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Abstract

Human induced pluripotent stem cells (iPSCs) hold great promise for reducing the

mortality of cardiovascular disease by cellular replacement of infarcted cardiomyo-

cytes (CMs). CM differentiation via iPSCs is a lengthy multiweek process and is

highly subject to batch‐to‐batch variability, presenting challenges in current cell

manufacturing contexts. Real‐time, label‐free control quality attributes (CQAs) are

required to ensure efficient iPSC‐derived CM manufacturing. In this work, we report

that live oxygen consumption rate measurements are highly predictive CQAs of CM

differentiation outcome as early as the first 72 h of the differentiation protocol with

an accuracy of 93%. Oxygen probes are already incorporated in commercial

bioreactors, thus methods presented in this work are easily translatable to the

manufacturing setting. Detecting deviations in the CM differentiation trajectory

early in the protocol will save time and money for both manufacturers and patients,

bringing iPSC‐derived CM one step closer to clinical use.
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1 | INTRODUCTION

Cardiovascular diseases account for more than 30% of all deaths

worldwide (World Health Organization [WHO], 2021). Such a high

mortality rate is explained by the death of cardiomyocytes (CMs),

which provide mechanical contractile function in the heart and

have low regeneration ability postinfarction (van Berlo &

Molkentin, 2014). Human induced pluripotent stem cells (iPSCs)

are emerging as a promising tool for the replacement of the lost

CM population (Guan et al., 2020; Shiba et al., 2016); however,

differentiation of iPSCs into mature CMs is a lengthy process with

many critical parameters influencing yields, resulting in a

heterogeneity of outcomes (Floy et al., 2022). Poor predictability

of the CM differentiation outcome will inevitably contribute to the

already high cell manufacturing costs (Vormittag et al., 2018) and

hinder the industrial scaling of iPS cell‐based therapies for cardiac

diseases. Developing a noninvasive label‐free differentiation

success prediction method can prevent wasting time and reagent

resources on a batch bound to fail.

Several recent studies have made advances towards the goal of

CM differentiation batch prediction by label‐free methodologies. The

first study used live two‐photon microscopy in 2D iPSC cultures to

predict the CM differentiation outcome as early as day 1 using

autofluorescence intensity of such metabolites FAD and NAD(P)H in

a multivariate classification model (Qian et al., 2021). A different

study measured various process parameters during CM differentia-

tion in stir‐tank bioreactors, including dissolved oxygen concentration

in the media, to predict a failed batch by day 7 with an accuracy of

90% using multifactorial process modeling (Williams et al., 2020).

Both approaches relied upon manually collecting samples from the

bioreactor and/or specialized microscopy, which in a manufacturing

setting increases the process complexity and workforce skill

requirements. Here we present a prognostic model for CM

differentiation outcome in the commonly studied WTC11 human
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iPS cell line that requires only an oxygen consumption rate (OCR)

measurement for the first 72 hours of a differentiation protocol for

predicting cTnT expression on day 16. Dissolved oxygen concentra-

tion measurement is easily incorporated in commercial stir‐tank

bioreactors (Manstein et al., 2021; Williams et al., 2020), therefore,

translation of an OCR‐based prognosis model to an in‐line, closed

system manufacturing setting should come naturally.

2 | RESULTS AND DISCUSSION

CM differentiation was conducted in 96‐well plates, in the 32 wells

matching the oxygen probe locations of the RESIPHER plate lids (Lucid

Scientific). A schematic of the experiment setup is shown in Figure 1.

