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ABSTRACT
Motivated by Q-learning, we study nonsmooth contractive stochas-
tic approximation (SA) with constant stepsize. We focus on two
important classes of dynamics: 1) nonsmooth contractive SA with
additive noise, and 2) synchronous and asynchronous Q-learning,
which features both additive and multiplicative noise. For both
dynamics, we establish weak convergence of the iterates to a sta-
tionary limit distribution in Wasserstein distance. Furthermore, we
propose a prelimit coupling technique for establishing steady-state
convergence and characterize the limit of the stationary distribu-
tion as the stepsize goes to zero. Using this result, we derive that the
asymptotic bias of nonsmooth SA is proportional to the square root
of the stepsize, which stands in sharp contrast to smooth SA. This
bias characterization allows for the use of Richardson-Romberg
extrapolation for bias reduction in nonsmooth SA.1

ACM Reference Format:
Yixuan Zhang, Dongyan (Lucy) Huo, Yudong Chen, and Qiaomin Xie. 2024.
Prelimit Coupling and Steady-State Convergence of Constant-stepsize Non-
smooth Contractive SA. In Abstracts of the 2024 ACM SIGMETRICS/IFIP
PERFORMANCE Joint International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS/PERFORMANCE Abstracts ’24),
June 10–14, 2024, Venice, Italy. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3652963.3655076

1 INTRODUCTION
Stochastic Approximation (SA) is a fundamental algorithmic para-
digm for solving �xed-point problems iteratively based on noisy
observations. A typical SA algorithm is of the form

\ (U )C+1 = \ (U )C + U
� eH(\ (U )C ,FC ) � \ (U )C

�
, (1)

where {FC }C�0 represent the i.i.d. noise sequence and U > 0 is
a constant stepsize. The SA procedure (1) aims to approximately
�nd the solution \⇤ to the �xed-point equationH(\⇤) = \⇤, where

1Extended Abstract. The full paper can be found at [12].
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H(·) := EF [ eH(·,F)] is the expectation of the operator eH(·,F)

with respect to the noise. Equation (1) covers many popular algo-
rithms, such as the prevalent stochastic gradient descent (SGD)
algorithm for minimizing an objective function [6], and variants
of TD-learning algorithms for policy evaluation in reinforcement
learning (RL).

In this work, we focus on nonsmooth contractive SA, where the
operator eH(·,F) may be nondi�erentiable (in its �rst argument)
and H(·) is a contractive mapping with respect to a norm k · k2 .
One prominent example of nonsmooth contractive SA is the cele-
brated Q-learning algorithm for optimal control in RL [10], whereeH corresponds to the noisy optimal Bellman operator involving a
max function. It is of fundamental interest to gain a complete un-
derstanding of the evolution and long-run behavior of the iterates
{\ (U )C }C�0 generated by nonsmooth contractive SA.

Under suitable conditions on the operator eH and the noise se-
quence {FC }C�0, the SA iterates {\ (U )C }C�0 form a time-homogeneous
Markov chain and quickly converge to some limit random variable
\ (U ) [1, 11]. Recent work has developed a suite of results for smooth
SA [1, 2, 4], including the geometric convergence of the chain, �nite-
time bounds on the higher moments, as well as properties of the
limit \ (U ) . It has been observed that often E[\ (U ) ] < \⇤, due to
the use of constant stepsize. The di�erence E[\ (U ) ] �\⇤ is referred
to as the asymptotic bias. In particular, for SA with di�erentiable
dynamic, the work [1, 4] makes use of Taylor expansion of eH to
establish that the asymptotic bias is proportional to the stepsize U
(up to a higher order term), i.e.,

E[\ (U ) ] � \⇤ = 2U + > (U), (2)

where 2 is some vector independent of U and > (U) denotes a term
that decays faster than U . Such a �ne-grained characterization of
SA iterates gives rise to variance and bias reduction techniques that
lead to improved estimation of the target solution \⇤, as well as
e�cient statistical inference procedures [1, 4, 5].

