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Abstract

Human stem cells provide emerging methods for drug
screening, disease modeling, and personalized patient thera-
pies. To meet this growing demand for scale-up, stem cell
manufacturing methods must be streamlined with continuous
monitoring technologies and automated feedback to optimize
growth conditions for high production and consistency. Label-
free optical imaging and sensing, including multiphoton mi-
croscopy, Raman spectroscopy, and low-cost methods such as
phase and transmitted light microscopy, can provide rapid,
repeatable, and non-invasive monitoring of stem cells
throughout cell differentiation and maturation. Machine
learning algorithms trained on label-free optical imaging and
sensing features could identify viable cells and predict optimal
manufacturing conditions. These techniques have the potential
to streamline stem cell manufacturing and accelerate their use
in regenerative medicine.
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Abbreviations

CNN, convolutional neural network; DIC, differential interference
contrast; FAD, flavin adenine dinucleotide; FLIM, fluorescence lifetime
imaging microscopy; hPSC, human pluripotent stem cell; HSC, he-
matopoietic stem cell; HSpec, hyperspectral imaging; MSC, mesen-
chymal stem cell; NAD(P)H, nicotinamide adenine dinucleotide
(phosphate); NSC, neural stem cell; OCT, optical coherence tomogra-
phy; ORR, optical redox ratio; QPM, quantitative phase microscopy;
SVM, support-vector machine; TPEF, two photon excited fluorescence;
UMAP, uniform manifold approximation and projection.

Introduction

Human stem cells hold great promise for drug
screening, disease modeling, and regenerative medi-
cine, with the ability to self-proliferate and differen-
tiate into various cell types [1]. Key areas of research
interest include generating more accurate and higher
throughput disease models and more realistic platforms
for drug discovery and toxicology. These studies have
focused on both pluripotent (hPSCs) and adult stem
cells, which include a variety of multipotent and self-
renewing types found in specific niches, such as
mesenchymal (MSC), neural (NSC), and hematopoi-
etic stem cells (HSC) [2]. The goal of stem cell
manufacturing is personalized medicine using patient-
matched samples that better capture heterogeneity in
human disease and can eventually replace lost or
damaged tissue in non-regenerative organs such as the
brain, heart, and eyes [3,4].

Currently, stem cell manufacturing is relatively small
scale for use in basic laboratory and pre-clinical settings
[2]. However, future applications in large-scale drug
discovery and regenerative medicine will require robust
cell manufacturing technologies to ensure large, stan-
dardized cell batches. Efficient differentiation of stem
cells and maturation of differentiated cell lineages are
typically bottlenecks in the cell manufacturing process
[3,4]. Batch-to-batch and line-to-line variability in stem
cell differentiation hinders basic science and clinical
applications [4]. While considerable improvements in
large-scale culture systems have been made [2], stem
cell differentiation outcome is frequently verified using
techniques such as immunofluorescence, quantitative
polymerase chain reaction (qPCR), and flow cytometry,
which are disruptive, low throughput, labor intensive,
and not conducted in real time (Table 1) [5,6]. To
maximize the potential of efficient differentiation and
maturation, and therefore use in further laboratory and
clinical settings, label-free monitoring of stem cells is
required.

Here, we discuss how label-free optical imaging and
sensing, including multiphoton metabolic imaging [7—
10], hyperspectral imaging [11—13], and Raman spec-
troscopy [14—19] can be coupled with machine learning
[9,20—23] to streamline quality control of stem cell
manufacturing. Label-free optical technologies could
provide rapid, repeated, and non-invasive screening
during the stem cell manufacturing process. Machine
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Table 1

Advantages and disadvantages of current techniques and emerging optical technologies for monitoring stem cell manufacturing.

Technique

Advantages

Disadvantages

Traditional (gold standard) methods [5,6]
Flow cytometry

Immunofluorescence

Quantitative polymerase chain reaction (QPCR)

+Rapid
Label-free optical imaging & Sensing
Two photon excited fluorescence [7,10]

+High throughput
+Single cell
+Highly specific

+Highly specific

+High sensitivity
+Nondestructive/label-free

-Invasive and/or destructive
-Labor intensive

-Slow/low throughput
-Labor intensive

-Requires skilled user
-Destructive

-Expensive
-Requires skilled user

+Single cell resolution

Fluorescence lifetime imaging [7,9,11,38,39]

+High sensitivity
+Nondestructive/label-free
+Single cell resolution

-Expensive
-Requires skilled user
-Slow/low throughput

+Metabolic information

Hyperspectral imaging [11-13]

+High sensitivity
+Non-destructive/label-free

-Specialized equipment
-Large datasets

+Single cell resolution

Raman spectroscopy [14—19]
+Rapid

Low-cost methods (phase [21,22],
transmitted light [41], differential contrast [42])

+Biochemical information

+Inexpensive
+Nondestructive/label-free

-Specialized equipment
-Lacks single cell resolution
-Lacks metabolic/biochemical information

+Easily integrated into widely
used microscopes

learning and classification algorithms trained on label-
free optical features of cells could predict optimal
manufacturing conditions and identify which cells are
functionally viable for benchtop or clinical needs. We
describe the advantages of these label-free optical im-
aging and sensing methods for streamlining the stem
cell manufacturing workflow (Figure 1).