Each well produced a continuous read‐out of the total oxygen

consumption in the well; the reads were automatically taken every

15min during the first 6 days of the CM differentiation (days 0–5 of the

protocol), resulting in a total of 576 oxygen consumption measurements

per well. A total of 10 experiments were conducted with seeding

densities in the range of 1–3.5 × 104 cells and CHIR99021 concentrations

in the range of 3–14μM, resulting in a dataset of 320 individual time

series (Figure 2a). The deviation from the parameters in the standard

differentiation protocol was introduced to produce a variety of CM yields

for training a machine learning model. CM yield was measured on day 16

of the protocol by staining cells for cardiac troponin T (cTnT). The wells

were split into six groups based on the resulting cTnT content: high cTnT

(60%–90% cTnT positive signal in a well), 30%–60%, 15%–30%,

10%–15%, low but positive cTnT (<10%) and no cTnT (<1%). Our results

indicate that on average lower oxygen consumption during the first 6

days of the CM differentiation protocol results in higher cTnT‐positive

signal (Figure 2b). The decrease in mitochondrial content has been

reported during mesoderm differentiation (Mostafavi et al., 2021) which

our findings may capture and attribute to the subsequent successful CM

differentiation.

However, as shown in Figure 2b, the standard deviation of the

oxygen consumption for each cTnT class is high, resulting in a

significant overlap between classes. These considerations lead to the

creation of the 174 time‐series feature set which includes median

oxygen consumption levels at various time windows, curve shape

metrics (such as minimum and maximum values, times when those

values are reached, etc.) and the same set of metrics for the

derivative of the time series. In addition, 22 canonical time‐series

characteristics (catch22 [Lubba et al., 2019]) were added as extra

time‐series features. To test the predictive power of oxygen

consumption data from the first 6 days of the CM differentiation

and to validate the time series metrics we derived from those data we

performed a partial least‐squares regression (PLSR) against the end‐

point cTnT expression. PLSR yielded a validation R2 of 0.83, revealing

time series features that are highly predictive of cTnT expression

(Figure 3).

F IGURE 1 Schematic of the experimental setup for oxygen consumption rate measurement during cardiomyocyte differentiation. CM
differentiation was performed based upon Lian et al. (2012) with media changes reflected in discontinuities of OCR trajectories. OCR, oxygen
consumption rate.

(a)

(b)

F IGURE 2 Dynamic oxygen consumption changes during
cardiomyocyte differentiation. (a) All time‐series from 10
experiments, colored by the end‐point cTnT expression measurement.
The time series were translated to start from the same level of flux
for clarity. (b) Time series split into six groups based on the end‐point
cTnT expression measurement, with dashed line representing the
mean value and the shaded area representing the standard deviation.
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The features represented in Figure 3b are the result of a

sequential variable trimming with a 100‐fold cross‐validation

accuracies compared with and without a given variable; only the

features that reduce the R2 value of the regression when removed

from the dataset were retained. The goal of this method, however,

is not in predicting continuous values of cTnT signal, but rather

predicting a binary outcome of the protocol (success vs. failure).

Thus, to split the data into cTnT positive and cTnT negative classes

we used histogram‐based thresholding of the cTnT expression

values in our dataset, which yielded a threshold of 30%. After

thresholding, only 27 time‐series were retained as a cTnT positive

class. An example of using a higher threshold (70%) is shown in

Figure S1, and with only 7 cTnT positive data points the model still

performs well. However, to draw reliable conclusions in this article

we demonstrate outcomes with a threshold of 30%. To perform a

balanced PLS discriminant analysis (PLS‐DA) with such limited data,

for every cross‐validation round a random sample of 27 cTnT−

samples was selected to complement the existing 27 cTnT+ samples.

After a sequential variable trimming with a 100‐fold cross‐validation

performed in the same manner as it was for PLSR, the PLS‐DA

model yielded 93% validation accuracy. We calculated how

validation accuracy changed with length of the time series used

for prediction and observed that it stopped growing after first 72 h

of the data was included (Figure 4b). The discriminant model results

in clear class separation as shown in the biplot (Figure 4a) with the

retained time series metrics. Our analysis suggest that manufactur-

ers can conclude whether the CM differentiation is going to succeed

after only 72 hours after the protocol was initiated with an accuracy

of 93%. To check if our model was affected by changes in cell count

during CM differentiation due to cell death or changes proliferation

speed, we used a WTC11 lamin‐B1 GFP reporter cell line to

normalize the OCR by cell count. Our results do not indicate an

(a) (c)(b)

F IGURE 3 Partial least‐squares regression (PLSR) with time series features against the end‐point cTnT expression. (a) Regression prediction
for the training (R2 = 0.93) and validation dataset (R2 = 0.83). A total of three principal components were used for cTnT prediction. (b) PLSR
loadings plot featuring variables with variables of importance (VIP) > 1. Vectors are colored according to their regression coefficient value, with
positive regression coefficients colored red and negative colored blue. (c) PLSR scores plot showing separation of wells with high and low cTnT.
Data points are colored according to the cTnT expression. Yvar = 59%, 29%, and 5% for PC1, PC2, and PC3 accordingly.

