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Abstract

Currently approved adoptive T cell therapy relies on autolo-
gous (obtained from the same patient) T cells, which often
suffer from poor quality that diminishes treatment efficacy. Due
to the heterogeneous nature of T cell quality between and
within patients, significant efforts are aimed at optimizing cell
manipulation and growth conditions for potent T cell products.
We believe that touch-free imaging and sensing technologies
are critical to monitor single-cell features during T cell
manufacturing to ensure consistent and optimally timed
methods for cell manipulation and growth. Here, we discuss
emerging label-free optical imaging and sensing methods,
along with machine learning techniques that could enable in-
line feedback to optimize T cell quality at multiple stages during
manufacturing. These methods have the potential to stream-
line the current workflow, accelerate the manufacture of safe
high-quality T cell therapies, and improve our understanding of
the dynamic, heterogeneous processes of T cell
manufacturing.
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Introduction
With the ability to induce antigen-specific cytotoxicity

and to generate memory to prevent tumor relapse, T
cells have become a central target of cancer immuno-
therapies. Tcell manufacturing is an exciting alternative
to traditional molecular therapies with six products
approved for clinical use and hundreds in clinical trials
for a wide range of diseases, with decades-long remission
www.sciencedirect.com
in cancer patients having been reported [1,2]. T cell
manufacturing encompasses several classes of therapy,
including chimeric antigen receptor (CAR), synthetic T

cell receptor (TCR), and tumor infiltrating T lympho-
cytes (TILs) [3]. Engagement of Tcell receptor or CAR
receptor with tumor antigen leads to T cell activation,
which initiates a signaling cascade for T cell prolifera-
tion, effector differentiation and cytokine secretion.
Activated T cells mediate specific tumor killing and
determine treatment efficacy. Currently, T cell
manufacturing requires a lengthy and labor-intensive
in vitro manipulation and expansion process that typi-
cally requires weeks [4,5]. Unfortunately, due to the
autologous (cells obtained from the same patient)

nature of currently approved manufactured T cell
products and lack of technologies for high-throughput
real-time single-cell monitoring, this manufacturing
process is plagued by poor cell quality and heteroge-
neous cell function even within a patient [6].

For example, the current workflow for CAR T cell
manufacturing (Figure 1) begins with T cell collection
from patients (leukapheresis), followed by T cell acti-
vation and gene transfer, then expansion to reach

w108 Tcells for infusion [7]. These engineered Tcells
then undergo release testing, which checks for the
presence of CAR T cells (�5%) and lack of contamina-
tion [8]. During the manufacturing process, T cells are
subject to environmental cues and extended in vitro
culture, which often leads to exhaustion or terminal
differentiation that compromises treatment efficacy and
persistence [9]. Specialized manufacturing systems for
adoptive Tcell therapies have recently emerged, such as
Miltenyi CliniMACs Prodigy, but current manufacturing
of FDA approved products still heavily rely on manual

labor and bioreactors adopted from the biologics in-
dustry. However, the requirements for manufacturing
integrity are inherently different between T cell and
biologics production.

Since Tcell manufacturing relies on living Tcells as the
therapeutic agent, it requires a complex and rigorous
manufacturing process with significant heterogeneity
within and between the end products. Currently,

approved Tcell products require autologous cell sources
so input materials vary for each manufacturing batch,
resulting in unique manufacturing conditions for each
patient. This causes highly variable end products and
unpredictable therapeutic efficacy [10]. Without
appropriate technology to monitor the dynamics and
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Figure 1

Opportunities for label-free optical imaging and sensing of the chimeric antigen receptor (CAR) T cell manufacturing process. Label-free optical imaging
can assess patient T cells for fitness before entering the manufacturing process, identify T cell activation efficiency, and assess T cell function to predict
potency and persistence in the patient prior to release.
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heterogeneity within and among batches, the current T
cell manufacturing process faces an increased rate of
batch failure, while also requiring specialized facilities

and highly skilled labor. Additionally, the lengthy
manufacturing process expose patients to high risks of
disease progression while waiting for their T cell prod-
ucts, which, up to 15% of the time, do not pass release
criteria [11,12]. Together, these manufacturing chal-
lenges significantly increase treatment costs, limit hos-
pital treatment capacity, and compromise patient
outcomes, all of which limit the full potential of man-
ufactured T cell products.

