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D E V E L O P M E N T A L  N E U R O S C I E N C E

Modular derivation of diverse, regionally discrete 
human posterior CNS neurons enables discovery 
of transcriptomic patterns
Nisha R. Iyer1,2†, Junha Shin1†, Stephanie Cuskey1, Yucheng Tian1,2,  
Noah R. Nicol1,2, Tessa E. Doersch1, Frank Seipel1,2, Sunnie Grace McCalla1,3,  
Sushmita Roy1,3*, Randolph S. Ashton1,2*

Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using 
human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and 
disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that 
recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS 
neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles 
are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or 
somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel compu-
tational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, 
enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight 
the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro 
models, and inform therapeutic strategies.

INTRODUCTION
Nervous system diversity arises in response to a complex choreography 
of spatiotemporally restricted cues along the elongating embryo’s 
rostrocaudal (R/C) and dorsoventral (D/V) axes. These coordinated 
patterning events encode neural progenitors and postmitotic neu-
rons with unique transcriptional signatures that define a myriad of 
subtypes, which in turn orchestrate the precise neural circuits that 
shape human behavior (1, 2). While human pluripotent stem cell 
(hPSC)–based approaches can, in theory, provide access to all these 
populations, differentiation strategies have intensely focused on 
recapitulating spinal D/V patterning with less attention to the 
generation of subtypes along the R/C axis. Even so, direct differen-
tiation protocols have been achieved for relatively few cardinal neu-
rons, which default to hindbrain or cervical identity (3–8). Motor 
neuron (MN) optimization has predominated, with robust differen-
tiation schemas allowing high yields (3, 5, 8) and some control over 
columnar and R/C identity (8, 9), but these protocols are not 
designed to adapt to other phenotypes. There has been some success 
in recreating R/C (10, 11) and D/V (12–14) signaling centers in 
human organoid models. However, the variability in efficiency, cell 
type distribution, and maturity of terminal populations, as well as 
the difficulty of cell recovery from organoid tissues, limits the 
scalability of these platforms for clinical applications.

We sought to develop a robust, modular differentiation methodol-
ogy in monolayer culture to derive any posterior central nervous 
system (pCNS) phenotype by recapitulating the sequence of pat-
terning events during development. Morphogenesis of the posterior 

neural tube, which forms the hindbrain and spinal cord (i.e., pCNS), 
is distinct from the anterior neural tube, which forms the brain. It 
begins near the primitive streak with a bipotent population of axial 
stem cells called neuromesodermal progenitors (NMPs) (15, 16). As 
they proliferate, NMPs fuel R/C extension of the embryo, and 
their paraxial mesoderm or neuroectoderm progeny acquires a 
region-specific identity via combinatorial Hox gene expression (17). 
The human genome contains 39 Hox genes subdivided into 13 
paralogous groups (HOX1 to HOX13) arranged in four genomic 
clusters (HOXA to HOXD). Maintenance of NMP bipotentiality—
and thus progressive, colinear Hox gene activation—is governed by 
the balance between Wnt/-catenin, fibroblast growth factor (FGF), 
and retinoic acid (RA) signaling pathways (15, 17–21). A shift to-
ward RA signaling prompts an exit from the bipotent NMP state to 
the neural fate and terminates Hox gene progression, resulting in 
neuroepithelial progeny with a precisely restricted R/C position via 
their HOX “code” (18). Concurrent with folding of the neural plate 
to form the neural tube, D/V patterning is initiated by secretion 
of morphogens dorsally from the roof plate [bone morphogenetic 
proteins (BMPs) and Wnts] and ventrally from the floor plate [sonic 
hedgehog (Shh)] (22). These signals trigger concentration- and 
time-dependent expression of cross-repressive transcription factors 
that establish 11 discrete progenitor domains in the spinal cord, 
5 ventral domains (p0 to p3 and pMN) and 6 dorsal domains (pd1 
to pd6), broadly conferring locomotor (V0 to V3 and MN) and 
somatosensory (dI1 to dI6) phenotypes (1). Hindbrain patterning 
has been less extensively studied than the spinal cord, but analogous 
D/V populations are present, with five ventral domains (V0 to V2, 
5HT, and MN) and eight dorsal domains (dA1 to dB4) distributed 
in a rhombomere-specific manner (23, 24). Although primarily 
considered drivers of R/C patterning, Hox genes remain dynamic 
through D/V specification and become restricted to discrete dorsal 
or ventral domains that correlate with the formation of distinct 
neuronal subtypes (2, 25–28).
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Previously, we showed that hPSCs could be efficiently converted 
to NMPs with discrete HOX profiles along the R/C axis by temporal 
modulation of Wnt, FGF, and RA signaling (29). Here, we expand 
on that work to demonstrate an optimized transition from the NMP 
to the pCNS progenitor (pCNSP) state, enabling concentration- and 
time-dependent D/V patterning and rapid conversion to neurons 
with discrete regional phenotypes. We generated a single-cell RNA-
sequencing (scRNA-seq) dataset comprising 59,502 cells that 
profile multiple points along the R/C and D/V axes, providing an 
expansive map of transcriptional programs that regulate neuronal 
specification. The novelty of our dataset also posed analytical chal-
lenges to neuronal characterization, as the reliance on known 
transcriptional markers determined from rodent development 
potentially excludes human-specific cell types. We established an 
unbiased cell population identification and characterization pipeline 
that identifies coarse-resolution primary clusters and fine-resolution 
subclusters corresponding to cell subtypes. Last, we developed a 
strategy to characterize regionally or phenotypically comparable 
populations by identifying genes that exhibit combinatorial patterns 
of expression across cell types. Our computational analyses revealed 
differences in marker expression between our hPSC-derived neu-
rons and embryonic mouse and human spinal neurons, novel 
expression patterns in cardinal neurons corresponding to different 
R/C positions, and evidence that perturbations in progenitor pat-
terning persistently alter postmitotic gene expression patterns. We 
anticipate that our modular differentiation paradigm and associated 
computational tools will be a valuable resource for biomanufacturing 
discrete, region-specific, pCNS populations, which will enable precise 
modeling of human development and disease as well as homologous 
cell grafts for regenerative medicine applications.

RESULTS
Smad inhibition optimizes conversion of NMPs 
to naive pCNSPs
We first evaluated whether applying a single ventral patterning 
schema to hPSC-derived NMPs from diverse R/C regions would 
enable consistent derivation of ventral neuronal phenotypes. Using 
our HOX protocol, we derived six different NMP cultures from 
human embryonic stem cells (hESCs) corresponding to 24 hours (H24), 
48 hours (H48), 72 hours (H72), 120 hours (H120), 168 hours (H168), 
and 216 hours (H216) patterning periods in FGF8, CHIR, and/or GDF11 
and dorsomorphin (fig. S1, A and B) (29). NMP cultures were ex-
posed to RA and small-molecule Shh agonists Smoothened agonist 
(SAG) and purmorphamine (Pur) before the addition of DAPT 
(N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester), 
which induces rapid neuronal conversion to ventral neuron (vN) pheno-
types. Samples were cryopreserved, thawed, and cultured overnight 
before immunocytochemistry and scRNA-seq analysis (fig. S1, B to D).

In agreement with our previous publication, cultures expressed 
increasingly caudal HOX paralogs that could be correlated to cervi-
cal (HOX1-8; H24-vN, H48-vN, and H72-vN), thoracic (HOX1-9; 
H120-vN), lumbar (HOX1-11; H168-vN), and lumbosacral (HOX1-13; 
H216-vN) spinal regions (figs. S1E and S4A) (29). We attributed the 
absence of hindbrain identities (expressing only HOX1-4) and simi-
larity between H24, H48, and H72 HOX profiles to prolonged RA 
exposure during the neuronal differentiation stage, because RA 
alone is capable of caudalizing cells to a cervical fate (30). Notably, 
analysis at single-cell resolution revealed intrasample uniformity in 

HOX expression (fig. S4A). This illustrates our HOX protocol’s 
ability to discretize the pCNS R/C axis, in contrast to the broad or 
heterogeneous HOX profiles observed in other direct differentiation 
protocols and organoid models (6, 10, 13, 31).

Although our aim was to produce cultures with high SNAP25+ 
neuronal content, cell type heterogeneity within and across samples 
was apparent by staining (fig. S1C) and sample (fig. S1D), cluster 
(fig. S1F), and gene expression (fig. S1, G and H) distributions on 
t-distributed stochastic neighbor embedding (t-SNE) visualizations of 
single-cell transcriptomic data. Neural progenitor (SOX2+) and neuron 
(SNAP25+) composition varied between 10 and 80% (fig. S1, I and J). 
Thus, while samples could be patterned to discrete regions on the 
R/C axis, direct application of ventral morphogens caused inconsistent 
neuronal differentiation across different NMP populations.

We hypothesized that consistent neuronal differentiation from 
NMPs first requires efficient induction to SOX2+/PAX6+ pCNSPs, 
akin to the formation of neural plate epithelium from tail bud 
progenitors during gastrulation (15). This process is regulated by RA 
and Noggin (a BMP antagonist) secreted by the somites and notochord 
(18, 32). We derived SOX2+/BRACHYURY+ H120 NMPs (fig. S2A) 
and then exposed them to RA and/or small-molecule Smad inhibitors 
(SB + LDN) for up to 3 days (H120-pCNSPs, fig. S2B). Both RA and 
SB + LDN were required to generate SOX2+/PAX6+ H120-pCNSPs 
efficiently (fig. S2, C to Z). In the absence of one or both factors, we 
observed persistent PAX3+ and PAX7+ cells that could become 
mesodermal (PAX3+/PAX7+), myogenic (PAX3+) (fig. S2, C to T), 
or neural crest (SOX10+) progeny (fig. S2, GG to LL). Both factors 
were also required to prevent inadvertent dorsal (PAX6+/PAX3+/
PAX7+; AP2a+) (fig. S2, O to T and GG to LL), intermediate (PAX6+/
PAX3+) (fig. S2, O to T), or ventral (NKX6.1+) (fig. S2, AA to FF) 
patterning. Thus, RA and SB + LDN cooperate to repress PAX3 and 
PAX7, which allows for the conversion of NMPs to unbiased, naive 
pCNSPs for subsequent D/V patterning.

