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A B S T R A C T   

This paper presents the development of low-cost, disposable impedance-based sensors for real-time, in-line 
monitoring of suspension cell culture. The sensors consist of electrical discharge machining (EDM) cut aluminum 
electrodes and polydimethylsiloxane (PDMS) spacers, both of which are low-cost materials that can be safely 
disposed of. Our research demonstrates the capability of these low-cost sensors for in-line, non-invasive moni
toring of suspension cell growth in cell manufacturing. We use a hybrid equivalent circuit model to extract key 
features/parameters from intertwined impedance signals, which are then fed to a novel physics-inspired (gray- 
box) model designed for α-relaxation. This model determines viable cell count (VCC), a critical quality attribute 
(CQA) in cell manufacturing. Predicted VCC trends are then compared with image-based cell count data to verify 
their accuracy.   

1. Introduction 

Cell therapies have shown great potential and excellent clinical re
sults in treating various cancers [1,2], blood disorders [3,4], and auto
immune diseases [5,6]. In recent years, U.S. Food and Drug 
Administration (FDA) has approved two types of chimeric antigen re
ceptor (CAR)-T cell therapies [7,8], which is widely considered to be a 
milestone in cancer treatment. However, as autologous therapies, both 
approved CAR-T cell therapies are much more expensive than allogeneic 
cell therapies due to the non-reusability of the bioreactor or the parts 
that come into direct contact with cells. The extremely high costs hinder 
the accessibility of these promising treatments. Currently, one of the 
foremost demands in the CAR-T cell therapy industry is to bring the cost 
to a level affordable for average families and reimbursable to health 
insurance providers. Scaling up the cell manufacturing process and 
employing automated process control are two effective approaches to 
achieve this goal, as consumables and labor costs are the two major 
components in this industry. Both approaches require non-intrusive, in- 
line monitoring of critical quality attributes (CQAs). 

Viable cell count (VCC) is a CQA that directly reflects overall cell 
growth and provides valuable information for decision-making in a cell 

manufacturing process. Mainstream methods for cell growth monitoring 
rely heavily on sampling and microscopy, which are usually labor- 
intensive and time-consuming. Although various technologies are now 
available to reduce the human labor involved in optical monitoring 
methods [9], most technologies are limited by the focus range and speed 
[10,11]. Therefore, these methods are always considered invasive and 
off-line during cell culturing. 

Electric impedance spectroscopy is an alternative approach to 
achieving non-invasive and label-free cell growth monitoring by char
acterizing the change in electrical properties induced by cell expansion 
[11–14]. Probes embedded in the culturing system can monitor cell 
growth without sampling, thus avoiding disturbance and the chance of 
contamination in the culturing media. Aside from noninvasiveness, 
impedance measurements’ primary merit is their selectivity in cell 
monitoring, as they only respond to viable cells. The selectivity grants 
impedance measurements the ability to monitor viable cell count, a CQA 
that is impractical to obtain by conventional optical methods without 
staining the cells. VCC can detect anomalies, provide harvest time in
structions, and assess cell products to indicate overall growth. Besides 
VCC, this technique has also proven effective in monitoring cell 
viability, morphology, and orientation [15,16]. The past few decades 
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have witnessed diverse impedance-based measurements for cell growth 
monitoring for a variety of purposes and applications, including electric 
cell-substrate impedance sensing (ECIS), electric impedance spectros
copy (EIS), impedance flow cytometry (IFC), and impedance sensing for 
cells cultured in 3D scaffolds. 

Despite their great potential, impedance-based cell growth sensors 
face several hurdles in their application in in-line cell growth monitoring 
in cell manufacturing processes. A knowledge gap exists in describing 
the electrical property of a living cell and its dependency on different 
attributes of the cell. Researchers have studied the dependence on VCC 
[17], cell size [18], cell morphology [19], cell viability [20], and culture 
media conductivity [21]. However, a comprehensive analysis of the 
combined effect of these factors and an expedition toward distinguishing 
them is lacking. Multiple factors, including VCC, cell size, and culturing 
media conductivity, all contribute to the electrical property of the cell 
suspension, thus affecting impedance readings simultaneously [18]. In a 
cell manufacturing process, these factors are all constantly changing. On 
the one hand, the sensor readings contain all that information, paving 
the way to simultaneously sensing multiple CQAs. On the other hand, 
the intertwined information poses a significant challenge to analyzing 
the sensor readings. A possible approach to overcome this knowledge 
gap is to study the impedance spectrum in a wider frequency range. Two 
dielectric relaxation processes have been found to have a close rela
tionship with particle size and concentration in a colloid suspension 
system: α-relaxation and β-relaxation. β-relaxation, appearing at the 
kHz-MHz frequency range, is well-explored in biomass characterization. 
However, α-relaxation (also known as low-frequency dielectric disper
sion (LFDD), appearing around the kHz frequency range, is seldom 
studied. The mechanism of α-relaxation is not fully clear to date, but 
great potential and research opportunities lie in it. In this work, we have 
developed a novel physics-inspired method to analyze the α-relaxation 
signal with promising results in VCC monitoring. 

The two aforementioned low-frequency dielectric relaxation pro
cesses inevitably run into the electrode polarization (EP) effect [22]. 
Most sensors rely on expensive materials and complex setups to elimi
nate or minimize the EP effect. Some researchers use platinum for 
electrodes, conduct surface treatment, or adopt complex experimental 
setups to eliminate or reduce the EP effect [23,24]. Since all approved 
CAR-T cell therapies available today are autologous, cells manufactured 
for each patient differ. Parts in the bioreactor that have direct contact 
with cells typically cannot be reused for another patient, including 
impedance-based cell growth sensors. Thus, a disposable impedance- 
based cell growth sensor is the right choice for CAR-T cell 
manufacturing. To reduce the cost, the materials used for the sensors 
must be low-cost and biocompatible. 