For nonsmooth SA, far little is known. Existing analysis based
on the linearization / Taylor expansion of eH is no longer applicable.
Hence, distributional convergence and bias characterization results
like (2) have not been established for nonsmooth SA procedures
like Q learning. In fact, it is not even clear whether equation (2)
remains valid for nonsmooth SA, and if not, what is the correct
characterization.
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2 MAIN RESULTS
To investigate the above questions, we consider two important
classes of nonsmooth contractive SA algorithms:
(i) Nonsmooth SAwith additive noise, where eH(\ ,F) ⌘ T (\ )+F .

Our results cover operatorsT that are6�� decomposable, which
is a rich class of smooth and nonsmooth functions [9].

(ii) A general form of Q-learning, which are nonsmooth SA with
both additive and multiplicative noise. The model covers both
synchronous Q-learning and asynchronous Q- learning.
The �rst main result establishes the weak convergence of the

Markov chain {\ (U )C }C�0 in,2 — the Wasserstein distance of order
2 with respect to the contraction norm k · k2 .

T������ 1 (I�������). {\ (U )C }C�0 converges to a unique station-
ary distribution \ (U ) in,2 for both settings (i) and (ii).

Moreover, we characterize the geometric convergence rate. As a
by-product of our analysis, we derive �nite-time upper bounds on
Ek\ (U )C � \⇤k2=2 , the 2=-th moments of the estimation errors.

We next turn to the characterization of the stationary distribution
of {\ (U )C }C�0 . Existing techniques, which are based on linearizingeH(\ ,F) as \ ! \⇤, are not applicable for nonsmooth SA. We take
an alternative approach by studying the limiting behavior of the

di�usion-scaled iterates . (U )
C := \ (U )

C �\ ⇤

p
U

as the constant stepsize U

approaches 0. The weak convergence of \ (U )C to a limit \ (U ) implies
that . (U )

C converges weakly to the limit . (U ) := \ (U )
�\ ⇤

p
U

as C ! 1.

Therefore, to understand the stationary distribution \ (U ) and its
scaled version . (U ) , we are interested in characterizing steady-state
convergence, i.e., the convergence of . (U ) as U ! 0 and the limit .
(if exists). This limit is illustrated by the red solid path in Fig. 1.

. (U )
C . (U )

C ! 1

U # 0UC = C̄ U # 0

. C̄
C̄ ! 1

.

Figure 1: Steady-state convergence.

Existing approaches to steady-state convergence face severe
challenges in the nonsmooth SA setting. In this work, we develop
a new prelimit coupling technique, which allows us to establish the
desired result.

T������ 2 (I�������). . (U ) converges in,2 to a unique limit-
ing random variable . as U ! 0

Importantly, our technique can handle both additive noise and
multiplicative noise, and provide an explicit rate of convergence.
We remark that our technique can be potentially applied to the
study of steady-state convergence in other stochastic dynamical
systems and hence may be of its own interest.

The convergence of . (U ) in,2 implies convergence of E[. (U )
]

and hence that of E[\ (U ) ]. Consequently, we can characterize the
asymptotic bias of the SA iterates \ (U )C and further relate �ne-
grained properties of the bias to the structure of the SA update (1).

T������ 3 (I�������). The asymptotic bias satis�es

E[\ (U ) ] � \⇤ = E[. ] ·
p
U + > (

p
U). (3)

Moreover, E[. ] < 0 when the operator eH is truly nonsmooth.

Therefore, the asymptotic bias is of order
p
U precisely when the

SA update is nonsmooth. This result stands in sharp contrast to the
U-order bias of smooth SA in equation (2).

Finally, we explore the implications of the above results for
iterate averaging and extrapolation. In particular, we apply Polyak-
Ruppert (PR) tail averaging [7, 8] and Richardson-Romberg (RR)
extrapolation [3] to the iterates generated by contractive SA al-
gorithms. We establish the following guarantees on the resulting
estimation errors and biases in the presence of nonsmoothness.

T������ 4 (I�������). Thanks to the bias characterization in
(3), the RR extrapolation technique can be employed to eliminate the
leading term E[. ] ·

p
U and reduce the asymptotic bias > (

p
U).
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