Concentration-dependent differentiation of  
pCNSPs along D/V axis
To simplify derivation of diverse pCNSPs with precise R/C position-
ing, we wanted to use the same ventralizing or dorsalizing differen-
tiation schema for all cultures. Ventral interneurons (INs) and MNs 
arise in response to graded Shh signaling in the developing neural 
tube (Fig. 1A) (22). Thus, we first sought to determine whether 
hPSC-derived pCNSPs could be efficiently patterned to ventral 
identities in a concentration-dependent manner. We patterned 
H120-pCNSPs for 4 days in either 100 nM or 1 M RA containing 
SB + LDN and varying concentrations of SAG and Pur to generate 
ventral progenitor cultures (Fig. 1B). Sustained exposure to SB + LDN 
suppressed PAX3 and PAX7 expression (Fig. 1, C to F), while Shh 
signaling caused concentration-dependent increases in ventral 
progenitor markers (Fig. 1, A and G to M). Notably, reducing the 
concentration of RA during ventral patterning improved the potency of 
Shh signaling, resulting in significant increases in NKX6.1, OLIG2, and 
NKX2.2 expression under optimal culture conditions (Fig. 1, K to M). 
Exposing ventral progenitor cultures to DAPT for 5 days induced 
rapid neuronal differentiation (Fig. 1B) and appropriately stratified 
postmitotic INs and MNs (Fig. 1, A and N to Y).

Efficient dorsal patterning of pCNS neurons in vitro has historically 
been difficult because of the ubiquitous roles of BMPs and Wnts 
elsewhere in the developing embryo. There has also been debate 
whether BMPs perform as morphogens (concentration dependent) 
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Fig. 1. Concentration-dependent Shh patterning of ventral spinal neurons. (A) Ventral pCNS populations, with characteristic progenitor and postmitotic transcrip-
tion factor markers for the hindbrain (HB) and spinal cord (SC). (B) Timeline of ventral differentiation from H120-NMPs. (C to F) Immunostaining shows that cultures are 
uniformly PAX6+/PAX3−/PAX7−, indicative of ventral progenitor domains p1 to p3. (G to J) As SHH agonist concentration increases, cultures shift from (G) PAX6+ (p0/p1) 
to (H) NKX6.1+ (p2) to (I) NKX6.1+/OLIG2+ (pMN) to (J) NKX6.1+/OLIG2+/NKX2.2+ (pvMN/p3). (K to M) qRT-PCR in day 14 progenitor cultures. Error bars represent SD 
(n = 6 biological replicates per condition). Data shown as relative gene expression compared to 100 nM RA SB + LDN condition. Statistics were calculated by one-way 
analysis of variance (ANOVA) with Tukey-Kramer post hoc. Significance for the multiple pairwise comparisons is summarized through the connecting letters report, 
whereby samples with different letters are significantly different by at least P < 0.05 (79). (N to Y) Immunostaining in day 19 postmitotic neurons. As SHH agonist concentra-
tion increases, cultures shift from (N, R, and V) LBX1+ (dI4 to dI6) and PAX2+ (V0 and V1) to (O, S, and W) CHX10+ (V2a) to (P, T, and X) MNX1+/ISL1+ (sMN) to (Q, U, and Y) 
MNX1−/ISL1+ (vMN). Scale bars, 50 m. Subpanels separate 358 nm (blue), 555 nm (red), 488 nm (green), and 647 nm (white) fluorochrome channels.
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or act deterministically (type of BMP defines phenotype) (7, 33, 34), 
complicating efforts toward a streamlined differentiation strategy. 
To investigate this question, we cultured H120-pCNSPs for 4 days 
in either 100 nM or 1 M RA containing cyclopamine (Cyc)—an 
Shh antagonist—and varying concentrations and exposure durations 
of BMP4 to generate dorsal progenitor cultures (Fig. 2B). Termina-
tion of SB + LDN during dorsal patterning released suppression of 
PAX3 and PAX7 activity (Fig. 2, C  to F), which were elevated in 
response to increased BMP signaling (Fig. 2, L and M). This occurred 
without significant changes in PAX6 expression, indicating the cells’ 
maintenance of a CNS identity (Fig. 2K). Quantitative real-time 
polymerase chain reaction (qRT-PCR)–assessed gene expression 
patterns also indicated a shift from intermediate to dorsal fates with 
BMP4 exposure (Fig. 2, A, N, and O). While we observed OLIG3+ 
pd1/pd2/pd3 progenitors and the formation of some AP2+ roof 
plate cells under conditions with the highest BMP4 exposure, no 
SOX10+ neural crest progeny was present (Fig. 2J). Treatment with 
DAPT induced rapid neuronal differentiation (Fig. 2B) and appro-
priately stratified postmitotic dorsal INs in direct correlation to 
BMP4 exposure concentration/duration (Fig.  2,  A  and  P  to  AA). 
This indicates that BMP4 behaves as a morphogen in agreement 
with other recent findings (6). Furthermore, because BMP7 has 
been shown to be required for neurogenesis of dI1/dI3/dI5 INs (34), 
we wanted to determine whether adding BMP7 during the neuronal 
differentiation phase could push progenitors toward more dorsal 
postmitotic fates (Fig. 3A). Using BMP7 treatment, we observed a 
shift from dI4/dI5/dI6 to dI2/dI3 INs (Figs. 2A and 3, B, D, and F) 
and from dI2/dI3 to dI1/dI2 INs (Figs. 2A and 3, C, E, and G) in 
progenitors pulsed or maintained in BMP4 (20 ng/ml) over the dorsal 
patterning period, respectively. Collectively, the results demonstrate 
that our differentiation schema generates the full spectrum of D/V 
cell types from a single R/C position (H120), with the ability to 
obtain desired subtypes by optimizing morphogen exposure within 
discrete time frames (Fig. 3H).

Single-cell transcriptomes reveal differential population 
distributions after combined R/C and D/V patterning
We generated an expansive scRNA-seq dataset comprising dorsal 
and ventral populations differentiated from six NMP time points 
(H24, H48, H72, H120, H168, and H216) (Fig. 4, A and B, and figs. 
S3, A to C, and S4B). For dorsal differentiation, pCNSPs were 
exposed to 100 nM RA and Cyc and pulsed with BMP4 (20 ng/ml) 
during the 4-day progenitor patterning period (fig. S3, A and D). 
For ventral differentiation, pCNSPs received 100 nM RA, SB + LDN, 
and 0.5 and 0.5 M Pur (fig. S3, B and E). In addition, in the D/V 
patterning stage, pCNSPs at H216 were patterned with either 1 M 
(H216R) or 100 nM RA (H216) to determine whether RA further 
affects caudalization (fig. S3, A and B). After DAPT treatment, the 
resulting samples were near homogeneously neuronal (85 to 98% 
SNAP25+), with trace SOX2+ floor plate (SHH+) and roof plate 
(LMX1A+) cells and minimal expression of markers from other cell 
lineages, thereby demonstrating the efficiency of our modular 
differentiation methodology (Fig. 4C).

Analysis of HOX expression across all samples indicated discretiza-
tion along the R/C axis such that dorsal and ventral cultures derived 
from the same NMPs showed globally similar HOX expression 
(Fig. 4, D and E). Compared to the previously presented scRNA-seq 
dataset (fig. S1), samples were rostrally shifted (fig. S4, A and B). 
This is likely a consequence of using SB + LDN during the pCNSP 

induction stage, which recapitulates the role of Noggin to abruptly 
terminate HOX progression in NMPs (32). Notably, increased RA 
concentration did not result in activation of more caudal HOX paralogs 
in H216R compared to H216 samples (fig. S4B), confirming that 
R/C patterning occurs during NMP and pCNSP differentiation and 
is independent of RA concentration during D/V patterning. However, 
increased RA under H216R conditions did cause elevated expression 
of HOXB8 and HOXA5 in dorsal and ventral samples, respectively 
(Fig. 4, D and E, and fig. S4B), suggesting that RA may continue to 
play a role in neuronal subtype specification (2, 25, 27).

We visualized simultaneous expression of all HOX genes by 
clustering (Materials and Methods; Fig. 4, F and G; and fig. S4C), 
which revealed inter- and intrasample HOX profile heterogeneity, 
with caudal samples unexpectedly inclusive of rostral HOX profile 
clusters (clusters 1 to 7) (Fig. 4G). These “mismatched” HOX pro-
file clusters were associated with different phenotypes—including 
MNs and dI1, dI2, and dI3 INs (Figs. 4, F and G, and 5, A to C)—
indicating neuronal subtype-specific HOX gene stratification in ac-
cordance with findings in vivo (2, 25, 27). Thus, while HOX genes 
can be used globally to assess a sample’s R/C positional identity, 
nuances in HOX gene expression profiles of hPSC-derived neuronal 
subtypes also emerge with cell maturity and D/V specification. Our 
differentiation methodology may thus be used to explore how HOX 
dynamics influence pCNS neuronal specification and circuit orga-
nization (2).

