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Background aims: Cell therapy is a promising treatment method that uses living cells to address a variety of
diseases and conditions, including cardiovascular diseases, neurologic disorders and certain cancers. As inter-
est in cell therapy grows, there is a need to shift to a more efficient, scalable and automated manufacturing
process that can produce high-quality products at a lower cost.
Methods: One way to achieve this is using non-invasive imaging and real-time image analysis techniques to
monitor and control the manufacturing process. This work presents a machine learning-based image analysis
pipeline that includes semantic segmentation and anomaly detection capabilities.
Results/Conclusions: This method can be easily implemented even when given a limited dataset of annotated
images, is able to segment cells and debris and can identify anomalies such as contamination or hardware
failure.
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Introduction

Cell therapy uses living cells to treat complex diseases. It has some
significant advantages over small molecule or biologics-based thera-
pies, including a targeted and multimodal treatment approach,
leveraging natural repair and surveillance mechanisms, long-lasting
effects and the potential to be personalized to each individual patient
[1,2]. Recent advancements have identified cell therapy to be
capable of treating a wide range of conditions, including cardiovascu-
lar diseases, neurologic disorders and certain cancers [3�5]. These
advancements have led to a few U.S. Food and Drug Administra-
tion�approved therapies, including chimeric antigen receptor T-cell
therapies for the treatment of acute lymphoblastic leukemia and vari-
ous lymphomas [6,7]. However, patient access to these new treat-
ments is limited due to high costs and highly complex manufacturing
and supply chain logistics. The complex manufacturing process cou-
pled with high variability in patient or donor cell materials, along
with lack of in/at-line quality control, significantly affects the yield,
quality, risk and cost of the therapeutic biologic products [8]. There is
a significant unmet need for efficient and automated manufacturing
processes with embedded quality-by-design and process control to
enable consistent, reproducible and quality-driven cell manufactur-
ing to ultimately improve product consistency and quality, lower fail-
ure risk, control costs and increase access. One proposed system
involves the use of bioreactors that can autonomously monitor,
decide on the process status and product quality and control the
manufacturing process to efficiently and reliably produce high-qual-
ity products in every batch [9].

Quantitative oblique back-illumination microscopy (qOBM) is a
label-free, scalable and fast technique well-suited for functional imaging
of cells inside bioreactors [10�13]. This technology can be applied to
image cells in-process, in real time, during manufacturing to monitor
their quality and potentially optimize/improve the therapeutic product.
However, to automate manufacturing, real-time segmentation and
anomaly detection are needed [9,14�17]. Machine learning, specifically
deep learning, is a promising approach for these tasks. Machine-learn-
ing algorithms are more adaptable, generalizable and robust than tradi-
tional computer vision methods [18,19]. Using machine-learning
techniques can improve cell therapy manufacturing by segmenting
images for further image analysis and detecting anomalies such as con-
tamination and faulty imaging equipment.

Semantic segmentation classifies each pixel based on the class
it belongs to. In qOBM phase images, the primary goal is to
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Figure 1. Proposed machine learning�based pipeline. Every patch from an image map to a feature vector via the U-net encoder. The feature vector is used to produce a segmenta-
tion mask and an anomaly heatmap in parallel via the U-net decoder and HDBSCAN clusterer, respectively. (Color version of figure is available online.)
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distinguish cells and debris from the background, as these objects
are indicative of the bioreactor health. Traditional cell-segmenta-
tion pipelines use techniques such as filtering, thresholding, edge
detection and region growing [15,20]. Since these pipelines are
constructed on a case-by-case basis for specific cells and imaging
techniques, they may not be adaptable to different types of images
[21]. More recently, deep-learning approaches for segmentation
have been developed to be more accurate and robust than tradi-
tional techniques [22]. Deep learning�based semantic segmenta-
tion models usually follow the encoder�decoder architecture [23].
In such a model, images first pass through a series of encoding
layers that result in a low-resolution feature representation, which
is then mapped to full-input resolution for pixel-wise classification
by a series of decoding layers. Proposed in 2015, the U-net became
a popular choice for medical image segmentation due to its out-
standing performance [24]. Recent works have demonstrated that
U-net�based architectures can achieve high accuracy in numerous
segmentation tasks even with a small amount of annotated train-
ing data [25�27]. These attributes make the U-net architecture
appealing for qOBM image segmentation, as image annotation is
time-consuming and training data are scarce.

The goal of anomaly detection is to identify observations of
unusual events that do not conform to the expected behavior. Since
anomalous samples are typically inaccessible, rare or different from
future anomalies, the problem of anomaly detection often requires
unsupervised solutions that learn from only normal data. Similar to
semantic segmentation, deep-learning approaches for anomaly
detection have demonstrated success for addressing the complexity
of image data [28]. Major approaches use a deep neural network to
learn a feature map of the data. This can be done by autoencoders
[29], generative adversarial networks [30], self-supervised methods
[31,32] or transferring pre-trained representations from other super-
vised tasks [33]. This work adopts the last-mentioned idea by
leveraging the supervised segmentation task to generate lower-
dimensional feature representations of images, which are used to
train the anomaly detection model. Feature representations of nor-
mal data should be close to each other, whereas anomalous features
should be distant in feature space. Therefore, clustering models are
sometimes the go-to choices for real-time anomaly detection, as they
are naturally unsupervised and are more computationally light-
weight than other machine-learning algorithms [34]. Hierarchical
clustering and density-based spatial clustering of applications with
noise (HDBSCAN) stands out, as it automatically calculates the num-
ber of clusters, handles clusters with different density and shapes
and can output anomaly scores with the global�local outlier scores
from hierarchies (GLOSH) algorithm [35]. Past works have also shown
the suitability of HDBSCAN in various anomaly detection applications
[36�38].
This work proposes an efficient machine learning�based
image analysis pipeline for real-time monitoring of in vitro T cells
via qOBM images, requiring as little as two annotated images to
train. The pipeline combines semantic segmentation and anom-
aly-detection capabilities in a single system that can be used in
closed-loop cell therapy manufacturing processes. Figure 1 illus-
trates the pipeline, which consists of a sliding window that takes
square patches from a full-sized image, which are mapped to fea-
ture vectors by a modified U-net encoder [24]. The corresponding
modified U-net decoder then maps the feature vectors to gener-
ate a segmentation mask, whereas the HDBSCAN clusterer gener-
ates an anomaly heatmap [35]. This setup allows naturally
parallel computation of both tasks. The anomaly scores in the
heatmap can also be used as uncertainty scores of segmentations;
not only locating anomalous objects in the image, but also reveal-
ing regions where segmentation may be inaccurate. This real-
time pipeline can aid in the monitoring of T-cell quality in the
manufacturing process, further enabling feedback control.

