
ElasticTrainer: Speeding Up On-Device Training with Runtime
Elastic Tensor Selection

Kai Huang
University of Pittsburgh

USA
k.huang@pitt.edu

Boyuan Yang
University of Pittsburgh

USA
by.yang@pitt.edu

Wei Gao
University of Pittsburgh

USA
weigao@pitt.edu

ABSTRACT

On-device training is essential for neural networks (NNs) to contin-

uously adapt to new online data, but can be time-consuming due

to the device’s limited computing power. To speed up on-device

training, existing schemes select trainable NN portion offline or

conduct unrecoverable selection at runtime, but the evolution of

trainable NN portion is constrained and cannot adapt to the current

need for training. Instead, runtime adaptation of on-device training

should be fully elastic, i.e., every NN substructure can be freely

removed from or added to the trainable NN portion at any time

in training. In this paper, we present ElasticTrainer, a new tech-

nique that enforces such elasticity to achieve the required training

speedup with the minimum NN accuracy loss. Experiment results

show that ElasticTrainer achieves up to 3.5×more training speedup

in wall-clock time and reduces energy consumption by 2×-3×more

compared to the existing schemes, without noticeable accuracy

loss.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; • Computing methodologies → Artificial

intelligence;

KEYWORDS

On-Device Training, Neural Network, Speedup, Tensor Selection,

Elasticity

ACM Reference Format:

Kai Huang, Boyuan Yang, and Wei Gao. 2023. ElasticTrainer: Speeding Up

On-Device Training with Runtime Elastic Tensor Selection. In ACM Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys

’23), June 18–22, 2023, Helsinki, Finland. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3581791.3596852

1 INTRODUCTION

Neural Networks (NNs) have been widely used on mobile and em-

bedded devices for image and speech recognition [17, 46]. In these

applications, NNs are pre-trained offline with large datasets (e.g.,

ImageNet [31] and BooksCorpus [92]) before on-device deploy-

ment, but pre-trained NNs may not be able to capture the new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0110-8/23/06. . . $15.00
https://doi.org/10.1145/3581791.3596852

Offline Selection

Offline Online

Online Pruning

epoch 1 epoch 2 epoch 3

Online Growth

epoch 1 epoch 2 epoch 3

ElasticTrainer

Neural Network Untrainable Trainable

epoch 1 epoch 2 epoch 3

Figure 1: Existing work vs. ElasticTrainer

patterns of online data. For example, a NN pre-trained with the

ImageNet dataset for pedestrian detection suffers 20% inference

accuracy drop on the PASCAL dataset [36, 79]1. On-device training

with online data, hence, is essential for NNs to retain generality or

be personalized [38, 62, 91].

In particular, in many applications such as drone search & rescue

[80], personalized facial identification [59] and embodied AI-driven

robotics [57, 75], it is imperative that on-device NN models are

updated within short time, so as to promptly adapt to the new online

data patterns or real-time feedback from the environment. However,

on-device training of NN models is usually time-consuming due

to the devices’ limited computing power. For example, using a

Raspberry Pi 4 [10] to train a ResNet50 [42] model with the CUB-

200 dataset [83] that contains 5,994 images can take >30 days. Even
on stronger devices with GPUs such as Nvidia Jetson TX2 [8], the

training on each image could still take 30 seconds.

To reduce such long delay of on-device training, one could opt

to use a smaller NN model, but may suffer from the impaired model

performance when being applied to new online data, due to its

limited learning power. Another alternative is to offloadNN training

to the cloud [70, 82], but incurs high communication overhead. For

example, training a VGG16 [74] model with the CUB-200 dataset

requires transmitting >10GB data for each epoch. Even with high-

throughput network connections, it would be still difficult for cloud

servers to timely handle large amounts of retraining requests from

the large population of mobile and embedded devices.

Instead, to speed up the training at the local device, an intuitive

solution is to leverage hardware accelerators such as specialized

DSP [86]) or NPU [49], but their availability is limited on mobile

and embedded devices. Traditional transfer learning [34, 73] (Figure

1 top-left) suggests only training a portion of the NN model. It hy-

pothesizes that most top layers have learned the generic capabilities

of feature extraction, and restricts the trainable portion to the few

1The PASCAL dataset is another widely used dataset for object detection and recogni-
tion [36].

56

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581791.3596852&domain=pdf&date_stamp=2023-06-18

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

bottom layers [29]. This restriction, however, weakens NN’s learn-

ing power and reduces its inference accuracy by 20% on difficult

learning tasks [28]. Later studies remove this restriction by iden-

tifying important NN substructures (e.g., bias parameters [62, 90],

normalization layers [67] and small parallel branches [45]), but only

evaluate such importance offline without considering the variability

of online data that result in dynamic training feedback [14]. Hence,

online importances of NN substructures could be largely different

from those offline, leading to noticeable accuracy loss.

A better choice is to adaptively adjust the trainable NN portion

at runtime. NN pruning [43, 65] for on-device training removes

less important NN structures on the fly [50, 64] (Figure 1 top-right).

However, since the pruned NN portions can never be selected again

even if they may be useful [52], NN’s representation power is weak-

ened over time and becomes insufficient for difficult learning tasks.

Training can also start from a small NN that gradually grows [48, 91]

(Figure 1 bottom-left), but the newly added NN layers are trained

from scratch and require >30% extra training epochs [91].

The key reason for the existing runtime adaptation approaches to

fail is that their selections of the trainable NN portion are one-way

and unrecoverable processes. The evolution of trainable NN portion

is hence constrained and cannot flexibly adapt to the current need

for training. Instead, we envision that such runtime adaptation

should be fully elastic, i.e., every NN substructure can be freely

removed from or added to the trainable NN portion at any time in

training, as needed. In this paper, we present ElasticTrainer (Figure

1 bottom-right) to enforce such elasticity at the granularity of NN

tensors, and aim to achieve the required training speedup with the

minimum NN accuracy loss. ElasticTrainer evaluates the impor-

tance of NN tensors in different training stages at runtime, and

adaptively selects the smallest set of important tensors to achieve

the required training speedup.

ElasticTrainer’s selection of trainable NN portion builds on ap-

propriate evaluation of NN tensors’ importance, which is chal-

lenging because tensors do not directly associate with any input

data variables or intermediate features. As a result, traditional ap-

proaches based on weight magnitudes [61], random perturbations

[26] or attention [20, 40, 81] will be either inaccurate or expensive,

and most eXplainable AI (XAI) techniques that are based on attri-

bution [72, 77] are not applicable. Instead, our approach is to follow

the similar rationale with current XAI techniques that measure

the importance of an input data variable as the accumulation of

relevant gradients, to evaluate tensor importance as the cumulative

gradient changes of its weight updates in training. In this way, we

ensure that selected tensors will make the maximum contribution

to reducing the training loss.

Based on such importance evaluation, we aim to achieve training

speedup in wall-clock time instead of FLOPs (number of floating

point operations) that is widely used in the existing work [64, 91].

The major reason is that using FLOPs ignores the hardware ac-

celerations for different NN operations. For example, convolution

layers take >95% FLOPs in ResNet50 model’s training, but only

take <60% of wall-clock time when running on Nvidia GPUs, due

to the TensorCore’s acceleration for convolution. Ignoring these

practical factors could result in large difference between training

speedups in theory and practical settings.

The main challenge of achieving wall-clock time speedup is how

to precisely profile the training times of different tensor selections.

Due to the interdependency between training times of selected

tensors, the total training time of selected tensors is not equal

to the summation of tensors’ individual training times. To tackle

this challenge, we build a new time model that incorporates the

relations between tensors and NN operations into the training time

profiling. Based on this model, we develop a dynamic programming

(DP) algorithm that can find the optimal tensor selection from the

exponential number of possibilities (e.g., 2214 for 214 tensors in

ResNet50 model [42]), with negligible computing overhead.

To our best knowledge, ElasticTrainer is the first work that allows

full elasticity in on-device training, which is essential to achieve

training speedup for difficult learning tasks (e.g., fine-grained image

recognition [53, 83]). Our detailed contributions are as follows:

• We leverage the rationale of XAI for runtime evaluation

of tensor importance in training with high accuracy and

adaptability.

• We build new time models that allow precise profiling of

tensor selection’s training execution time.

• Our lightweight DP algorithm can decide the optimal selec-

tion of tensors at runtime that maximizes the training loss

reduction.

We implemented ElasticTrainer on multiple embedded devices

including Nvidia Jetson TX2 and Raspberry Pi 4B2, and evaluated

its performance on various popular datasets. From our experiment

results, we have the following conclusions:

• ElasticTrainer is time efficient. Compared to the existing

schemes [28, 34, 64, 67, 73], it achieves up to 3.5× more

training speedup in wall-clock time and reduces the training

FLOPs by 60%.