We next assessed differentiation efficiency to various cardinal 
cell types. Dorsal and ventral samples showed gene expression patterns 
associated with appropriate transcriptional markers (Fig. 4H). The 
dataset was sparse in intermediate cardinal neurons corresponding 
to V0 (EVX1), V1 (EN1), and dI6 (DMRT3) INs, a consequence 
of using patterning conditions that yielded few DBX1+ progenitors 
(fig. S3, D and E). When we specifically examined cardinal cell type 
distributions defined by nonoverlapping combinatorial transcrip-
tion factor expression (table S1A), we observed increasingly dorsal 
or ventral character as samples were caudalized. For example, dorsal 
H24-dN, H48-dN, and H72-dN samples corresponding to hindbrain-
rostral cervical spinal cord were ventrally shifted toward LBX1+ 
dI4/dI5/dI6 INs compared to H120-dN, H168-dN, and H216-dN 
samples, which included primarily dI1/dI2/dI3 INs (Fig. 4, H and I). 
Similarly, ventral H24-vN, H48-vN, and H72-vN samples were dor-
sally shifted to CHX10+ V2a and GATA2/3+ V2b INs compared to 
H120-vN, H168-vN, and H216-vN samples, which had a greater 
proportion of MNs (Fig. 4, H and I). Given our application of a 
consistent D/V patterning protocol, these data suggest inherent 
differences in region-specific NMP differentiation potential. More-
over, although increased RA did not contribute to caudalization 
during progenitor patterning (Fig. 4, D and E, and fig. S4B), higher 
RA exposure in H216R samples caused a shift toward more inter-
mediate cell types compared to H216 samples (Fig. 4I), reaffirming 
our previous observation that RA modulates morphogen potency 
and is involved in neuronal fate determination.

Unbiased clustering isolates cardinal cell types
Although transcription factors that define pCNS cardinal cell types 
are generally conserved during evolution (24, 35), they could exclude 
potential species-specific or region-specific differences unique to 
our dataset. For example, if only cells expressing known cardinal 
markers are analyzed, 15 to 50% of cells across our samples would 
remain uncharacterized (Fig.  4I and table S1A). Therefore, we 
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Fig. 2. Concentration- and time-dependent BMP4 patterning of dorsal spinal neurons. (A) Dorsal pCNS populations, with characteristic progenitor and postmitotic 
transcription factor markers for the hindbrain and spinal cord. (B) Timeline of dorsal differentiation from H120-NMPs. (C to J) Immunostaining shows that as BMP4 concentration 
and duration increase, cultures shift from (C and G) PAX6+/PAX3+ (p0) to (D, H, E, and I) PAX6+/PAX3+/PAX7+ (pd4 to pd6) to (F and J) OLIG3+ (pd1 to pd3). AP2+ roof plate 
cells, but not SOX10+ neural crest progeny, were present at the highest concentrations used. (K to O) qRT-PCR in day 14 progenitors. Error bars represent SD (n = 6 biological 
replicates per condition). Data shown as relative gene expression compared to 100 nM RA SB + LDN condition. Statistics were calculated by one-way ANOVA with 
Tukey-Kramer post hoc. Significance for the multiple pairwise comparisons is summarized through the connecting letters report, whereby samples with different letters 
are significantly different by at least P < 0.05 (79). (P to AA) Immunostaining in day 19 postmitotic neurons. As BMP4 concentration and duration increase, cultures shift 
from (P, T, and X) LBX1−/PAX2+ (V0 and V1), LBX1+/PAX2+/LHX1+ (dI6), LBX1+/BRN3A+/TLX3+ (dI5) to (Q, U, Y, R, V, and Z) predominantly LBX1+/PAX2+/LHX1+ (dI4) and 
LBX1+/BRN3A+/TLX3+ (dI5) to (S, W, and AA) BRN3A+/ISL1+/TLX3+ (dI3) and BRN3A+/PAX2−/LHX1+ (dI2). Scale bars, 50 m. Subpanels separate 358 nm (blue), 555 nm (red), 
488 nm (green), and 647 nm (white) fluorochrome channels.
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applied a clustering method based on sparse nonnegative matrix 
factorization (NMF) (36) to define 25 “primary clusters” (Materials 
and Methods and Fig. 5A). We assigned clusters to hindbrain or 
spinal cord based on sample identities’ global HOX expression 
(Fig. 4, D and E) and assessed the composition of cardinal neurons in 
each cluster based on expression of known markers (Fig. 5, A to C). 
To determine how our hPSC-derived clusters compared to in vivo 
neuronal populations, we performed a correlation analysis against 
recently available embryonic human (35) and mouse (37) neural 
tube scRNA-seq datasets across multiple gestational time points 
(Fig. 5D, fig. S5, table S2, and Materials and Methods). Both of these 
datasets relied on strict transcriptional definitions to define their cardinal 
neurons, a consequence of the sparsity of cells available for adequate 
clustering. Despite disparate approaches to cell type identification, we 
observed good similarity (Pearson correlation coefficient > 0.5) between 
our clusters and the neuronal populations defined by Rayon et al. 
(35) or Delile et al. (37) using either known markers or their sets of 
annotated transcription factors (Fig. 5D, top, and fig. S5). A direct 
comparison between cell types defined by known markers found 
similar concordance between in vitro and in vivo cell types as be-
tween the in vivo mouse and in vivo human cell types (table S2 and 
fig. S5C) (35, 37). Thus, we validated that our hPSC-derived popu-
lations were comparable to human and mouse neurons in vivo.

We then determined at what stage of in vivo development our 
hPSC-derived populations might belong by comparing our clusters 

to the Carnegie stage–matched (CS12 to CS19) or mouse embryonic 
day–matched (E9.5 to E13.5) samples from these studies (Fig. 5E, top). 
Dorsal clusters (C1 to C10 and C25) showed higher correlation to 
samples from CS17 and CS19 (gestational days 42 to 51), compared 
to ventral clusters (C11 to C18 and C20 to C23), which showed simi-
larity to samples from CS12 and CS14 (gestational days 26 to 35). A 
comparable trend was observed in the mouse data. These correla-
tion patterns were in accordance with the sequential emergence of 
ventral and dorsal neurons in vivo, wherein ventral populations are 
patterned earlier in development than dorsal populations (24, 35). 
It is notable that our hPSC-derived neurons were derived in parallel 
and in fewer than 38 days, which suggests an accelerated differentiation 
of cells in vitro compared to endogenous populations. Together, 
these findings validate our data-driven approach to characterizing 
pCNS neuron diversity and present an opportunity to detect novel 
neuronal markers otherwise obscured by a priori transcriptional 
definitions or limited by the availability of embryonic tissue.

Differential gene expression in subpopulation analysis 
of primary clusters
While many primary clusters comprised a single cardinal popula-
tion, others were made up of closely related cell types. For example, 
C9 and C25 included multiple inhibitory and excitatory LBX1+ 
populations (dI4/dI5/dI6), and C14 contained both CHX10+ V2a 
INs and SIM1+ V3 INs, which are both glutamatergic ventral INs 

Fig. 3. Addition of BMP7 during neuronal differentiation further dorsalizes postmitotic population. (A) Timeline of dorsal differentiation from H120-NMPs, with 
BMP7 added during neuronal differentiation phase from days 14 to 19. (B to G) Immunostaining in day 19 postmitotic cultures shows that DAPT treatment rapidly 
converts progenitors to dorsally shifted postmitotic phenotypes compared to Fig. 2. With BMP7, cultures shift from (B, D, and F) BRN3A+/ISL1+/TLX3+ (dI3) and BRN3A+/
PAX2−/LHX1+ (dI2) to (C, E, and G) LHX9+ (dI1). (H) Schematic of differentiation conditions corresponding to postmitotic cardinal cell types. Subpanels separate 358 nm 
(blue), 555 nm (red), 488 nm (green), and 647 nm (white) fluorochrome channels.
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Fig. 4. scRNA-seq characterization of dorsal and ventral samples differentiated from discrete regions along R/C axis. (A) Timeline of differentiation from region-specific 
NMPs, to discrete pCNSPs, dorsal (dP) and ventral (vP) progenitors, and postmitotic neurons. (B) t-SNE plot with seven dorsal samples and seven ventral samples 
(n = 46,959 cells). (C) t-SNE heatmaps showing highly neuronal (SNAP25+) cells, with few neural progenitor (SOX2+/SNAP25−), mesoderm (FOXC1+), or neural crest (SOX10+) 
cells. SOX2+ progenitors are primarily floor plate (SHH+) and roof plate (LMX1A+). (D and E) Dot plot displaying genes associated with anterior or pCNS identity across 
dorsal (D) and ventral (E) samples. The size of each circle reflects the fraction of cells where the gene is detected, and the color reflects the average expression level within 
each cluster (blue, low expression; yellow, high expression). (F) t-SNE plot showing HOX profile clusters. (G) Distribution of HOX profile clusters across samples. (H) Dot plot 
displaying genes associated with dorsal or ventral neuronal phenotypes. (I) Distribution of cardinal pCNS neurons, peripheral dorsal root ganglion (DRG) neurons, floor 
plate (FP), and roof plate (RP) cells as defined by nonoverlapping combinatorial transcription factor expression across dorsal and ventral samples. “Other” includes cells 
that were not classified by the knowledge matrix in table S1.

