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Abstract— Human Mesenchymal Stromal Cells (hMSC) have
shown promising pre-clinical results by eliciting immunomodu-
latory effects to alleviate inflammation. In order to further study
these effects, consistent and automated expansion platforms
are required. Recent theoretical innovations have shown that
model-based automated controls can more effectively regulate
key nutrient concentrations. However, this previous work did
not account for time-varying cell growth and death which
resulted in inconsistent modeling and controller performance.
To mitigate these effects, we propose a new model with time-
varying parameters to track viable, proliferating, and dead cells
and their respective growth rates with algorithms to estimate
these parameters as functions of our limited measured states.
We then propose an updated control architecture (referred to
as smooth-controller) to leverage the additional parameters for
improved estimation and control. The control objective is to
regulate glucose and lactate to fixed setpoints while minimizing
total media usage and large flowrate disturbances. Finally, we
demonstrate the new control architecture in hMSC expansion
with improved lactate setpoint MSE (58% reduction), improved
observer MSE (36% for glucose and 20% for lactate), and
reduced process disturbance (1 to 0 lactate spikes). Although
the smooth-controller did not improve cell yield (4.91 × 107
compared to 5.08 × 107), it did reduce media usage to match
the reduced growth rate thereby increasing cell yield per mL
of fed media (6.3 × 104 to 8.6 × 104).

Index Terms— Cellular Dynamics, Estimation, Process Con-
trol

I. INTRODUCTION

Adult human Mesenchymal Stromal Cells (hMSCs) of-

fer promising therapeutic effects for regenerative medicine.

Pre-clinical studies have demonstrated immunomodulatory

results from hMSC treatment for various indications [1]–[3].

Automated cell-expansion platforms and consistent quality

cell products are necessary to scale up production to further

study these clinical effects [4], [5].

Hollow-fiber bioreactors, such as the Quantum (Terumo

BCT), are approved for cell manufacturing for clinical use

to enable large-scale expansion of hMSCs [6]. Bioreactors

This work was sponsored by the U.S. Food and Drug Administration
(FDA) under grant number R01FD006598.

Bharat Kanwar is with the Woodruff School of Mechanical Engineering
at Georgia Tech, Atlanta, GA 30318 (email: bkanwar3@gatech.edu).

Bryan Wang is with the Wallace H Coulter Department of Biomed-
ical Engineering at Georgia Tech, Atlanta, GA 30318 (email: bryan-
wang@gatech.edu).

Krishnendu Roy is with the Wallace H Coulter Department of Biomed-
ical Engineering at Georgia Tech, Atlanta, GA 30318 (email: krish-
nendu.roy@bme.gatech.edu).

Anirban Mazumdar is with the Woodruff School of Mechani-
cal Engineering at Georgia Tech, Atlanta, GA 30318 (email: anir-
ban.mazumdar@me.gatech.edu).

Stephen Balakirsky is with the Georgia Tech Research Institute, Atlanta,
GA 30318 (email: stephen.balakirsky@gtri.gatech.edu).

attempt to regulate the many relevant processes and environ-

mental parameters in the cell expansion process. Currently,

these quantities are regulated with intermittent intervention

from skilled operators to measure nutrient values and update

flowrates [7]. This method results in slow feedback rates,

limited knowledge of full system dynamics, and increased

variability. Automated control and modeling techniques have

been proposed for MSC growth [8], [9] but have so far been

limited to small-scale, static culture vessels without model-

based control techniques to account for varying culture

conditions.

In our prior work, we proposed a novel automated control

system and control-centric model to address these limitations

[10]. The key contributions of this work are 1) updating

the control-centric model with updated fluid dynamics pa-

rameters and time-varying cell dynamics, 2) designing an

estimation model for cell count and cell growth rate parame-

ters, 3) formulating a multiple observer model that accounts

for new sensing frequency limitations and estimates both

unmeasurable states and model parameters, 4) upgrading

the state feedback controller to improve glucose and lactate

regulation while minimizing observer errors, and 5) show

that the updated estimation and control architecture improves

cell yield per mL fed media over the prior control architecture

in cell expansion (Fig. 1).