Label-free optical imaging and sensing to
monitor stem cell differentiation and
maturation of differentiated cells

Multiphoton microscopy

As stem cells differentiate and the resulting cell types
mature, they undergo dramatic shifts in structural or-
ganization, morphology, and metabolism [6,24]. There-
fore, metabolite sensing of culture medium (e.g., mass
spectrometry, bioluminescent assays) is currently under
development to monitor stem cell manufacturing
[25,26]. These and other methods (e.g., immunofluo-
rescence, flow cytometry) are biochemically specific but
time-consuming and invasive [27,28]. Alternatively,
label-free optical imaging and sensing are advantageous
for stem cell manufacturing because these technologies
provide rapid, touch-free monitoring of cell structure
and function using endogenous sources of light and
contrast. Various label-free, touch-free, and long-term
optical monitoring methods can be used to capture
structural and functional changes throughout stem cell

differentiation and subsequent cell maturation,
providing a comprehensive picture of development and
favored growth conditions (Figure 1).

Cell stemness is regulated in part by metabolism, with
energy dependence shifting from glycolysis to oxidative
phosphorylation as differentiation progresses [24,29,30].
Structural and metabolic fluctuations vary temporally, by
cell type, and heterogeneously between cells within the
same culture, so there is a need for nondestructive, long-
term observational methods that provide functional
readouts of these changes on a single cell level. The
general shift from glycolysis to oxidative phosphoryla-
tion requires the regulation of key metabolic coenzymes
including the reduced form of nicotinamide adenine
dinucleotide (phosphate) (NAD(P)H) and oxidized
flavin adenine dinucleotide (FAD), which are intrinsi-
cally fluorescent [31—33]. Two-photon endogenous
fluorescence (TPEF) imaging of these cofactors can be
used to quantify the optical redox ratio (ORR),
frequently defined as the ratio of NAD(P)H to FAD
fluorescence intensity. ORR has been used to identify
metabolic changes in various stem cell lineages,
including mesenchymal stem cells (MSC) differenti-
ating into adipocytes [8,13,34], chondrocytes [7], oste-
ocytes [7,10], and (epi)dermal cells [35]. Additionally,
NAD(P)H and FAD lifetimes are distinct in their free
and protein-bound conformations, and can provide
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Figure 1
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Label-free optical imaging and sensing can monitor stem cell differentiation and maturation. Machine learning algorithms trained on optical imaging and
sensing data can identify viable cells to predict optimal culture conditions and streamline biomanufacturing.

information on protein-binding activities, preferred
protein-binding partners, and other environmental fac-
tors like pH and oxygen, which cannot be quantified
using fluorescence intensity alone [33,36,37]. Fluores-
cence lifetime imaging microscopy (FLIM) has been
used to separate hPSC-derived cardiomyocytes into
high- and low-differentiation efficiency groups within
the first 24 h of differentiation [9], distinguish undif-
ferentiated MSCs from osteogenic cells [38], separate
neurons from neural progenitor cells [39], and monitor
differentiation and long-term maturation in hPSC-
derived retinal organoids [11,12]. In addition to
cellular morphological features such as cell alignment,
short/long axis ratio, and surface area, high-resolution
multiphoton imaging also allows for more detailed
assessment of subcellular structures. For example,
NAD(P)H autofluorescence can be used to analyze
mitochondrial organization and elongation during
adipocyte differentiation [34] while lysosomal (lipo-
fuscin) autofluorescence changes with oxygen concen-
tration in MSCs, indicating oxidative stress [10].