D
ow

nloaded from
 https://w

w
w

.science.org at G
eorgia Institute of Technology on July 11, 2024



Iyer et al., Sci. Adv. 8, eabn7430 (2022)     30 September 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 19

Fig. 5. Unbiased NMF-based clustering validated by global similarities between hPSC-derived and in vivo scRNA-seq datasets. (A) t-SNE plot with 25 primary 
clusters broadly divides our dataset by pCNS cardinal neuron identity. Legend labels indicate whether the cluster was presumed to be from the hindbrain (HB) or spinal 
cord (SC). (B) t-SNE heatmaps showing that characteristic cardinal transcription factors (hindbrain or spinal cord) and neurotransmitters (indicated by text legend) map to 
primary clusters. (C) Distribution of cardinal pCNS neurons, peripheral dorsal root ganglion (DRG) neurons, floor plate (FP), and roof plate (RP) cells as defined by nonoverlapping 
combinatorial transcription factor expression across primary clusters. “Other” includes cells that were not classified by the knowledge matrix in table S1. (D and 
E) Heatmap of Pearson’s correlation coefficient (PCC) values matrix comparing primary clusters (top) or 9 of the 17 subpopulation groupings (bottom) against in vivo 
human (36) and mouse (37) embryonic (D) cardinal cell types and (E) developmental stages. Marker genes (n = 77 for human; n = 55 for mouse) were defined by the knowledge 
matrix provided in (35, 37), and transcription factors (n = 1463 for human; n = 1775 for mouse) were defined by annotations from PANTHER and GO.
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(Fig. 5, A to C). We organized related primary clusters into 17 dif-
ferent groups (Fig. 6A and table S3A), which also exhibited good 
concordance with previous datasets (Fig. 5D, bottom, and fig. S5). 
We then developed and applied a consensus clustering-based 
approach with the goal of defining robust subclusters representing 
subtypes of known cardinal populations (Materials and Methods 
and fig. S7, A to C). Consensus clustering was shown to improve 
cluster stability without sacrificing cluster quality (fig. S7D and 
Materials and Methods). Each subpopulation was divided into four 
to nine “subclusters,” to which we assigned an R/C positional identity 
based on sample identities’ global HOX expression (Figs. 4, D and E, 
and 6B). We examined the relatedness of these subclusters using 
hierarchical clustering and found that subclusters were generally orga-
nized by region (Fig. 6B). Analysis of differentially expressed genes 
(DEGs) across subclusters uncovered hundreds of genes up-regulated 
in region-specific cardinal subtypes (table S4 and Materials and 
Methods). Here, we focus on the MN, dI1, and V2a/V3 groups, high-
lighting findings that emphasize how unbiased clustering enables 
the discovery of novel region-specific markers different from 
or difficult to detect in transcriptionally defined populations (fig. S8A) 
and in available in vivo datasets (fig. S8, B to D). Similar analyses 
for other groups are available [table S4 and online resource (see 
“Data and materials availability” in the Acknowledgements)].

MNs constitute the most widely studied neurons in the spinal 
cord, with significant evidence of Hox-dependent specification 
along the R/C axis and in the development of precise motor pools 
(2, 20, 38–42). MNs in our dataset clustered into MNX1+/ISL2+ 
somatic MNs (sMNs; MN-c1, MN-c3, MN-c7, and MN-c8), which 
innervate skeletal muscle, and preganglionic PHOX2B+ visceral 
MNs (vMNs; MN-c2, MN-c5, MN-c6, and MN-c9), which are re-
sponsible for autonomic function (Fig. 6C) (42–44). The latter 
population is a particularly rich target for novel findings. For exam-
ple, Rayon et al. (35) report scarce expression of TBX20 in the human 
spinal cord as a notable difference between human and mouse 
vMNs, but hPSC-derived PHOX2B+ vMN subclusters in our dataset 
clearly express TBX20 (Fig. 6C and fig. S8B). This suggests that 
TBX20 is conserved between species and that our in  vitro hPSC-

derived dataset can help validate or invalidate conclusions based on 
sparser in vivo datasets. LINC00682 also emerged as a characteristic 
marker of vMNs in our dataset but was up-regulated in only p3 pro-
genitors using the classification scheme developed by Rayon et al. 
(35). Reassessment of the published dataset using our transcription-
al definitions (table S1A and fig. S8A) revealed that LINC00682 is 
also abundant in human vMNs in vivo (fig. S8B). Although poorly 
understood, lincRNAs are abundant in the CNS and play multiple 
roles in development, neural plasticity, neurodegeneration, and 
sex-specific disease phenotypes (45–47). Given the origin of vMNs 
on the pMN/p3 border (24), we hypothesized that LINC00682 could 
be an important regulator for vMN specification. Knockdown of 
LINC00682 during differentiation repressed PHOX2B, but not MNX1 
or ISL1 expression, suggesting vMN-specific fate regulation and 
affirming the value of these data for future gene regulatory network 
analysis (fig. S8, E to G). In addition, although sMNs and vMNs 
were proportionally divided within samples (Figs.  4H and 6C), 
HOX profiles appeared hindbrain-like in vMNs but sMNs maintained 
spinal HOX profiles correlative to their sample identity. Phox2B is 
known to be a direct target of several Hox genes (2, 48) and may 
contribute to this differential expression. Given that the persistence 
of Hox activity is thought to coincide with the development of 

downstream synaptic targets (2, 38), it is also possible that the 
proximity of ganglionic targets, both spatially and developmentally, 
causes early down-regulation of Hox gene expression in vMNs com-
pared to sMNs, a subject for future investigation.

The dI1 IN population is derived from the dorsal-most progenitor 
domain of the spinal cord (Fig. 2A) and migrates to the deep dorsal 
horn, where they have roles in proprioception (49, 50). DI1 subclusters 
were divided into ipsilateral-projecting dI1i (BARHL1/2+; dI1-c2 
and dI1-c4) (51, 52) and contralateral-projecting dI1c (LHX2+; 
dI1-c1, dI1-c3, and dI1-c5) (53) subtypes (Fig. 6D). The LHX2+ 
population also strongly expressed EVX1/2, which classically iden-
tify V0 INs (24, 54, 55). In contrast to our dataset, EVX1/2 are not 
expressed in dI1 INs in mouse or human scRNA-seq data (fig. S8C). 
Furthermore, while hPSC-derived dI1 cells uniformly expressed LHX9 
(50, 56), they seldom coexpress POU4F1 (Figs. 3, F and G, and 5B), 
which is characteristic in mouse (1, 37) but may not be a consistent 
feature of the human population (24, 35). HOX profiles appeared 
hindbrain-like in the LHX2+/EVX1+ population, but not the 
BARHL1/2+ population, which showed persistent caudal HOX pro-
files, despite comparable sample compositions (Fig. 6D). In particular, 
Evx1 is regulated by Hox2 paralogs (2, 57), so its expression may 
suggest a potential role for Hox genes in gene regulatory pathways 
responsible for ipsilateral/contralateral projection patterns in dI1 
neurons.

CHX10+ (VSX2+) V2a INs have multiple roles in  locomotor 
coordination and breathing (58–60) and are one of the few spinal 
interneuron populations to have been characterized by spinal seg-
ment (26). Of the cardinal populations in our dataset, the V2a INs 
show the best continuous representation throughout all ventral 
samples (Fig. 4I). They also express HOX profiles commensurate 
with their sample identities (Fig. 6E). Region-specific markers asso-
ciated with hindbrain (V2a/3-c2, V2a/3-c5, V2a/3-c6, and V2a/3-c7) 
or spinal V2a INs (V2a/3-c1 and V2a/3-c3) were apparent in subcluster 
DEGs, but these differed from markers identified with scRNA-seq 
by Hayashi et al. This is likely because that dataset comprised 
fluorescence-activated cell sorting (FACS)–sorted Chx10:tdTomato+ 
cells in p0 mouse cervical and lumbar tissues, which are develop-
mentally advanced compared to our hPSC-derived cells (26). Spinal 
V2a INs in our dataset  also expressed SLC18A3 (VACHT) and 
LINC02303, which were not observed in comparable mouse or 
human scRNA-seq data (fig. S8D), although cholinergic character in 
V2a INs has previously been observed in zebrafish (61). Last, hindbrain 
V2a INs atypically expressed NK1R (TACR1) (Fig.  6E), which is 
normally expressed in pre-Botzinger complex (pre-BotC) respiratory 
neurons (62) and dorsal horn neurons (63, 64). V2a INs in the 
rodent hindbrain are adjacent to the pre-BotC but do not express 
NK1R (60), indicating a potential species-specific difference in 
rhythmic breathing organization.

Together, differences emergent in our hPSC-derived scRNA-seq 
dataset reveal the power of this differentiation platform to generate 
novel, region-specific spinal subpopulations detectable by standard 
DEG analysis. Whether novel markers are bona fide, evidence of 
accelerated maturation of cells in vitro compared to in vivo (65) or 
artifacts of in vitro differentiation is subject to future investigation.

Arboretum analysis reveals complex gene expression 
patterns across subclusters
While standard DEG analysis identifies strong differences between 
subclusters, it is restricted to pairwise comparisons. Combinatorial 
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Fig. 6. Subcluster analysis reveals subpopulations with neuronal phenotype and regional specificity. (A) t-SNE plots showing primary cluster compositions in 9 of 
the 17 subgroups. (B) Hierarchal organization of subclusters with pictorial representations of estimated R/C location. Dual colors in key refer to rostral (pale) or caudal 
(dark) segments of hindbrain or spinal cord regions. (C to E) Subcluster analyses for (C) all MN populations, including sMN (C16, C17, and C21), vMN (C18, C20, and C21), 
and cranial MN (cMN; C11) clusters, (D) dI1 clusters (C7 and C10), and (E) V2a/V3 mixed clusters (C12, C14, and C22). t-SNEs show subclusters (n = 5 to 9) defined by 
consensus clustering and distributions of the samples, primary clusters, and Hox profiles. Dot plots display HOX gene expression, appropriate transcription factors (TFs) 
associated with the subpopulation grouping, neurotransmitters (NTs), and a selection of markers from the top 10 DEGs for each subcluster. The size of each circle reflects 
the fraction of cells where the gene is detected, and the color reflects the average expression level within each cluster (blue, low expression; yellow, high expression). 
Sample and HOX profile cluster distributions across subclusters are also visualized in stacked histograms.
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patterns of gene expression spanning more than two subclusters 
could capture nuanced expression differences and thus more 
comprehensively characterize novel cell types. To this end, we 
developed a computational pipeline that first applied Arboretum (66), 
a multitask clustering algorithm, to assign genes into expression 
states based on their pseudo-bulk mean expression. Then, we 
identified “transitioning” gene sets, which exhibit coordinated changes 
in expression states across subclusters (Materials and Methods, 
Fig. 7A, and online resource). We interpreted these gene sets based 
on subclusters’ regional and phenotypic identities. Here, we focus 
on the V2a/V3 and the high/low RA ventral groupings to demon-
strate how this analysis can be used to detect patterns of interest in 
subpopulations along the R/C axis and to identify gene modules 
representing combinatorial expression changes across multiple car-
dinal populations in response to differentiation perturbations.

