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Abstract— Human Mesenchymal Stromal Cells (hMSC) have
shown promising pre-clinical results by eliciting immunomodu-
latory effects to alleviate inflammation. In order to further study
these effects, consistent and automated expansion platforms
are required. Recent theoretical innovations have shown that
model-based automated controls can more effectively regulate
key nutrient concentrations. However, this previous work did
not account for time-varying cell growth and death which
resulted in inconsistent modeling and controller performance.
To mitigate these effects, we propose a new model with time-
varying parameters to track viable, proliferating, and dead cells
and their respective growth rates with algorithms to estimate
these parameters as functions of our limited measured states.
We then propose an updated control architecture (referred to
as smooth-controller) to leverage the additional parameters for
improved estimation and control. The control objective is to
regulate glucose and lactate to fixed setpoints while minimizing
total media usage and large flowrate disturbances. Finally, we
demonstrate the new control architecture in hMSC expansion
with improved lactate setpoint MSE (58% reduction), improved
observer MSE (36% for glucose and 20% for lactate), and
reduced process disturbance (1 to 0 lactate spikes). Although
the smooth-controller did not improve cell yield (4.91 x 107
compared to 5.08 x 107), it did reduce media usage to match
the reduced growth rate thereby increasing cell yield per mL
of fed media (6.3 x 10* to 8.6 x 10%).

Index Terms— Cellular Dynamics, Estimation, Process Con-
trol

I. INTRODUCTION

Adult human Mesenchymal Stromal Cells (hMSCs) of-
fer promising therapeutic effects for regenerative medicine.
Pre-clinical studies have demonstrated immunomodulatory
results from hMSC treatment for various indications [1]-[3].
Automated cell-expansion platforms and consistent quality
cell products are necessary to scale up production to further
study these clinical effects [4], [5].

Hollow-fiber bioreactors, such as the Quantum (Terumo
BCT), are approved for cell manufacturing for clinical use
to enable large-scale expansion of hMSCs [6]. Bioreactors
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attempt to regulate the many relevant processes and environ-
mental parameters in the cell expansion process. Currently,
these quantities are regulated with intermittent intervention
from skilled operators to measure nutrient values and update
flowrates [7]. This method results in slow feedback rates,
limited knowledge of full system dynamics, and increased
variability. Automated control and modeling techniques have
been proposed for MSC growth [8], [9] but have so far been
limited to small-scale, static culture vessels without model-
based control techniques to account for varying culture
conditions.

In our prior work, we proposed a novel automated control
system and control-centric model to address these limitations
[10]. The key contributions of this work are 1) updating
the control-centric model with updated fluid dynamics pa-
rameters and time-varying cell dynamics, 2) designing an
estimation model for cell count and cell growth rate parame-
ters, 3) formulating a multiple observer model that accounts
for new sensing frequency limitations and estimates both
unmeasurable states and model parameters, 4) upgrading
the state feedback controller to improve glucose and lactate
regulation while minimizing observer errors, and 5) show
that the updated estimation and control architecture improves
cell yield per mL fed media over the prior control architecture
in cell expansion (Fig. 1).
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Fig. 1: Control architecture with updated fluid model, cell
model, observer, and controller enables improved cell yield
per mL fed media in expansion.

II. BIOREACTOR SYSTEM OVERVIEW

As in the prior bioreactor overview in [10], the primary
control goal is to regulate the concentrations of glucose
and lactate within the bioreactor while minimizing process
disturbances and media usage. The bioreactor setup also
remains largely the same, with our medium-scale hollow-
fiber bioreactor’s intra-capillary (IC) space as a bundle of
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Fig. 2: Overview of bioreactor model with updated fluid dynamics (a) and cell dynamics (b).

semi-permeable fiber membrane tubes in which hMSCs are
seeded, and an extra-capillary space (EC) which allows for
parallel media flow and nutrient exchange. The same media
and glucose concentrate solutions are used to perfuse across
the cells and replenish nutrients/remove waste during the
expansion process. Peristaltic pumps are used for all five
actuators shown in Fig. 2a.