• ElasticTrainer is accurate. It incurs negligible accuracy loss

of NN prediction compared to full training on most datasets

we used, and achieves at least 10% accuracy improvement

compared to the existing schemes, especially on difficult

datasets such as CUB-200.

• ElasticTrainer is adaptive. It is able to achieve different speedup

objectives andmaximize theNN accuracy in different datasets,

training stages and NN models.

• ElasticTrainer is lightweight. Its selection of trainable NN

portion incurs <1% extra computation, and reduces the en-

ergy consumption of training by 2×-3× more compared to

the existing schemes.

2 BACKGROUND & MOTIVATION

To help better understand our design of ElasticTrainer, we first

demonstrate the opportunities of speeding up on-device NN train-

ing with small accuracy loss, hence motivating our elastic selection

of the trainable NN portion at runtime. Afterwards, to optimize such

speedup, we describe the time model of NN training and discuss

our choices of granularity in selecting the trainable NN portion.

2.1 Opportunities for Training Speedup

Since the pre-trained NN model has learned generic capabilities of

extracting low-level features (e.g., color and texture information in

images [24]), on-device training only needs to be applied to some

NN substructures and hence requires fewer training epochs and

weight updates [30] compared to training the model from scratch.

2Our source codes can be found at https://github.com/HelloKevin07/ElasticTrainer.

57

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

As a result, we can potentially gain significant speedup by selecting

a small trainable NN portion without losing much accuracy.

To verify this, we use a ResNet50 NN model being pre-trained

with the ImageNet dataset and retrain it with the CUB-200 dataset.

The retraining adopts the traditional transfer learning methods [29]

and selects the trainable NN portion as a number of bottom NN

layers. Experiment results on an Nvidia Jetson TX2 in Figure 2(a)

show that, when the trainable NN portion only contains 10 bottom

layers, the training progress in the first 3 epochs, measured as the

improvement of validation accuracy, is similar to that of training

the entire NN (50 layers), but with a 2x training speedup.

0 10 20 30 40 50
Bottom layers to train

0

20

40

60

A
cc

u
ra

cy
 (

%
)

0

0.2

0.4

0.6

L
at

en
cy

 (
s)

Accuracy improvement
Per-iteration latency

(a) Training progress and latency in the first
3 epochs

0 1 2 3 4 5 6 7 8 9 10 11 12
Epoch

0

10

20

30

A
cc

u
ra

cy
 (

%
)

Bottom 10 layers
Bottom 40 layers
Offline BN+Bias
Offline optimal

(b) Suboptimality of existing work in select-
ing the trainable NN portion

Figure 2: Opportunities of training speedup

These traditional learning methods, however, cannot ensure

optimal selection of the trainable NN portion. To explore their

suboptimality, we set an objective of 1.7x training speedup and

exhaustively search offline for the optimal trainable NN portion

in the pre-trained ResNet50 model. Results in Figure 2(b) show

that, when retraining with the CUB-200 dataset starts in epoch 1,

compared to this optimal portion, no matter if the trainable NN

portion is selected from the bottom NN layers, NN weights in batch

normalization layers or bias weights in convolutional and dense

layers (Offline BN+Bias), it cannot adapt well to the new dataset.

On the other hand, such optimal selection of trainable NN por-

tionmay also vary in different training stages at run-time. As shown

in Figure 2(b), although the offline optimal selection ensures the

best training progress in the first 2 epochs, its optimality quickly de-

teriorates as training further proceeds3, verifying that importances

of NN structures could vary in different training epochs. These

results, hence, demonstrate the ineffectiveness of pruning-based

methods in on-device training, and instead motivate us to trans-

form the online selection of trainable NN portion from one-way

and unrecoverable to fully elastic.

1 2 3 4 5
Pred.

Label

Input

() () () () ()

() () () ()
Forward pass

Backward pass

Time of computing error gradient

Time of computing weight update

Layer weights Times to include when only training layer 3

Figure 3: Forward & backward passes of NN training

3Although traditional learning methods outperform the offline optimal selection after
epoch 3, we have no clue if any of these selections is optimal.

2.2 Time Model of NN Training

Our objective of ElasticTrainer is to achieve the desired training

speedup in wall-clock time, and we hence need to incorporate the

corresponding time model of NN training into the selection of

trainable NN portion. As shown in Figure 3, the training of most

existing NNs consists of forward and backward passes [44]. In a

forward pass, the NN takes a batch of training data as input and

extracts features on a layer basis to produce final predictions. A loss

function is then computed by comparing the predictions with labels.

Its training time, hence, is the cumulation of all layers’ computing

times of such feature extraction. In a backward pass, the NNweights

are recursively updated on a layer basis based on the error gradient

feedback [16] computed from the loss value. As a result, in the

backward pass, layer i spends time t
(i)
dw

to compute the weight

update using the error gradient passed from layer i + 1, and spends

time t
(i)
dy

to compute the error gradient being passed to layer i − 1.

Even if a layer is not selected, it still needs to compute and pass

error gradients, and the time needed for training hence do not only

depend on the selected layers. For example in Figure 3, even if only

layer 3 is selected, the times for computing error gradients in layer

4 and 5 should still be counted towards the total time for training,

which is then calculated as t
(3)
dw
+ t

(4)
dy
+ t

(5)
dy

. Since the gradient com-

putations in backward passes are much more time consuming than

forward passes, incorporating these times of gradient computations

is important to ensure accurate estimation of NN training time and

correct selection of trainable NN portion. In the rest of this paper,

our tensor selection will also be mainly focusing on reducing the

training time in backward passes.

tensor-levelweight-level layer-level

NN weightsNN layer

Granularity:

Input Output

Figure 4: Granularities of selection

2.3 Granularity of Selection

The optimality of selecting the trainable NN portion, however, is

affected by the granularity of selection, which can be at the level of

weights, tensors and layers on most NNs (e.g., convolutional and

dense NNs). As shown in Figure 4 with a three-layer dense NN as

an example, each layer contains two trainable tensors4 as groups

of weights, and they apply multiplication and addition to the layer

input, respectively.

Among these granularities for selection, the layer-level selection

is coarse-grained and hence inaccurate because some important

weights within a layer may not be selected due to many others

that are unimportant. On the other hand, although the weight-level

selection is the most fine-grained, it requires fine-grained index-

ing with irregular data access patterns, which could lead to poor

training efficiency on existing NN software frameworks such as

4In this paper, we use tensor as a generic term for vector, matrix, and other higher
dimensional data forms.

58

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

Tensors in
each layer

Tensor-level NN
computing graphLayer 1

Layer 2

Layer 3

Timing Profiler

() ()

Timing of training ops

Tensor Timing Profiler Tensor Importance Evaluator

Tensor Selector

La
ye

r 1

Pred. LabelTraining
data

=

Sub-problem
definition

Optimal
selection ()

Dynamic
Programming

NN for on-
device training

maxs. t. ()
Match & aggregate

OFFLINE ONLINE

Sub-problem Space

P1 P5

P20

P10

solve via
recursion

La
ye

r 2

Tensor

Loss ()

La
ye

r 3

Figure 5: Overview of ElasticTrainer Design

TensorFlow [13] and PyTorch [69] with vector and matrix based

implementations. Hence, ElasticTrainer adopts tensor-level selec-

tion, which ensures accuracy and can also be efficiently executed

in existing NN frameworks without extra overhead.

In particular, to adopt the layer-level time model of NN training

described in Section 2.2, tensors can be equivalently considered

as smaller layers that are sequentially connected based on their

characteristics. By incorporating this tensor-level time model, Elas-

ticTrainer first constructs a selection-time model which reflects the

relationship between the selected tensors and NN training time. It

then uses such a model to formulate an optimization problem to

find the optimal selection of trainable NN portion.

3 OVERVIEW

To speed up on-device training, an intuitive formulation of the

speedup problem is to minimize the training time with respect to

the required NN training quality, which is measured by the trained

NN model’s prediction accuracy. However, it is practically hard to

decide in advance the appropriate requirement of such accuracy

that can be achieved within reasonable training time. Instead, as

shown in Figure 5, ElasticTrainer’s design aims to select the optimal

trainable NN portion at runtime, to achieve the desired training

speedup with the maximum training loss reduction5.

This selection problem is formulated as a constrained optimiza-

tion problem as follows:

max Δloss (M) s.t. Tselect ive (M) ≤ ρTf ull , (1)

whereM is a binary mask to be solved denoting tensor selection.

Tselect ive is the estimated training time according to the time

model in Section 2.2, and it is constrained to be lower than a user-

specified ratio (ρ) of the full training time (Tf ull), as the objective of
training speedup. For example, ρ=50% means that the training time

should be reduced to 50% of that in full training. The time needed for

full training, on the other hand, can be estimated in advance from

the training parameters, such as the computing time per iteration,

batch size, dataset size and number of training epochs. In practice,

users can either set ρ to be constant or adjust it at runtime, and this

decision only relates to the application’s requirement on timeliness.