Because the V2a/V3 grouping was divided into subclusters 
corresponding to R/C regions from the hindbrain through thora-
columbar spinal cord (Fig. 6E), the transitioning genes from Arboretum 
indicated region-specific expression patterns (Fig. 7B). Akin to DEG 
analysis, we found patterns of expression specific to a single sub-
cluster, like V2a/3-#184, which shows elevated expression in V2a 
INs (c7) of the rostral hindbrain. We also found shared patterns of 
expression between multiple subclusters, like V2a/3-#173 or V2a/3-
#202, which show genes up-regulated in spinal or hindbrain sub-
types, respectively. These gene sets included factors of potential 
interest involved in binding HOX proteins (MEIS2), mitochondrial 
activity (RPS4X, NDUFA8, and MDH2), cell adhesion (PCDH9), 
surface biomarkers (CD24), neurite outgrowth (NRN1), and neuron-
specific alternative splicing (NOVA1). We also found patterns 
representing gradual changes in gene expression that may identify 
region-specific changes that emerge as a gradient along the R/C axis 
or between subclusters, as has previously been observed for V2a INs 
(26). For example, V2a/V3-#116 and V2a/V3-#197 show gradual 
decrease in gene expression from hindbrain to spinal V2a INs, 
while V2a/V3-#164 shows gradual increase in expression from 
hindbrain to spinal V2a INs. Last, we identified numerous gene sets 
that correspond to nuanced gene expression patterns, like V2a/
V3-#204, which exhibit high levels of gene expression in the spinal 
cord and rostral hindbrain, but not the caudal hindbrain. The 
Arboretum pipeline and associated analysis is thus a valuable resource 
for curation of novel gene expression patterns that can be examined 
with targeted in vivo studies, compared to standard DEG analysis, 
which fails to contextualize or detect nuanced gene expression 
differences between subclusters.

Next, we used Arboretum to determine whether changing RA 
during D/V patterning had an impact on terminal gene expression. 
We observed that changing RA concentration during dorsal differ-
entiation significantly changed the distribution of postmitotic 
cardinal populations (Fig. 4I), but while ventral populations were 
slightly shifted, both H216-vN and H216R-vN samples contained 
V2a INs, sMNs, and vMNs (Fig. 7C). This allowed for direct com-
parison between cardinal populations. Arboretum identified gene 
sets comprising commonly up-regulated (H216/R-vN-#54) or down-
regulated (H216/R-vN-#51) genes in response to the increase in RA 
concentration (Fig. 7D). Gene set #54 includes HOXA5, which vali-
dates the role of RA in activation of specific Hox genes and mimics 
occurrences in vivo. Constitutive activation of RA signaling during 
development was found to disrupt digit-innervating MN development 
(41), and precise retinoid levels are required for digit and tendon 

development (67). Notably, the annotation of genes in H216/R-vN-#51 
(online resource) indicated that ventral patterning with 1 M RA 
compared to 100 nM RA persistently suppressed signaling pathways 
involved in mitochondrial electron transport, mitochondrial respi-
ration, and oxidation-reduction in postmitotic neurons matured 
20 days beyond progenitor patterning. This finding could have 
significant implications for in vitro modeling of neurological disorders 
associated with mitochondrial pathologies and cell survival after 
transplantation. Moreover, it highlights the need for more thorough 
characterization of differentiation protocols used for prospective 
cell therapies, which may optimize for a particular cell phenotype 
without considering how subtle changes in morphogen concentra-
tions can affect long-term transplant efficacy.

DISCUSSION
By implementing a modular differentiation paradigm that explicitly 
decouples R/C from D/V patterning, we demonstrate the ability 
to direct hPSCs to any neuronal phenotype in the pCNS. We show 
that all D/V phenotypes—particularly dorsal INs—can be effectively 
generated under monolayer culture conditions. This is in contrast 
to the previously requisite organoid and spheroid cultures, which 
exhibit batch-to-batch variability and may rely on the formation of 
signaling centers for D/V patterning (6, 7, 12–14). Moreover, our 
patterning schema enables deeper investigation of the role of Hox 
genes, retinoids, and other signaling molecules in the development 
of anatomically and therapeutically relevant cell types.

Our scRNA-seq data also highlight the power of hPSCs in pro-
viding broad access to embryonic pCNS tissues. While scRNA-seq 
datasets from primary embryonic rodent (37, 68) and human spinal 
cords (35) are invaluable resources, they have limitations. Because 
of the physical difficulties associated with early embryonic tissue 
acquisition and dissection, these datasets fail to discretize neuro-
nal phenotypes across different pCNS R/C regions. They also 
sparsely sample individual cell subtypes, a consequence of poor 
neuronal yield and subtype rarity. By comparison, our modular 
protocol enables unlimited sampling of any phenotype from any 
differentiation time point across any R/C region. As a result, our 
scRNA-seq dataset spans multiple discrete regions from the hindbrain 
through the thoracolumbar spinal cord, improving the ability to detect 
nuanced transcriptional programs that potentially regulate lineage 
specification.

The multiregional nature of our dataset posed challenges to 
systematically define cell clusters. While known cell markers are 
used commonly to define single-cell populations (35, 37), a large 
proportion of cells remain unlabeled. In contrast, a clustering-based 
approach offers a more comprehensive strategy but remains challeng-
ing especially when there are a large number of unknown populations 
(69). Our two-step approach based on sparse NMF and consensus 
clustering allowed a biologically meaningful grouping of cells that 
recapitulated known as well as novel cell types. Furthermore, our 
Arboretum-based approach allowed us to uncover previously un-
known patterns of expression that can inform functional experiments 
for in-depth characterization of these cell populations. We anticipate 
that these platforms will enable rigorous interrogation of gene regula-
tory pathways responsible for neuron diversification and synaptic 
targeting in the pCNS. Future studies encompassing other pCNS 
populations including those from patient induced pluripotent stem 
cells will enable investigation of spatiotemporal gene expression 
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Fig. 7. Multitask clustering enables discovery of novel and nuanced gene expression patterns across subclusters. (A) Schematic procedure of Arboretum-based 
identification of combinatorial expression patterns. Arboretum, a multitask clustering method, clusters genes using their pseudo-bulk expression in each cell subcluster 
with consideration of relationship structure between subclusters. Each gene cluster is associated with an expression state. Subsequent interpretation of genes is made by 
grouping genes into sets that change their expression state across cell subclusters. (B) Expression state assignment patterns and mean expression levels for gene sets 
identified for V2a/V3 subgroup. Subclusters colored by predominant primary cluster identity (top); R/C positioning [spinal cord (SC) or hindbrain (HB)] and cardinal cell 
type colored by sample identity (bottom). A selection of gene sets highlights potential region-specific patterns of gene expression across the pCNS, represented in schematic 
images (right). (C) Subpopulation analyses for grouping of ventral samples exposed to high (H216R-vN) or low (H216-vN) RA. t-SNE plots show subclusters (n = 8) defined 
by consensus clustering and distributions of the samples (primary cluster population and high/low RA subpopulation) and HOX profiles. Hierarchical organization of 
subpopulation subclusters with pictorial representation of comparable thoracolumbar identity. (D) Expression state assignment patterns and mean expression levels for 
gene sets identified for high/low ventral subpopulation grouping. Subclusters (top) and cardinal cell type composition (bottom) colored by sample identity. A selection 
of gene sets highlights shared genes across multiple cardinal populations up-regulated in response to high or low RA (right).
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dynamics during development and disease. These include diseases 
with pathologies exhibiting bulbar versus spinal onset and spinal 
cord injury, where the site and magnitude of trauma is patient specific. 
Improved understanding of region-specific pCNS circuitry and 
neurodegenerative susceptibility will inform pharmacological, cell 
transplantation, and gene therapy strategies, advancing the field 
toward personalized medicine.

MATERIALS AND METHODS
Stem cell maintenance
Experiments were conducted using the HUES3::Hb9-GFP line 
(Di Giorgio et al.) (Harvard Stem Cell Institute) or H9 (WA09, WiCell) 
hESC lines under xeno-free, feeder-free conditions. hESCs were 
maintained at 37°C in 5% CO2 in Essential 8 (E8) medium on 
Matrigel (WiCell)–coated six-well tissue culture–treated plates and 
were passaged when 70 to 80% confluent. Briefly, cells were washed 
once with phosphate-buffered saline (PBS) (Invitrogen) and then 
incubated at 37°C in Versene (Invitrogen) for 6 min. Versene was 
aspirated, and the cells were gently dissociated from the well with 
fresh E8 and replated at a 1:12 seeding ratio. The medium was 
replenished daily (Lippmann et al.).

