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Abstract

Currently approved adoptive T cell therapy relies on autolo-
gous (obtained from the same patient) T cells, which often
suffer from poor quality that diminishes treatment efficacy. Due
to the heterogeneous nature of T cell quality between and
within patients, significant efforts are aimed at optimizing cell
manipulation and growth conditions for potent T cell products.
We believe that touch-free imaging and sensing technologies
are critical to monitor single-cell features during T cell
manufacturing to ensure consistent and optimally timed
methods for cell manipulation and growth. Here, we discuss
emerging label-free optical imaging and sensing methods,
along with machine learning techniques that could enable in-
line feedback to optimize T cell quality at multiple stages during
manufacturing. These methods have the potential to stream-
line the current workflow, accelerate the manufacture of safe
high-quality T cell therapies, and improve our understanding of
the dynamic, heterogeneous processes of T cell
manufacturing.
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Introduction

With the ability to induce antigen-specific cytotoxicity
and to generate memory to prevent tumor relapse, T
cells have become a central target of cancer immuno-
therapies. T cell manufacturing is an exciting alternative
to traditional molecular therapies with six products
approved for clinical use and hundreds in clinical trials
for a wide range of diseases, with decades-long remission

in cancer patients having been reported [1,2]. T cell
manufacturing encompasses several classes of therapy,
including chimeric antigen receptor (CAR), synthetic T
cell receptor (TCR), and tumor infiltrating 'T" lympho-
cytes (TILs) [3]. Engagement of T cell receptor or CAR
receptor with tumor antigen leads to T cell activation,
which initiates a signaling cascade for T cell prolifera-
tion, effector differentiation and cytokine secretion.
Activated T cells mediate specific tumor killing and
determine treatment efficacy. Currently, T cell
manufacturing requires a lengthy and labor-intensive
i vitro manipulation and expansion process that typi-
cally requires weeks [4,5]. Unfortunately, due to the
autologous (cells obtained from the same patient)
nature of currently approved manufactured T cell
products and lack of technologies for high-throughput
real-time single-cell monitoring, this manufacturing
process is plagued by poor cell quality and heteroge-
neous cell function even within a patient [6].

For example, the current workflow for CAR T cell
manufacturing (Figure 1) begins with T cell collection
from patients (leukapheresis), followed by T cell acti-
vation and gene transfer, then expansion to reach
~ 108 T cells for infusion [7]. These engineered T cells
then undergo release testing, which checks for the
presence of CAR T cells (>5%) and lack of contamina-
tion [8]. During the manufacturing process, T cells are
subject to environmental cues and extended i vitro
culture, which often leads to exhaustion or terminal
differentiation that compromises treatment efficacy and
persistence [9]. Specialized manufacturing systems for
adoptive T'cell therapies have recently emerged, such as
Miltenyi CliniMAGs Prodigy, but current manufacturing
of FDA approved products still heavily rely on manual
labor and bioreactors adopted from the biologics in-
dustry. However, the requirements for manufacturing
integrity are inherently different between T cell and
biologics production.

Since T cell manufacturing relies on living T cells as the
therapeutic agent, it requires a complex and rigorous
manufacturing process with significant heterogeneity
within and between the end products. Currently,
approved T cell products require autologous cell sources
so input materials vary for each manufacturing batch,
resulting in unique manufacturing conditions for each
patient. This causes highly variable end products and
unpredictable therapeutic efficacy [10]. Without
appropriate technology to monitor the dynamics and
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Figure 1
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Opportunities for label-free optical imaging and sensing of the chimeric antigen receptor (CAR) T cell manufacturing process. Label-free optical imaging
can assess patient T cells for fitness before entering the manufacturing process, identify T cell activation efficiency, and assess T cell function to predict

potency and persistence in the patient prior to release.

heterogeneity within and among batches, the current T
cell manufacturing process faces an increased rate of
batch failure, while also requiring specialized facilities
and highly skilled labor. Additionally, the lengthy
manufacturing process expose patients to high risks of
disease progression while waiting for their T cell prod-
ucts, which, up to 15% of the time, do not pass release
criteria [11,12]. Together, these manufacturing chal-
lenges significantly increase treatment costs, limit hos-
pital treatment capacity, and compromise patient
outcomes, all of which limit the full potential of man-
ufactured T cell products.