Methods

Data acquisition

The data in this study were collected from multiple T-cell expan-
sion runs (institutional review board protocol no. H17348). During
each expansion, human CD3+ T cells are seeded in PBS-Mini Vertical-
Wheel Bioreactor from PBS Biotech with TexMACS media from Milte-
nyi Biotec (San Diego, CA, USA). The cells are expanded for 14 days
with the goal of achieving a high yield. Every day, starting on day 7,
the cells in the bioreactor are imaged with qOBM. The raw images
are 2048 by 2048 pixels, with a single channel for quantitative phase.
Based on the observed intensity distribution of quantitative phase,
contrast normalization is applied to the images by clipping at two
fixed thresholds and scaling to a range of 0 to 1. This step reduces
noise from extreme values, enhances the visibility of features crucial
for segmentation and helps the machine learning pipeline by stabiliz-
ing gradient flow during model training.

Along with imaging, the cell concentration and viability (i.e., pro-
portion of cells alive) are measured with a Via1-Cassette and Nucleo-
Counter NC-200 from ChemoMetec to monitor the bioreactor health
status. To do this, a small cell sample is loaded into a cassette, where
they are stained by fluorophores acridine orange and 40,6-diamidino-
2-phenylindole. Acridine orange stains both live and dead cells, pro-
viding a total cell count, whereas 40,6-diamidino-2-phenylindole
stains the dead cells, from which viability is calculated.

The data were collected from three different expansion runs,
denoted by A, B and C. Run A had 10 images, run B had 17 and run C
had 19. To produce labels for semantic segmentation, all images from
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run A and 6 images from run B were manually annotated with three
classes: background, cell and debris. These annotations were consid-
ered the ground truth for model training and testing. Run A was used
for training and validation, then the subsequent run B was used for
generating performance metrics. In addition, images from the third
expansion run, C, were analyzed for anomaly detection. A set of six
normal unlabeled images from run C were used to train the anomaly
detection clusterer, whereas the remaining 13 images were used for
testing. Since anomalies can be global to the whole image or local to
a specific part, the test images from run Cwere cropped into multiple
smaller patches and manually labeled as normal or anomalous. The
test dataset contained three types of anomalies: abnormal imaging
leading to reduced image contrast (e.g., poor focusing conditions),
delayed imaging resulting in dead and expired cells and contamina-
tion with yeast during cell expansion.

Quantitative oblique back illumination microscopy

qOBM enables label-free three-dimensional quantitative phase
imaging using epi-illumination. This technology is well suited to
image thin transparent samples (e.g., cells in vitro) like traditional
phase imaging technologies but can also analyze complex scattering
samples (e.g., thick tissues [39] and adherent/suspended cells inside
bioreactors [10]), which cannot be analyzed with traditional phase
technologies. The qOBM system uses a traditional bright-field micro-
scope configuration and can also be miniaturized into a flexible fiber-
based system that can also be applied to image inside bioreactors
[39,40] among other applications. Illumination for qOBM comprises
four low-cost LEDs, coupled to 1-mmmultimode fibers, which illumi-
nate the samples sequentially in epi-mode. The fibers are configured
90° from each other around the microscope objective. LED light
deployed via the fibers enters the sample, where it is multiply scat-
tered. The scattered light eventually generates a virtual light source
within the sample, emulating a transmission-based microscope. In
thin samples, a scattering medium, such as a polydimethylsiloxane
device with titanium�dioxide nanoparticles with well characterized
scattering properties, can be applied (as was the case in this work).
Quantitative phase image reconstruction is achieved via deconvolu-
tion of the raw intensity images with the transfer function of the sys-
tem. More details on the system hardware and reconstruction
algorithm can be found in previous works [12,11,40]. The processed
qOBM images provide quantitative phase information that is propor-
tional to the optical path length of the sample (the product of the
refractive index and thickness of the sample), with a sensitivity of
»6 nm. Using a 60£/0.7na objective and illumination at 720 nm, the
lateral resolution is approximately 0.63mm.

Modified U-net

The U-net is a popular deep-learning architecture used for seman-
tic segmentation tasks, where the goal is to classify each pixel within
an image. Since the U-net architecture is well established and is
shown to have good segmentation performance on biomedical
images, a modified U-net was used for semantic segmentation [24].
The qOBM images only have a single-input channel and are relatively
simple, so the U-net was modified to have 16 times fewer channels in
all convolutional layers. This drastically reduced the number of train-
ing parameters and resulted in a model better suited for training
with a small dataset.

The model was implemented in PyTorch and an NVIDIA Tesla
V100 GPU was used for training and inference [41]. Various loss func-
tions were experimented with, including Cross-Entropy (CE) loss,
Weighted Cross-Entropy (WCE) loss, and Dice loss [42,43]. Prelimi-
nary experiments using images from run A determined an appropri-
ate optimizer, learning rate scheduler and model hyperparameters.
An AdamW optimizer with an initial learning rate of 0.001 and a
cosine annealing scheduler with warm restarts, doubling periods and
a 150-epoch initial period were found to work best for training
[44,45]. With an additional weight decay of 0.01, the model was
trained for 2250 epochs. Rather than using full-sized images, the
modified U-net used patches of smaller size, denoted by size SU, for
training and inference. All patches used in this work are square,
where their sizes are denoted by their widths. The segmentation per-
formance of the modified U-net was measured across different SU,
loss functions, and number of training images. From run A, seven
images were used for training, and three were used for validation.

To effectively make use of the small, labeled dataset, the images
were scaled, augmented with randomized transformations, and
cropped to SU. First, the pixel values were scaled to values ranging
from 0 to 1, for faster training convergence. Next, the image was ran-
domly horizontally flipped. Then, an affine transformation was
applied with a random rotation, scaling and shear. The last step was a
random square crop with size SU within the transformed image. Dur-
ing each epoch in training, each image in the training set was aug-
mented 100 times independently, resulting in 100 distinct training
samples per image.