NMP differentiation
To initiate NMP differentiation, hESCs were washed once with PBS, 
incubated at 37°C in Accutase (Invitrogen) for 5 min, singularized 
by gentle trituration, and quenched with one volume of E8 medium. 
Following centrifugation for 5 min at 300g, hESCs were replated 
onto 35-mm Matrigel-coated plates at a density of 1.5 × 105 cells/cm2 
in E8 medium with 10 M ROCK inhibitor (Y27632, Tocris). The 
medium was replaced with E6 medium (70) on the following day 
(day 0) and then changed to E6 supplemented with FGF8b (200 ng/ml; 
PeproTech) 24 hours later (day 1). On day 2, Hox propagation was 
initiated by activation of Wnt signaling using NMP medium con-
sisting of E6 medium supplemented with FGF8b (200 ng/ml) and 
3 M CHIR99021 (Tocris). This constitutes the “Hox time point” of 
0 hours. At various time points, NMPs were collected or differentiated 
to pCNSPs for scRNA-seq experiments and at 120 hours for D/V 
optimization experiments. For NMPs collected within 24 hours, the 
NMP medium was applied directly. Else, cells were subcultured at a 
2:3 ratio. Briefly, cells were washed once with PBS, incubated in 
Accutase for 1.5 to 2 min, and removed from the surface by gentle 
pipetting. After centrifugation, cells were gently resuspended in 
NMP medium containing 10 M Y27632 and seeded on 35-mm 
Matrigel-coated plates. The NMP medium was replenished on day 4. 
For NMPs collected between H72 and H96, the NMP medium was 
changed directly on day 5; else, cells were subcultured again at a 
2:3 ratio. The medium was replenished daily on days 7 to 10 with 
the NMP medium containing GDF11 (30 ng/ml; PeproTech) and 
1 M dorsomorphin (Tocris) to stimulate caudal NMP development, 
with subculture on day 9 at a 1:1 ratio.

pCNSP differentiation
To initiate pCNSP differentiation, H9-derived NMPs were cultured 
for 1 day in pCNSP medium, consisting of E6 medium supplemented 
with 1 M RA (Sigma-Aldrich), 10 M SB-431542 (Abcam), and 
100 nM LDN-193189 (Stemgent). Cells were singularized and replated 
at 5 × 105 cells/cm2 in pCNSP medium containing 10 M Y27632 
for an additional 2 days. The medium was replenished daily.

D/V differentiation
pCNSPs were exposed to morphogens for 4 days to initiate D/V 
patterning. Dorsal progenitors were cultured in E6 medium con-
taining 100 M RA, 1 M Cyc, and BMP4 (PeproTech) at different 
concentrations and durations. Ventral progenitors were cultured in 
E6 medium containing 100 nM RA, 10 M SB-431542, 100 nM 
LDN-193189, Pur (Tocris), and SAGs (Calbiochem) at different 
concentrations. “High” RA conditions were cultured in 1 M RA 
instead of 100 nM RA. Progenitors underwent neuronal differentia-
tion for immunocytochemistry and qPCR studies by switching to 
maturation medium for 5 to 7 days. Maturation medium consisted 
of E6 containing 1× N2 supplement (Thermo Fisher Scientific), 50× B27 
supplement (Thermo Fisher Scientific), 1 M adenosine 3′,5′- 
monophosphate (cAMP) (Sigma-Aldrich), glial cell line–derived 
neurotrophic factor (GDNF) (10 ng/ml), brain-derived neurotrophic 
factor (BDNF) (10 ng/ml), NT-3 (10 ng/ml; PeproTech), and 10 M 
DAPT (Tocris). As appropriate, BMP7 (10 ng/ml; PeproTech) was 
added to the maturation medium for additional dorsalization. The 
medium was replenished daily.

Differentiation for preoptimized scRNA-seq
Using the HUES3-Hb9-GFP hESC line, which fluorescently reports 
Hb9 (MNX1)+ MNs (71), we differentiated NMPs from six time 
points corresponding to H24, H48, H72, H120, H168, or H216 of 
Hox patterning. Cultures were then switched to E6 medium con-
taining 1 M RA, 2 M SAG, and 2 M Pur for 3 days. Progenitors 
were subcultured at a 1:3 ratio, gently resuspended in E6 medium 
supplemented with 1 M RA, 100 nM SAG, 100 nM Pur, and 10 M 
Y27632, and plated on 35-mm Matrigel-coated well plates for an 
additional 3 days. Then, the medium was switched to E6 medium 
supplemented with 1 M RA, 100 nM SAG, 100 nM Pur, and 5 M 
DAPT for an additional 5 days and then cryopreserved. The medium 
was replenished daily.

Differentiation for optimized scRNA-seq
NMPs from six time points corresponding to H24, H48, H72, H120, 
H168, or H216 of Hox patterning were differentiated to pCNSPs. 
Dorsal progenitors were generated by culturing in E6 medium con-
taining 100 nM RA, 1 M Cyc, and BMP4 (20 ng/ml) for 1 day and 
then E6 medium containing 100 M RA and 1 M Cyc for three 
additional days. Ventral progenitors were generated by culturing in 
E6 medium containing 100 nM RA, 10 M SB-431542, 100 nM LDN-
193189, 0.5 M Pur, and 0.5 M SAG for 4 days. For H216R conditions, 
the RA concentration was increased to 1 M for both dorsal and ventral 
differentiations. Progenitors were cryopreserved to synchronize cul-
tures. For neuronal differentiation and maturation before sequencing, 
cells were thawed in maturation medium containing 10 M Y27632 at 
5 × 105 cells/cm2 overnight, with daily medium changes for 6 days. 
The medium was switched to Neurobasal medium (Gibco) containing 
1× N2 supplement, 50× B27 supplement, 1× GlutaMAX (Thermo 
Fisher Scientific), 1× penicillin-streptomycin (Invitrogen), laminin 
(1 ng/ml; Thermo Fisher Scientific), 1 M cAMP, GDNF (10 ng/ml), 
BDNF (10 ng/ml), and NT-3 (10 ng/ml) for 14 days. Two days be-
fore sequencing, the medium was supplemented with 10 M AraC 
(Sigma-Aldrich) to eliminate proliferating cells.

Cryopreservation
To create cryopreserved cell banks for further differentiation or 
scRNA-seq analysis, cells were dissociated in Accutase at 37°C for 
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30 min on an orbital shaker, quenched with one volume of E6 
medium, centrifuged, and gently resuspended in 10% dimethyl 
sulfoxide in E6 medium with 10 M Y27632. The cells were aliquoted 
at 1 ml per cryovial and cryopreserved with a CryoMed controlled 
rate freezer (Thermo Fisher Scientific) using a stepwise cooling 
program: rapid cooling from room temperature to 4°C, 1°C/min until 
reaching −60°C, and 10°C/min until reaching −100°C. Cryovials 
were transferred to a liquid nitrogen dewer for long-term storage.

siRNA knockdown validations
NMPs corresponding to H120 of Hox patterning were thawed from 
cryopreserved stocks and seeded at 5 × 105 cells/cm2 in pCNSP 
medium containing 10 M Y27632 for 2 days. Ventral progenitors 
were generated by culturing in E6 medium containing 100 nM RA, 
10 M SB-431542, 100 nM LDN-193189, 0.5 M Pur, and 0.5 M 
SAG for 4 days. Cultures were differentiated to neurons in matura-
tion medium for an additional 5 days. Knockdown was performed 
using a Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) 
according to the manufacturer’s protocols using 10 nM small inter-
fering RNA (siRNA) assays (table S4).

Quantitative real-time polymerase chain reaction
Total RNA was isolated using a TRIzol reagent (Invitrogen), and 
complementary DNA (cDNA) was synthesized using the SuperScript 
IV First-Strand Synthesis System (Invitrogen) according to the 
manufacturer’s instructions. TaqMan Gene Expression Assays 
(table S5) and TaqMan Gene Expression Master Mix (Applied 
Biosystems) were used on a Bio-Rad CFX96 thermocycler with the 
following protocol: 50°C for 2 min; 95°C for 10 min; 40 cycles of 
95°C for 15 s and 60°C for 1 min. Target genes were normalized to 
RPS18 expression, and relative gene expression was calculated using 
the comparative Ct method. Fold differences in relative mRNA 
expression levels of target genes are reported for each gene with SDs 
(n = 6 biological replicates for each group). Statistical analysis was 
conducted using JMP-Pro 13 software. Significance was determined 
using a one-way analysis of variance (ANOVA) with Tukey-Kramer 
honestly significant difference post hoc for multiple comparisons 
with a 95% confidence threshold.

Immunocytochemistry
Cells were fixed in 4% paraformaldehyde for 10 min, washed thrice 
in PBS, and blocked in tris-buffered saline (TBS) containing 0.3% 
Triton X-100 and 5% normal donkey serum (TBSDT) for at least 
1 hour. The cells were incubated in primary antibodies (table S5) 
diluted in TBSDT overnight at 4°C. After three 15-min washes in 
TBS containing 0.3% Triton X-100, the cells were incubated with 
Alexa Fluor secondary antibodies (Invitrogen) at a 1:500 dilution in 
TBSDT for 1 hour at room temperature. Cells were washed twice in 
TBS for 15 min each, counterstained with 300 nM 4′,6-diamidino-
2-phenylindole (DAPI) for 10 min, and washed once more in TBS 
before mounting with Prolong Gold Antifade Reagent (Life Tech-
nologies) as necessary. Images were acquired using a Nikon A1R 
confocal microscope with Nikon NIS-Elements software and analyzed 
with NIS-Elements and ImageJ.

Single-cell dissociation of neurons
Cells were singularized for scRNA-seq by dissociation with papain 
(Worthington). Briefly, cells were washed once with PBS, incubated 
in papain at 37°C for 1 hour on an orbital shaker, and then triturated 

vigorously with a wide-bore pipette. The cell suspension was centri-
fuged at 300g for 5 min and then quenched with ovomucoid solution 
for 10 min at room temperature. Quenched cells were centrifuged, 
gently resuspended in PBS containing 0.2% bovine serum albumin 
and 10 M Y27632, and then passed through a 40-mm cell strainer 
(Mitenyi Biotec) to remove debris. Cells were quantified and diluted 
to 700 cells/ml for sequencing.