Our updated bioreactor system introduced new fluid dy-
namics in the form of modified IC and EC flow loops with
reduced volumes. This reduced the required loop flowrates. It
also introduced 5 mL dead volumes in the IC and EC loops
which trap bubbles out of the bioreactor, and reduce input
nutrient concentration spikes. In-line continuous glucose and
lactate sensors were replaced with daily at-line sampling of
glucose and lactate at the inlet and outlet due to inconsistency
of sensor calibration and long-term inaccuracy of data.
Additional daily measurements of waste media lactate and
volume were also taken for improved observer performance.
This updated bioreactor setup is shown in Fig. 3 and is used
for experimental cell expansion results.

Fig. 3: Bioreactor Setup used for cell expansions.

In this work we compare the performance of our new
automated control architecture (smooth-controlled) with both
a baseline manual expansion protocol (baseline) and our prior
automated control architecture (controlled).

All three protocols start with coating and seeding the
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bioreactor. After this step, the baseline protocol introduces a
minimal level of perfusion for the first 2 days of expansion,
first through EC, then through IC, and doubles flowrates
every day after that until the end of the expansion on day 6.
The controlled protocol follows the same baseline protocol
until day 3 after which the controller regulates input media
and concentrate flowrates. In contrast, the smooth-controller
begins perfusion on day 1 itself with setpoints fixed at the
day 1 glucose and lactate measurement levels. All protocols
are also limited to 1L of media for perfusion. The protocols
are compared with the following metrics: Glucose and lactate
setpoint mean squared error (S-MSE), Glucose and Lactate
observer mean-squared error (O-MSE), media usage, number
of lactate spikes, and final cell yield.

III. DiGITAL TWIN MODEL

In order to implement automated feedback process control
we first design a digital model for the physical plant (our
medium-scale hollow-fiber bioreactor) that accurately simu-
lates the system inputs (media flowrates), in-process mea-
surements (glucose and lactate), and cell counts in real-time.
We also apply optimal estimation and control algorithms in
real-time to interface with the physical plant and control
for specific process parameters. This procedure has been
documented for other bio-manufacturing processes under a
digital-twin modeling framework [11]. This modeling task is
split up into a fluid dynamics model, a cell dynamics model,
a cell expansion estimation model, an observer model for
optimal estimation, and a controller.

A. Fluid Dynamics Model

The fluid dynamics model of the bioreactor describes how
concentrations of glucose and lactate vary due to bioreactor
design/geometry and media flowrates. The IC and EC states
for the hollow-fiber bioreactor were designed and validated
in our prior work and the dynamics describing the convection
diffusion model for glucose and lactate are shown below:
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The parameter determination, discretization, and model val-
idation are described in more detail in [10].

The updated bioreactor setup in Fig. 2a introduces new
tubing volumes, Vic yuping = 0.01L, Ve uping = 0.025L,
and Vi, 1ping = 0.01L. For the flowrates studied in this ex-
periment, the volumes were sufficiently mixed with minimal
gradients when simulated. Therefore, these volumes were
modeled as continuously mixed, so like with the sensor and
tubing states in [10], a mixed-tank linear model was used for
these additional volumes.

The new dead volumes, V¢ g and Vg g, were not nec-
essarily constant during the expansion as media evaporates
and bubbles get trapped in the dead volume. In application
however, the dead volume states were modeled as constant
(at 0.004L) due to the back-pressure from the hollowfiber
bioreactor filling up the volumes, and could therefore also
use the mixed-tank linear model approach.