At inference time, the test images are also cropped into SU-sized
patches. The crops are done with a sliding window, with one third over-
lap and repeated on a vertical flip of the image. The resulting predictions
are then stitched together, with overlapping predictions averaged out.

HDBSCAN-GLOSH outlier detection

In this anomaly detection task, the model has no access to anoma-
lous images at training time. Therefore, the model must learn the com-
mon characteristics of normal samples and be able to discern
anomalous samples at inference time. For this unsupervised machine-
learning task, the encoder portion of the modified U-net was leveraged
to produce low-dimensional latent representations of image patches.
Considering the modified U-net was trained with SU-sized patches, the
set of normal samples used for training were cropped to this size with
a sliding window, striding across with steps of 32 pixels, and generating
numerous training patches for the anomaly detection clusterer. After
being encoded by the modified U-net, the output is mean-pooled across
the height and width to produce a 64-length feature vector. To learn
the characteristics of normal samples, feature vectors from normal
images were fed into a HDBSCAN clusterer [46].

HDBSCAN is an extension of the classic DBSCAN [47] that can not
only deal with clusters of different shapes but also of different sizes.
A high-level description of the HDBSCAN implementation consists of
five steps [48]. First, the space is transformed by spreading apart data
points with low densities, to make the subsequent clustering more
robust to noise. Second, the new space is viewed as a graph, where
the data points are vertices, and the edges are weighted by the trans-
formed distance. The minimum spanning tree of this graph is con-
structed. Third, the edges of the tree are sorted in increasing order.
Iterating through the edges, a cluster hierarchy is formed by creating
a new merged cluster for each edge. Fourth, the cluster hierarchy is
condensed down into a smaller tree, where each node represents a
group of data points. This is done by continuously splitting the cluster
hierarchy starting from the root, retaining clusters that are at least of
the specified minimum size. Lastly, flat clusters are extracted when
the stability of the cluster is greater than the sum of its children. The
stability is measured by how long the points in the cluster persisted
after cluster creation and before being split in the previous step. Any
points not extracted into a cluster is labeled as noise.

For anomaly detection, the GLOSH algorithm assigns a score rang-
ing from 0 to 1 [35]. Higher scores are assigned to points that have a
substantially lower density than the densities of points associated
within the current and child clusters. This model is well suited for the
anomaly detection task, as it works well with noisy data and per-
forms efficiently with 64-dimensional features.
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The main clusterer parameter that affects anomaly detection is the
number of samples in a neighborhood for a point to be considered a
core point. Increasing this parameter increases the number of points
considered as noise. Since the clusterer is trained on normal data free
of anomalies, this parameter was set to 1, minimizing noise labels.

At inference time, depending on the size of the evaluated image or
patch, denoted by SA, the model can be used to directly perform clas-
sification or generate an anomaly heatmap. When SA is equal to SU,
the model assigns one outlier score for the patch. For classification, a
cutoff threshold is used. Having a score greater than the threshold
classifies the evaluated patch as anomalous. When SA is greater than
SU, such as evaluating a full-sized image, a stride 32 sliding window
is first used to crop SU-sized patches. The clusterer then assigns out-
lier scores to each SU-sized patch, which can be combined to create
an anomaly heatmap for the larger SA-sized patch or image. To do
this, the scores of the SU-sized patches were averaged at overlapping
areas. For classification, the anomaly score was assigned to be the
maximum score in the heatmap. Encoders from modified U-nets
with different numbers of training data were compared for anomaly
detection performance. In addition, different SA were tested to find
the most appropriate inference window size for anomaly detection.

Results

Experimental setup

The segmentation performance of models trained with different
loss functions and SU were compared. The set of loss functions
included CE loss, WCE loss and Dice loss. The weights for WCE were
0.5, 1, 1.5 for the classes of Background, Cell and Debris respectively
to account for class imbalance in the training data. The compared SU
ranged from 128 to 512. Multiple evaluation metrics were used to
assess the segmentation performance, including accuracy, class-wise
Dice coefficients and correlation coefficients with bioreactor attrib-
utes of cell concentration and viability.

The accuracy and Dice coefficients are calculated for the six anno-
tated test images from run B [49]. Dice coefficients for each class and
the total accuracy are reported. The Dice coefficient is the harmonic
mean of the precision and recall, which can be calculated from the
number of true positives (TP), false positives (FP), and false negatives
(FN) as in Equation (1). For instance, for the Cell class, TP is the num-
ber of correctly classified Cell pixels, FP is the number of pixels from
Background or Debris that are misclassified as Cell and FN is the num-
ber of Cell pixels misclassified as Background or Debris.

Dice Coefficient ¼ 2
precision ¢ recall
precision þ recall

¼ 2TP
2TPþ FPþ FN

ð1Þ

To further validate the segmentation results, the segmentation
outputs of all 17 images in run B are used to calculate proxy
Table 1
Segmentation performance comparison of modified U-nets

Dice coe

Loss Function SU Accuracy Background C

CE 128 0.9486 0.9697 0
256 0.9409 0.9654 0
512 0.9334 0.9613 0

WCE 128 0.9407 0.9647 0
256 0.9263 0.9560 0
512 0.9075 0.9427 0

Dice 128 0.9529 0.9733 0
256 0.9566 0.9758 0
512 0.9434 0.9663 0

The training dataset contained seven images. In each colum
indicators for cell concentration and viability. Since Cell and Debris
labels represent healthy and dead cells, respectively, the proportion
of different labels in each image should be highly indicative of cell
concentration and viability. The indicator for cell concentration is
measured as the number of Cell pixels divided by the total number of
pixels, and the indicator for viability is the number of Cell pixels
divided by the number of non-Background pixels, as shown in Equa-
tion (2) and Equation (3). The Pearson correlation coefficient is calcu-
lated to measure the linear correlation between the indicators and
measurements taken directly from the bioreactor [50].

Cell Concentration Indicator ¼ jCellj
jBackgroundj þ jCellj þ jDebrisj ð2Þ

Viability Indicator ¼ jCellj
jCellj þ jDebrisj ð3Þ

After the optimal loss function and SU were determined, the effect
of training set size on model performance was explored. Starting at
seven images, the training set was reduced image by image, discard-
ing the perceived least informative image until 1 image remained.
For instance, images that only contained a few objects were primarily
discarded.