(a)

(b)

F IGURE 4 Partial least‐squares discriminant analysis (PLS‐DA)
reveals clear separation of cTnT+ (cTnT > 30%) and cTnT− classes. (a)
PLS‐DA biplot shows projections of cTnT positive time series in
orange and cTnT negative time series in blue. Loading vectors are
colored according to their regression coefficient value, with positive
regression coefficients colored red and negative colored blue. Only
metrics from the first 72 h were used to yield validation accuracy of
94%. (b) Accuracy versus time passed after the initiation of the
protocol. After the data from the first 72 h only is included in the
analysis, the validation accuracy stops increasing with additional time
series data included in the analysis.
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excessive cell death (Figure S2) or a dramatic change in OCR time‐

series shape or model performance (Figure S3).

In summary, the results presented in this communication reveal

the first oxygen consumption‐based method for prognostic predic-

tion of the purity of a CM differentiation within the first few days of

the protocol. Differences in the quality of starting material (e.g.,

heterogeneity of pluripotency, seeding density post‐thaw) can impact

the metabolic trajectories in the time window examined in this study.

Notably, bioreactor conditions are distinctly different from multi‐well

culture plates—shear stress from mixing, growing in suspension

instead of a monolayer and different spatial distribution of metabo-

lites may affect the dynamics of OCR. However, the suggested

approach can be translated to the data acquired from the bioreactor

and the model can be re‐trained, given that the predictive power of

the derived metrics is already proven in principle. The Wnt signaling

modulation protocol used to differentiate CMs in this article drives

iPSCs to commit to mesoderm in the first 48 hours of differentiation

and to cardiac mesoderm in the first 72 hours accompanied by a

significant drop in mitochondrial DNA copy number (Mostafavi

et al., 2021). Our results highlight the metabolic shift occurring in

critical time window of the first 72 hours of the CM differentiation.

Translation of our findings to cell manufacturing will greatly reduce

costs of CM production by making the process more predictable,

bringing iPSC‐derived products one step closer to routine clinical use.

3 | MATERIALS AND METHODS

3.1 | CM differentiation

Wells of a 96‐well plate were coated with 100 μL Matrigel (GFR in

Knockout D‐MEM, 1:100, Thermo Fisher Scientific) per well and

incubated for 1 h. HiPSC WTC11 cells were lifted from the

maintenance plate with Accutase (Stemcell Technologies), mixed

with DPBS (Thermo Fisher Scientific) at 1:3 ratio, centrifuged at

1000 rpm for 5min, the supernatant was removed, and the pellet was

lifted in media (basal MTeSR Plus media + supplement, 4:1, Stemcell

Technologies) with Rock inhibitor (1000:1, Stemcell Technologies). A

total of 2 × 104 cells were seeded in 100 μL media with Rock inhibitor

(1000:1) per well (day −2). Cells were fed MTeSR+ media on day −1

to reach 70%–90% confluency by day 0. On day 0 media is changed

to RPMI plus B‐27 Supplement minus insulin with 7.5 μM

CHIR99021 (Stemcell Technologies). Exactly 48 h after (day 2), media

is changed to RPMI plus B‐27 Supplement minus insulin with 7.5 μM

IWP2 (Stemcell Technologies). Another 48 h after (day 4), the media

is changed to fresh RPMI plus B‐27 Supplement minus insulin

without any inhibitors. Next, cells are fed every 48 h with RPMI plus

B‐27 Supplement (with insulin). On day 16 cells are fixed and stained

with cardiac troponin T (cTnT) monoclonal antibody (Thermo Fisher

Scientific, clone 13‐11). Wells were washed with 100 μL of

phosphate‐buffered saline (PBS) each (wash step) and then fixed

with 100 μL of 4% paraformaldehyde solution in PBS for 10min.