The evaporated media and bubble volume then resulted
in reduced waste bottle volume. Ordinarily this evaporation
rate would need to be modeled. However, the waste bottle
measurement serves the specific model purpose of determin-
ing the cumulative lactate quantity (mg) in the waste bottle,
which would not be affected by evaporation and bubbles.
Therefore, the newly added waste bottle states, Vy;, and Ly,
were also modeled using the mixed-tank linear model as
follows:
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B. Cell Dynamics Model

In [10], glucose consumption and lactate production terms
were driven by a simple exponential growth function for cell
number with constant cell growth rate, glucose consumption
rate and lactate production rate. More advanced metabolic
flux models (DFBA) have been proposed for fermentation
processes where there is enough metabolic and gene data to
correlate with growth rate [12]. Some such models have been
developed for MSCs in static cultures [13], [14] but not for
our bioreactor environment. With future metabolic analysis
of bioreactor expansions, a similar flux model could be
determined for our system. In this paper, we only considered
glucose and lactate fluxes as our controllable metabolites
and improved this simpler flux model to account for varying
growth parameters and growth phases.

The main parameters/states of interest for this improved
cell model (Fig 2b) are as follows:

0 = [n,in,:ng;Cy; Cyl &)

with total viable cells (n,), attached/actively growing cells
(n,), dead cells (n;), cell growth rate (Cg) and cell death
rate (Cy).
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For cell growth dynamics, we split this model into two
distinct phases, growth during attachment and growth after
attachment.

The attachment phase occurs right after cells are seeded
into the bioreactor, at which point all elements of 6 are 0.
Static hMSC culture indicates that the attachment occurs
at a negative exponential rate [15], where 60-90% of the
attachment occurs in the first 5 hours and 100% attachment
occurs at 24 hrs. This is captured by the following differential
equation:

dna _ Nseeded —1/14400
=——e (6)
dt 14400
where ng,.4., 15 the number of suspended cells introduced
into the bioreactor.

Once the cells attach, they begin proliferating, consuming
glucose and producing lactate. This is modeled proportional
to the attachment negative exponential with the final cell
growth rate being the initialized growth rate value from a
prior baseline expansion (Cg):

0
ng — & e—t/14400 (7)
dt 14400

The attachment phase ends when n, > 0.99n,,4.4-

After the attachment phase, cell growth rate starts to drive
the majority of the glucose decrease and lactate increase in
the bioreactor. To compute #n, in this phase, we must first
account for cell confluency (C,), computed as the fraction
of attached MSC surface area (S.) to available fiber surface
area (.Sy), which can inhibit expansion at high cell densities.
This assumes even distribution of cells across the fibers.
nuSC

C. =
Sy

c

®)

Cells are mobile during growth and will aim to expand into
empty space, so with an even initial seeding, the confluency
should be relatively uniform across fibers. MSCs are typically
harvested at 70-80% confluency [16]. With this notion, we
compute n, or the number of attached cells that can double
given the available surface area as follows:

n if0<C, <05
if0.5<C, <08

else harvest cells

v

0.8=C,)n,

n,

©))

Figure 2b highlights this confluency effect which differenti-
ates n, from n,,.
In this growth phase after attachment, the following differ-
ential equation tracks the total number of viable cells (n,),
dn,
dt
High confluency, pressure, and shear stress can influence
cell death [17], however our current experimental protocol
aims for 80% confluency at harvest to prevent cell death due
to overcrowding while minimizing input flowrates to reduce
the effects of changing pressure and shear stress. Therefore
cell death is assumed to be negligible for the following
simulations and expansions.

= 1,(C, = Cy) (10)
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C. Fluid and Cell Model Validation

The new fluid dynamic and cell dynamic models were
validated with a preliminary controlled cell expansion. The
cell model parameters were initialized to the rates observed
in prior baseline expansions. Measurements of the input and
output glucose and lactate concentrations were taken and
compared to the fitted model (Fig. 4):
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Fig. 4: Model validation with post-expansion fitted C, model
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Fig. 5: Model validation of waste cumulative lactate with
with post-expansion fitted C, model

Additionally, with this best-fit parameter model, the waste
cumulative lactate (defined as V,,L,) was simulated and
compared with the measured lactate concentrations and vol-
umes in the waste bottle (Fig. 5) with a best-fit MSE of
0.011mg for waste cumulative lactate.