For anomaly detection, images from run C were divided into
two subsets for training and testing. The training set contained
only normal images, whereas the test set contained both normal
and anomalous images. The clusterer is then trained with the
training set, adhering to the procedure outlined in the section
“HDBSCAN-GLOSH outlier detection.” For testing, the test images
were cropped into non-overlapping square patches. Patch sizes
ranging from 128 to 512 pixels were tested to find an optimal SA
for anomaly detection.

Each patch from the test set was manually labeled with ground
truths, either being normal or anomalous. The area under the receiver
operating characteristic curve (AUC) score was used to measure
anomaly detection performance. Classification used the 98th percen-
tile of the outlier scores of the normal training patches. Precision
scores, recall scores and contingency tables for different anomalies
were reported. In addition, full-sized anomaly heatmaps were quali-
tatively assessed.
Cell segmentation

Using secen training images, modified U-nets were trained with
varying loss functions and SU. The performance of these models is
summarized in Table 1. As can be seen, the accuracy and correlation
coefficients are relatively good across all models, with all values
above 0.9. The class-specific Dice coefficients imply that the models
are best at segmenting background and worst at segmenting debris.
trained with different loss functions and SU.

fficient Correlation coefficient

ell Debris Cell Concentration Viability

.9160 0.7116 0.9585 0.9937

.8902 0.7259 0.9507 0.9931

.8707 0.7008 0.9613 0.9878

.8873 0.8131 0.9607 0.9881

.8599 0.7833 0.9578 0.9921

.8253 0.7715 0.9532 0.9805

.9098 0.8343 0.9621 0.9899

.9180 0.8247 0.9635 0.9922

.8890 0.8193 0.9578 0.9901

n, bold font denotes the best value.



Figure 2. Example segmentation results of segmentation with Dice-128 at different stages of cell expansion. The top row shows qOBM images, the second row shows the manually
annotated labels, and the bottom row shows the predicted segmentation map. In the segmentation maps, green represents Cells, yellow represents Debris, and black represents
Background. (Color version of figure is available online.)
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Another observation is that the model performance generally
decreases as SU increases. Moreover, for each SU, Dice loss outper-
forms WCE loss and CE loss across accuracy and Dice coefficient met-
rics. Weighting the CE loss drastically improved the debris
segmentation capabilities. The best performing models across Dice
coefficients and accuracy scores were trained with Dice loss and SU of
128 (Dice-128) or 256 (Dice-256). These two models had similar per-
formance. Figure 2 qualitatively illustrates the segmentation perfor-
mance of Dice-128 on various normal images. The segmentation is
generally accurate, only visibly underperforming on objects not in
the focal plane and in the corners, which are plagued by imaging
artifacts.

Correlation coefficients were similar across all models. The corre-
lation coefficients were generally above 0.95 for cell concentration
and around 0.99 for viability. Overall, Dice loss was the best perform-
ing loss function, and performance increased with smaller SU. There-
fore, the Dice-128 model was chosen to explore the effects of
decreasing the training dataset size on segmentation performance.
The results are summarized in Table 2.

As expected, in Table 2, it can be observed that as the number of
training images decreases, the model performance generally
decreases across all evaluation metrics. The model slightly deterio-
rates when removing training samples, until 2 images are used for
training. When going from 2 images to 1, the model performance
sees a drastic decline.
Anomaly detection

As the Dice-128 and Dice-256 models were deemed to be the best
at semantic segmentation, their encoders would then be used to gen-
erate features for anomaly detection. Since U-nets trained with fewer
training images also had good segmentation performances, the 2-
training-image variants of these models were also examined. The
results are summarized in Table 3.

Since the test patches are cropped from a dataset in a non-over-
lapping manner, the number of inference patches decreases as SA
increases, as evidenced by the contingency table. Despite this, the
evaluated dataset remains relatively balanced between normal and
anomalous patches, and the number of samples is sufficient for analy-
sis even for a SA of 512. Inspecting the contingency table, there does
not seem to be a type of anomaly that is easier to classify than others.

The tested models all produced AUC scores around the range of
0.7�0.8. When we compared AUC scores, modified U-nets trained
with seven images were marginally better than the corresponding
ones trained with only two images. Furthermore, having SA slightly
larger than SU seems to be the optimal choice in all cases. The model
with the highest AUC is Dice-128-7 with approximately 0.83 when SA
is 256.

When examining the tradeoff between precision and recall, as SA
increases, the recall is improved at the cost of decreased precision. This
is because using the classification method outlined in “HDBSCAN-



Table 2
Segmentation performance comparison of modified U-nets trained with different number of training images.

Dice coefficient Correlation coefficient

Number of training images Accuracy Background Cell Debris Cell Concentration Viability

7 0.9529 0.9733 0.9098 0.8343 0.9621 0.9899
6 0.9339 0.9605 0.8701 0.8227 0.9540 0.9889
5 0.9425 0.9665 0.8876 0.8207 0.9605 0.9900
4 0.9257 0.9543 0.8533 0.8302 0.9440 0.9878
3 0.9324 0.9608 0.8640 0.8139 0.9490 0.9848
2 0.9209 0.9511 0.8448 0.8264 0.9399 0.9867
1 0.8198 0.8740 0.6872 0.8105 0.6701 0.9832

The model used Dice loss and SU of 128. In each column, bold font denotes the best value.
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GLOSH outlier detection,” the cutoff threshold does not change, but the
score used for classification is taken as the maximum of the scores in
the inference window. This resulted in a recall score of 1 in many cases
where SA was 512, correctly classifying all anomalous samples. In these
cases, a low precision score of approximately 0.6 was seen, as most nor-
mal samples are also misclassified as anomalous.

Anomaly heatmaps of full-sized images are depicted in Figure 3.
For visualization purposes, the anomaly scores are clipped to the
interval from the 95th percentile of the outlier scores of the training
samples to 1.0, corresponding to fully transparent and fully opaque
respectively. As can be seen from the expired cells and yeast contami-
nation examples, the anomaly localization performance is good, gen-
erally assigning higher scores to areas with anomalies and lower
scores to areas filled with normal cells and background. Another
observation is that the anomaly score is higher around the corners
and the edges of images, where there exist anomalies in the form of
artifacts caused by imaging hardware. Additionally, in the normal
image, objects not in the focal plane get assigned higher anomaly
scores, as they become objects with reduced contrast. Recalling
Figure 2, the segmentation performance on these objects is corre-
spondingly subpar, suggesting that the anomaly score can be used as
a proxy for segmentation uncertainty.