Fig. 1: Control architecture with updated fluid model, cell

model, observer, and controller enables improved cell yield

per mL fed media in expansion.

II. BIOREACTOR SYSTEM OVERVIEW

As in the prior bioreactor overview in [10], the primary

control goal is to regulate the concentrations of glucose

and lactate within the bioreactor while minimizing process

disturbances and media usage. The bioreactor setup also

remains largely the same, with our medium-scale hollow-

fiber bioreactor’s intra-capillary (IC) space as a bundle of
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(a) FiberCell Fluidic Setup (b) hMSC Cell States in FiberCell

Fig. 2: Overview of bioreactor model with updated fluid dynamics (a) and cell dynamics (b).

semi-permeable fiber membrane tubes in which hMSCs are

seeded, and an extra-capillary space (EC) which allows for

parallel media flow and nutrient exchange. The same media

and glucose concentrate solutions are used to perfuse across

the cells and replenish nutrients/remove waste during the

expansion process. Peristaltic pumps are used for all five

actuators shown in Fig. 2a.

Our updated bioreactor system introduced new fluid dy-

namics in the form of modified IC and EC flow loops with

reduced volumes. This reduced the required loop flowrates. It

also introduced 5 mL dead volumes in the IC and EC loops

which trap bubbles out of the bioreactor, and reduce input

nutrient concentration spikes. In-line continuous glucose and

lactate sensors were replaced with daily at-line sampling of

glucose and lactate at the inlet and outlet due to inconsistency

of sensor calibration and long-term inaccuracy of data.

Additional daily measurements of waste media lactate and

volume were also taken for improved observer performance.

This updated bioreactor setup is shown in Fig. 3 and is used

for experimental cell expansion results.

Fig. 3: Bioreactor Setup used for cell expansions.

In this work we compare the performance of our new

automated control architecture (smooth-controlled) with both

a baseline manual expansion protocol (baseline) and our prior

automated control architecture (controlled).

All three protocols start with coating and seeding the

bioreactor. After this step, the baseline protocol introduces a

minimal level of perfusion for the first 2 days of expansion,

first through EC, then through IC, and doubles flowrates

every day after that until the end of the expansion on day 6.

The controlled protocol follows the same baseline protocol

until day 3 after which the controller regulates input media

and concentrate flowrates. In contrast, the smooth-controller

begins perfusion on day 1 itself with setpoints fixed at the

day 1 glucose and lactate measurement levels. All protocols

are also limited to 1L of media for perfusion. The protocols

are compared with the following metrics: Glucose and lactate

setpoint mean squared error (S-MSE), Glucose and Lactate

observer mean-squared error (O-MSE), media usage, number

of lactate spikes, and final cell yield.

III. DIGITAL TWIN MODEL

In order to implement automated feedback process control

we first design a digital model for the physical plant (our

medium-scale hollow-fiber bioreactor) that accurately simu-

lates the system inputs (media flowrates), in-process mea-

surements (glucose and lactate), and cell counts in real-time.

We also apply optimal estimation and control algorithms in

real-time to interface with the physical plant and control

for specific process parameters. This procedure has been

documented for other bio-manufacturing processes under a

digital-twin modeling framework [11]. This modeling task is

split up into a fluid dynamics model, a cell dynamics model,

a cell expansion estimation model, an observer model for

optimal estimation, and a controller.