5In our problem formulation, we use the amount of training loss reduction to evalu-
ate the improvement of training quality, which indirectly measures the NN model’s
prediction accuracy loss in inference.

In the offline stage, ElasticTrainer uses a Tensor Timing Profiler to

profile the training times of selected tensors, to provide inputs for

calculatingTselect ive (M). In the online stage, solving the problem

in Eq. (1) builds on an accurate yet computationally efficient metric

that evaluates the aggregate importance of selected tensors and the

corresponding reduction of training loss, and such evaluation is

done by Tensor Importance Evaluator in ElasticTrainer design. The

outputs of these two modules are used by Tensor Selector to solve

the selection problem via dynamic programming.

3.1 Tensor Importance Evaluator

An intuitive approach to evaluating the importance of NN structures

is based on their magnitudes [61], but cannot accurately reflect the

interdependency of different weight updates in backward passes.

Hence, they cannot ensure correct selection of tensors that contain

multiple interdependent weights. Instead, eXplainable AI (XAI)

techniques suggest using gradient-based methods to incorporate

such dependencies [72, 77]. However, most of these methods are

limited to input data variables or intermediate features.

To address these limitations, we leverage the similar rationale of

existing XAI approaches, and extend these approaches to evaluate

the importance of tensors from the gradient changes of their weight

updates. We define the importance of a NN tensor k in a specific

training epoch as:

Ik =
∑
i

∂L

∂wk
i

Δwk
i , (2)

where L and wk
i denote the training loss function and the i-th

weight in tensor k , respectively, and Δwk
i is the recent update of

wk
i in the training epoch. This metric aggregates how each weight

update contributes to the reduction of training loss, and its gradient

computation mimics the similar computation in backward pass to

naturally incorporate the impact of weight dependencies in training.

The prerequisite of correctly using this importance metric to

select the trainable NN portion is that this metric should satisfy

additivity, which ensures that the importances of multiple weights

in a tensor can be correctly aggregated. To achieve such additivity,

in the practical training process, we take first-order approximation

to the importance evaluation specified in Eq. (2), and the detailed

rationale of such approximation is described in Section 4.

To ensure that the importance evaluation always aligns with

the current training progress, we will need to frequently evaluate

59

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

tensor importance at run-time. In ElasticTrainer, we set such period

of importance evaluation to be a few training epochs by assuming

that the tensor importance remains constant in each short period,

and then use the weight update in the first epoch of each period

for importance evaluation. The impact of such period length on the

training efficiency and accuracy will also be evaluated in Section 4.

Depth = 4
Depth = 2

NN tensor Forward pass Backward pass

Figure 6: Problem decomposition with constrained depth of

backward pass

3.2 Tensor Timing Profiler

Standard NN profilers6 can measure the execution time of each NN

operation (e.g., matrix multiplication and convolution) in offline

training. However, such measurements are limited to the operation

level and have no clear correspondence to NN tensors that partic-

ipate in these operations. In other words, when a set of selected

tensors is being trained, the execution time of the involved NN

operations will not equal to the summation of training times of

individual tensors. To address this limitation, we first convert the

original layer-based NN structure into a tensor-level computing

graph, which retains the execution order of all tensors’ involve-

ments in training. Then, we compute the backward pass timing tdy
and tdw of each tensor by aggregating the timings of related NN

operations from the standard profiler.

The key challenge is how to determine the execution order of

tensors and how to aggregate the timings of related NN operations,

both of which depend on the type of NN layers where tensors are

located. We take different types of NN layers (e.g., convolutional,

dense, and batch normalization layers) into consideration and de-

velop rules for profiling each type of layer. Details of such profiling

are in Section 5.

3.3 Tensor Selector

Intuitively, selecting the top-k ofmost important tensorswill change

the training speed at every interval. However, it is hard to estimate

the cumulative training time or ensure that the required speedup

can be met. In contrast, we use the timing profiles (�tdy , �tdw) and

importance �I of tensors to instantiate the objective and constraint

in Eq. (1). With a binary mask �M where its j-th element indicates if

tensor j is selected, Eq. (1) can be rewritten as

max �M · �I s.t. Tf orward + �M · �tdw + f (�M) · �tdy ≤ ρTf ull , (3)

where Tf orward indicates the training time of forward passes that

is fixed for any tensor selection, and f (�M) is another binary mask

indicating the tensors whose times of computing error gradient

along backward pass (tdy) should be included in the training time.

According to the time model in Section 2.2, only tdw of selected

tensors are included in training time, but for any selected tensor,

all tdy of later layers should be included. For example, if �M =

6For example, TensorFlow provides a built-in profiler:
https://www.tensorflow.org/guide/profiler

[0, 0, 0, 1, 1, 0, 0], then f (�M) = [0, 0, 0, 1, 1, 1, 1]. Tensor Solver aims

to solve the selection mask �M that maximizes the importance of

selected tensors while restraining the training time within ρTf ull .
Since Eq. (3) is a nonlinear integer programming problem and

hence NP-hard [84], we will solve it in pseudo-polynomial time

by dynamic programming (DP). Specifically, as shown in Figure 6,

we decompose the whole problem into many subproblems which

are constrained by different depths of backward pass. These sub-

problems can be sequentially solved from the easiest one with the

smallest depth, by using their recurrence relations. Details of our

DP algorithm design and analysis are in Sec 6.

4 EVALUATING TENSOR IMPORTANCE

Since NN training iteratively updates the NN weights to minimize

the loss function, an intuitive approach to evaluating the importance

of a weight update Δw in a given training epoch is to undo this

update and check how the training loss value increases back:

ΔL = L(w) − L(w + Δw), (4)

so that higher ΔL means this update is more important. However,

repeatedly applying this approach to every NN weight is expensive

due to the large number of NN weights. For example, a ResNet50

model with 50 NN layers contains >23 millions of weights.

Instead, our approach is to leverage the gradient computation

that has been widely used in backward pass in training and can

be efficiently done with auto-differentiation software [22]. More

specifically, we approximate the importance evaluation in Eq. (4)

by smoothing the undo operation and computing the loss gradients

with respect to the updates corresponding to all the NN weights.

Letting the multiplicative �c ∈ [0, 1]M denote the continuous undo

operation for all theM NN weights, we can compute the loss gradi-

ent with respect to �c as

∂L(�w + �c � Δ �w)

∂�c
= Δ �w �

∂L(�u)

∂�u

�����
�u= �w+�c� �Δw

, (5)

where � denotes element-wise multiplication. When we set �c = �0,
Eq. (5) becomes an importance vector where each element corre-

sponds to a NN weight’s importance. Since the loss gradient is

parametrized by all the NN weights, the computed importance

implicitly incorporates the impact of weight dependencies.

The importance of a tensor, then, is a summation of all its weights’

importance, as described in Eq. (2). To achieve additivity for such

summation, our approach builds on the fact that the first-order com-

ponents of the training loss function’s Taylor expansion correspond

to the importances of NN weights, as shown in Eq. (6) below:

L(�w + Δ �w) = L(�w) +
∂L(w1)

∂w1
Δw1 +

∂L(w2)

∂w2
Δw2 + ... (6)

Since on-device training with a pre-trained model typically uses

a very low learning rate (e.g., 10−4 to 10−5 as suggested in [73])

and values of weight updates (Δwi) is proportional to the learning

rate [16], the magnitudes of high-order components in the Taylor

expansion are much lower than those of first-order components.

Hence, we can use the first-order approximation, as described in

Eq. (6), to retain additivity and calculate tensor importance.

Importances of tensors need to be frequently evaluated at run-

time during training. A long interval of evaluation could fail to

capture the variations of tensor importances over time and hence

reduce the evaluation accuracy, but too frequent evaluations incur

60

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

0 2 4 6 8 10
Interval (epochs)

0

0.2

0.4

0.6

0.8

1

S
im

ila
ri

ty

0

1

2

3

4

O
ve

rh
ea

d
 (

%
)

ResNet50-CUB200
ResNet50-PET37
VGG16-CUB200
VGG16-PET37

(a) Different evaluation intervals

0 2 4 6 8
Batch size

0.2

0.4

0.6

0.8

1

S
im

ila
ri

ty

0

2

4

6

O
ve

rh
ea

d
 (

%
)

ResNet50-CUB200
ResNet50-PET37
VGG16-CUB200
VGG16-PET37

(b) Different batch sizes

Figure 7: The impact of evaluation interval and batch size on

tensor importance evaluation

extra computation overhead. To investigate the impact of such

evaluation interval on training, we train the pre-trained ResNet50

and VGG16 models on the CUB-200 and PET-37 [68] datasets using

Jetson TX2, and measure the cosine similarity between the NN

tensor importances evaluated in every training epoch. Results in

Figure 7(a) show that such similarity generally reduces with longer

intervals of importance evaluation, but can retain at 80% when the

interval is 3 training epochs. When such an interval is used, the

computing overhead of importance evaluation is <1% of the whole

training cost, and we consider this value as the optimal for the

interval of importance evaluation.