T cell manufacturing would greatly benefit from

touch-free technologies that provide real-time mea-
surements to inform process interventions that
improve batch quality and consistency (Figure 1).
Non-invasive and rapid analytical measurements could
reduce labor, decrease the risk of contamination,
decrease batch failure rates, and reduce manufacturing
cost. Here, we discuss label-free optical imaging and
sensing methods including two-photon endogenous
fluorescence microscopy, Raman spectroscopy, and
quantitative phase microscopy along with machine
learning methods to streamline T cell manufacturing.

Label-free optical imaging and sensing methods are
attractive for monitoring T cell manufacturing because
they enable rapid, frequent, and non-invasive
assessments of cell function and potential culture
Current Opinion in Biomedical Engineering 2023, 25:100434
contamination. Machine learning decisions based on
label-free assessments could be used to adapt
manufacturing processes in real-time for improved end

products and provide go-no-go decisions. Overall, this
adaptive workflow could streamline the manufacturing
process and ultimately improve patient outcomes for
an array of manufactured T cells under development
for numerous diseases.

Current methods to monitor T cell manufacturing
In-line bulk measurements
Bioreactor systems that were originally developed for
biologics manufacturing have been adopted for clinical-
scale T cell expansion. Sensors to monitor environ-

mental cues such as pH, dissolved oxygen, and tem-
perature have been integrated into these bioreactors
(in-line, or real-time measurements within the biore-
actor) because these cues are known to affect T cell
growth, viability, and differentiation into distinct phe-
notypes [9,13]. Additionally, in-line optical probes
measure media turbidity as an indirect measure of total
cell density (TCD) while permittivity-based sensors
assess viable cell density (VCD) via intracellular bio-
capacitance mass [14,15]. While TCD and VCD
reflect culture growth throughout the manufacturing

process, these readouts are subjected to confounding
factors. For example, the presence of viral vectors or
contamination increases media turbidity and cell size
increases during T cell activation raise total bio-
www.sciencedirect.com
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capacitance mass, affecting TCD and VCD measure-
ments, respectively. Additionally, cell viability is not a
sufficient quality attribute as recent clinical data for an
approved CAR T therapy (Tisagenlecleucel) showed no
significant correlation between batch viability and clin-
ical outcome [16]. Overall, these in-line bulk sensors
offer a non-invasive, real-time readout of the current
manufacturing state and have been integrated into

feedback control loops, enabling automated in-
terventions to attempt to maintain consistent culture
conditions [17]. However, they do not offer direct
measurements of cell function and product performance
(Table 1). T cell manufacturing is an intricate process
that relies on a heterogeneous cell population to achieve
Table 1

Advantages and disadvantages of current and emerging optical method

Technique Adv

Current methods
Environmental factors + Nondestr

+ Metabolic
+ Real-time

Total cell density
Viable cell density

+ Nondestr
+ Real-time

Secretome analysis + Nondestr
+ Metabolic

Flow cytometry + High thro
+ Rapid
+ Single ce

Label-free optical technologies in development
TPEF + High sen

+ Nondestr
+ Single-ce

FLIM + High sen
+ Nondestr
+ Metabolic
+ Single-ce

THG + High sen
+ Nondestr
+ Single-ce

Raman spectroscopy (bulk analysis) + Biochem
+ High thro

Raman spectroscopy (single-cell analysis) + Biochem
+ Single-ce

ATR-FTIR + Biochem
+ High thro

Low-cost methods (quantitative phase microscopy) + Inexpens
+ Nondestr
+ Readily a
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therapeutic safety, quality, and efficacy. This empha-
sizes the importance of measuring cell characteristics
beyond environmental cues and cell viability.