A. Fluid Dynamics Model
The fluid dynamics model of the bioreactor describes how

concentrations of glucose and lactate vary due to bioreactor

design/geometry and media flowrates. The IC and EC states

for the hollow-fiber bioreactor were designed and validated

in our prior work and the dynamics describing the convection

diffusion model for glucose and lactate are shown below:

𝜕𝐺

𝜕𝑡
= 𝐷𝐺

𝜕2𝐺

𝜕𝑥2
+ ⩝̇
𝐴

𝜕𝐺

𝜕𝑥
+𝐾𝐼𝐶𝐸𝐶

𝜕2𝐺𝐼𝐶𝐸𝐶
𝜕𝑟2

+ 𝐺𝑐𝑛𝑎 (1)
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𝜕𝐿

𝜕𝑡
= 𝐷𝐿

𝜕2𝐿

𝜕𝑥2
+ ⩝̇
𝐴

𝜕𝐿

𝜕𝑥
+𝐾𝐼𝐶𝐸𝐶

𝜕2𝐿𝐼𝐶𝐸𝐶
𝜕𝑟2

+ 𝐿𝑝𝑛𝑎 (2)

The parameter determination, discretization, and model val-

idation are described in more detail in [10].

The updated bioreactor setup in Fig. 2a introduces new

tubing volumes, 𝑉𝐼𝐶,𝑡𝑢𝑏𝑖𝑛𝑔 = 0.01L, 𝑉𝐸𝐶,𝑡𝑢𝑏𝑖𝑛𝑔 = 0.025L,

and 𝑉𝑊 ,𝑡𝑢𝑏𝑖𝑛𝑔 = 0.01L. For the flowrates studied in this ex-

periment, the volumes were sufficiently mixed with minimal

gradients when simulated. Therefore, these volumes were

modeled as continuously mixed, so like with the sensor and

tubing states in [10], a mixed-tank linear model was used for

these additional volumes.

The new dead volumes, 𝑉𝐼𝐶,𝐵 and 𝑉𝐸𝐶,𝐵 , were not nec-

essarily constant during the expansion as media evaporates

and bubbles get trapped in the dead volume. In application

however, the dead volume states were modeled as constant

(at 0.004L) due to the back-pressure from the hollowfiber

bioreactor filling up the volumes, and could therefore also

use the mixed-tank linear model approach.

The evaporated media and bubble volume then resulted

in reduced waste bottle volume. Ordinarily this evaporation

rate would need to be modeled. However, the waste bottle

measurement serves the specific model purpose of determin-

ing the cumulative lactate quantity (mg) in the waste bottle,

which would not be affected by evaporation and bubbles.

Therefore, the newly added waste bottle states, 𝑉𝑊 and 𝐿𝑊 ,

were also modeled using the mixed-tank linear model as

follows:
𝑑𝑉𝑊

𝑑𝑡
= ⩝̇𝐼𝐶,𝑚 + ⩝̇𝐸𝐶,𝑚 + ⩝̇𝑐 (3)

𝑑𝐿𝑊

𝑑𝑡
=
𝐿𝑊 ,𝑡𝑢𝑏𝑖𝑛𝑔

𝑉𝑊
(⩝̇𝐼𝐶,𝑚 + ⩝̇𝐸𝐶,𝑚 + ⩝̇𝑐) (4)

B. Cell Dynamics Model
In [10], glucose consumption and lactate production terms

were driven by a simple exponential growth function for cell

number with constant cell growth rate, glucose consumption

rate and lactate production rate. More advanced metabolic

flux models (DFBA) have been proposed for fermentation

processes where there is enough metabolic and gene data to

correlate with growth rate [12]. Some such models have been

developed for MSCs in static cultures [13], [14] but not for

our bioreactor environment. With future metabolic analysis

of bioreactor expansions, a similar flux model could be

determined for our system. In this paper, we only considered

glucose and lactate fluxes as our controllable metabolites

and improved this simpler flux model to account for varying

growth parameters and growth phases.

