.64 99.43 99.36 98.58 99.12
35 99.59 99.23 99.3 98.39 99.04
40 99.57 99.11 99.24 98.19 98.96
45 99.53 98.98 99.13 97.93 98.84
50 99.54 98.89 99.08 97.74 98.79

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on July 11,2024 at 04:57:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
MAJORITY VOTING PERFORMANCE RESULTS

RF1% RF2% RF3% RF4% RF5%

99.66 98.98 99.59 97.93 99.49

which was determined using a majority voting mechanism.

The ensemble approach primarily utilized the Max voting

method, exemplified by the random forest model outcomes.

This methodology amalgamates predictions from all con-

stituent models and identifies the one that consistently de-

livers the highest accuracy. The ensemble model harnesses

their collective insights by synergistically combining these

predictions, resulting in robust and reliable decisions.

Finally, in Fig.3, accuracy is employed as the principal

metric for assessing the performance of each model. The

model boasting the highest accuracy is discerned as the opti-

mally trained one, signifying its proficiency in distinguishing

instances as benign or malicious. Utilizing this criterion not

only pinpoints the model exhibiting superior performance but

also establishes a robust foundation for intrusion detection

within the given dataset.

Fig. 3. Max voting results from random forest models

V. CONCLUSION

This research introduces a hash-based ensemble frame-

work optimized for intrusion detection within the CICIDS

2017 dataset. By harnessing the diversity of hash functions

and the prowess of random forest models, we have elevated

intrusion detection’s precision, robustness, and accuracy. A

rigorous evaluation, through segregating the dataset into

training and test sets, ensures a thorough validation of

the framework’s intrusion detection capabilities. Our re-

sults, marked by high accuracy, precision, and recall, are

a testament to the efficacy of our approach. The majority

voting mechanism in the ensemble model fortifies decision-

making, while the iterative refinement of hash functions and

random forest hyper-parameters underscores the adaptability

and potency of the framework. Collectively, our hash-based

ensemble framework is a novel contribution to intrusion

detection, demonstrating enhanced detection accuracy and

emphasizing its pertinence in addressing pressing network

security challenges.
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