After three wash steps, cells were permeabilized for 15min with

100 μL of 0.3% Triton X‐100 solution in PBS. After a wash step, cells

were blocked with 100 μL of Odyssey Blocking Buffer for 1 h at room

temperature. Next, we diluted mouse anti‐human cTnT primary

antibody at 1:200 ratio in Odyssey Blocking Buffer and added to the

cells for 1 h. Next, after three wash steps, cells were treated with

100 μL of Odyssey Blocking Buffer with anti‐mouse Alexa Fluor Plus

488 secondary antibody (1:1000) for 30min in the dark. Finally, after

three wash steps 100 μL of PBS was added to each well and cells

were imaged.

3.2 | Quantification of cardiac troponin T signal

Images of the stained wells were acquired with Nikon UltraVIEW

VoX W1 Spinning Disk Confocal at ×4 magnification, and the

entire well was captured with 4 FOVs stitched in a 2 × 2 grid. The

resulting “.nd2” files were read using the Python nd2 library and

the cTnT channel was extracted for thresholding. OpenCV library

was used to blur the image with a 75 × 75 Gaussian kernel and

extract cTnT positive pixels by Otsu's thresholding. Finally, the

binary thresholded image was closed with a 75 × 75 circular

kernel. Well diameter was manually measured using a corre-

sponding brightfield image opened in ImageJ and the same value

was used for all the images, assuming all the wells of the 96‐well

plate are of the same size. To calculate the % of cTnT signal in the

well the sum of positive pixels in the thresholded image was

divided by the measured well area in pixels.

3.3 | OCR time series metrics calculation

Real‐time oxygen consumption measurement was done with a

RESIPHER device (Lucid Scientific) with a 32‐sensor lid compati-

ble with a 96‐well plate. Optical oxygen sensors are located at

rows 3, 4, 9, and 10 of a 96‐well plate. Data were sampled at a

rate of 1 measurement in 15 min, comprising 96 timepoints per

day. First, the time series were split into 3 regions: the first

48 hours after CHIR treatment (days 0 and 1), the next 48 h (days

2 and 3), and another 48 hours (days 4 and 5). The beginning of

each region was equally cropped to exclude sharp fluctuations of

flux that were occurring due to probe removal during media

changes. Since previous studies showed that steady state of an

open‐air system with a monolayer of cells on the bottom of the

well is reached within 1 hour of the media change, (Mamchaoui &

Saumon, 2000) 4 timepoints were removed after every feed.

After cropping, the total number of timepoints per the 48‐hour

time stretch comprised 176 points, with a total of 528 timepoints

per experiment. Next, each of the regions was smoothed by the

moving average with a window of 30 timepoints. Subsequently,

for each region 8 median oxygen consumption levels were

calculated for 8 consecutive nonoverlapping time windows of

22 points each. Finally, another 21 metrics were calculated for

each region:
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• plateau—the longest continuous time stretch where the values do

not deviate from the mean of the stretch more than by 5% of the

standard deviation of the total region

• max1 and argmax1—value and the time point of the first local

maximum reached by the curve

• max2 and argmax2—value and the time point of the second local

maximum reached by the curve

• max‐global and argmax‐global—value and the time point of the

global maximum of the curve

• min1 and argmin1—value and the time point of the first local

minimum of the curve reached after the first local maximum of the

curve (to exclude the starting points from the minima)

• min‐global and argmin‐global—value and the time point of the

global minimum of the curve reached after the first local maximum

of the curve (to exclude the starting points from the minima)