The main parameters/states of interest for this improved

cell model (Fig 2b) are as follows:

𝜃 = [𝑛𝑣; 𝑛𝑎; 𝑛𝑑 ;𝐶𝑔;𝐶𝑑] (5)

with total viable cells (𝑛𝑣), attached/actively growing cells

(𝑛𝑎), dead cells (𝑛𝑑), cell growth rate (𝐶𝑔) and cell death

rate (𝐶𝑑).

For cell growth dynamics, we split this model into two

distinct phases, growth during attachment and growth after

attachment.

The attachment phase occurs right after cells are seeded

into the bioreactor, at which point all elements of 𝜃 are 0.

Static hMSC culture indicates that the attachment occurs

at a negative exponential rate [15], where 60-90% of the

attachment occurs in the first 5 hours and 100% attachment

occurs at 24 hrs. This is captured by the following differential

equation:
𝑑𝑛𝑎

𝑑𝑡
=
𝑛𝑠𝑒𝑒𝑑𝑒𝑑

14400
𝑒−𝑡∕14400 (6)

where 𝑛𝑠𝑒𝑒𝑑𝑒𝑑 is the number of suspended cells introduced

into the bioreactor.

Once the cells attach, they begin proliferating, consuming

glucose and producing lactate. This is modeled proportional

to the attachment negative exponential with the final cell

growth rate being the initialized growth rate value from a

prior baseline expansion (𝐶0
𝑔

):

𝑑𝐶𝑔

𝑑𝑡
=

𝐶0
𝑔

14400
𝑒−𝑡∕14400 (7)

The attachment phase ends when 𝑛𝑎 ≥ 0.99𝑛𝑠𝑒𝑒𝑑𝑒𝑑 .

After the attachment phase, cell growth rate starts to drive

the majority of the glucose decrease and lactate increase in

the bioreactor. To compute 𝑛𝑎 in this phase, we must first

account for cell confluency (𝐶𝑐), computed as the fraction

of attached MSC surface area (𝑆𝐶 ) to available fiber surface

area (𝑆𝑓 ), which can inhibit expansion at high cell densities.

This assumes even distribution of cells across the fibers.

𝐶𝑐 =
𝑛𝑣𝑆𝐶

𝑆𝑓
(8)

Cells are mobile during growth and will aim to expand into

empty space, so with an even initial seeding, the confluency

should be relatively uniform across fibers. MSCs are typically

harvested at 70-80% confluency [16]. With this notion, we

compute 𝑛𝑎 or the number of attached cells that can double

given the available surface area as follows:

𝑛𝑎 =
⎧⎪⎨⎪⎩
𝑛𝑣 if 0 ≤ 𝐶𝑐 < 0.5
(0.8 − 𝐶𝑐)𝑛𝑣 if 0.5 ≤ 𝐶𝑐 < 0.8

else harvest cells

(9)

Figure 2b highlights this confluency effect which differenti-

ates 𝑛𝑎 from 𝑛𝑣.

In this growth phase after attachment, the following differ-

ential equation tracks the total number of viable cells (𝑛𝑣),

𝑑𝑛𝑣

𝑑𝑡
= 𝑛𝑎(𝐶𝑔 − 𝐶𝑑) (10)

High confluency, pressure, and shear stress can influence

cell death [17], however our current experimental protocol

aims for 80% confluency at harvest to prevent cell death due

to overcrowding while minimizing input flowrates to reduce

the effects of changing pressure and shear stress. Therefore

cell death is assumed to be negligible for the following

simulations and expansions.
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C. Fluid and Cell Model Validation
The new fluid dynamic and cell dynamic models were

validated with a preliminary controlled cell expansion. The

cell model parameters were initialized to the rates observed

in prior baseline expansions. Measurements of the input and

output glucose and lactate concentrations were taken and

compared to the fitted model (Fig. 4):

Fig. 4: Model validation with post-expansion fitted 𝐶𝑔 model

Fig. 5: Model validation of waste cumulative lactate with

with post-expansion fitted 𝐶𝑔 model

Additionally, with this best-fit parameter model, the waste

cumulative lactate (defined as 𝑉𝑤𝐿𝑤) was simulated and

compared with the measured lactate concentrations and vol-

umes in the waste bottle (Fig. 5) with a best-fit MSE of

0.011mg for waste cumulative lactate.