Since the loss gradient is computed from a batch of uniformly

sampled training data, the batch size also affects such similarity. As

shown in Figure 7(b), using a batch size of 4 is sufficient to retain

high similarity with <1% of computation overhead. If needed, using

a larger batch size is still possible by breaking the original batch

into smaller micro-batches and aggregating their results.

5 PROFILING EXECUTION TIMES OF TENSOR
TRAINING

To correctly profile how each selected tensor contributes to NN

training time, we will explicitly find out how each tensor associates

with NN operations in the backward computing graph of different

types of NN layers. Then, since timings of these NN operations

can be obtained by standard NN profilers, we can estimate ten-

sor’s training time by matching and aggregating these operations’

timings.

In practice, most modern AI frameworks (e.g., TensorFlow [13]

and PyTorch [69]) allow users to retrieve the list of NN trainable ten-

sors sorted in their execution order (e.g., model.trainable_weights).
Based on such execution order, any complex NN model (e.g., with

multiple branches) can be unrolled into a sequence of operations

and the related tensors. We can then traverse this sequence to

profile their execution times, and then perform necessary timing

aggregation on these operations and tensors.

5.1 Convolutional Layer & Dense Layer

Both convolutional and dense layers7 contain two types of trainable

tensors: Kernel and Bias. As shown in Figure 8, in the forward pass,

Kernel first multiplies and convolves the input data and the result is

added by Bias to produce the layer output. In the backward pass, the

error gradients from later layers are involved in three operations:

1) compute the updates of Kernel, 2) compute the updates of Bias8,

7Dense layer is also known as Fully-connected layer.
8Since Bias is not involved in error gradient passing, its tdy equals to 0.

Kernel

Bias

Conv. or
MatMul.

Sum.

error gradients
from later layers

error gradients
to earlier layers

Conv. or
MatMul.

Backward Op-level Graph

Kernel Bias

Conv. or
MatMul. Add.

Forward Op-level Graph

Kernel Bias= = == 0
Backward Tensor-level Graph

… …… …

Figure 8: Timing of tensor training in convolutional and

dense layers

and 3) pass the error gradient to the earlier layers, whose execution

times are T3, T2, and T1, respectively. As a result, we can convert

the layer’s computing graph from operation level to tensor level,

where each tensor is equivalent to a standalone layer. The execution

time of NN operations is then matched to the related tensors. This

tensor-level computing graph exactly follows the time model of

backward pass described in Section 2.2, and can be used to directly

estimate the training time of any set of selected tensors.

Gamma Beta

Gamma Beta

Gamma Beta

All takes
the same
time of

Trainable Untrainable

Gamma Beta

= 0 = 0
== 0

Gamma Beta

Exist earlier layers trainable

Figure 9: Timing of tensor training in batch normalization

layers

5.2 Batch Normalization Layer

A batch normalization (BN) layer [47] contains two types of train-

able tensors: Gamma and Beta, and can be similarly profiled as de-

scribed above. However, the implementations of BN layer may vary

on different NN software frameworks that have different optimiza-

tions on normalization. To avoid the impact of this heterogeneity,

we instead consider each BN layer as a black box and profile it by

enumerating different ways of selecting its tensors in training.

As shown in Figure 9, our experiments on widely used NN frame-

works, including TensorFlow [13] and PyTorch [69], verify that as

long as any tensor is selected in the current layer or any earlier layer,

all the BN-related NN operations in these layers will be executed

in the backward pass. This implies that, although BN has heteroge-

neous operation-level backward computing graphs, its tensor-level

computing graph can be unified. Specifically, we aggregate all the

BN-related operation time T into tdy of the corresponding Beta.

By doing so, as long as an error gradient is passed from Beta, the

execution time of this tensor-level graph is T .

5.3 Non-trainable Layer

In addition, many other NN operations have no associationwith any

trainable tensor. Instead, they belong to non-trainable layers such as

activation and pooling layers. Although these layers have no tensor

to update, they still incur computations to pass error gradients.

To unify such behavior into the tensor-level computing graph, we

incorporate the backward operation time of non-trainable layers

61

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

into the timing of the closest tensor in the previous trainable layer.

For example as shown in Figure 10, the time T ′ of all operations

in a non-trainable layer is added to tdy of Bias in the previous

convolutional layer. In this way, if the error gradient passes Bias,

the timing of non-trainable layers will be guaranteed to be counted.

Kernel Bias

Trainable layers
e.g., convolutional layer

Non-trainable
layers

Figure 10: Including timings of non-trainable layers

5.4 Profiler’s Reliability and Generality

In practice, such offline profiling may not always capture the run-

time variability of NN operations’ timings. However, variation of

such timings on embedded devices is usually small, because NN

training is rarely co-executed with other computing tasks. On the

other hand, when experiencing significant variations (e.g., due to

throttling), it is feasible to frequently run the profiler online with

very low cost. As shown in Table 1, our experiments on different

NN models show that profiling in one training epoch only incurs

<1% extra computing overhead.

NN model ResNet50 VGG16 MobileNetV2 ViT

Overhead 0.42% 1.00% 0.60% 0.61%

Table 1: Overhead of runtime profiling every epoch

Besides the types of NN layers discussed above, our proposed

profiling approach is also generalizable to other NN architectures.

Advanced NN components, by their designs, can be decomposed

into a series of previously mentioned layers. For example, self-

attention modules in Transformers [81] are constructed by mainly

stacking dense layers (Section 5.1) and attention operations (Sec-

tion 5.3). Other normalization layers (e.g., LayerNorm [19] and

GroupNorm [85]) share the same behavior with batch normaliza-

tion (Section 5.2). Dropout layers [21] all belong to non-trainable

layers (Section 5.3).

6 DYNAMIC PROGRAMMING FOR TENSOR
SELECTION

6.1 Subproblem Definition

As shown in Figure 11, in our DP algorithm, we define each subprob-

lem P[k, t] as to maximize the cumulative importance of selected

tensors when 1) selection is among the bottom k tensors and 2)

training time in backward pass is at most t . Since t always ap-
pears as discrete values (e.g., in microseconds), its resolution is high

enough to capture the disparity between different tensors’ timings.

1……
N 1 … …[,]

Subproblem Table (×)
Depth

Total time

Figure 11: Subproblem definition

DP starts from solving the smallest subproblem with t = 1 and

k = 1 and gradually solves larger subproblems based on the re-

sults of smaller subproblems. The key challenge is how to find the

recurrence relation of these subproblems.

6.2 Recurrence Relation of Subproblems

Recurrence relation between subproblems P[k, t] and P[k − 1, t]
depends on whether we further select the bottom tensor k from the

solution of P[k − 1, t]. As shown in Figure 12:

k k-1 k-2 k-3 1

P[k-1, t]

P[k, t] = ?

Not
select

(a) Bottom tensor k is not selected

k k-1 k-2 k-3 1

P[k-1, t]

P[k, t] = ?

select

not select select

(b) Bottom tensor k is selected

Figure 12: Finding recursion relation in different cases

Case 1: If the bottom tensor k is not selected, P[k, t] will fall back
to P[k − 1, t] since the importance of tensor selection cannot be

further increased.

Case 2: If the bottom tensor k is selected, then two timings will

be surely included in the solution of P[k, t], no matter which other

tensors are selected: 1) the time to update tensor k ; 2) the time

to pass error gradient from the closest selected tensor kc , such as

tensor k − 3 as shown in Figure 12(b), to tensor k . This implies that

P[k, t] can fall back to a previously solved subproblem P[k −kc , t −
Δt] where:

Δt = t
(k)
dw
+
∑k−1

j=kc
t
(j)
dy
. (7)

Since kc is unknown in advance, we backtrace the previously

solved subproblems and explore all the possibilities of kc , by reduc-

ing the depth of backward pass from k .
As a result, the optimal solution to P[k, t] is the one with higher

cumulative importance of selected tensors between Case 1 and 2.

Based on this recurrence relation, we can solve all the subproblems

by sequentially traversing the subproblem space. The time com-

plexity of solving each subproblem is O(N) due to backtracing in

Case 2, and the overall time complexity of DP algorithm isO(N 2T).

Original No invalid No redundant
 & No invalid

0

0.5

1

1.5

2

2.5

S

u
b

p
ro

b
le

m
s

107

(a) Skipping subproblems

1e1 1e2 1e3 1e4 1e5
Tq

0

20

40

60

80

100

T
ra

in
in

g
 t

im
e

(%
)

0

50

100

150

D
P

 o
ve

rh
ea

d
 (

%
)

=50%

(b) Reducing the time resolution

Figure 13: Reducing the computing cost of DP

6.3 Reducing the Computational Cost

Due to the large value of training time in wall-clock time units,

there could be >100M subproblems in practical scenarios. To reduce

the computational cost of DP, we reduce the subproblem space by

skipping two types of subproblems: 1) invalid ones, whose time

constraint t plus the forward pass time exceeds the desired timing

62

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

constraint (ρT); 2) redundant ones, whose time to pass error gradient

to the maximally allowed depth (k) exceeds t . As shown in Figure

13(a), doing so on the ResNet50 model with ρ = 50% can reduce the

number of subproblems by 5.5× without affecting optimality.