Discussion

The use of artificial intelligence and machine-learning techniques
has the potential to greatly improve cell therapy manufacturing by
allowing for increased automation and control in the production pro-
cesses. These novel techniques can be used to analyze sensor and
image data, monitor cell culture conditions and provide insights for
Table 3
Anomaly detection performance comparison of different modified

N

Model SA AUC Precision Recall TN

Dice-128-7 128 0.7113 0.6928 0.4172 1547
256 0.8258 0.6359 0.9532 172
512 0.7884 0.6000 1.0000 18

Dice-128-2 128 0.7056 0.7310 0.2369 1694
256 0.7967 0.7500 0.7307 301
512 0.7002 0.6644 0.8684 44

Dice-256-7 256 0.7502 0.7092 0.7026 282
512 0.7980 0.5672 1.0000 7

Dice-256-2 256 0.6745 0.6756 0.5902 284
512 0.7596 0.5700 1.0000 8

The last number in the model name denotes the number of image
table shows the instances of classification for the classes of norma
trast), expired cells (Expired), and yeast contamination (Yeast). T
as normal (TN), normal classified as anomalous (FP), anomalous c
mal (FN).
FN, false negative; FP, false positive; TN, true negative; TP, true po
process optimization and quality control. For effective real-time
monitoring of a cell therapy manufacturing process through images,
cell segmentation is an important step to generate regions of interest
[14]. Since the therapeutic product consists of these cells, identifying
them within the image is essential for further analysis, be it study of
its dynamics or generating features for phenotype classification. The
results signify that a modified U-net is capable of segmenting both
Cell and Debris well. The slightly lower performance for Debris is
expected, as Debris is the least abundant class.

When we compared different SU and loss functions, smaller SU are
preferred, and Dice loss yields the best results. Using a smaller SU
poses a more difficult segmentation task for the model to learn, as
less context information is provided for each object and more objects
wind up on patch boundaries. This provides additional regularization
during training to reduce overfitting [51]. As a result, such a model
will be more generalizable on new data at inference time. For the
compared loss functions, CE does not account for the class imbalance
in the training data, whereas WCE explicitly uses weights provided
to account for the imbalance. On the other hand, Dice loss implicitly
takes class imbalance into consideration [52]. Since the primary per-
formance metric of interest is the Dice coefficient, using a loss func-
tion that directly optimizes for this yielded the best results.

When reducing the number of training images, the modified U-
net could still achieve a surprisingly high segmentation performance.
This suggests that the segmentation of qOBM images is a relatively
simple task, and the data-augmentation techniques were enough to
train a generalizable model. However, a single image does not cap-
ture all image scenarios and is insufficient for training, whereas two
images can include both sparsely and densely populated images. Con-
sequently, for deployment in an automated, closed-loop system,
U-net encoders.

ormal Contrast Expired Yeast

FP TP FN TP FN TP FN

278 426 618 95 96 106 162
233 253 11 91 2 63 7
76 64 0 32 0 18 0

131 272 772 51 140 33 235
104 207 57 64 29 41 29
50 61 3 27 5 11 7

123 159 105 75 18 66 4
87 64 0 32 0 18 0

121 137 127 53 40 62 8
86 64 0 32 0 18 0

s used to supervise segmentation training. The contingency
l patches (Normal) and anomalies of reduced contrast (Con-
he table represents the number of normal patches classified
lassified as anomalous (TP), and anomalous classified as nor-

sitive.



Figure 3. Anomaly detection of Dice-128-7 model on normal and anomalous images. The first row illustrates raw qOBM images, and the second has an anomaly heatmap overlaid.
Greater opacity of maroon indicates greater anomaly scores. (Color version of figure is available online.)
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training with more images leads to better results, but having only a
few training images is also sufficient, as long as they are varied and
sufficiently encompass future images.

The correlation coefficient for viability is consistently greater than
cell concentration. This is because the viability measurements of the
test images have a bimodal distribution, either being very high or
very low. In contrast, cell concentration measurements were more
evenly distributed across a large range. Due to the limited variability
in viability measurements, it is easier for a model to achieve a higher
correlation coefficient. Nevertheless, the astounding correlation coef-
ficients consistently above 0.9 for both metrics further reinforce that
the proposed machine learning-based pipeline segments sufficiently
well to inform further decisions.

In anomaly detection, modified U-nets trained with more images
likely performed better because they have seen more data during
training and are more generalizable at producing encodings for
unseen data. The achieved 0.83 AUC score by Dice-128-7 for a SA of
256 is high, considering no post-processing other than a simple
mean-pooling was employed for the modified U-net encoded feature
vector. Despite less supervision during the encoder training, Dice-
128-2 still achieved an AUC score of 0.8 for a SA of 256. This suggests
that anomaly detection is still possible even when the availability of
annotated data is severely limited. It is also important to note that
the semantic segmentation module struggles with out-of-focus cells,
which have similar features to the anomalous “reduced contrast”
images, potentially leading to inaccurate segmentation. However, the
anomaly detection module can flag these out-of-focus cells as anom-
alous, rendering the incorrect labeling less critical.

Although the image analysis pipeline presented in this work has
demonstrated promising results, it also has several limitations that
should be acknowledged. First, since the proposed pipeline uses a
full-sized image for inference, the different AUC scores attained by
different SA are less meaningful. The smaller SA were used to validate
the proposed method, given that only a handful of anomalous images
were available for testing. Therefore, when classifying full-sized
images, the anomaly score should simply use the maximum. A differ-
ent image scoring method should be used to reduce the influence of
out-of-plane objects in normal images. Otherwise, it is recommended
to only use regions with low anomaly scores for decision-making, as
they are most likely to have accurate segmentations.
Second, the anomaly detection module may miss small anomalies
due to the feature vector generation method, which averages across
each patch. If only a small section of the original patch contains the
anomaly, then the pooling would lessen the contribution from
the anomaly. Therefore, setting SU smaller than 128 may help catch
these smaller anomalies, but this would make segmentation harder.
There are also several other methods that can potentially improve
anomaly detection performance at the cost of added complexity.
Building on the patch-wise approach, multiple U-nets with different
SU could be used to generate multiple anomaly heatmaps, which are
then aggregated as in an ensemble [53,54]. Moreover, additional
processing could be used after the encoder step to generate feature
vectors more suited for anomaly detection [54,55].

