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ABSTRACT

Motivated by Q-learning, we study nonsmooth contractive stochas-
tic approximation (SA) with constant stepsize. We focus on two
important classes of dynamics: 1) nonsmooth contractive SA with
additive noise, and 2) synchronous and asynchronous Q-learning,
which features both additive and multiplicative noise. For both
dynamics, we establish weak convergence of the iterates to a sta-
tionary limit distribution in Wasserstein distance. Furthermore, we
propose a prelimit coupling technique for establishing steady-state
convergence and characterize the limit of the stationary distribu-
tion as the stepsize goes to zero. Using this result, we derive that the
asymptotic bias of nonsmooth SA is proportional to the square root
of the stepsize, which stands in sharp contrast to smooth SA. This
bias characterization allows for the use of Richardson-Romberg
extrapolation for bias reduction in nonsmooth SA.!
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1 INTRODUCTION

Stochastic Approximation (SA) is a fundamental algorithmic para-
digm for solving fixed-point problems iteratively based on noisy
observations. A typical SA algorithm is of the form

6 = 0\ + a(H (O wp) - 0/7)), (1)
where {w;};>0 represent the ii.d. noise sequence and ¢ > 0 is
a constant stepsize. The SA procedure (1) aims to approximately
find the solution 0* to the fixed-point equation H (6*) = 0%, where
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H() = Ew[ﬁ(-, w)] is the expectation of the operator 7:?(-, w)
with respect to the noise. Equation (1) covers many popular algo-
rithms, such as the prevalent stochastic gradient descent (SGD)
algorithm for minimizing an objective function [6], and variants
of TD-learning algorithms for policy evaluation in reinforcement
learning (RL).

In this work, we focus on nonsmooth contractive SA, where the
operator H (-, w) may be nondifferentiable (in its first argument)
and H(+) is a contractive mapping with respect to a norm || - ||c.
One prominent example of nonsmooth contractive SA is the cele-
brated Q-learning algorithm for optimal control in RL [10], where
H corresponds to the noisy optimal Bellman operator involving a
max function. It is of fundamental interest to gain a complete un-
derstanding of the evolution and long-run behavior of the iterates
{Qt(a) }t>0 generated by nonsmooth contractive SA.

Under suitable conditions on the operator H and the noise se-
quence {w; }r>0, the SA iterates {Bfa) }#>0 form a time-homogeneous
Markov chain and quickly converge to some limit random variable
o) [1, 11]. Recent work has developed a suite of results for smooth
SA[1, 2, 4], including the geometric convergence of the chain, finite-
time bounds on the higher moments, as well as properties of the
limit 6(%). It has been observed that often E[0(®)] # §*, due to
the use of constant stepsize. The difference E[6(®)] - 0* is referred
to as the asymptotic bias. In particular, for SA with differentiable
dynamic, the work [1, 4] makes use of Taylor expansion of H to
establish that the asymptotic bias is proportional to the stepsize a
(up to a higher order term), i.e.,

E[0(®)] - 0" = ca +o(a), ()

where ¢ is some vector independent of @ and o(«) denotes a term
that decays faster than @. Such a fine-grained characterization of
SA iterates gives rise to variance and bias reduction techniques that
lead to improved estimation of the target solution 0%, as well as
efficient statistical inference procedures [1, 4, 5].

For nonsmooth SA, far little is known. Existing analysis based
on the linearization / Taylor expansion of H is no longer applicable.
Hence, distributional convergence and bias characterization results
like (2) have not been established for nonsmooth SA procedures
like Q learning. In fact, it is not even clear whether equation (2)
remains valid for nonsmooth SA, and if not, what is the correct
characterization.
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2 MAIN RESULTS

To investigate the above questions, we consider two important
classes of nonsmooth contractive SA algorithms:

(i) Nonsmooth SA with additive noise, where 77(0, w) =T (0)+w.
Our results cover operators 7 that are goF decomposable, which
is a rich class of smooth and nonsmooth functions [9].

(ii) A general form of Q-learning, which are nonsmooth SA with
both additive and multiplicative noise. The model covers both
synchronous Q-learning and asynchronous Q- learning.

The first main result establishes the weak convergence of the

Markov chain {Qt(a) }+>0 in Wy — the Wasserstein distance of order
2 with respect to the contraction norm || - ||c.

THEOREM 1 (INFORMAL). {Ht(a) }t>0 converges to a unique station-
ary distribution 0@ in Wy for both settings (i) and (ii).

Moreover, we characterize the geometric convergence rate. As a
by-product of our analysis, we derive finite-time upper bounds on
E||9t(a) — 6*||2", the 2n-th moments of the estimation errors.

We next turn to the characterization of the stationary distribution
of {Gt(a) }>0. Existing techniques, which are based on linearizing

H(6,w) as § — 0, are not applicable for nonsmooth SA. We take

an alternative approach by studying the limiting behavior of the

(0{) _ 9(05)_0*
Y\ = 2 2

N

approaches 0. The weak convergence of Gt(a) to a limit 0(@) implies

(a) _g*
Va

diffusion-scaled iterates as the constant stepsize o

that Yt(a) converges weakly to the limit y@ = 8 ast — oo.

Therefore, to understand the stationary distribution 0(®) and its
scaled version Y (@) we are interested in characterizing steady-state
convergence, i.e., the convergence of Y(@) as @ — 0 and the limit Y
(if exists). This limit is illustrated by the red solid path in Fig. 1.
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Figure 1: Steady-state convergence.

Existing approaches to steady-state convergence face severe
challenges in the nonsmooth SA setting. In this work, we develop
a new prelimit coupling technique, which allows us to establish the
desired result.

THEOREM 2 (INFORMAL). Y(®) converges in Wy to a unique limit-
ing random variable Y asa — 0

Importantly, our technique can handle both additive noise and
multiplicative noise, and provide an explicit rate of convergence.
We remark that our technique can be potentially applied to the
study of steady-state convergence in other stochastic dynamical
systems and hence may be of its own interest.
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The convergence of Y@ in W, implies convergence of E[Y(®)]
and hence that of E[(®)]. Consequently, we can characterize the

asymptotic bias of the SA iterates Gt(a) and further relate fine-

grained properties of the bias to the structure of the SA update (1).
THEOREM 3 (INFORMAL). The asymptotic bias satisfies
E[6'®)] - 0" =E[Y] - Va+o(Va).

Moreover, E[Y] # 0 when the operator?—? is truly nonsmooth.

®)

Therefore, the asymptotic bias is of order va precisely when the
SA update is nonsmooth. This result stands in sharp contrast to the
a-order bias of smooth SA in equation (2).

Finally, we explore the implications of the above results for
iterate averaging and extrapolation. In particular, we apply Polyak-
Ruppert (PR) tail averaging [7, 8] and Richardson-Romberg (RR)
extrapolation [3] to the iterates generated by contractive SA al-
gorithms. We establish the following guarantees on the resulting
estimation errors and biases in the presence of nonsmoothness.

THEOREM 4 (INFORMAL). Thanks to the bias characterization in
(3), the RR extrapolation technique can be employed to eliminate the
leading term B[Y] - va and reduce the asymptotic bias o(+a).
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