To further reduce the number of subproblems, we scale tensors’

timings tdw and tdy by multiplying a factor of Z :

t̃dw = �tdw · Z � , t̃dy =
⌊
tdy · Z

⌋
, (8)

whereZ =
Tq
T and the backward pass time is reduced to a resolution

Tq < T . The overall time complexity of DP is then reduced to

O(N 2Tq). Such reduced resolution could increase the ambiguity

in DP and affect optimality. To avoid this issue, we will run DP

with different resolutions and find the best resolution that balances

optimality and computational cost. For example, for a ResNet50

model trained with CUB-200 dataset and ρ = 50%, Figure 13(b)

shows that Tq = 103 can reduce the DP execution time to < 1% of

training time but still achieve the desired training speedup.

On the other hand, since the time complexity of DP increases

quadratically with N , its computing cost could still be high when

being applied to very large NN models (e.g., GPT-3 [27]). In these

cases, we could further leverage the existing parallelization tech-

niques (e.g., multithreading [78]) and hardware accelerators (e.g.,

GPUs) to speed up DP.

NVIDIA Jetson TX2 Raspberry Pi 4B

SATA
SSD

Figure 14: Devices used in our implementation

7 IMPLEMENTATION

As shown in Fig 14, we implement ElasticTrainer on embedded

devices including Nvidia Jetson TX2 and Raspberry Pi 4B, both

of which are widely used AI computing devices on embedded

platforms such as drones [11] and small robots [4]. Jetson TX2

is equipped with a Nvidia Pascal GPU with 256 CUDA cores, a

1.2GHz Cortex-A57 CPU and 8GB memory shared between GPU

and CPU. Raspberry Pi 4B is equipped with a 1.5GHz Cortex-A72

CPU and 4GB memory. We install Jetpack 4.6.2 OS based on Ubuntu

18.04 on Jetson TX2, and 64-bit Raspbian 11 OS on Raspberry Pi.

We conduct training using TensorFlow 2.7 Python API and Ten-

sorFlow Addons 0.15, which are compiled from TensorFlow source

codes on both devices. We use TensorFlow’s profiler plugin to pro-

file the execution time of NN operations. Due to TensorFlow’s

limited support9, using GPUs for training on ARM-based platforms

could cause gradual memory leakage over time. To prevent poten-

tial core dump, as shown in Figure 14, we attach an external SATA

SSD to Jetson TX2 to increase its swap space in training. On the

other hand, we interact with Jetson TX2 using the text-only inter-

face, to reduce interference from the graphics of other apps that

could affect the evaluation results. Similarly, we use the text-only

interface on Raspberry Pi 4B, where the local memory is sufficient

because the memory leakage only exhibits significant accumulation

over time on GPU devices.
9https://github.com/tensorflow/tensorflow/issues/56434

8 PERFORMANCE EVALUATION

In our evaluation, we choose widely used NNmodels: ResNet50 [42],

VGG16 [74], MobileNetV2 [71], and Vision Transformer (ViT) [35],

which are pre-trained using the ImageNet dataset [31] with 1.2M

images. We then use the following new and fine-grained datasets

with more complicated data patterns and fewer training samples in

each category (e.g., 20-100 samples per class) to perform on-device

training on the pre-trained models:

• CUB-200 [83] with 5,994 training and 5,794 testing images

from 200 bird species for classification. Only about 20 train-

ing samples are provided for each species, which has >20
diverse attributes such as crown color and wing shape. All

the photos are taken from the wild with different scales and

highly variant backgrounds.

• Oxford-IIIT Pet [68] with 3,680 training and 3,669 testing

images from 37 categories of pets. The images have large

variations in scale, pose and lighting to incorporate real-

world random factors.

• Stanford Dogs [53] with 12,000 training and 8,580 testing

images of 120 dog breeds. Images in each breed have dogs

in different ages, poses, and colors.

In this way, our evaluations target difficult learning tasks, com-

pared to those in the existing work [58, 91] that only involves simple

datasets such as MNIST [32] and CIFAR-10 [56] with easy patterns

and sufficient training samples (e.g., >5,000 per class). Since the

NN’s output dimension varies with different datasets, we replace

the original output layer in the pre-trained model with randomly

initialized parameters to fit each dataset’s requirement before on-

device training. We compare the performance of ElasticTrainer

with the following four baselines:

• Full training: All parameters in the pre-trained model are

trained on the new dataset.

• Traditional TL [34, 73]:Only parameters in the last predic-

tion module are continually trained. This is widely adopted

in traditional transfer learning for low cost and simplicity.

• BN+Bias [28, 67]: Besides the last prediction module, bias

parameters in convolutional and dense layers, and parame-

ters in batch normalization layers are involved in offline se-

lection for on-device training. These two types of parameters

have been identified to be important for efficient training.

• PruneTrain [64]: The NN is trained with runtime prun-

ing. It gradually reduces NN training cost by pruning less

important channels in convolutional layers.

The actual performance of convergence in NN model training

would largely depend on the hyper-parameter settings, such as the

batch size and learning rate. For fair comparisons, being similar to

the existing work [28, 91], we restrict the training of all NN models

to 12 epochs as the required training time, which also corresponds

to our objective of the training speedup. No matter whether the

training converges or not within 12 epochs, we aim to maximize

the model’s prediction accuracy that can be achieved within this

time frame.

In all experiments, we use batch size of 4 and resize images into

224×22410 and apply default pre-processing steps such as pixel

10Using a higher resolution (e.g., 448×448) and a larger batch size (e.g., 64) may lead
to better model accuracy, but is very memory consuming and hence not applicable on
typical embedded devices such as Raspberry Pi and Nvidia Jetson.

63

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

0 1 2 3 4
Wall-clock time (hour)

0

20

40

60

80
A

cc
u

ra
cy

 (
%

)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(a) Accuracy on CUB-200

0 0.5 1 1.5 2 2.5
Wall-clock time (hour)

65

70

75

80

85

90

95

A
cc

u
ra

cy
 (

%
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(b) Accuracy on Oxford-IIIT Pet

0 2 4 6 8
Wall-clock time (hour)

60

65

70

75

80

85

A
cc

u
ra

cy
 (

%
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(c) Accuracy on Stanford Dogs

0 1 2 3 4
Wall-clock time (hour)

1

2

3

4

5

L
o

ss

ElasticTrainer
Full training
Traditional TL
BN+Bias

(d) Loss on CUB-200

0 0.5 1 1.5 2 2.5
Wall-clock time (hour)

0.2

0.4

0.6

0.8

1

1.2

1.4

L
o

ss

ElasticTrainer
Full training
Traditional TL
BN+Bias

(e) Loss on Oxford-IIIT Pet

0 2 4 6 8
Wall-clock time (hour)

0.5

1

1.5

2

L
o

ss

ElasticTrainer
Full training
Traditional TL
BN+Bias

(f) Loss on Stanford Dogs

Figure 15: Testing accuracy and training loss over time with different datasets on Jetson TX2

centering and random flipping before training. Such resizing and

pre-processing are executed on the target device at runtime, and

their computing overheads are counted as part of on-device training

time. For training ViT, we use the Adam optimizer [54] with a

learning rate of 1 × 10−4 without decay and scheduling. For the

other models, we use the SGDW optimizer [63] with a learning rate

of 1 × 10−4, momentum of 0.9, and weight decay of 5 × 10−4. The

learning rate is scheduled with standard cosine decay in training.

8.1 Training Speedup & Accuracy

We first compare ElasticTrainer with other baseline schemes on

3 different datasets. We use the ResNet50 NN model and set the

speedup ratio ρ to 50%, which indicates an objective of achieving

2x training speedup. To better demonstrate the training progress,

we record NN’s testing accuracy and loss for every epoch. The

computing cost on testing is also counted into the training time.

Results in Figure 15 and 16 show that, ElasticTrainer can achieve

similar testing accuracy when compared to Full Training, even

with a much smaller trainable NN portion. In particular, on simpler

datasets such as Oxford-IIIT Pet and Stanford Dogs, ElasticTrainer

even achieves 1%-2% higher accuracy due to less overfitting. Com-

paratively, Traditional TL loses >20% accuracy on CUB-200 dataset

compared to Full Training, due to its insufficient representational

power of trainable NN portion. BN+Bias shows similar performance

with ElasticTrainer on Stanford Dogs dataset due to less variant

patterns between offline and online data, but its optimality signifi-

cantly degrades on more difficult datasets such as CUB-200, with

>10% accuracy drop.