Despite the aforementioned limitations and possible improve-
ments, the proposed pipeline is easy to deploy and performs well
with low amounts of data. The segmentation is reliable on normal
images, and if segmentation fails, the anomaly detection module will
likely catch it. Since the same encoder is used, a failed segmentation
results from an out-of-domain feature vector being passed into the
decoder, which would also be flagged by the anomaly detection mod-
ule. Therefore, the anomaly heatmap could be used to inform the
uncertainty of the segmentation at different locations in the image.
When used together, the segmentation mask and anomaly heatmap
can prioritize the analysis of cells in regions with low anomaly scores
while excluding those with high anomaly scores.

Conclusions

This work presents a machine learning�based image analysis
pipeline that can provide real-time segmentation masks and
anomaly heatmaps to improve closed-loop cell therapy biomanu-
facturing. The results suggest that a U-net based model can effec-
tively perform semantic segmentation on qOBM phase images
with a limited number of annotated images. In addition, the
encoder features generated by the U-net can be used to detect
anomalies including those that the network has never seen,
which is extremely powerful.

In deployment, non-invasive imaging paired with the real-time
image analysis pipeline can dynamically monitor the growth and
behavior of cultured cells. The accurate segmentation results also offer
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a wealth of possibilities for further analysis. For instance, the segmented
regions of interest enable feature extraction for cell phenotype classifi-
cation or quality prediction. These insights can be used to drive real-
time decisions for regulating crucial parameters like nutrient supply,
growth factors, and environmental conditions to consistently yield
high-quality therapeutic products. Furthermore, the anomaly detection
capabilities swiftly identify deviations such as contamination or hard-
ware issues, prompting immediate corrective actions.

Looking ahead, an important future direction is the refinement of
the anomaly detection capabilities. Detecting and distinguishing dif-
ferent anomalies can help maintain experimental consistency, pre-
vent unreliable data generation, and avoid resource wastage. By
incorporating aspects of lifelong learning, a model can retain knowl-
edge about past seen anomalies, enabling it to distinguish previously
encountered anomaly types while continuously adapting to new,
previously unseen anomaly types. Overall, the presented pipeline
represents a promising stride towards improved cell therapy
manufacturing processes.

Funding

The authors acknowledge the support from Georgia Tech Research
Institute, via their Independent Research and Development budget;
the Billie and Bernie Marcus Foundation; the Georgia Research Alli-
ance; National Institutes of Health National Institute of General Medi-
cal Sciences (R35GM147437); Burroughs Wellcome Fund (CASI BWF
1014540) and Georgia Tech.

Declaration of Competing Interest

The authors have no commercial, proprietary or financial interest
in the products or companies described in this article.

Author Contributions

Conception and design of the study: RQC, BJ, JL. Acquisition of
data: PCC, CF, BW, FR, KR. Analysis and interpretation of data: RQC.
Drafting or revising the manuscript: RQC, BJ, SB, FR, KR, JL. All authors
have approved the final article.

Acknowledgments

The authors thank Tony Pan (Emory University) for their insight-
ful discussions.

References

[1] Ben Jehuda Ronen, Shemer Yuval, Binah Ofer. Genome editing in induced pluripo-
tent stem cells using crispr/cas9. Stem Cell Reviews and Reports 2018;14(3):323–
36.

[2] Takahashi Toshio. Organoids for drug discovery and personalized medicine.
Annual Review of Pharmacology and Toxicology 2019;59:447–62.

[3] Muthu Sathish, Bapat Asawari, Jain Rashmi, Jeyaraman Naveen, Jeyaraman Mad-
han. Exosomal therapy—a new frontier in regenerative medicine. Stem Cell Inves-
tigation 2021;8.

[4] Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper Michael Sean. Stem cell
therapy for neurological disorders. South African Medical Journal 2019;109(8
Suppl 1):S71–8.

[5] Dai Hanren, Wang Yao, Lu Xuechun, Han Weidong. Chimeric antigen receptors
modified T-cells for cancer therapy. Journal of the National Cancer Institute
2016;108(7):djv439.

[6] Mullard Asher. FDA approves first CAR T therapy. Nature Reviews Drug Discovery
2017;16(10):669–70.

[7] Rosa Saez-Iba~nez Ana, Upadhaya Samik, Partridge Tanya, Shah Monica, Correa
Diego, Campbell Jay. Landscape of cancer cell therapies: trends and real-world
data. Nature Reviews Drug Discovery 2022;21(9):631–2.

[8] Mikhael Joseph, Fowler Jessica, Nina Shah. Chimeric antigen receptor t-cell thera-
pies: barriers and solutions to access. JCO Oncology Practice OP�22. 2022.

[9] Wang Bryan, Bowles-Welch Annie C, Yeago Carolyn, Roy Krishnendu. Process
analytical technologies in cell therapy manufacturing: state-of-the-art and future
directions. Journal of Advanced Manufacturing and Processing 2022;4(1):e10106.
[10] Costa Paloma Casteleiro, Wang Bryan, Filan Caroline, Bowles-Welch Annie, Yeago
Carolyn, Roy Krishnendu, Robles Francisco E. Functional imaging with dynamic
quantitative oblique back-illumination microscopy. Journal of Biomedical Optics
2022;27(6):066502.

[11] Ledwig Patrick, Robles Francisco E. Quantitative 3D refractive index tomography
of opaque samples in epi-mode. Optica Jan 2021;8(1):6–14.

[12] Ledwig Patrick, Robles Francisco E. Epi-mode tomographic quantitative phase imag-
ing in thick scattering samples. Biomed. Opt. Express Jul 2019;10(7):3605–21.

[13] Ledwig Patrick, Sghayyer Moses, Kurtzberg Joanne, Robles Francisco E. Dual-
wavelength oblique back-illumination microscopy for the non-invasive imaging
and quantification of blood in collection and storage bags. Biomed. Opt. Express
Jun 2018;9(6):2743–54.