Hyperspectral imaging (HSpec) can be used with TPEF
to capture both spatial and broad spectral information
from cellular autofluorescence. The spectral signature
can provide specific chemical information resulting from
light scattering and absorption that shift with molecular

and structural changes during stem cell differentiation.
HSpec involves excitation at a single wavelength and
detection over multiple channels in the emission range;
spectral information can then be extracted from each
pixel in the image [40]. Phasor-based FLLIM and HSpec
have been used together to detect retinol in self-
organizing stem cell-derived retinal organoids [11,12].
Retinol is produced in the visual cycle of mature pho-
toreceptors, and HSpec imaging of this fluorophore
provides a functional readout of differentiation within
these organoids. Depending on the molecule of interest,
HSpec may be used to distinguish early functional
markers such as small lipid droplets present in adipo-
cytes by day 3 of differentiation [13]. Multiphoton mi-
croscopy, including FLLIM, HSpec, and TPEE presents
several advantages over traditional fluorescence micro-
scopy including the use of infrared excitation for deeper
tissue penetration and reduced photodamage as well as
improved optical sectioning and high resolution. The
specificity and environmental sensitivity of these tech-
niques as well as their potential for single-cell resolution
presents a unique ability to quantify dynamic cell-level
heterogeneities within intact, unperturbed cultures
compared to existing standards that cannot resolve in-
dividual cells or use destructive techniques that cannot
monitor this heterogeneous response within the same
population over time, making them ideal for extended
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monitoring of metabolic and structural changes during
cell maturation [11,12]. However, multiphoton systems
are large, expensive, and complex, limiting their use in
routine biomanufacturing (‘Table 1).

Raman spectroscopy

As stem cells differentiate and the resulting lineages
mature, specific cell types will produce biochemical
products or signatures. Raman spectroscopy assesses
light interactions with these chemical bonds and can
produce detailed characteristic signatures based on the
molecular species present in the sample including
lipids [13,19], bone minerals [14,15,17], and nucleic
acids [18,19]. For example, analysis of Raman spectra
has been used to identify HSCs, which exhibit more
distinct nucleic acid signatures and less distinct pro-
tein and lipid-related signatures relative to their
differentiated linages including B cells and gran-
ulocytes [18]. As osteoblasts differentiate from MSCs,
they develop mineralized matrices containing hy-
droxyapatite, also reflected by Raman spectral changes
[14,15,17]. Similarly, differentiated adipocytes exhibit
dramatically larger lipid peaks compared to adipose-
derived stem cells [16] while developed neurons
exhibit reduced nucleic acid and lipid with increased
protein signatures relative to NSCs [19]. Raman
spectroscopy can identify complementary chemical
signatures that change during stem cell differentiation
and subsequent cell maturation while minimizing
phototoxicity and eliminating the potential for fluo-
rescence spectral crosstalk; however, Raman spectros-
copy does not provide single cell resolution and is best
suited for characterizing populations (Table 1).

Low-cost label-free optical imaging methods

Several other label-free imaging methods can identify
cellular structure and morphology information, which
change during stem cell differentiation. Cell structure
is readily captured using complementary modalities
that are included or easily added to microscopes pre-
sent in most biological laboratories; these include
transmitted light [41], quantitative phase [21,22], and
differential interference contrast (DIC) [42] micros-
copies. These methods can be used to study differen-
tiating (sub)cellular structures and organization,
including cell morphology [22,41], organelle distribu-
tion, and cell density [42]. Phase distribution images
can be produced using DIC microscopy to localize and
quantify mitochondrial content and distinguish
partially and fully reprogrammed iPSCs at varying
metabolic stages [42]. Though optical coherence to-
mography (OCT) has not been widely demonstrated
for use in stem cell applications, this label-free tech-
nology can also detect morphological changes in overall
shape and organelle distribution of hPSC-derived

retinal organoids [43]. Although these technologies
are low-cost and widely available, they do not provide
the specific biochemical information available from
multiphoton microscopy and Raman spectroscopy
('Table 1).

Machine learning methods to classify label-
free optical images and spectra

Label-free imaging produces high dimensional datasets,
which requires rapid and powerful computational
methods for image segmentation, analysis, and classifi-
cation. Scale-up of stem cell manufacturing will require
considerable effort to optimize culture methods and
determine batch standards. To reduce manufacturing and
cell characterization time, machine learning methods can
be incorporated into image processing and then used to
find associations between multi-dimensional features of
cell function and media conditions. These algorithms are
broadly classified into supervised learning (e.g., regres-
sion, decision trees, neural networks), which determine a
correct output based on a pre-defined input, and unsu-
pervised learning (eg., clustering, component analysis),
which identify underlying relationships within the data
independent of user-defined input [20,44]. Both cate-
gories of machine learning tools can be used to extract
information from images or chemical spectra to make
associations or predictions, which is highly complemen-
tary to label-free monitoring.