With a smaller trainable NN portion, ElasticTrainer can achieve

2×-3.4× speedup on Jetson TX2 compared to full training. On all

datasets, its training time is within 2.7 hours, which matches the

average idle time available for on-device training per day [87]. Its

training speedup also outperforms that of BN+Bias by up to 30%. On

the other hand, although Traditional TL provides 20% extra training

0 10 20 30 40 50
Wall-clock time (hour)

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(a) Accuracy on CUB-200

0 10 20 30
Wall-clock time (hour)

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(b) Accuracy on Oxford-IIIT Pet

0 10 20 30 40 50
Wall-clock time (hour)

1

2

3

4

5

L
o

ss

ElasticTrainer
Full training
Traditional TL
BN+Bias

(c) Loss on CUB-200

0 10 20 30
Wall-clock time (hour)

0.2

0.4

0.6

0.8

1

1.2

1.4

L
o

ss

ElasticTrainer
Full training
Traditional TL
BN+Bias

(d) Loss on Oxford-IIIT Pet

Figure 16: Testing accuracy and training loss over time with

different datasets on Raspberry Pi 4B

speedup, it exhibits the highest training accuracy reduction. Similar

advantages of training speedup compared to full training are also

demonstrated in Figure 16 on Raspberry Pi 4B. BN+Bias achieves

25% more training speedup on Raspberry Pi 4B, at the cost of 30%

accuracy reduction on difficult datasets.

In some cases, the plateau of testing accuracy or training loss

by the end of 12 epochs may not always indicate convergence [42].

Alternatively, training can also be stopped early when reaching a

specific accuracy target, and the corresponding training speedup

is then interpreted as time-to-accuracy efficiency as suggested by

the existing work [60, 91]. As shown in Table 2, with different

64

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

CUB-200 Oxford-IIT Pet Stanford Dogs

Accu. Speedup Accu. Speedup Accu. Speedup

60% 2.19× 85% 2.94× 77% 1.80×
64% 1.86× 87% 2.52× 78% 1.67×
68% 1.88× 89% 2.44× 79% 1.79×

Table 2: Speedup vs. the best baseline on Jetson TX2

accuracy targets, ElasticTrainer achieves extra training speedup by

1.67×-2.94× compared to the existing schemes on different datasets.

=3
5%

=4
0%

=5
0%

=6
0%

=7
0%

Full t
ra

in
in

g

Tra
diti

onal
TL

BN+B
ias

Pru
neT

ra
in

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

0

1

2

3

W
al

l-
cl

o
ck

 t
im

e
(h

o
u

r)

(a) Time on Jetson TX2

=3
5%

=4
0%

=5
0%

=6
0%

=7
0%

Full t
ra

in
in

g

Tra
diti

onal
TL

BN+B
ias

Pru
neT

ra
in

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

0

200

400

600

800

1000

T
F

L
O

P
s

(b) FLOPs on Jetson TX2

=3
5%

=4
0%

=5
0%

=6
0%

=7
0%

Full t
ra

in
in

g

Tra
diti

onal
TL

BN+B
ias

Pru
neT

ra
in

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

0

10

20

30

40

W
al

l-
cl

o
ck

 t
im

e
(h

o
u

r)

(c) Time on Raspberry Pi

=3
5%

=4
0%

=5
0%

=6
0%

=7
0%

Full t
ra

in
in

g

Tra
diti

onal
TL

BN+B
ias

Pru
neT

ra
in

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

0

200

400

600

800

1000

T
F

L
O

P
s

(d) FLOPs on Raspberry Pi

Figure 17: Training Time & FLOPs on CUB-200 with differ-

ent ρ on Jetson TX2 and Raspberry Pi 4B

8.2 Impact of Speedup Objective

Different objectives of training speedups can be applied to on-device

training, with different values of ρ. A lower value of ρ asks for a

smaller trainable NN portion and could hence achieve more training

speedup, but may also reduce the NN accuracy due to insufficient

NN representation power.

0 2 4 6 8 10 12
Epoch

0

20

40

60

80

T
F

L
O

P
s

/ e
p

o
ch

Full training
=40%

=50%
=60%

=70%

Figure 18: FLOPs at every training epoch on CUB-200 with

different ρ on Jetson TX2

To evaluate the impact of such speedup objective, we use the

ResNet50 NN model and vary the value of ρ from 35% to 70%. As

shown in Figure 17, when ρ ≥ 40%, ElasticTrainer can achieve up to

3× of training speedup and 2.5× of FLOPs saving without noticeable

accuracy loss, compared to full training. Also, ElasticTrainer can

reach up to 2.5× and 3.5×more training speedup in wall-clock time

compared to BN+Bias and PruneTrain, respectively. On the other

hand, when ρ drops to 35%, the NN accuracy begins to exhibit

noticeable reduction. Figure 18 further shows that with runtime

adaptation, ElasticTrainer can maintain similar FLOPs saving in

every epoch to achieve the speedup objective.

ResNet50
VGG16

MobileNetV2 ViT
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(a) Accuracy on Jetson TX2

ResNet50
VGG16

MobileNetV2 ViT
0

2

4

6

8

W
al

l-
cl

o
ck

 t
im

e
(h

o
u

rs
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(b) Time on Jetson TX2

ResNet50
VGG16

MobileNetV2 ViT
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(c) Accuracy on Raspberry Pi

ResNet50
VGG16

MobileNetV2 ViT
0

20

40

60

80

100

120

W
al

l-
cl

o
ck

 t
im

e
(h

o
u

rs
)

ElasticTrainer
Full training
Traditional TL
BN+Bias

(d) Time on Raspberry Pi

Figure 19: Training different NNmodels on CUB-200 dataset

Note that, being different from wall-clock time, FLOPs ignores

the heterogeneity hardware accelerations for different NN opera-

tions. Hence, although PruneTrain can save >30% in training FLOPs,

it spends a significant amount of time to compute the extra loss

functions for weight sparsification and reshaping NN structures at

runtime [64], which result in little wall-clock time saving.

8.3 Performance on Different NN Models

The learning efficiency could vary on different NN models. Over-

parametrized models (e.g., VGG16 and ViT) can potentially achieve

higher accuracy but could easily experience overfitting. Lightweight

models (e.g., MobileNetV2) can run backward pass faster but may

have lower accuracy. We use ElasticTrainer to train three different

NN models with the training speedup objective ρ=40%. Results in
Figure 19 show that ElasticTrainer achieves 2×-4× speedup com-

pared to full training and up to 2.1× more speedup compared to

other existing schemes, without noticeable accuracy loss.

In particular, we found that training a complex model (e.g.,

ResNet50) with our scheme of elastic tensor selection is even faster

than fully training a much smaller model (e.g., MobileNetV2), and

smaller models such as MobileNetV2 converge poorly with the 12

training epochs due to its insufficient model complexity. As a result,

in our experiments we run a sufficient number of extra epochs

0 1 2 3 4
Wall-clock time (hour)

50

60

70

80

A
cc

u
ra

cy
 (

%
)

Full training
ElasticTrainer (Ours)
ElasticTrainer (Weight)
ElasticTrainer (Grad.)

(a) CUB-200

0 0.5 1 1.5 2 2.5
Wall-clock time (hour)

85

90

95

A
cc

u
ra

cy
 (

%
)

Full training
ElasticTrainer (Ours)
ElasticTrainer (Weight)
ElasticTrainer (Grad.)

(b) Oxford-IIIT Pet

Figure 20: The effectiveness of different tensor importance

metrics

65

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

Tensor index

1
2
3
4
5
6
7
8
9

10
11
12

E
p

o
ch

skipped

selected

(a) ResNet50 on CUB-200 dataset, ρ = 70%

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

Tensor index

1
2
3
4
5
6
7
8
9

10
11
12

E
p

o
ch

skipped

selected

(b) ResNet50 on CUB-200 dataset, ρ = 50%

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

Tensor index

1
2
3
4
5
6
7
8
9

10
11
12

E
p

o
ch

skipped

selected

(c) ResNet50 on Oxford-IIIT Pet dataset, ρ = 70%

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Tensor index

1
2
3
4
5
6
7
8
9

10
11
12

E
p

o
ch

skipped

selected

(d) VGG16 on Oxford-IIIT Pet dataset, ρ = 70%

Figure 21: Elastic tensor selections in different training epochs

until it converges. In these cases, ElasticTrainer could speed up

MobileNetV2’s training by 4×.
Besides, ElasticTrainer improves the final accuracy of VGG16’s

training by >10% even compared to full training. This is because

VGG16 is a plain convolutional NN without advanced substructures

(e.g., residual connection [42] used in ResNet50 and MobileNetV2)

that improves learning efficiency. Instead, ElasticTrainer improves

its convergence and prevents overfitting by only selecting the im-

portant tensors for training.