T cell manufacturing would greatly benefit from
touch-free technologies that provide real-time mea-
surements to inform process interventions that
improve batch quality and consistency (Figure 1).
Non-invasive and rapid analytical measurements could
reduce labor, decrease the risk of contamination,
decrease batch failure rates, and reduce manufacturing
cost. Here, we discuss label-free optical imaging and
sensing methods including two-photon endogenous
fluorescence microscopy, Raman spectroscopy, and
quantitative phase microscopy along with machine
learning methods to streamline T cell manufacturing.
Label-free optical imaging and sensing methods are
attractive for monitoring T cell manufacturing because
they enable rapid, frequent, and non-invasive
assessments of cell function and potential culture

contamination. Machine learning decisions based on
label-free assessments could be used to adapt
manufacturing processes in real-time for improved end
products and provide go-no-go decisions. Overall, this
adaptive workflow could streamline the manufacturing
process and ultimately improve patient outcomes for
an array of manufactured T cells under development
for numerous diseases.

Current methods to monitor T cell manufacturing
In-line bulk measurements

Bioreactor systems that were originally developed for
biologics manufacturing have been adopted for clinical-
scale T cell expansion. Sensors to monitor environ-
mental cues such as pH, dissolved oxygen, and tem-
perature have been integrated into these bioreactors
(in-line, or real-time measurements within the biore-
actor) because these cues are known to affect T cell
growth, viability, and differentiation into distinct phe-
notypes [9,13]. Additionally, in-line optical probes
measure media turbidity as an indirect measure of total
cell density (TCD) while permittivity-based sensors
assess viable cell density (VCD) via intracellular bio-
capacitance mass [14,15]. While TCD and VCD
reflect culture growth throughout the manufacturing
process, these readouts are subjected to confounding
factors. For example, the presence of viral vectors or
contamination increases media turbidity and cell size
increases during T cell activation raise total bio-
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capacitance mass, affecting TCD and VCD measure-
ments, respectively. Additionally, cell viability is not a
sufficient quality attribute as recent clinical data for an
approved CAR T therapy (Tisagenlecleucel) showed no
significant correlation between batch viability and clin-
ical outcome [16]. Overall, these in-line bulk sensors
offer a non-invasive, real-time readout of the current
manufacturing state and have been integrated into
feedback control loops, enabling automated in-
terventions to attempt to maintain consistent culture
conditions [17]. However, they do not offer direct
measurements of cell function and product performance
(Table 1). T cell manufacturing is an intricate process
that relies on a heterogeneous cell population to achieve

Table 1

Touch-free optical tools for T cell therapies Gillette et al. 3

therapeutic safety, quality, and efficacy. This empha-
sizes the importance of measuring cell characteristics
beyond environmental cues and cell viability.

At-line and off-line sub-sampling measurements

Multiple methods exist to evaluate the secretome and
nutrients present in the media that can be used to
provide insight into the functional profile of T cells in
culture at-line (sample is removed for testing near the
bioreactor) or off-line (sample is removed for testing in
a separate laboratory) [18]. Cytokine profiles have been
associated with disease manifestation and T cell phe-
notypes while metabolite assessment can monitor
active metabolic pathways that regulate cell function.

Advantages and disadvantages of current and emerging optical methods to monitor T cell manufacturing.