From Fig. 4 it is clear that the best-fit model for 𝐶𝑔
required transient cell growth rate, which necessitates either

a future dynamic model for 𝐶𝑔 (such as DFBA for MSCs)

or an effective estimator, which we propose in the following

section. With the exception of the 𝐶𝑔 parameter all other

fluid and cell model parameters were validated.

D. Cell Expansion Estimation Model
As we illustrated in the previous section, incorrect cell

model assumptions, especially with infrequent samples, can

result in reduced predictive accuracy. Therefore, the cell

dynamics model was further extended to explore cell growth

rate and cell number estimation based on in-process metabo-

lite measurements. Similar work has been conducted with

perfusion-based bioreactors to correlate lactate mass-flux to

measured cell number [9]. However, this fitted correlation

model is limited because it relies on accurate and frequent

lactate measurements without allowing for cell growth rate

estimation for forward simulation. Our proposed dynamic

model addresses both issues.

Since our bioreactor is a closed system, all lactate present

in the reactor, tubing, and waste must have been produced

by cells in the bioreactor. With the addition of the waste

bottle sensed states we can estimate the cumulative lactate

at sample-time 𝑘:

𝐿𝑘
𝑐𝑢𝑚

=𝐿𝑤𝑉𝑤 + 𝐿𝐼𝐶,𝑜𝑢𝑡𝑉𝑊 ,𝑡𝑢𝑏𝑖𝑛𝑔 + 𝐿𝐼𝐶,𝑜𝑢𝑡𝑉𝑊 ,𝑡𝑢𝑏𝑖𝑛𝑔

+
𝐿𝐼𝐶,𝑖𝑛 + 𝐿𝐼𝐶,𝑜𝑢𝑡

2
(𝑉𝐼𝐶,𝑡𝑢𝑏𝑖𝑛𝑔 + 𝑉𝐸𝐶,𝑡𝑢𝑏𝑖𝑛𝑔 + 𝑉𝐼𝐶,𝐵 + 𝑉𝐸𝐶,𝐵)

(11)

This computation cannot take advantage of the estimated

states since those are based on potentially incorrect model

assumptions.

In order to compute cell growth rate, an equation is needed

to relate cumulative lactate, cell growth rate, and viable cell

number shown below:

𝐿𝑘
𝑐𝑢𝑚

= 𝛼
𝐿𝑝𝑛

𝑘
𝑣

𝐶𝑘−1
𝑔

(
𝑒
𝐶𝑘−1
𝑔

(𝑡𝑘−𝑡𝑘−1) − 1
)
+ 𝐿𝑘−1

𝑐𝑢𝑚
(12)

𝑛𝑘
𝑣
= 𝑛𝑘−1

𝑣
𝑒
𝐶𝑘−1
𝑔

(𝑡𝑘−𝑡𝑘−1)
(13)

where 𝐶𝑔 and 𝑛𝑣 are initialized to the baseline fitted cell

growth rate and the initial seeded cell number respectively.

Equation 12 can be considered a pseudo-sensor for 𝐶𝑘−1
𝑔

and can be solved by using Newton-Raphson root-finding

methods. Equation 13 is also a pseudo-sensor for 𝑛𝑘
𝑣

as a

function of the solution of Equation 12 for 𝐶𝑘−1
𝑔

.

Fig. 6: Model validation of cumulative lactate dynamic

model and 𝐶𝑔 sensor model

The same bioreactor expansion shown in Fig. 4 was used

to validate the cumulative lactate pseudo-sensor. Fig. 6 shows

Equation 12 plotted with the "true" cell growth parameters as

the plant Cg pseudo-sensor, while the observer Cg pseudo-

sensor equation assumes that the cell growth rate stayed

constant at the initialized value for the entire expansion.
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The plant Cg pseudo-sensor also matched well with the

computed cumulative data (MSE of 0.011mg), although there

was some variance attributed to the lactate sensor and volume

measurement noise.