At-line and off-line sub-sampling measurements
Multiple methods exist to evaluate the secretome and
nutrients present in the media that can be used to
provide insight into the functional profile of T cells in
culture at-line (sample is removed for testing near the
bioreactor) or off-line (sample is removed for testing in
a separate laboratory) [18]. Cytokine profiles have been

associated with disease manifestation and T cell phe-
notypes while metabolite assessment can monitor
active metabolic pathways that regulate cell function.
s to monitor T cell manufacturing.

antages Disadvantages

uctive/label-free - Non-direct measure
information - Lacks single-cell resolution

- Doesn’t capture heterogeneity
- Optimized per desired cell type

uctive/label-free - Lacks single-cell resolution
- Doesn’t capture heterogeneity
- Confounding factors
- Non-direct measure

uctive/label-free - Lacks single-cell resolution
information - Doesn’t capture heterogeneity

- Non-direct measure
- Off-line measurement

ughput - Disruptive
- Off-line measurement

ll resolution

sitivity - Expensive
uctive/label-free - Requires skilled user
ll resolution

sitivity - Expensive
uctive/label-free - Requires skilled user
information - Slow/low throughput
ll resolution

sitivity - Expensive
uctive/label-free - Requires skilled user
ll resolution

ical information - Specialized equipment
ughput - Complicated analysis

- Lacks single-cell resolution

ical information - Specialized equipment
ll resolution - Complicated analysis

- Slow/low throughput

ical information - Specialized equipment
ughput - Complicated analysis

- Lacks single-cell resolution

ive - Lacks metabolic/biochemical information
uctive/label-free
vailable
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The most common method to measure secreted cyto-
kine is enzyme-linked immunosorbent assay (ELISA),
which provides information on cytokine levels within
the media. Alternatively, mass spectrometry measures
key metabolites and nutrients secreted by Tcells [19].
While several at-line media analyzers with automatic
sampling have been commercialized (e.g., Roche Cedex
Bio), these media evaluation methods do not assess the

heterogeneity of different cell populations and their
relative frequency within the product. Finally, the most
common off-line single-cell analysis technology in T
cell manufacturing is flow cytometry, which measures
the expression of surface proteins that have been well
characterized for cell health and phenotypes
[10,20,21]. Currently, flow cytometry and other single-
cell assays require sampling cells from bioreactors for
off-line analysis, which introduces contamination risk
and limits the frequency of measurements. These
assays also involve destructive sample preparation and

are highly complexed with time-consuming data
acquisition and analysis. Therefore, despite providing
important information on T cell function for pre-
dictions of therapeutic potency and persistence, they
cannot be readily integrated into the manufacturing
workflow (Table 1).

Label-free optical technologies in development to
monitor T cell manufacturing
Endogenous nonlinear microscopy
Effective Tcell manufacturing requires Tcell activation

and propagation of distinct functional T cell subsets
[22,23]. Current methods to quantify T cell function
and activation require antibody labeling or cytokine
secretion measurements from the media as described
above. These methods do not allow for label-free single-
cell monitoring of T cell function so that the tested
product can remain intact. Current methods also pre-
vent repeated measurements of single-cell T cell func-
tion over time within intact, unlabeled samples.

T cells undergo dramatic metabolic changes with acti-
vation and exhaustion, switching from primarily oxida-

tive phosphorylation in naı̈ve cells to glycolysis in
activated cells to fatty acid oxidation with exhaustion
[24,25]. This metabolic shift requires the regulation of
key metabolic coenzymes including the reduced form of
nicotinamide adenine dinucleotide (phosphate)
(NAD(P)H) and oxidized flavin adenine dinucleotide
(FAD), which are autofluorescent [26e28]. Two-photon
endogenous fluorescence (TPEF) imaging of these co-
factors can quantify the optical redox ratio (ORR),
frequently defined as the ratio of NAD(P)H to FAD
fluorescence intensity. Additionally, NAD(P)H and FAD

fluorescence lifetimes are distinct in their free and
protein-bound conformations, and can provide infor-
mation on protein-binding activities, preferred protein-
binding partners, and other environmental factors like
pH and oxygen, which cannot be quantified using
Current Opinion in Biomedical Engineering 2023, 25:100434
fluorescence intensity alone [28e31]. Previously, fluo-
rescence lifetime imaging microscopy (FLIM) has been
used to separate activated and quiescent T cells [32e
34].