Single-cell RNA sequencing
Directly after thaw or singularization, ~3000 to 5000 cells were 
targeted for capture from each sample. Transcriptomic profiling was 
performed using the Chromium Single Cell Gene Expression system 
(10X Genomics), according to the manufacturer’s recommendations 
using the Single Cell 30 Reagent v2/v3 kits (10X Genomics). Post–
GEM-RT (gel bead-in emulsion–reverse transcription) and post-cDNA 
amplification cleanup were performed using Dynabeads MyOne 
silane beads (Thermo Fisher Scientific) and SPRIselect (Beckman 
Coulter) kits, respectively. Successful library preparation was con-
firmed using Agilent Bioanalyzer (High Sensitivity DNA kit) and Qubit 
Fluorometer (High Sensitivity dsDNA kit). Experimental data were 
demultiplexed using the Cell Ranger Single Cell Software Suite, 
mkfastq command wrapped around Illumina’s bcl2fastq. The MiSeq 
balancing run was quality-controlled using calculations based on 
UMI (unique molecular identifier)–tools (72). Sample libraries were 
balanced for the number of estimated reads per cell and run on an 
Illumina HiSeq 2500 or NovaSeq 6000 system. Cell Ranger software 
was then used to perform demultiplexing, alignment, filtering, bar-
code counting, UMI counting, and gene expression estimation for 
each sample according to the 10X Genomics documentation (https://
support.10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/what-is-cell-ranger). The gene expression estimates 
from each sample were then aggregated using Cell Ranger (cellranger 
aggr) and processed through our data preprocessing pipeline to ob-
tain filtered and normalized expression data.

Data preprocessing
For each of the 6 samples from direct differentiation (GSE186696) 
and 14 samples from modular differentiation (GSE186697) from 
our R/C time-series experiment, we filtered out genes that were 
expressed in fewer than five cells and cells with fewer than 5000 UMIs 
from the dataset. For all analysis in this study, we set our threshold for 
expression as 0, i.e., a gene needs to have a count >0 to be called as 
expressed in a cell. Each cell’s expression value was depth-normalized 
to a depth of 5000, followed by variance stabilizing normalization as 
implemented in the pagoda2 package (73). We merged the gene ex-
pression matrices from each sample into a single matrix while taking 
the union of the genes from each matrix. The combined matrix is 
[12,543 cells × 20,598 genes] for the direct differentiation dataset and 
[49,959 cells × 23,941 genes] for the multiple generation dataset. We 
transformed the values of these matrices by taking their square root and 
standardizing each cell’s expression profile by dividing by the mean 
expression of a gene in each cell for the subsequent clustering analysis.

Clustering of single cells by HOX gene profile
We obtained the expression values of 33 HOX gene paralogs from 
our normalized matrix to define the HOX profile of each cell (fig. S4, 
D to G, and table S6). We clustered the cells based on their HOX profile 
using two different clustering algorithms. The first approach bina-
rized the HOX profiles based on nonzero expression of a HOX gene 
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in a cell and applied k-means clustering with k in {5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20} on these binary profiles. The second ap-
proach applied Louvain clustering on knn graphs of cells with edges 
weighted by the Euclidean distances between the binary HOX ex-
pression profiles of each cell. We used four different values for the 
number of neighbors (n) in the knn graph, n in {20, 30, 40, 50}, and 
searched the resolution parameter of Louvain clustering (which 
controls the number of clusters) to identify 5 to 20 clusters. A reso-
lution of 1 was applied initially for each desired k. Let k′ be the num-
ber of clusters obtained at a resolution of r′. If k′ > k, we decreased 
the resolution by (0.5)i; else, we increased the resolution by (0.5)i, 
where i is the search iteration. This process was repeated until the 
desired k was reached. There were four different clusterings (for the 
four values of n) for each k (the number of clusters), and the optimal 
n was selected on the basis of the lowest Pearson’s correlation 
between the cluster means (fig. S4D). Our rationale was that the 
Pearson’s correlation would be lowest for the most distinct clusters. 
We computed silhouette index (SI) for each Louvain clustering and 
compared this with the k-means clusters. Louvain clusters were 
used for the following analysis finally because they had better SI 
evaluation scores (fig. S4E). To determine k, we examined the 
patterns of HOX genes in each cluster in addition to the SI. On the 
basis of SI measures, a k value of 13 or 14 was optimal. We next anno-
tated each cluster based on the pattern of expression of HOX genes, 
e.g., a cluster was annotated with a pattern “HOXA4+/HOXA5-” 
if HOXA4 was expressed, while HOXA5 was not. We finally deter-
mined the number of clusters to be 13, as it had among the highest 
SI and the most distinct annotation patterns capturing most of the 
known HOX colinear expression patterns (fig. S4, F and G). Cluster 
IDs are rearranged manually based on the observed composition of 
nine HOXA genes within each cluster such that lower cluster IDs 
were more rostral (e.g., higher expression of HOXA1 and HOXA 2), 
while higher cluster IDs were more caudal (e.g., higher expression 
of HOXA13).

Identification of primary clusters
We applied NMF implemented with alternating nonnegative con-
strained least squares (NMF-ANLS) and the active set method (37) 
with sparsity on the gene space for the identification of primary clusters. 
NMF decomposes an input matrix X ∈ Rm × n into two lower dimen-
sional factors, U and V as ​​‖X − UV‖​F​ 2 ​​, where U ∈ Rm × k and V ∈ Rk × n. 
Here, m is the number of cells and n is the number of genes. In NMF-
ANLS, the objective is defined as ​​‖X − UV‖​F​ 2 ​ +  ​‖U‖​F​ 2 ​ + (​∑ j=1​ n  ​​ ​‖V(: , j ) ‖​1​ 

2​)​, 
where the regularization parameter  controls the magnitude of U 
and  is used to tune the extent of sparsity (36). We used the mean 
value of all values of the input matrix as  and . This implementa-
tion of NMF was shown to have a faster convergence and be more 
computationally efficient compared to the multiplicative update 
algorithm originally developed for NMF (74). Furthermore, on the 
basis of our comparisons of this algorithm to the ordinary least 
squares implementation in MATLAB (NMF-OLS), this produced 
more stable solutions (fig. S6, A and B). We performed NMF on our 
merged normalized [cells × genes] matrix, with the number of 
factors/lower dimensions, k, to be 5, 10, 15, 20, 25, 30, and 35. K-
means clustering was performed on the U matrix, and k was desig-
nated to be the same as the number of the factors for improved 
clusters. As NMF results in different solutions depending on the 
starting seed, we applied NMF with 20 different random initializa-
tions and assessed the stability based on Jaccard index (JI) of the 

cluster assignments. Overall, the NMF factorizations were stable (JI 
ranging from 0.64 to 0.99). For each k, we took the most stable 
initialization based on the maximum average JI between each ini-
tialization and the remaining ones (fig. S6B). We used two metrics to 
determine the number of clusters. First, we extracted 23 well-known 
neural marker genes (table S1C) from our data matrix and calculated 
the SI of each clustering solution (fig. S6C). Second, we tested the 
significance of the difference in expression profiles for each pair of 
clusters. Briefly, for each k, we first obtained the pseudo-bulk ex-
pression of each cluster by taking the mean expression value of a 
gene across all cells in a cluster. Next, we investigated whether the 
expression vector of one cluster was significantly different from 
another cluster (two-sided paired t test, P < 0.05) and counted the 
proportion of pairs that were significant (fig. S6D). We determined 
k = 25 to be optimal based on SI and the proportion of pairs that 
were significantly different. To assign cell type identities, we used 
sample composition of each cluster (fig. S6E), and the relationship 
between these clusters and the clusters was defined using the HOX 
expression (fig. S6F) to help determine the hindbrain/spinal cord 
identity. Cluster IDs were rearranged manually to preserve the tem-
poral order of the samples and similarity of sample composition of 
a cluster. Our code for the NMF analysis is available at https://doi.
org/10.5281/zenodo.6505441.

Subpopulation clustering analysis
We regrouped our 25 primary cell clusters into 17 subgroups based 
on similarity of the cell types assigned to each cluster: all MNs, 
somatic MN, vMN, floor plate–cranial MN, hindbrain–spinal cord 
(HB-SC) sensory excitatory, HB-SC sensory inhibitory, HB sensory 
excitatory, HB sensory inhibitory, SC sensory, HB-SC proprioceptive, 
dl1, dl2, dlA3/dl3, V2a/V3, V2b, RA–dorsal neurons, and RA-vNs. 
Each subpopulation had between 1084 and 11,965 cells (table S3). For 
each group of clusters, we aimed to identify robust, high-confidence, 
and fine-grained cell subpopulations indicative of a specific cell type. 
We then developed a novel clustering pipeline consisting of three 
steps: (i) ensemble of clusterings, (ii) consensus graph generation, 
and (iii) consensus clustering (fig. S7A). We used the V2a/V3 and 
V2b groups to optimize our pipeline and applied the steps to the 
remaining 15 groups. Our code for the consensus clustering pipe-
line is available at https://doi.org/10.5281/zenodo.6505441.