E. Observer Model
The above fluid dynamics, cell dynamics and cell estima-

tion models enumerate many states that cannot be directly

measured. Concentrations and cell counts within the IC

fibers or the EC space cannot be accessed due to sterility

concerns. Meanwhile, input/output states can be accessed for

measurement, but continuous flow-through sensors were in-

accurate and inconsistent, while manual measurements were

limited to daily sampling of 1-2 mL to prevent unnecessary

cell disturbance. These manual samples are also affected by

temperature which can result in noisy/inaccurate measure-

ments. Therefore it is important to design a state/parameter

estimation model that can leverage limited sensing of the

bioreactor to best estimate the value of the remaining model

states.

In the previous sections, model equations were defined

for all of the glucose, lactate and cell states (𝑋), cell model

parameters (𝜃) (shown in equation (5)), and input flowrates

(𝑢). In [10], a noise-optimal state estimate problem was

already posited for the glucose and lactate concentration

states 𝑋. By adding the discretized parameters 𝜃 as additional

states for the observer architecture to track, we use the

same extended kalman filter (EKF) design to compute noise-

optimal estimated parameters in real-time.

However, these added parameters 𝜃 nearly double the

number of states which results in an unstable EKF model

due to the ill-conditioned inverse caused by the variance

matrix (𝑃 ) described in [10]. In order to combat this issue,

a multiple partial EKF model was designed which groups

together only the relevant states for estimation for each ob-

server. Four independent observers were designed to estimate

the following sets of states: 1) glucose IC, EC, and tubing,

2) lactate IC, EC, tubing, and waste, 3) cell growth rate (𝐶𝑔),

and 4) number of viable cells (𝑛𝑣)

The glucose and lactate IC and EC observers both use a

diagonal R matrix with sensor noise of 0.1 g/L and a diagonal

Q matrix with model noise of 0.001 g/L for best tracking

response, very similar to prior work. The waste volume is

currently measured visually with a precision of 25 mL, which

is used as the diagonal entry in the lactate R matrix.

The cell growth rate observer’s R value should be calcu-

lated from the measured lactate states, however this value in

the pseudo-sensor (Equation 12) is very unstable for small

changes in concentration, so for practicality a value of 0.01/hr

was used. The corresponding model Q value was set to

0.005/hr and the initialized variance was set to 1.

The viable cell number observer R value used the prop-

agated 𝐶𝑔 R value through the 𝑛𝑣 pseudo-sensor (Equation

13 and the Q value was set to 105

F. Feedback Controller
In this work we use a Linear Quadratic Regulator (LQR)

controller in a manner similar to our previous work [10].

LQR is an optimal control scheme that weights desired state

costs against input costs which perfectly matches the control

objectives to minimize glucose and lactate state setpoint

errors while minimizing media usage. This was used to

automatically update input bioreactor flowrates at 1 Hz.

We improve on our prior system by linearizing and re-

optimizing the feedback gains once per day after the in-line

sensor measurements are taken. This is necessary because

our new model has continuously changing parameters. The

linearization and gains computation were carried out on an

Intel NUC 8 running Ubuntu 16.04 in 0.543 seconds which

is well within the control frequency.