8.4 Efficacy of Tensor Importance Evaluator

The model accuracy that can be achieved by ElasticTrainer directly

relates to the tensor importance metric being used. As mentioned

in Section 4, the additivity of our proposed metric allows those

most important tensors to be fairly selected and ensures that such

selection will not be biased by different value scales. To demon-

strate its effectiveness, we compare our proposed metric to the

existing metrics that evaluate tensor importance based on weight

magnitudes (Weight) [41] and training feedback (Grad.) [23] but are

not additive, by applying all these metrics to our proposed scheme

of ElasticTrainer. As shown in Figure 20, our tensor importance

evaluator helps ElasticTrainer maintain high accuracy over the

entire training process, and achieve 1%-5% higher final accuracy

than the existing metrics, with the ResNet50 model on CUB-200

and Oxford-IIIT Pet datasets.

8.5 Behavior of Elastic Tensor Selection

The performance of ElasticTrainer is ensured by elastic tensor se-

lection at runtime, and we analyzed such selection behaviors with

different NN models, datasets and speedup objectives. In general,

as shown in Figure 21, top tensors (lower indices) are less likely

to be selected due to the high time cost of passing error gradients.

If top tensors are indeed very important and should be selected,

ElasticTrainer can adaptively skip updating11 a few bottom tensors

(higher indices) with lower importance at the same time to retain

the desired training speedup.

11The FLOPs of updating each tensor (i.e., computing weight updates) can be as
significant as the FLOPs of passing error gradients through this tensor

Also, tensor selection tends to be more consecutive on more

difficult datasets (CUB-200) and more sparse on simpler datasets

(Oxford-IIIT Pet). This is because two adjacent tensors tend to have

coupled functionality in feature extraction, and should always be

both retrained if any one is selected. By further comparing Figure

21(a) with 21(b), higher speedup ratio ρ could help remove such

restriction in selection and the elasticity becomes more significant.

ElasticTrainer

Full tr
aining

Traditio
nal TL

BN+Bias

PruneTrain
0

2

4

6

8

P
ea

k
m

em
o

ry
 (

G
B

)

CPU
GPU

(a) Jetson TX2

ElasticTrainer

Full tr
aining

Traditio
nal TL

BN+Bias

PruneTrain
0

1

2

3

P
ea

k
m

em
o

ry
 (

G
B

)

(b) Raspberry Pi 4B

Figure 22: Memory cost on different devices

8.6 Memory Consumption

NN training is usually memory intensive, due to the need of buffer-

ing intermediate features and training feedback. We use jetson-stats

[5] and htop [3] as profiling tools to measure the peak memory us-

age of ElasticTrainer during training on Jetson TX2 and Raspberry

Pi 4B, respectively. Since the CPU and GPU on Jetson TX2 share

the same memory, we separately report CPU and GPU memory

usage. As shown in Figure 22(a), on Jetson TX2, ElasticTrainer’s

memory consumption is comparable to all other schemes, and its

CPU memory usage is slightly higher than full training due to the

limitation of TensorFlow, which re-generates computing graph af-

ter each tensor selection but doesn’t free the memory used by the

previous computing graph. Such memory leakage becomes more

significant on Raspberry Pi devices with only CPUs, where Elastic-

Trainer consumes 10% more memory than full training. However,

such memory consumption still remains well within the memory

capacity of embedded devices, and we expect that such memory

leakage can be easily fixed via software reprogramming.

66

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

ElasticTrainer

Full tr
aining

Traditio
nal TL

BN+Bias

PruneTrain
0

5

10

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

J) 104

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

(a) Jetson TX2

ElasticTrainer

Full tr
aining

Traditio
nal TL

BN+Bias

PruneTrain
0

1

2

3

4

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

J) 105

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

(b) Raspberry Pi 4B

Figure 23: Energy cost on different devices

8.7 Energy consumption

Continuous on-device training can be energy-consuming, and we

use a Ponnie power meter [9] to measure its energy consumption.

As shown in Figure 23, compared to full training, ElasticTrainer

reduces the energy consumption by up to 3× without noticeable

accuracy loss. Similarly, all the other schemes have lower energy

efficiency, because they have either high energy cost (BN+Bias and

PruneTrain) or low NN accuracy (Traditional TL).

9 RELATED WORK

On-device transfer learning. The design of ElasticTrainer builds

on the concept of transfer learning. Traditional transfer learning

[34, 73] either trains only the classificationmodule [28], or limits the

trainable NN potion to specific types of NN components [62, 67, 90].

However, since the selection of trainable NN portion is always done

offline, it has limited adaptability to new online data.

Dynamic neural networks. ElasticTrainer is related to dynamic

NNs [89], including bothmodel pruning and growth techniques that

selectively memorize knowledge from the streaming data. However,

they mainly aim to overcome catastrophic forgetting [55] instead

of speeding up on-device training. Further, dynamic NNs usually

require extra training efforts to reduce the inconsistency among

NN structures, and hence achieve little training speedup in practi-

cal settings. For example, pruning methods require an additional

finetuning stage to minimize the accuracy loss [65]. Model growth

schemes need to train the newly added NN layers from scratch and

cannot adopt pre-trained models. They hence have higher difficulty

in training and only apply to simple learning tasks such as digit

recognition [32].

Approximate training. ElasticTrainer’s tensor selection approach

is related to recent techniques of approximate training. Most exist-

ing work reduces training computation by either quantizing [15, 39]

or cutting off [76] the propagation of error gradients at certain neu-

rons, but accumulatively weakens the training feedback passed

to earlier layers and leads to low accuracy. Alternatively, other

schemes propose to selectively skip less important training data

[66], but it only applies to simple datasets with large redundancy.

In many practical scenarios, the majority of data samples can be

valuable to help the NN learn to capture new patterns, and hence

should not be simply discarded.

10 DISCUSSIONS

More accurate tensor time model. Some NN training software

[88] supports runtime graph optimization for better memory effi-

ciency. Such runtime variations of the NN computing graph can

impact the accuracy of our tensor time model being built offline.

In that case, ElasticTrainer can reactively rebuild the tensor time

model by profiling the NN at runtime, to adapt to the computing

graph changes. Further, current profiling tools could introduce sig-

nificant memory overhead at runtime, and need to balance between

profiling frequency and time model’s adaptability.

Improving evaluation of tensor importance. ElasticTrainer’s

tensor importance metric is calculated based on the training loss,

which may not precisely reflect each tensor’s contribution when

overfitting exists in the later stage of training. To address this prob-

lem, one possible solution is to adopt more informative metrics

(e.g., based on validation loss) as the indicator to the model accu-

racy. Although some existing schemes [37, 51] provided methods

to approximately calculate such validation accuracy and loss, they

are too computationally expensive for runtime use. Exploring more

computationally efficient solutions will be our future work.

Generality of ElasticTrainer. In this paper, we implement and

evaluate ElasticTrainer’s performance using TensorFlow [13] on

Jetson and Raspberry Pi devices. ElasticTrainer can also be deployed

to other computing platforms, such as smartphones. The potential

difficulty is that some AI frameworks (e.g., TensorFlow Lite [12]

and MNN [6]) on smartphones don’t support dynamic computing

graphs at runtime, hence preventing elastic tensor selection. How-

ever, many others (e.g., PyTorch [69], MXNet [7], Chainer [1], and

DyNet [2]) support dynamic computing graphs, and it is possible

to migrate these frameworks to mobile and embedded platforms

with engineering efforts.

Similarly, ElasticTrainer can also be applied to other popular

NN training diagrams, such as self-supervised learning [33], rein-

forcement learning (RL) [18] and federated learning (FL) [25]. In

these training diagrams, the tensor importance metric may need

specific adaptations, such as incorporating the communication cost

in FL. Besides, the tensor timing model should also adapt to possible

interactions between subnetworks, such as actor-critic structures

in RL. Expanding ElasticTrainer to these training diagrams will be

our future work.

11 CONCLUSION

In this paper, we present ElasticTrainer, a new technique that allows

fully elastic selection of NN tensors to adapt to the runtime need of

training, so as to always achieve fast and accurate on-device train-

ing. ElasticTrainer achieves 3.5× more speedup in wall-clock time

without noticeable accuracy loss when compared to the existing

schemes, and also reduces the energy consumption by 2×-3× more.

ACKNOWLEDGMENTS

We thank the anonymous shepherd and reviewers for their com-

ments and feedback. This work was supported in part by National

Science Foundation (NSF) under grant number CNS-1812407, CNS-

2029520, IIS-1956002, IIS-2205360, CCF-2217003 and CCF-2215042.

ARTIFACT APPENDIX

The research artifacts accompanying this paper are available via

https://doi.org/10.5281/zenodo.7812233 (for source codes and Rasp-

berry Pi 4 system image) and https://doi.org/10.5281/zenodo.7812218

(for Nvidia Jetson TX2 system image).