[14] Grys Ben T, Lo Dara S, Sahin Nil, Kraus Oren Z, Morris Quaid, Boone Charles,
Andrews Brenda J. Machine learning and computer vision approaches for pheno-
typic profiling. Journal of Cell Biology 2017;216(1):65–71.

[15] Kraus Oren Z, Frey Brendan J. Computer vision for high content screening. Critical
Reviews in Biochemistry and Molecular Biology 2016;51(2):102–9.

[16] Zhurikhina Anastasia, Qi Timothy, Hahn Klaus M, Elston Timothy C, Tsygankov Denis.
Edgeprops: a computational platform for correlative analysis of cell dynamics and
near-edge protein activity. Rho GTPases:Methods and Protocols 2018: 47–56.

[17] Pilcher William, Yang Xingyu, Zhurikhina Anastasia, Chernaya Olga, Xu Yinghan,
Qiu Peng, Tsygankov Denis. Shape-to-graph mapping method for efficient charac-
terization and classification of complex geometries in biological images. PLoS
Computational Biology 2020;16(9):e1007758.

[18] Sabokrou Mohammad, Fathy Mahmood, Hoseini Mojtaba, Klette Reinhard. Real-
time anomaly detection and localization in crowded scenes. In: In: Proceedings of
the IEEE conference on computer vision and pattern recognition workshops;
2015. p. 56–62.

[19] Long Jonathan, Shelhamer Evan, Darrell Trevor. Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition; 2015. p. 3431–40.

[20] Meijering Erik. Cell segmentation: 50 years down the road [life sciences]. IEEE
Signal Processing Magazine 2012;29(5):140–5.

[21] Bengtsson Ewert, Wahlby C, Lindblad Joakim. Robust cell image segmentation
methods. Pattern Recognition Image Analysis 2004;14(2):157–67.

[22] Du Getao, Cao Xu, Liang Jimin, Chen Xueli, Zhan Yonghua. Medical image segmen-
tation based on u-net: a review. Journal of Imaging Science and Technology
2020;64:1–12.

[23] Taghanaki Saeid Asgari, Abhishek Kumar, Cohen Joseph Paul, Cohen-Adad Julien,
Hamarneh Ghassan. Deep semantic segmentation of natural and medical images:
a review. Artificial Intelligence Review 2021;54(1):137–78.

[24] Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-net: convolutional networks
for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A,
eds. International conference on medical image computing and computer-
assisted intervention, Cham: Springer; 2015:234–41.

[25] Bardis Michelle, Houshyar Roozbeh, Chantaduly Chanon, Ushinsky Alexander,
Glavis-Bloom Justin, Shaver Madeleine, Chow Daniel, Uchio Edward, Chang Peter.
Deep learning with limited data: organ segmentation performance by u-net. Elec-
tronics 2020;9(8):1199.

[26] Le An Pei Zhang, Adeli Ehsan, Wang Yan, Ma Guangkai, Shi Feng, Lalush David S, Lin
Weili, Shen Dinggang. Multi-level canonical correlation analysis for standard-dose pet
image estimation. IEEE Transactions on Image Processing 2016;25(7):3303–15.

[27] Zhu Jinhan, Zhang Jun, Qiu Bo, Liu Yimei, Liu Xiaowei, Chen Lixin. Comparison of
the automatic segmentation of multiple organs at risk in CT images of lung cancer
between deep convolutional neural network-based and atlas-based techniques.
Acta Oncologica 2019;58(2):257–64.

[28] Ruff Lukas, Kauffmann Jacob R, Vandermeulen Robert A, Montavon Gr�egoire,
Samek Wojciech, Kloft Marius, Dietterich Thomas G, M€uller Klaus-Robert. A uni-
fying review of deep and shallow anomaly detection. Proceedings of the IEEE
2021;109(5):756–95.

[29] Nick Pawlowski, Matthew CH Lee, Martin Rajchl, Steven McDonagh, Enzo Fer-
rante, Konstantinos Kamnitsas, Sam Cooke, Susan Stevenson, Aneesh Khetani,
Tom Newman, et al. Unsupervised lesion detection in brain CT using Bayesian
convolutional autoencoders. 2018.

[30] Schlegl Thomas, Seeb€ock Philipp, Waldstein Sebastian M, Langs Georg, Schmidt-
Erfurth Ursula. f-anogan: fast unsupervised anomaly detection with generative
adversarial networks. Medical Image Analysis 2019;54:30–44.

[31] Li Chun-Liang, Sohn Kihyuk, Yoon Jinsung, Pfister Tomas. Cutpaste: self-
supervised learning for anomaly detection and localization. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition;
2021. p. 9664–74.

[32] Sheynin Shelly, Benaim Sagie, Wolf Lior. A hierarchical transformation-discrimi-
nating generative model for few shot anomaly detection. In: Proceedings of the
IEEE/CVF international conference on computer vision; 2021. p. 8495–504.

[33] Reiss Tal, Cohen Niv, Bergman Liron, Hoshen Yedid. Panda: adapting pretrained
features for anomaly detection and segmentation. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition; 2021. p. 2806–14.

[34] Muller Steve, Lancrenon Jean, Harpes Carlo, Traon Yves Le, Gombault Sylvain,
Bonnin Jean-Marie. A training-resistant anomaly detection system. Computers &
Security 2018;76:1–11.

[35] Campello Ricardo JGB, Moulavi Davoud, Zimek Arthur, Sander J€org. Hierarchical
density estimates for data clustering, visualization, and outlier detection. ACM
Transactions on Knowledge Discovery from Data (TKDD) 2015;10(1):1–51.