From Fig. 4 it is clear that the best-fit model for C,
required transient cell growth rate, which necessitates either
a future dynamic model for C, (such as DFBA for MSCs)
or an effective estimator, which we propose in the following
section. With the exception of the C, parameter all other
fluid and cell model parameters were validated.

D. Cell Expansion Estimation Model

As we illustrated in the previous section, incorrect cell
model assumptions, especially with infrequent samples, can
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result in reduced predictive accuracy. Therefore, the cell
dynamics model was further extended to explore cell growth
rate and cell number estimation based on in-process metabo-
lite measurements. Similar work has been conducted with
perfusion-based bioreactors to correlate lactate mass-flux to
measured cell number [9]. However, this fitted correlation
model is limited because it relies on accurate and frequent
lactate measurements without allowing for cell growth rate
estimation for forward simulation. Our proposed dynamic
model addresses both issues.

Since our bioreactor is a closed system, all lactate present
in the reactor, tubing, and waste must have been produced
by cells in the bioreactor. With the addition of the waste
bottle sensed states we can estimate the cumulative lactate
at sample-time k:

Ll;um =LwVw + LIC,autVW,tubing + LIC,outVW,tubing

LIC,in + LIC,out
2

Vic uuping + VEC tubing + Vie,s + Vec,B)
g g

Y

This computation cannot take advantage of the estimated
states since those are based on potentially incorrect model
assumptions.

In order to compute cell growth rate, an equation is needed
to relate cumulative lactate, cell growth rate, and viable cell
number shown below:

k Lpnlrj il k14 1 k-1 12
cum ack—l e - + cum ( )
g
k=1 (4k _k—1
nfj=n’;_lecg =0 (13)

where C, and n, are initialized to the baseline fitted cell
growth rate and the initial seeded cell number respectively.
Equation 12 can be considered a pseudo-sensor for C*~!
and can be solved by using Newton-Raphson root-finding
methods. Equation 13 is also a pseudo-sensor for n’U‘ as a
function of the solution of Equation 12 for C;~".

250

Cumulative (plant)
Cumulative (sensor)

= = =plant Cg pseudo-sensor
fixed Cg pseduo-sensor

200

150

100 B

50

Cum. Lactate [mg]

L L L '
80 100 120 140

Time [hrs]

T L
40 60

Fig. 6: Model validation of cumulative lactate dynamic
model and C, sensor model

The same bioreactor expansion shown in Fig. 4 was used
to validate the cumulative lactate pseudo-sensor. Fig. 6 shows
Equation 12 plotted with the "true" cell growth parameters as
the plant Cg pseudo-sensor, while the observer Cg pseudo-
sensor equation assumes that the cell growth rate stayed
constant at the initialized value for the entire expansion.
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The plant Cg pseudo-sensor also matched well with the
computed cumulative data (MSE of 0.011mg), although there
was some variance attributed to the lactate sensor and volume
measurement noise.

E. Observer Model

The above fluid dynamics, cell dynamics and cell estima-
tion models enumerate many states that cannot be directly
measured. Concentrations and cell counts within the IC
fibers or the EC space cannot be accessed due to sterility
concerns. Meanwhile, input/output states can be accessed for
measurement, but continuous flow-through sensors were in-
accurate and inconsistent, while manual measurements were
limited to daily sampling of 1-2 mL to prevent unnecessary
cell disturbance. These manual samples are also affected by
temperature which can result in noisy/inaccurate measure-
ments. Therefore it is important to design a state/parameter
estimation model that can leverage limited sensing of the
bioreactor to best estimate the value of the remaining model
states.

In the previous sections, model equations were defined
for all of the glucose, lactate and cell states (X), cell model
parameters (6) (shown in equation (5)), and input flowrates
(u). In [10], a noise-optimal state estimate problem was
already posited for the glucose and lactate concentration
states X . By adding the discretized parameters 6 as additional
states for the observer architecture to track, we use the
same extended kalman filter (EKF) design to compute noise-
optimal estimated parameters in real-time.