Beyond endogenous fluorescence, nonlinear microscopy
can also be used for third harmonic generation (THG)
microscopy, which is a label-free method to detect lipid

bodies within cells. Prior studies have used THG mi-
croscopy to detect increases in lipid bodies with T cell
activation at the single cell level [35]. While these label-
free endogenous fluorescence methods provide high
sensitivity at the single cell level to enable character-
ization of heterogeneous populations, they are expen-
sive and are not currently high throughput (Table 1).
Further development of these technologies is needed to
create sensitive, high-throughput systems for auto-
mated in-line analysis of single cells during T cell
manufacturing.

Optical spectroscopy
As T cells become activated, they produce biochemical
products or signatures. Raman spectroscopy is a label-
free vibrational spectroscopy-based technique that as-
sesses naturally generated inelastically scattered light
with wavelength shifts that are specific to chemical
bonds. This Raman signature can provide single cell
information based on the molecular species present in

the sample, including lipids and nucleic acids, while
minimizing phototoxicity [36,37]. Vibrational spectros-
copy methods such as Raman have been used to identify
dynamic chemical signatures, such as cytochrome C
levels and lipid levels, in individual T cells that change
with activation [38e40]. Beyond single-cell spectra,
bulk in-line Raman spectroscopy sensors, together with
near infrared, dielectric, and fluorescence spectros-
copies, have been developed to characterize media
composition and cytokines during T cell expansion
[38,41,42]. Bulk in-line fluorescence spectroscopy sen-

sors can measure metabolites in cell media such as
tryptophan, tyrosine, riboflavin, and NAD(P)H via their
autofluorescence properties. Several of these systems
have been validated against known samples, which
showed moderate to strong correlation with standard
off-line assays such as high-performance liquid chro-
matography (HPLC) [43e45]. Another spectroscopic
method, attenuated total reflection Fourier transform
infrared spectroscopy (ATR-FTIR), has also detected
differences in absorbance spectra with T cell activation
[46]. The spectroscopic techniques discussed here

provide specific biochemical information that can be
used to discriminate Tcell function, however when used
at the single cell level they require highly specialized
equipment and complicated analysis, while the bulk
sensors lack single-cell resolution (Table 1). Addition-
ally, further development of simplified analysis strate-
gies is needed for future adoption of these technologies
in T cell manufacturing (Table 1).
www.sciencedirect.com
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Low-cost label-free optical imaging methods
Several other label-free optical imaging methods can
monitor T cell manufacturing, primarily morphological
changes with Tcell activation. For example, transmitted
light and quantitative phase microscopy (QPM) capture
cell morphology using inexpensive and widely accessible
hardware [47e51]. These methods can be used to
monitor cellular organization and density, which change
throughout the T cell manufacturing process [48,52].
Although these technologies are low-cost and widely
available, they do not provide the specific biochemical

information available from two-photon endogenous
fluorescence microscopy and Raman spectroscopy,
limiting their sensitivity for complex and subtle changes
in T cell function (Table 1).