The same 𝑄𝐿𝑄𝑅 and 𝑅𝐿𝑄𝑅 matrices were used as in

[10] for glucose and lactate state costs and input costs

respectively. These values are shown below for 𝑄𝐿𝑄𝑅:

𝐺𝐼𝐶,𝑖𝑛 ∶ 𝑞 = 50
𝐺𝐼𝐶,𝑐𝑒𝑙𝑙(𝑙) ∶ 𝑞 = 105

𝐺𝑜𝑢𝑡 ∶ 𝑞 = 5 × 105

𝐺𝐸𝐶,𝑖𝑛 ∶ 𝑞 = 105

𝐿𝐼𝐶,𝑖𝑛 ∶ 𝑞 = 50
𝐿𝐼𝐶,𝑐𝑒𝑙𝑙(𝑙) ∶ 𝑞 = 105

𝐿𝑜𝑢𝑡 ∶ 𝑞 = 5 × 105

𝐿𝐸𝐶,𝑖𝑛 ∶ 𝑞 = 105

(14)

and 𝑅𝐿𝑄𝑅:

𝑅𝐿𝑄𝑅 =

⎡⎢⎢⎢⎢⎣

10 0 0 0 0
0 10 0 0 0
0 0 1 0 0
0 0 0 0.01 0
0 0 0 0 0.01

⎤⎥⎥⎥⎥⎦
(15)

However, with the addition of the discretized parameters 𝜃,

additional matrix terms were defined as follows in the LQR

optimization problem for cost 𝐽 :

𝐽 = ∫
∞

0

⎛⎜⎜⎝
[
𝑋𝑇 𝜃𝑇 𝑢𝑇

] ⎡⎢⎢⎣
𝑄𝐿𝑄𝑅 0 0

0 𝑄𝜃 𝑁𝐿𝑄𝑅

0 𝑁𝑇
𝐿𝑄𝑅

𝑅𝐿𝑄𝑅

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑋

𝜃

𝑢

⎤⎥⎥⎦
⎞⎟⎟⎠ 𝑑𝑡

(16)

The 𝑄𝜃 matrix is 0 except for the 𝑛𝑣 terms which are

equal to 3 × 10−7. The 𝑁𝐿𝑄𝑅 matrix is 0 except for the

𝑛𝑣 × ⩝̇𝐼𝐶,𝑚, ⩝̇𝐸𝐶,𝑚 terms which are equal to −𝑛𝑠𝑒𝑒𝑑𝑒𝑑 . These

two terms combine together to drive the cost down to 0

only if the control effort u increases exponentially to match

the exponentially increasing 𝑛𝑣 during the expansion. This

addition removes the need for a feedforward controller. The

complete updated control architecture is shown in Fig. 1.

IV. RESULTS

A. Simulation Results
Each system started with the same initial cell number, glu-

cose and lactate concentrations, and flowrates. Simulations

ended once the 80% confluence limit was reached (∼ 6 days).

The updated bioreactor physical parameters, cell behavior

parameters, and the initial conditions are summarized in

Table I and match the initialized parameters of the model

validation expansion shown in Fig. 4.

The simulation of the digital twin model and feedback

controller was developed in MATLAB. The EKF observer

and LQR controller were also simulated using the sensed
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𝑺𝒄 [𝜇𝑚2] [18] ∼ 1000
𝑺𝒇 [𝑚2] 0.30
𝑪𝟎
𝒈
[1∕ℎ𝑟] ∼ 0.021

𝑮𝒄 [𝑚𝑔∕(𝑐𝑒𝑙𝑙 ∗ ℎ𝑟)] ∼ −2 × 10−8
𝑳𝒑[𝑚𝑚𝑜𝑙∕(𝑐𝑒𝑙𝑙 ∗ ℎ𝑟)] ∼ 2.8 × 10−10
𝒏𝒔𝒆𝒆𝒅𝒆𝒅 3 × 106 cells

Media glucose, lactate 1.15 g/L , 0.0 g/L

Concentrate glucose, lactate ∼ 1.8 g/L, 0.0 g/L

⩝̇𝐼𝐶,𝑙𝑜𝑜𝑝, ⩝̇𝐸𝐶,𝑙𝑜𝑜𝑝 3.2 mL/min , 4.0 mL/min

TABLE I: Simulation Parameters

states, sensing sampling rates (once per day), sensor noise,

and controller update rates (1 Hz). The simulation results are

shown in Table II.