For the first step, we generated a number of clustering solutions 
to be used for consensus clustering. We compared two different 
types of clustering approaches for generating the ensemble of cluster-
ings. First, we applied NMF (with the ANLS algorithm), followed by 
k-means clustering on U factor matrix. Second, we applied Louvain 
clustering with the knn graph estimated using two approaches: (i) a 
knn graph from pairwise Euclidean distance estimated from an NMF-
reduced space of 50 dimensions, and (ii) a knn graph estimated using 
fuzzy simplicial set, used in UMAP (uniform manifold approximation 
and projection) and scanpy (75). NMF was applied with the number 
of factors, k, to be 3 to 10, each with 10 different random initializations, 
resulting in 80 different clustering solutions. For both Louvain 
clustering approaches, we obtained knn graphs with k = {10, 20, 30, 
40, 50}, each with eight different resolutions, {0.01, 0.05, 0.1, 0.3, 
0.5, 0.7, 1.0, 1.5}, which in total resulted in 80 different clusterings.

In the second step, we created a consensus graph of cell co-
clustering relationship. For every pair of cells, we counted the pro-
portion of times the two cells were in the same cluster (across any of 
our three clustering approaches, k, and resolution) and generated a 
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weighed graph of cells with weights corresponding to this propor-
tion. We generated three types of consensus graphs: one based on 
NMF only clusterings, one based on Louvain only clusterings, and 
one combining both NMF and Louvain.

In the final step, our goal was to estimate robust cell clusters by 
clustering the consensus graph. We considered two clustering 
approaches: one based on NMF and another based on Louvain clus-
tering. For NMF, we considered the number factors in the range of 
3 to 15 and defined cell clusters l based on the factor with the largest 
value for the cell, i.e., l = arg max (Uj1, Uj2, ⋯, Ujl), where U ∈ 
RmXl,1 ≤ j ≤ m. We repeated this procedure 10 times and picked the 
initialization with the highest Jaccard coefficient with the other 
clustering solutions. For Louvain clustering, we extracted the knn 
graph from the full weighted consensus graph matrix with 
{10, 20, 30, 40, 50} nearest neighbors and applied clustering at five 
different resolutions as {0.1, 0.3, 0.5, 0.7, 1.0}. We used a metric delta 
consensus count (DCC) for measuring the quality of the clusters on 
the graph. DCC is defined as ​DCC  = ​ 1 _ l ​ ​∑ i=1​ l  ​​ ​In​ i​​ − ​Out​ i​​​ for l clus-
ters, where Ini is the average of edge weights within a cluster i and 
Outi is the average of edge weights between nodes of cluster i to 
nodes not in cluster i. On the basis of DCC values, NMF was opti-
mal across all three steps, and we applied the same procedure to all 
other subpopulations (fig. S7B).

Having determined NMF to be the optimal algorithm for our 
consensus clustering approach, we generated NMF-based consen-
sus clusters for each subpopulation. For all but MNs, we considered 
k for NMF in step 1, to range from 3 to 10, with 10 different random 
initializations, resulting in 80 different clusterings. For the MNs, we 
used a higher range of k (3 to 30) because MNs are known to be 
more complex than others, resulting in 280 clustering solutions. 
After the consensus graph was generated, a second round of opti-
mization was performed to select the optimal k for the clustering. 
We used a combination of quantitative and qualitative methods. 
For the quantitative methodology, we used the summation of three 
different evaluation metrics, SI, DCC, and stability score (average JI 
for each pair of clusterings). The top three to five best results were 
short-listed and subsequently examined using our qualitative method 
(table S7A). Here, we manually inspected the block-diagonalness of the 
clustered consensus graph matrix to avoid over- or underclustering 
(fig. S7A, iii). On the basis of this procedure, the 17 groups were 
subdivided into 4 to 9 fine cell subclusters (table S3). The main paper 
presents the results of nine of these groups, and the remaining are avail-
able in our online resource (https://doi.org/10.5281/zenodo.6506221). 
The regional specificities of subclusters were addressed by the 
observations of sample compositions and HOX cluster compositions 
(fig. S7C).

Comparative analysis against previous human and mouse 
in vivo studies
We compared our scRNA-seq dataset to two previous in vivo studies 
that used human [Rayon et al. (35)] and mouse [Delile et al. (37)] 
cells. The raw data from the human and mouse single-cell expres-
sion studies were downloaded from the Gene Expression Omnibus 
(GSE171890) and ArrayExpress (E-MTAB-7320), respectively. 
Each dataset was preprocessed using the same procedure described 
above and finally merged into a single matrix, resulting in 23,179 
genes by 47,089 cells for the human dataset and 17,335 genes by 
27,725 cells for the mouse dataset. Comparative analysis was re-
stricted to only SNAP25+ neuronal cells in all datasets, which resulted 

in 6026 cells in the mouse dataset, 8050 cells in the human dataset, 
and 44,487 cells in our dataset. For each dataset, the cells were first 
grouped into cell types based on the expression of marker genes in 
the Rayon et al. (35) knowledge matrix. We compared our 25 pri-
mary clusters (Fig. 5D), 17 subgroups (fig. S5A), and 11 cell types 
[fig. S5B; defined using the knowledge matrix from Rayon et al. (35)] 
to cell types defined in the mouse [Delile et al. (37)] and human 
[Rayon et al. (35)] datasets. For all comparisons, we used 77 marker 
genes in the knowledge matrix provided by Rayon et al. (35) [using 
55 mouse orthologs for Delile et al. (37) obtained from Mouse 
Genome Informatics (76)] and transcription factors (1463 genes for 
human-human and 1775 genes for human-mouse comparisons) 
defined by PANTHER and Gene Ontology (GO). For each type 
of cell grouping (NMF, subgroup, or cell types), we obtained a 
pseudo-bulk expression profile of all marker genes using the mean 
expression across cells within a group. The similarity between any 
pair of cell groupings was estimated using the Pearson’s correlation 
of each group’s pseudo-bulk profiles (see table S2 for correlation 
values and corresponding P values). A pair of cell groupings was 
considered matched if there was a high correlation between each 
row group to one or a few column groups. The best concordance 
was obtained using the cell type definition of cell groups.

Identification of DEGs
For the robustness of the DEGs, we used the intersection of three 
statistical tests. We first defined DEGs per subcluster of each sub-
group as the genes that are expressed in >50% of the cells in a sub-

cluster, while the ​ratio  = ​  E(x∣​In​ i​​) _ E(x∣​Out​ i​​)
​​ is more than 1.25 in tandem, where 

E(x∣Ini) is defined as the number of cells expressing gene x in 
cluster i and E(x∣Outi) is the number of cells expressed in cells not 
in cluster i. Then, we computed the statistical significance of over-
lap between all cells expressing the gene x and all cells in the sub-
cluster based on the hypergeometric test. We additionally tested the 
Welch’s t test and Mann-Whitney rank test (Wilcoxon rank sum 
test) to assess for the differential expression of genes in a subclus-
ter compared to the complementary part of the cluster in the sub-
population. Function “de.test.t_test” and “de.test.rank_test” of the 
Python package “diffxpy” of the scanpy suite (75) were used in this 
calculation, respectively. Last, we kept only the DEGs that were sig-
nificant in all three tests (P < 0.05) to create a stringent set of DEGs 
(table S4).

Arboretum-based identification of subcluster-specific genes
We adapted a previously developed multitask clustering framework 
Arboretum (66) to find gene modules with similar expression 
patterns across subclusters of any of the 17 subgroups. Arboretum 
is used to jointly cluster multiple hierarchically related gene expres-
sion datasets such that cluster assignments for more similar datasets 
are more similar. Such relationships could be obtained from phylog-
enies or other hierarchical clustering. The Arboretum framework is 
based on a generative probabilistic process and has two components: 
The emission model generates the observed expression measure-
ments at the tips of the tree and is formulated as a mixture of k 
Gaussians, where k is the number of clusters, and the clusters are 
related via transition probabilities that model the probabilistic 
propagation of module assignments from the root of the tree to the 
tips. In our application of Arboretum to scRNA-seq datasets, we 
first generated pseudo-bulk profiles for each cell subcluster, used 
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these to define hierarchies (described next), and finally applied 
Arboretum to these data with varying values of k. The component 
of the Gaussian mixture corresponds to an expression state. Although 
the original application of Arboretum models multidimensional ex-
pression matrices, we used one-dimensional pseudo-bulk represen-
tation of each cell subcluster for computational efficiency.

To obtain the relationship structure of the cell subclusters, we 
performed hierarchical clustering based on pairwise distances be-
tween pseudo-bulk vectors. For each of the 17 subgroups, we 
considered unweighted average distance (UPGMA) with different 
distance metrics including Euclidean distance, Pearson’s correlation, 
and cosine distance. We picked the best structure based on the 
cophenetic correlation coefficient. Different groups were best de-
scribed by trees from different distance functions (table S7B).

We tested k to be {3,4,5} in the Arboretum clustering of each 
group as the numbers of gene expression states. The best k was 
determined using the optimal value across three metrics: penalized 
log-likelihood scores, Bayesian information criterion (BIC) penalized 
score, and Akaike information criterion (AIC) penalized score 
(table S7C). After clustering, each gene is assigned a cluster assign-
ment in each cell subcluster, which is represented by a vector of 
discretized expression values across subclusters.

To identify gene sets with combinatorial patterns of expression 
across the subclusters, we obtained genes that change their cluster 
assignment across subclusters and applied our previously developed 
tool adapted to single-cell datasets, scFindTransitioning (https://
doi.org/10.5281/zenodo.6506151), which is based on hierarchical 
clustering of gene cluster assignment profiles. The scFindTransitoning 
tool takes a parameter for determining the cluster height to cut the 
dendrogram. For this analysis, we used the height of 0.05, which 
was selected on the basis of our previous experience with this tool 
on other datasets. We interpreted these gene sets based on their ex-
pression trends as well as known annotations from PANTHER (77) 
and GO databases (78). The transitioning gene sets and associated 
enrichment analysis results are available at https://doi.org/10.5281/
zenodo.6506221.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn7430

View/request a protocol for this paper from Bio-protocol.
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