However, these added parameters € nearly double the
number of states which results in an unstable EKF model
due to the ill-conditioned inverse caused by the variance
matrix (P) described in [10]. In order to combat this issue,
a multiple partial EKF model was designed which groups
together only the relevant states for estimation for each ob-
server. Four independent observers were designed to estimate
the following sets of states: 1) glucose IC, EC, and tubing,
2) lactate IC, EC, tubing, and waste, 3) cell growth rate (Cg),
and 4) number of viable cells (n,)

The glucose and lactate IC and EC observers both use a
diagonal R matrix with sensor noise of 0.1 g/LL and a diagonal
Q matrix with model noise of 0.001 g/L for best tracking
response, very similar to prior work. The waste volume is
currently measured visually with a precision of 25 mL, which
is used as the diagonal entry in the lactate R matrix.

The cell growth rate observer’s R value should be calcu-
lated from the measured lactate states, however this value in
the pseudo-sensor (Equation 12) is very unstable for small
changes in concentration, so for practicality a value of 0.01/hr
was used. The corresponding model Q value was set to
0.005/hr and the initialized variance was set to 1.

The viable cell number observer R value used the prop-
agated C, R value through the n, pseudo-sensor (Equation
13 and the Q value was set to 103

F. Feedback Controller

In this work we use a Linear Quadratic Regulator (LQR)
controller in a manner similar to our previous work [10].
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LQR is an optimal control scheme that weights desired state
costs against input costs which perfectly matches the control
objectives to minimize glucose and lactate state setpoint
errors while minimizing media usage. This was used to
automatically update input bioreactor flowrates at 1 Hz.
We improve on our prior system by linearizing and re-
optimizing the feedback gains once per day after the in-line
sensor measurements are taken. This is necessary because
our new model has continuously changing parameters. The
linearization and gains computation were carried out on an
Intel NUC 8 running Ubuntu 16.04 in 0.543 seconds which
is well within the control frequency.

The same Q;or and R;,p matrices were used as in
[10] for glucose and lactate state costs and input costs
respectively. These values are shown below for O gg:

G]C,[l’l N q= 50 LlC,in . q= 50
Greean() g = 10° Licee(D) i q= 10° (14)
G,y i q=5x10° Ly : q=5%x10°
GEC,in q= 10° LEC,in q= 103
and R;pg:
10 0 O 0 0
0 10 0 O 0
Rior=[0 0 1 0 0 (15)
0 0 0 001 o0
0 0 0 0 o01

However, with the addition of the discretized parameters 6,
additional matrix terms were defined as follows in the LQR
optimization problem for cost J:

oo QLQR 0 0 X
J = / [XTGTL{T] 0 Oy NLQR 0 ||dt
T
0 O NLQR RLQR u

The Q, matrix is O except for the n, terms which are
equal to 3 x 1077. The N Lor matrix is O except for the
Ny X ¥ 1c.ms ¥EC.m terms which are equal t0 —n,,;.4. These
two terms combine together to drive the cost down to 0
only if the control effort u increases exponentially to match
the exponentially increasing n, during the expansion. This
addition removes the need for a feedforward controller. The
complete updated control architecture is shown in Fig. 1.

IV. RESULTS
A. Simulation Results

Each system started with the same initial cell number, glu-
cose and lactate concentrations, and flowrates. Simulations
ended once the 80% confluence limit was reached (~ 6 days).
The updated bioreactor physical parameters, cell behavior
parameters, and the initial conditions are summarized in
Table I and match the initialized parameters of the model
validation expansion shown in Fig. 4.

The simulation of the digital twin model and feedback
controller was developed in MATLAB. The EKF observer
and LQR controller were also simulated using the sensed
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S, [um?] [18] ~ 1000
S [m’] 0.30
Col1/hr] ~0.021
G.[mg/(cell * hr)] ~-2x1078
L, [mmol /(cell * hr)] ~2.8x1071

3% 10° cells
1.15 g/L, 0.0 g/L
~ 1.8 g/L, 0.0 g/L
3.2 mL/min , 4.0 mL/min

Nseeded
Media glucose, lactate

Concentrate glucose, lactate

VIC,Ioop! VEC,Ioop

TABLE I: Simulation Parameters

states, sensing sampling rates (once per day), sensor noise,
and controller update rates (1 Hz). The simulation results are
shown in Table II.