Baseline Controlled Smooth-
Controlled

S-MSE Glucose [g/L] 0.026 0.010 0.009
S-MSE Lactate [g/L] 0.038 0.032 0.029

O-MSE Gluc./Lac. [g/L] 3 × 10−5 1 × 10−5 1.5 × 10−5
Media [L] 0.920 0.812 0.823
Concentrate [L] 0.000 0.152 0.135
# Lactate Spikes 3 1 0

TABLE II: Simulation Results

B. Expansion Results
In addition to the model validation controlled bioreactor

expansion (Expansion 1), a second bioreactor expansion

(Expansion 2) was performed using the same initialized

parameters shown in Table I and the same cell/reagent lots in

the model validation expansion (Fig. 4). This second expan-

sion implemented our updated real-time control architecture,

novel parameter estimation model, smooth controller, and

updated glucose and lactate setpoints (1.12 g/L and 0.1 g/L

respectively) to eliminate error discontinuities. The second

bioreactor expansion results are shown in Fig. 7 for glucose

(7a), lactate (7b), cell number (7c), and cell growth rate

(7d). Controller and observer performance metrics as well

as media usage and total cell yield are shown in Table III

comparing the two bioreactor expansions. The observer cell

yield in Fig. 7c (4.6×107) is also within 6% of the true cell

yield (4.91 × 107).

Expansion 1 Expansion 2
(controlled) (smooth-controlled)

Glucose Lactate Glucose Lactate

S-MSE [g/L] 0.01 0.03 0.01 0.01
O-MSE [g/L] 3.9 × 10−3 1.2 × 10−3 2.5 × 10−3 9.6 × 10−4
Media [L] 0.660 0.380
Conc. [L] 0.150 0.190
# Spikes 1 0
Cell Yield 5.08 × 107 4.91 × 107

TABLE III: Bioreactor Expansion Results

V. DISCUSSION

The simulation results show that the controlled case im-

proved glucose and lactate setpoint MSE compared to the

baseline while the smooth-controlled case improved setpoint

MSE compared to both controlled and baseline. Moreover,

the large flowrate spike in the controlled case, reflected in

the sudden nutrient spike in the model validation expansion

(Fig. 4), was eliminated in the smooth-controlled case. We

hypothesize this will maintain a more steady cell growth rate.

Comparing the bioreactor expansion results, expansion 2

improved lactate setpoint MSE (58% reduction), while also

significantly reducing observer MSE (36% for glucose and

20% for lactate). The improved observer MSE especially

implies that the cell growth rate and cell number estimation

were accurate. Although expansion 2 did not maintain a

higher cell growth rate or result in a higher cell yield than

expansion 1, the accurate parameter estimation resulted in

less control effort and a large increase in cell yield per mL

fed media (6.3×104 cells/mL compared to 8.6×104 cells/mL).

Although our specific choice of reference profiles and

control parameters did not increase cell number or growth

rate, our designed control architecture enables novel future

studies to optimize for these parameters. One such study is

the impact of specific flowrates and flowrate trajectories on

cell growth rate to enable direct regulation. Another study

could evaluate the impact of different glucose and lactate

reference profiles on cell growth rate.

These future studies could also contribute to data-driven

model expansion. Model predictive control (MPC) specif-

ically has been used for cell growth prediction in small-

scale static cultures [8] and would improve on our current

estimation model which cannot predict parameter trajecto-

ries. We can leverage post-expansion cell quality assays for

MSC function such as IDO suppression [19], macrophage

M1 suppression [20], and T-cell co-culture [21] to determine

key metabolites and cytokines to add to the model. With

this detailed metabolite and quality data incorporated into

an MPC algorithm, it might be possible to predict and

regulate MSC cell growth parameters and quality assay

metrics directly through correlative models like DFBA.
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