Technique

Advantages

Disadvantages

Current methods

Nondestructive/label-free
Metabolic information

Nondestructive/label-free

Nondestructive/label-free
Metabolic information

High throughput
Single cell resolution

High sensitivity
Nondestructive/label-free
Single-cell resolution

High sensitivity
Nondestructive/label-free
Metabolic information
Single-cell resolution

High sensitivity
Nondestructive/label-free
Single-cell resolution

Biochemical information
High throughput

Biochemical information
Single-cell resolution

Biochemical information
High throughput

Inexpensive
Nondestructive/label-free

Environmental factors +

+

+ Real-time
Total cell density +
Viable cell density + Real-time
Secretome analysis +

+
Flow cytometry +

+ Rapid

+
Label-free optical technologies in development
TPEF i

+

+
FLIM +

+

+

+
THG A

+

+
Raman spectroscopy (bulk analysis) +

+
Raman spectroscopy (single-cell analysis) +

+
ATR-FTIR +

+
Low-cost methods (quantitative phase microscopy) +

+

+

Readily available

Non-direct measure

Lacks single-cell resolution
Doesn’t capture heterogeneity
Optimized per desired cell type

Lacks single-cell resolution
Doesn’t capture heterogeneity
Confounding factors
Non-direct measure

Lacks single-cell resolution
Doesn’t capture heterogeneity
Non-direct measure

Off-line measurement

Disruptive
Off-line measurement

Expensive
Requires skilled user

Expensive
Requires skilled user
Slow/low throughput

Expensive
Requires skilled user

Specialized equipment
Complicated analysis
Lacks single-cell resolution

Specialized equipment
Complicated analysis
Slow/low throughput

Specialized equipment
Complicated analysis
Lacks single-cell resolution

Lacks metabolic/biochemical information
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The most common method to measure secreted cyto-
kine is enzyme-linked immunosorbent assay (ELISA),
which provides information on cytokine levels within
the media. Alternatively, mass spectrometry measures
key metabolites and nutrients secreted by T cells [19].
While several at-line media analyzers with automatic
sampling have been commercialized (e.g., Roche Cedex
Bio), these media evaluation methods do not assess the
heterogeneity of different cell populations and their
relative frequency within the product. Finally, the most
common off-line single-cell analysis technology in T
cell manufacturing is flow cytometry, which measures
the expression of surface proteins that have been well
characterized for cell health and phenotypes
[10,20,21]. Currently, flow cytometry and other single-
cell assays require sampling cells from bioreactors for
off-line analysis, which introduces contamination risk
and limits the frequency of measurements. These
assays also involve destructive sample preparation and
are highly complexed with time-consuming data
acquisition and analysis. Therefore, despite providing
important information on T cell function for pre-
dictions of therapeutic potency and persistence, they
cannot be readily integrated into the manufacturing
workflow (Table 1).

Label-free optical technologies in development to
monitor T cell manufacturing

Endogenous nonlinear microscopy

Effective T cell manufacturing requires T cell activation
and propagation of distinct functional T cell subsets
[22,23]. Current methods to quantify T cell function
and activation require antibody labeling or cytokine
secretion measurements from the media as described
above. These methods do not allow for label-free single-
cell monitoring of T cell function so that the tested
product can remain intact. Current methods also pre-
vent repeated measurements of single-cell T cell func-
tion over time within intact, unlabeled samples.

T cells undergo dramatic metabolic changes with acti-
vation and exhaustion, switching from primarily oxida-
tive phosphorylation in naive cells to glycolysis in
activated cells to fatty acid oxidation with exhaustion
[24,25]. This metabolic shift requires the regulation of
key metabolic coenzymes including the reduced form of
nicotinamide adenine dinucleotide  (phosphate)
(NAD(P)H) and oxidized flavin adenine dinucleotide
(FAD), which are autofluorescent [26—28]. Tiwo-photon
endogenous fluorescence (TPEF) imaging of these co-
factors can quantify the optical redox ratio (ORR),
frequently defined as the ratio of NAD(P)H to FAD
fluorescence intensity. Additionally, NAD(P)H and FAD
fluorescence lifetimes are distinct in their free and
protein-bound conformations, and can provide infor-
mation on protein-binding activities, preferred protein-
binding partners, and other environmental factors like
pH and oxygen, which cannot be quantified using

fluorescence intensity alone [28—31]. Previously, fluo-
rescence lifetime imaging microscopy (FLLIM) has been
used to separate activated and quiescent T cells [32—
34].