Machine learning methods to classify label-free
optical images
New label-free optical imaging techniques produce
large multi-dimensional datasets, so computational
image segmentation and classification methods are
needed to integrate these technologies into automated
T cell manufacturing workflows. Machine learning
methods can automatically quantify in-line measure-

ments of cell features (e.g., cell size, autofluorescent
signals, spectroscopic signatures), then use these fea-
tures to generate real-time decisions for interventions
(e.g., media conditions, cell stimuli) in a feedback
manner. The overall goal of this feedback process is to
maintain consistently high-quality T cell products.
Additionally, machine learning decisions could reduce
the subjectivity of go-no-go decisions that are currently
performed by trained technicians. Machine learning al-
gorithms can be broadly classified as either supervised or
unsupervised learning methods. Supervised learning

methods require user input and training to identify a
user-defined output, and are based on models including
decision trees, neural networks, and regression. Unsu-
pervised learning methods rely only on traits of the
measured signal and do not require user input. These
unsupervised methods, primarily clustering and
component analysis, are promising for T cell
manufacturing because they can become user-
independent and can identify underlying patterns in
the imaging data. Overall, machine learning tools can be
optimized to extract information from images or other

data types acquired during the T cell manufacturing
process to make decisions on the quality of the sample,
or interventions to optimize culture conditions. These
tools are complementary to label-free imaging and
sensing methods as they would allow for single-cell
classification and assessment but are also broadly
applicable to standard in-line measurements of culture
conditions.

Recently, machine learning techniques have been used
to predict T cell activation from multiple label-free

imaging modalities. Morphological and structural
www.sciencedirect.com
variables that shift throughout T cell activation,
including total area and sphericity, can be extracted from
label-free images acquired by QPM and TPEFand used
to build classifiers [49,52,53]. Additionally, several
groups have trained classifiers to separate activated and
quiescent T cells based on FLIM alone [32,34,53,54].
Clustering algorithms have also been used to optimize
segmentation and classify Tcell states with image-based

textural and morphological variables acquired from
image-based cytometry [53,55,56]. These machine
learning techniques have great potential to streamline
the T cell manufacturing workflow by monitoring cell
state at the single cell level and identifying time-points
for media conditioning to improve the consistency, po-
tency, and safety of the manufactured Tcell products. As
with any machine learning approach, significant
amounts of user-annotated data are needed to build and
validate decisions, and this process must be compre-
hensive across manufacturing conditions (e.g., cell types,
manipulations, culture conditions, possible in-
terventions) before these algorithms can be reliably
implemented in the T cell manufacturing workflow.

Future applications and conclusions
Technologies that provide real-time measurements to
inform timely interventions could greatly improve batch
quality and consistency of manufactured Tcell products.
Currently approved T cell products rely on autologous

cell sources that have variable quality depending on the
patient, so consistently potent products are difficult to
generate without an adaptive manufacturing process. In
fact, recent clinical data for an approved CAR T therapy
(Tisagenlecleucel) showed no significance difference in
clinical outcomes for CAR T batches with viability out-
of-specification when compared to batches that passed
standard release criteria [16]. This emphasizes the need
for an adaptive manufacturing process capable of
acquiring precise measurements of cell features in real-
time with in-line feedback capabilities. This approach

would decrease cost, increase hospital treatment ca-
pacity, and improve patient outcomes by unlocking the
full potential of manufactured Tcell products. This real-
time in-line monitoring and intervention approach
would also provide fundamental insights to improve T
cell manufacturing for the > 1000 therapies currently in
the pipeline [57].

Label-free optical imaging and sensing coupled with
machine learning techniques could fill this need for in-
line T cell monitoring and feedback to non-invasively

optimize the quality of T cells at multiple stages
during manufacturing. For example, initial patient T
cells could be assessed for fitness before entering the
manufacturing process, T cell activation efficiency and
proliferation could be optimized, and final T cells
products could be assessed for potency and persistence
prior to release (Figure 1). Label-free optical technolo-
gies and machine learning can be used at each step in
Current Opinion in Biomedical Engineering 2023, 25:100434

www.sciencedirect.com/science/journal/24684511


6 Intelligent Biomaterials in Biomedical En
this process, and the choice of measurement technique
and predictive algorithm can be determined based on
application needs. This approach has the potential to
streamline current practice, accelerate the manufacture
of safe, high-quality manufactured T cell products, and
improve our understanding of the dynamic, heteroge-
neous processes of T cell manufacturing.
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