Machine learning techniques have been used to predict
hPSC differentiation with the goal of reducing the time
and resources needed to generate differentiated cells
[23]. These algorithms are applied at various stages of
the image processing pipeline including pre-processing,
segmentation, and isolation of features prior to classifi-
cation [20]. Morphological and structural variables that
shift throughout stem cell differentiation, including
cytoplasmic-nuclear ratio, total area, and sphericity, can
be extracted from label-free images, and used to build
classifiers [20,23]. Methods such as convolutional neural
networks (CNN), support-vector machine (SVM),
random forests, and regression models are well suited to
incorporate imaging data and successfully sort popula-
tions or predict cell fate [20].

Several groups have trained classifiers to separate stem
cells from their differentiating counterparts based on
label-free transmitted light, phase, and fluorescence
microscopy images. In these studies, CNNs distin-
guished hPSCs from mesoderm [41] and specialized
endothelial cells [21] as well as NSCs from neurons
within the first day of differentiation [45]. CNNs and
random forest models trained on morphological features
from time-lapse microscopy images have also predicted
HSC differentiation into either monocytic or erythroid
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lineages within 24 h, several days prior to classical neural
marker availability [46]. Uniform manifold projection
and approximation (UMAP) is used to reduce high-
dimensional data into low-dimensional space to lower
the computational resources needed, reduce the likeli-
hood of overfitting, and assist with data visualization
[20]. UMAP has been applied to TPEF variables
including NAD(P)H and FAD lifetimes and ORR to
visualize the efficiency of hPSC differentiation to
cardiomyocytes within the first 24 h [9]. Clustering al-
gorithms can assist with segmentation and SVM can be
used to classify stem cell colonies with image-based
textural and morphological variables [22]. These tech-
niques offer great potential to streamline the stem cell
manufacturing workflow by validating cell differentia-
tion and evaluating the multifactorial conditions that
enhance cell differentiation and maturation.

Future applications and conclusions
Large-scale use of stem cells for regenerative medicine
and basic science requires carefully regulated, expanded
2D and 3D culture systems [2]. To ensure safe, homo-
geneous products at industrial and clinical scales,
extensive research is being conducted to understand the
methods and environments most favorable for effective
stem cell differentiation and maturation of the resulting
lineages. Due to its rapid and non-invasive nature, label-
free optical imaging and sensing can be used to improve
and predict how environmental conditions will impact
stem cell viability and functionality. These tools may be
integrated along with machine learning algorithms to
investigate the substantial parameter space to identify
optimal culture systems, media conditions, and envi-
ronmental formulations.

For example, stem cell fate is affected by properties of
the surrounding substrate and growth medium.
Biomaterial-inspired hydrogels offer tunable platforms to
assess multiple environmental variables for stem cell
culture. Hydrogels of varying composition [47,48], stiff-
nesses [18,48,49], and patterning [50] enhance stem cell
adhesion and proliferation, in turn directing differentia-
tion. The label-free optical monitoring methods and
machine learning techniques discussed here can perform
long-term screens of multiple experimental culture sys-
tems to non-invasively identify optimal material and
environmental properties for stem cell differentiation.

Further, classification and monitoring are needed at
multiple stages of stem cell manufacturing: patient-
derived cells need to be sorted prior to inducing plu-
ripotency, differentiated cells must be separated from
their counterparts, and functionally mature cells are
needed for use in animal models, clinical trials, and
drug screening. Label-free optical technologies and
machine learning can be used at each step in this
process, and the choice of imaging or sensing modality

Label-free imaging for stem cell manufacturing Desa etal. 5

and predictive algorithm can be determined based on
application needs.

Efficient differentiation and maturation are bottlenecks
for 2 vitro and in vivo applications of stem cells. In-
consistencies in the differentiation process have
impeded the scale-up of stem cell manufacturing. To
realize their research and clinical potential, new
methods are needed to predict differentiation efficiency
of stem cells and assess the maturation state of differ-
entiated cells during biomanufacturing. Label-free op-
tical imaging and sensing offer significant advantages
over current standard assays including real-time,
contactless, long-term, and non-destructive assessment
of the structural and biochemical phenotype in single
cells. Machine learning-based predictive models provide
rapid identification of failed batches and may enable
development of closed loop processes to correct failing
batches, resulting in more streamlined manufacturing
for consistent cell safety and potency. Innovative
application of machine learning models to multivariate
single-cell parameters of biochemistry and morphology
extracted from optical signals can predict differentiation
outcome early and quickly identify maturation. These
models have the potential to streamline current prac-
tice, accelerate the development of improved protocols
for functional differentiated cells, and improve our un-
derstanding of the dynamic, heterogeneous processes of
differentiation and maturation.
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