Beyond endogenous fluorescence, nonlinear microscopy
can also be used for third harmonic generation (THG)
microscopy, which is a label-free method to detect lipid
bodies within cells. Prior studies have used THG mi-
croscopy to detect increases in lipid bodies with T cell
activation at the single cell level [35]. While these label-
free endogenous fluorescence methods provide high
sensitivity at the single cell level to enable character-
ization of heterogeneous populations, they are expen-
sive and are not currently high throughput (Table 1).
Further development of these technologies is needed to
create sensitive, high-throughput systems for auto-
mated in-line analysis of single cells during T cell
manufacturing,.

Optical spectroscopy

As T cells become activated, they produce biochemical
products or signatures. Raman spectroscopy is a label-
free vibrational spectroscopy-based technique that as-
sesses naturally generated inelastically scattered light
with wavelength shifts that are specific to chemical
bonds. This Raman signature can provide single cell
information based on the molecular species present in
the sample, including lipids and nucleic acids, while
minimizing phototoxicity [36,37]. Vibrational spectros-
copy methods such as Raman have been used to identify
dynamic chemical signatures, such as cytochrome C
levels and lipid levels, in individual T cells that change
with activation [38—40]. Beyond single-cell spectra,
bulk in-line Raman spectroscopy sensors, together with
near infrared, dielectric, and fluorescence spectros-
copies, have been developed to characterize media
composition and cytokines during T cell expansion
[38,41,42]. Bulk in-line fluorescence spectroscopy sen-
sors can measure metabolites in cell media such as
tryptophan, tyrosine, riboflavin, and NAD(P)H via their
autofluorescence properties. Several of these systems
have been validated against known samples, which
showed moderate to strong correlation with standard
off-line assays such as high-performance liquid chro-
matography (HPLC) [43—45]. Another spectroscopic
method, attenuated total reflection Fourier transform
infrared spectroscopy (ATR-FTIR), has also detected
differences in absorbance spectra with T cell activation
[46]. The spectroscopic techniques discussed here
provide specific biochemical information that can be
used to discriminate T cell function, however when used
at the single cell level they require highly specialized
equipment and complicated analysis, while the bulk
sensors lack single-cell resolution (Table 1). Addition-
ally, further development of simplified analysis strate-
gies is needed for future adoption of these technologies
in T cell manufacturing (Table 1).
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Low-cost label-free optical imaging methods

Several other label-free optical imaging methods can
monitor T cell manufacturing, primarily morphological
changes with T cell activation. For example, transmitted
light and quantitative phase microscopy (QPM) capture
cell morphology using inexpensive and widely accessible
hardware [47—51]. These methods can be used to
monitor cellular organization and density, which change
throughout the T cell manufacturing process [48,52].
Although these technologies are low-cost and widely
available, they do not provide the specific biochemical
information available from two-photon endogenous
fluorescence microscopy and Raman spectroscopy,
limiting their sensitivity for complex and subtle changes
in T cell function (Table 1).