• max‐min‐dist = argmin1–argmax1

• max‐max‐dist = argmax2–argmax1

• max‐max‐gap =max1–max2

• min‐max‐dist = argmax2–argmin1

• max‐min‐gap =max1‐min1

• global‐max‐min‐gap =max‐global–min‐global

• max1‐to‐end—time from the first local maximum (argmax1) to the

end of the region

• max2‐to‐end—time from the second local maximum (argmax2) to

the end of the region

• min1‐to‐end—time from the first local minimum (argmin1) to the

end of the region

• length(num_peaks)—total number of local maxima in the region

Overall, a total of 29 metrics were derived from each time

series region. Next, the same 29 metrics were calculated for the

derivative of each region, and the label “‐diff” was added to the

end of each corresponding metric name. To differentiate between

the metrics derived from the different time regions the following

naming rules were applied: label “12” in a variable name indicates

that the metric was derived from the first 48 hours of the

differentiation protocol, label “34” means the metric was derived

from the next 48 hours, and label “56” means the metric was

derived from the last 48 hours of the 6‐day measurement

process.

Additionally, 22 canonical time‐series characteristics (catch22)

defined in another study (Lubba et al., 2019) were included in the

feature set. Features retained in the final models are listed in Table 1.

3.4 | Cell count tracking

We used mEGFP‐tagged LMNB1 WTC iPS cell line purchased from

Allen Institute (catalog number AICS‐0013) to noninvasively monitor

changes in cell count during the CM differentiation. First, we built a

calibration curve to convert the GFP fluorescence intensity into cell

count. We seeded iPSCs at a range of seeding densities (1–8.5 × 104

cells with a step of 0.5 × 104 cells) in a 96‐well plate and used a

microplate reader (BioTek Synergy H1, Agilent Technologies) to

register corresponding GFP intensities in the wells with the different

cell counts. This resulted in a linear calibration curve. During CM

differentiation experiments, the 96‐well plate with iPSCs was

unplugged from the RESIPHER device and transferred to the plate

reader every 24 hours. Registered fluorescence intensities were

converted to cell counts and were used to normalize the correspond-

ing time window to obtain OCR values per cell.

3.5 | Multivariate regression

To assign a class label based on the % cTnT signal we performed

Otsu's thresholding on a 1‐d array of all % cTnT signal values. The X‐

block was structured from 58 curve metrics with additional 22

canonical time‐series characteristics for each of the 3 time‐series

regions. In total, X‐block comprised (58 + 22) × 3 = 240 features. We

used a custom MATLAB script for both PLS regression and

discriminant analysis. Y‐block for regression was defined by % cTnT

signal determined in section 5.2.2, for discriminant analysis Y‐block

was defined by % cTnT signal class label: cTnT+ or cTnT−. All features

were normalized by standard deviation and centered by mean.

We used a 70:30 ratio of training to validation samples for cross‐

validation. During every iteration of cross‐validation, samples were

drawn at random from the cTnT+ class pool, and then a matching

number was randomly drawn from the cTnT− pool. Due to the

prevalence of cTnT− class, a random set of cTnT− samples was left out

TABLE 1 List of canonical time‐series characteristics retained after variable trimming in multivariate analyses.

HistogramMode‐10 DN_HistogramMode_10 Mode of z‐scored distribution (10‐bin histogram).

MI‐autocorr‐2‐5 CO_HistogramAMI_even_2_5 Automutual information, time shift 2, 5‐bin histogram.

ExtremePEventsTiming DN_OutlierInclude_p_001_mdrmd Time intervals between successive extreme events above the mean.

ExtremeNEventsTiming DN_OutlierInclude_n_001_mdrmd Time intervals between successive extreme events below the mean.

AutocorrDerivVsRaw FC_LocalSimple_mean1_tauresrat Change in correlation length after iterative differencing

LongStretch AboveMean SB_BinaryStats_mean_longstretch1 Longest period of consecutive values above the mean

TimescaleFluct SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 Proportion of slower timescale fluctuations that scale with linearly rescaled
range
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from the analysis on every iteration. To select the best predictors, we

used variable trimming: iteratively removing every variable that

reduced prediction accuracy averaged for 100 iterations of cross‐

validation.
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