Baseline  Controlled Smooth-
Controlled
S-MSE Glucose [g/L] 0.026 0.010 0.009
S-MSE Lactate [g/L] 0.038 0.032 0.029
O-MSE Gluc./Lac. [g/L] 3 x107° 1x107° 1.5% 1073
Media [L] 0.920 0.812 0.823
Concentrate [L] 0.000 0.152 0.135
# Lactate Spikes 3 1 0

TABLE II: Simulation Results

B. Expansion Results

In addition to the model validation controlled bioreactor
expansion (Expansion 1), a second bioreactor expansion
(Expansion 2) was performed using the same initialized
parameters shown in Table I and the same cell/reagent lots in
the model validation expansion (Fig. 4). This second expan-
sion implemented our updated real-time control architecture,
novel parameter estimation model, smooth controller, and
updated glucose and lactate setpoints (1.12 g/L. and 0.1 g/L
respectively) to eliminate error discontinuities. The second
bioreactor expansion results are shown in Fig. 7 for glucose
(7a), lactate (7b), cell number (7c), and cell growth rate
(7d). Controller and observer performance metrics as well
as media usage and total cell yield are shown in Table III
comparing the two bioreactor expansions. The observer cell
yield in Fig. 7c (4.6 x 107) is also within 6% of the true cell
yield (4.91 x 107).

Expansion 1 Expansion 2

(controlled) (smooth-controlled)

Glucose Lactate ‘ Glucose Lactate
S-MSE [g/L] 0.01 0.03 0.01 0.01
O-MSE [g/L] 39x107% 12x1073 | 25%x1073 9.6x107*
Media [L] 0.660 0.380
Conc. [L] 0.150 0.190
# Spikes 1 0
Cell Yield 5.08 x 107 4.91 x 107

TABLE III: Bioreactor Expansion Results

V. DISCUSSION

The simulation results show that the controlled case im-
proved glucose and lactate setpoint MSE compared to the
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baseline while the smooth-controlled case improved setpoint
MSE compared to both controlled and baseline. Moreover,
the large flowrate spike in the controlled case, reflected in
the sudden nutrient spike in the model validation expansion
(Fig. 4), was eliminated in the smooth-controlled case. We
hypothesize this will maintain a more steady cell growth rate.

Comparing the bioreactor expansion results, expansion 2
improved lactate setpoint MSE (58% reduction), while also
significantly reducing observer MSE (36% for glucose and
20% for lactate). The improved observer MSE especially
implies that the cell growth rate and cell number estimation
were accurate. Although expansion 2 did not maintain a
higher cell growth rate or result in a higher cell yield than
expansion 1, the accurate parameter estimation resulted in
less control effort and a large increase in cell yield per mL
fed media (6.3x10* cells/mL compared to 8.6x10* cells/mL).

Although our specific choice of reference profiles and
control parameters did not increase cell number or growth
rate, our designed control architecture enables novel future
studies to optimize for these parameters. One such study is
the impact of specific flowrates and flowrate trajectories on
cell growth rate to enable direct regulation. Another study
could evaluate the impact of different glucose and lactate
reference profiles on cell growth rate.

These future studies could also contribute to data-driven
model expansion. Model predictive control (MPC) specif-
ically has been used for cell growth prediction in small-
scale static cultures [8] and would improve on our current
estimation model which cannot predict parameter trajecto-
ries. We can leverage post-expansion cell quality assays for
MSC function such as IDO suppression [19], macrophage
M1 suppression [20], and T-cell co-culture [21] to determine
key metabolites and cytokines to add to the model. With
this detailed metabolite and quality data incorporated into
an MPC algorithm, it might be possible to predict and
regulate MSC cell growth parameters and quality assay
metrics directly through correlative models like DFBA.
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