[36] Abdullah Johari, Chanderan Navein. Hierarchical density-based clustering of mal-
ware behaviour. Journal of Telecommunication, Electronic and Computer Engi-
neering (JTEC) 2017;9(2-10):159–64.

http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0001
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0001
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0001
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0002
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0002
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0003
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0003
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0003
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0004
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0004
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0004
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0005
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0005
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0005
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0006
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0006
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0007
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0007
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0007
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0007
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0008
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0008
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0008
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0009
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0009
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0009
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0010
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0010
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0010
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0010
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0011
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0011
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0012
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0012
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0013
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0013
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0013
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0013
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0014
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0014
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0014
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0015
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0015
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0016
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0016
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0016
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0017
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0017
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0017
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0017
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0018
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0018
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0018
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0018
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0019
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0019
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0019
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0020
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0020
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0021
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0021
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0022
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0022
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0022
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0023
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0023
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0023
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0024
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0024
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0024
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0024
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0025
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0025
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0025
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0025
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0026
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0026
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0026
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0027
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0027
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0027
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0027
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0028
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0028
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0028
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0028
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0028
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0028
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0030
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0030
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0030
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0030
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0031
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0031
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0031
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0031
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0032
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0032
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0032
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0033
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0033
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0033
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0034
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0034
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0034
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0035
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0035
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0035
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0035
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0036
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0036
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0036


R.Q. Chen et al. / Cytotherapy 25 (2023) 1361�1369 1369
[37] Xia Yan, Pan Shuguo, Meng Xiaolin, Gao Wang, Ye Fei, Zhao Qing, Zhao Xingwang.
Anomaly detection for urban vehicle gnss observation with a hybrid machine
learning system. Remote Sensing 2020;12(6):971.

[38] Qin Kun, Wang Qixin, Lu Binbin, Sun Huabo, Shu Ping. Flight anomaly detection
via a deep hybrid model. Aerospace 2022;9(6):329.

[39] Costa Paloma Casteleiro, Guang Zhe, Ledwig Patrick, Zhang Zhaobin, Neill Stew-
art, Olson Jeffrey J, Robles Francisco E. Towards in-vivo label-free detection of
brain tumor margins with epi-illumination tomographic quantitative phase
imaging. Biomed. Opt. Express Mar 2021;12(3):1621–34.

[40] Guang Zhe, Ledwig Patrick, Costa Paloma Casteleiro, Filan Caroline, Robles Fran-
cisco E. Optimization of a flexible fiber-optic probe for epi-mode quantitative
phase imaging. Opt. Express May 2022;30(11):17713–29.

[41] Paszke Adam, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James, Chanan
Gregory, Killeen Trevor, Lin Zeming, Gimelshein Natalia, Antiga Luca, Desmaison
Alban, Kopf Andreas, Yang Edward, DeVito Zachary, Raison Martin, Tejani Aly-
khan, Chilamkurthy Sasank, Steiner Benoit, Fang Lu, Bai Junjie, Chintala Soumith.
PyTorch: an imperative style, high-performance deep learning library editors. In:
Wallach H, Larochelle H, Beygelzimer A, d’Alch�e Buc F, Fox E, Garnett R, eds.
Advances in neural information processing systems 32, Red Hook, NY: Curran
Associates, Inc; 2019:8024–35.

[42] Eugene Khvedchenya. Pytorch toolbelt. https://github.com/BloodAxe/pytorch-
toolbelt; 2019. [accessed 09.27.22].

[43] Milletari Fausto, Navab Nassir, Ahmadi Seyed-Ahmad. V-net: fully convolu-
tional neural networks for volumetric medical image segmentation. In: 2016
fourth international conference on 3D vision (3DV), Piscataway, NJ: IEEE;
2016:565–71.

[44] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[45] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.
[46] Campello Ricardo JGB, Moulavi Davoud, Sander J€org. Density-based clustering
based on hierarchical density estimates. In: Pacific-Asia conference on knowledge
discovery and data mining, New York: Springer; 2013:160–72.

[47] Ester Martin, Kriegel Hans-Peter, Sander J€org, Xu Xiaowei, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In: Pro-
ceedings of 2nd international conference on knowledge discovery and data min-
ing (KDD-96), 96; 1996. p. 226–31.

[48] McInnes Leland, Healy John, Astels Steve. hdbscan: hierarchical density based
clustering. J. Open Source Softw. 2017;2(11):205.

[49] Dice Lee R. Measures of the amount of ecologic association between species. Ecol-
ogy 1945;26(3):297–302.

[50] Pearson Karl. VII. Note on regression and inheritance in the case of two parents.
Proc. Roy. Soc. Lond. 1895;58(347-352):240–2.

[51] Strudel Robin, Garcia Ricardo, Laptev Ivan, Schmid Cordelia. Segmenter: Trans-
former for semantic segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV); October 2021. p. 7262–72.

[52] Jadon Shruti. A survey of loss functions for semantic segmentation. In: 2020 IEEE
conference on computational intelligence in bioinformatics and computational
biology (CIBCB); 2020. p. 1–7.

[53] Yi Jihun, Yoon Sungroh. Patch svdd: Patch-level svdd for anomaly detection and seg-
mentation. In: In: Proceedings of the Asian conference on computer vision; 2020.

[54] Tsai Chin-Chia, Wu Tsung-Hsuan, Lai Shang-Hong. Multi-scale patch-based repre-
sentation learning for image anomaly detection and segmentation. In: Proceed-
ings of the IEEE/CVF winter conference on applications of computer vision
(WACV); January 2022. p. 3992–4000.

[55] Ruff Lukas, Vandermeulen Robert, Goernitz Nico, Deecke Lucas, Siddiqui Shoaib
Ahmed, Binder Alexander, M€uller Emmanuel, Kloft Marius. Deep one-class classi-
fication. In: Dy Jennifer, Krause Andreas, eds. Proceedings of the 35th interna-
tional conference on machine learning, volume 80 of Proceedings of Machine
Learning Research; 2018. p. 4393–402.

http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0037
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0037
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0037
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0038
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0038
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0039
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0039
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0039
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0039
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0040
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0040
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0040
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0041
https://github.com/BloodAxe/pytorch-toolbelt
https://github.com/BloodAxe/pytorch-toolbelt
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0043
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0043
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0043
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0043
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0046
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0046
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0046
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0046
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0047
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0047
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0047
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0047
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0047
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0048
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0048
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0049
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0049
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0050
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0050
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0051
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0051
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0051
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0052
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0052
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0052
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0053
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0053
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0054
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0054
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0054
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0054
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0055
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0055
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0055
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0055
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0055
http://refhub.elsevier.com/S1465-3249(23)01042-3/sbref0055

	Real-time semantic segmentation and anomaly detection of functional images for cell therapy manufacturing
	Introduction
	Methods
	Data acquisition
	Quantitative oblique back illumination microscopy
	Modified U-net
	HDBSCAN-GLOSH outlier detection

	Results
	Experimental setup
	Cell segmentation
	Anomaly detection

	Discussion
	Conclusions
	Funding
	Declaration of Competing Interest
	Author Contributions
	Acknowledgments

	References