Machine learning methods to classify label-free
optical images

New label-free optical imaging techniques produce
large multi-dimensional datasets, so computational
image segmentation and classification methods are
needed to integrate these technologies into automated
T cell manufacturing workflows. Machine learning
methods can automatically quantify in-line measure-
ments of cell features (eg, cell size, autofluorescent
signals, spectroscopic signatures), then use these fea-
tures to generate real-time decisions for interventions
(e.g., media conditions, cell stimuli) in a feedback
manner. The overall goal of this feedback process is to
maintain consistently high-quality T cell products.
Additionally, machine learning decisions could reduce
the subjectivity of go-no-go decisions that are currently
performed by trained technicians. Machine learning al-
gorithms can be broadly classified as either supervised or
unsupervised learning methods. Supervised learning
methods require user input and training to identify a
user-defined output, and are based on models including
decision trees, neural networks, and regression. Unsu-
pervised learning methods rely only on traits of the
measured signal and do not require user input. These

unsupervised methods, primarily clustering and
component analysis, are promising for T cell
manufacturing because they can become user-

independent and can identify underlying patterns in
the imaging data. Overall, machine learning tools can be
optimized to extract information from images or other
data types acquired during the T cell manufacturing
process to make decisions on the quality of the sample,
or interventions to optimize culture conditions. These
tools are complementary to label-free imaging and
sensing methods as they would allow for single-cell
classification and assessment but are also broadly
applicable to standard in-line measurements of culture
conditions.

Recently, machine learning techniques have been used
to predict T cell activation from multiple label-free
imaging modalities. Morphological and structural

Touch-free optical tools for T cell therapies Gillette etal. 5

variables that shift throughout T cell activation,
including total area and sphericity, can be extracted from
label-free images acquired by QPM and TPEF and used
to build classifiers [49,52,53]. Additionally, several
groups have trained classifiers to separate activated and
quiescent T cells based on FLIM alone [32,34,53,54].
Clustering algorithms have also been used to optimize
segmentation and classify T cell states with image-based
textural and morphological variables acquired from
image-based cytometry [53,55,56]. These machine
learning techniques have great potential to streamline
the T cell manufacturing workflow by monitoring cell
state at the single cell level and identifying time-points
for media conditioning to improve the consistency, po-
tency, and safety of the manufactured T'cell products. As
with any machine learning approach, significant
amounts of user-annotated data are needed to build and
validate decisions, and this process must be compre-
hensive across manufacturing conditions (e.g., cell types,
manipulations, culture conditions, possible in-
terventions) before these algorithms can be reliably
implemented in the T cell manufacturing workflow.

Future applications and conclusions

Technologies that provide real-time measurements to
inform timely interventions could greatly improve batch
quality and consistency of manufactured T cell products.
Currently approved T cell products rely on autologous
cell sources that have variable quality depending on the
patient, so consistently potent products are difficult to
generate without an adaptive manufacturing process. In
fact, recent clinical data for an approved CAR T therapy
(Tisagenlecleucel) showed no significance difference in
clinical outcomes for CAR T batches with viability out-
of-specification when compared to batches that passed
standard release criteria [16]. This emphasizes the need
for an adaptive manufacturing process capable of
acquiring precise measurements of cell features in real-
time with in-line feedback capabilities. This approach
would decrease cost, increase hospital treatment ca-
pacity, and improve patient outcomes by unlocking the
full potential of manufactured T cell products. This real-
time in-line monitoring and intervention approach
would also provide fundamental insights to improve T
cell manufacturing for the > 1000 therapies currently in
the pipeline [57].

Label-free optical imaging and sensing coupled with
machine learning techniques could fill this need for in-
line T cell monitoring and feedback to non-invasively
optimize the quality of T cells at multiple stages
during manufacturing. For example, initial patient T
cells could be assessed for fitness before entering the
manufacturing process, T cell activation efficiency and
proliferation could be optimized, and final T cells
products could be assessed for potency and persistence
prior to release (Figure 1). Label-free optical technolo-
gies and machine learning can be used at each step in
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this process, and the choice of measurement technique
and predictive algorithm can be determined based on
application needs. This approach has the potential to
streamline current practice, accelerate the manufacture
of safe, high-quality manufactured T cell products, and
improve our understanding of the dynamic, heteroge-
neous processes of T cell manufacturing.
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