67

MobiSys ’23, June 18–22, 2023, Helsinki, Finland

REFERENCES
[1] Chainer. https://github.com/chainer/chainer.
[2] Dynet. https://github.com/clab/dynet.
[3] htop. https://htop.dev/.
[4] Jetbot. https://developer.nvidia.com/embedded/learn/jetbot.
[5] jetson-stats. https://github.com/rbonghi/jetsonstats.
[6] Mnn. https://github.com/alibaba/MNN.
[7] Mxnet. https://github.com/apache/mxnet.
[8] Nvidia jetson tx2. https://developer.nvidia.com/embedded/jetson-tx2.
[9] Poniie power meter. https://poniie.com/products/6.
[10] Raspberry pi 4b. https://www.raspberrypi.com/products/raspberry-pi-4-model-

b/.
[11] Skydio 2. https://developer.nvidia.com/blog/skydio-2-jetson-tx2-drone/.
[12] Tensorflow lite. https://www.tensorflow.org/lite.
[13] M. Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, pages 1–1, 2016.
[14] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embed-

dings for fine-grained image classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2927–2936, 2015.

[15] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural infor-
mation processing systems, 30, 2017.

[16] S.-i. Amari. Backpropagation and stochastic gradient descent method. Neuro-
computing, 5(4-5):185–196, 1993.

[17] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. In International conference on
machine learning, pages 173–182. PMLR, 2016.

[18] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–
38, 2017.

[19] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[20] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[21] P. Baldi and P. J. Sadowski. Understanding dropout. Advances in neural informa-
tion processing systems, 26, 2013.

[22] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: a survey. Journal of Marchine Learning
Research, 18:1–43, 2018.

[23] K. Belay. Gradient and mangitude based pruning for sparse deep neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
13126–13127, 2022.

[24] Y. Bengio. Deep learning of representations for unsupervised and transfer learn-
ing. In Proceedings of ICML workshop on unsupervised and transfer learning, pages
17–36. JMLR Workshop and Conference Proceedings, 2012.

[25] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kid-
don, J. Konečnỳ, S. Mazzocchi, B. McMahan, et al. Towards federated learning at
scale: System design. Proceedings of Machine Learning and Systems, 1:374–388,
2019.

[26] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[27] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[28] H. Cai, C. Gan, L. Zhu, and S. Han. Tinytl: Reduce activations, not trainable
parameters for efficient on-device learning. arXiv preprint arXiv:2007.11622, 2020.

[29] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in
the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531,
2014.

[30] T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowl-
edge transfer. arXiv preprint arXiv:1511.05641, 2015.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[32] L. Deng. The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[34] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pages 647–655. PMLR, 2014.

[35] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[36] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[37] S. Gao, F. Huang, W. Cai, and H. Huang. Network pruning via performance
maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9270–9280, 2021.

[38] I. Gim and J. Ko. Memory-efficient dnn training on mobile devices. In Proceedings
of the 20th Annual International Conference on Mobile Systems, Applications and
Services, pages 464–476, 2022.

[39] N. Goli and T. M. Aamodt. Resprop: Reuse sparsified backpropagation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1548–1558, 2020.

[40] Y. Guo, Y. Li, L. Wang, and T. Rosing. Adafilter: Adaptive filter fine-tuning
for deep transfer learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 4060–4066, 2020.

[41] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28,
2015.

[42] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[43] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE international conference on computer vision,
pages 1389–1397, 2017.

[44] R. Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier, 1992.

[45] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

[46] G. Hu, Y. Yang, D. Yi, J. Kittler, W. Christmas, S. Z. Li, and T. Hospedales. When
face recognition meets with deep learning: an evaluation of convolutional neural
networks for face recognition. In Proceedings of the IEEE international conference
on computer vision workshops, pages 142–150, 2015.

[47] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[48] O. Irsoy and E. Alpaydın. Continuously constructive deep neural networks. IEEE
transactions on neural networks and learning systems, 31(4):1124–1133, 2019.

[49] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun. Band: coordi-
nated multi-dnn inference on heterogeneous mobile processors. In Proceedings
of the 20th Annual International Conference on Mobile Systems, Applications and
Services, pages 235–247, 2022.

[50] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas. Model
pruning enables efficient federated learning on edge devices. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[51] D. Joo, S. Baek, and J. Kim. Which metrics for network pruning: Final accuracy?
or accuracy drop? In 2022 IEEE International Conference on Image Processing
(ICIP), pages 1071–1075. IEEE, 2022.

[52] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan. Measuring cata-
strophic forgetting in neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[53] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained
image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained
visual categorization (FGVC), volume 2. Citeseer, 2011.

[54] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[55] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming cata-
strophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[56] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[57] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged
robots. arXiv preprint arXiv:2107.04034, 2021.

[58] A. Li, J. Sun, P. Li, Y. Pu, H. Li, and Y. Chen. Hermes: an efficient federated
learning framework for heterogeneous mobile clients. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking, pages
420–437, 2021.

[59] C. Li, S. Ge, D. Zhang, and J. Li. Look through masks: Towards masked face recog-
nition with de-occlusion distillation. In Proceedings of the 28th ACM International
Conference on Multimedia, pages 3016–3024, 2020.

[60] C. Li, X. Zeng, M. Zhang, and Z. Cao. Pyramidfl: A fine-grained client selection
framework for efficient federated learning. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, pages 158–171,
2022.

[61] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[62] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han. On-device training
under 256kb memory. arXiv preprint arXiv:2206.15472, 2022.

[63] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

68

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Kai Huang, Boyuan Yang, and Wei Gao

[64] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez. Prune-
train: fast neural network training by dynamic sparse model reconfiguration.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–13, 2019.

[65] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance estima-
tion for neural network pruning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11264–11272, 2019.

[66] S. Mourad, H. Vikalo, and A. Tewfik. Online selective training for faster neural
network learning. In 2019 IEEE Data Science Workshop (DSW), pages 135–139.
IEEE, 2019.

[67] P. K. Mudrakarta, M. Sandler, A. Zhmoginov, and A. Howard. K for the
price of 1: Parameter-efficient multi-task and transfer learning. arXiv preprint
arXiv:1810.10703, 2018.

[68] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pages 3498–3505. IEEE,
2012.

[69] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32, 2019.

[70] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, and
R. Raskar. Split learning for collaborative deep learning in healthcare. arXiv
preprint arXiv:1912.12115, 2019.

[71] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[72] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pages 618–626,
2017.

[73] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-
shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 806–813, 2014.

[74] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[75] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that
keep on learning: Fine-tuning locomotion policies in the real world. In 2022
International Conference on Robotics and Automation (ICRA), pages 1593–1599.
IEEE, 2022.

[76] X. Sun, X. Ren, S. Ma, and H. Wang. meprop: Sparsified back propagation for
accelerated deep learning with reduced overfitting. In International Conference
on Machine Learning, pages 3299–3308. PMLR, 2017.

[77] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks.
In International conference on machine learning, pages 3319–3328. PMLR, 2017.

[78] G. Tan, N. Sun, and G. R. Gao. Improving performance of dynamic programming
via parallelism and locality on multicore architectures. IEEE Transactions on

Parallel and Distributed Systems, 20(2):261–274, 2008.
[79] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR 2011, pages

1521–1528. IEEE, 2011.
[80] H. Turki, D. Ramanan, and M. Satyanarayanan. Mega-nerf: Scalable construction

of large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12922–12931, 2022.

[81] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[82] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564, 2018.

[83] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute
of Technology, 2011.

[84] X. Wang, W. Wu, and D. Zhu. An approximation algorithm for nonlinear 0-1
integer programming problems. In 2011 International Conference on Computer
and Management (CAMAN), pages 1–5. IEEE, 2011.

[85] Y. Wu and K. He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[86] D. Xu, M. Xu, Q. Wang, S. Wang, Y. Ma, K. Huang, G. Huang, X. Jin, and X. Liu.
Mandheling: mixed-precision on-device dnn training with dsp offloading. In
Proceedings of the 28th Annual International Conference on Mobile Computing And
Networking, pages 214–227, 2022.

[87] M. Xu, F. Qian, Q. Mei, K. Huang, and X. Liu. Deeptype: On-device deep learning
for input personalization service with minimal privacy concern. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–26,
2018.

[88] S. Xu, H. Zhang, G. Neubig, W. Dai, J. K. Kim, Z. Deng, Q. Ho, G. Yang, and E. P.
Xing. Cavs: An efficient runtime system for dynamic neural networks. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 937–950, 2018.

[89] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[90] E. B. Zaken, S. Ravfogel, and Y. Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint
arXiv:2106.10199, 2021.

[91] Y. Zhang, T. Gu, and X. Zhang. Mdldroidlite: A release-and-inhibit control
approach to resource-efficient deep neural networks on mobile devices. In
Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pages
463–475, 2020.

[92] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.
Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

69