This paper designs and fabricates disposable 3D sensors using low- 
cost materials and a compact design. The sensors adopt a two- 
electrode parallel-plate design consisting of electrical discharge 
machining (EDM) cut aluminum electrodes and polydimethylsiloxane 
(PDMS) spacers. The sensors can be easily customized for applications in 
different bioreactors to achieve low-cost, in-line, and non-invasive 
monitoring of the suspension cell growth in cell manufacturing. The 
parallel-plate sensor can provide reliable localized cell density infor
mation with a well-defined sensing region with an almost uniform 
electric field. 

A novel physics-inspired method analyzes the impedance data 
collected with the measurement system. We first use a hybrid equivalent 
circuit model to extract features from the intertwined impedance sig
nals. Then we plug selected features into a physics-inspired model to 
predict VCC. Finally, the trend of predicted VCC is compared with 
image-based cell count data to verify the accuracy and determine un
known coefficients in the model. Data collected from multiple cell 
expansion runs are used to validate our method. The results show that 
our approach is promising to monitor the suspension cell growth in cell 
manufacturing and offer critical information, such as abnormality and 
estimated harvesting time, for decision-making in practice. 

2. Materials and experimental methods 

2.1. Cell culture 

Human leukemic T-cells (Jurkat E6-1; American Type Culture 
Collection, ATCC) were cultured in an ATCC-formulated culture me
dium (RPMI-1640; GE Healthcare) with 10% fetal bovine serum, 2 mM 
L-glutamine, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES), 1 mM sodium pyruvate, 4500 mg/L glucose, and 1500 
mg/L sodium bicarbonate in a 75 cm2 Petri Dish (NuncEasYFlask; 
ThermoFisher Scientific). All of the cells were cultured in a humidified 
incubator controlled at 37 ̊C and 5% CO2, and all the culture media were 
pre-heated to avoid the temperature effect on the impedance measure
ment. The cells were counted by an automated cell counter (TC20; Bio- 
Rad Laboratories, Inc.), and the concentration was maintained between 
1 × 105 and 1 × 106 cells/mL. 

2.2. Fabrication and assembly of the disposable 3D impedance sensor 

The disposable impedance-based sensor consists of a pair of parallel- 
plate aluminum electrodes and PDMS (Sylgard 184, Dow Corning) 
spacers to maintain a gap between the two electrodes. Fig. 1(a) presents 
the process flow of the disposable impedance-based sensor. Firstly, a 
precise EDM cut a square bottom electrode with a thin tail from a 0.4 
mm thick aluminum plate (Corrosion-Resistant 3003, McMaster-Carr®). 
The edge length of the electrode ranged from 9 mm to 16 mm. The 
surface of the cut aluminum plates was sanded using P600 sandpaper to 
remove any residual oil in the manufacturing process. The tail was 
gently bent up with an interconnection wire carefully soldered to its end 
with stable and low contact resistance. Secondly, four cured PDMS 
spacers were aligned to the four corners of the bottom electrode. The 
thickness of the spacer varied from 0.5 mm to 2 mm, while the edge 
length of the spacer was 2 mm. Then, the top electrode was aligned on 
the PDMS spacers to form the parallel plate structure. One uncured 
PDMS drop was placed at each corner and cured at 125 ̊C for 20 min to 
bond the electrodes and spacers. Fig. 1(b) shows a photo of an as- 
assembled sensor. A sensor array for distributive sensing in the biore
actor was completed by repeating the above procedures. The assembled 
sensors were immersed in ethanol for 10 min and completely air-dried 
under UV light for 2 h in a biological safety cabinet (BSC) to sterilize 
the entire structure. At last, a layer of uncured PDMS painted on the 
bottom of the sensors glues them to the Petri dish. The sensor array and 
Petri dish were placed inside the BSC for 48 h at room temperature to 
cure the PDMS layer completely. 

2.3. Impedance measurement for the sensor array 

Fig. 2(a) presents the schematic of the impedance measurement 
system, while Fig. 2(b) displays photographs of the actual apparatus. 
Impedance spectra were measured using an LCR meter (E4980AL; 
Keysight Technologies) with a sinusoidal signal of 22 mVrms, based on 
the literature [25]. The measurements were taken at 15 selected fre
quencies ranging from 300 Hz to 100 kHz, with the sensor array con
nected to the LCR meter sequentially through a multiplexer (PXI-2530B; 
National Instruments). To acquire impedance data of the sensor array, 
we utilized LabVIEW-coded customized software that recorded the data 
every 15 min. To balance the need for speed and accuracy in measure
ment, we opted for using 15 frequencies with 25 data points per fre
quency. This configuration provided sufficient information for capturing 
the most critical features in the impedance spectra, while also ensuring a 
short data acquisition time that is imperative for in-line cell monitoring. 
Before experimentation, all sensors were short-circuited by clipping 
their two electrodes together to account for any impedance introduced 
by the multichannel system, which was then subtracted from the 
measured results obtained during cell culture to minimize system error. 
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3. Data process methods 

This section presents our new data process methods to understand 
the relationship between the measured impedance signal and VCC. As 
shown in Schematic 1, the collected data are processed in three steps. 
First, we preprocess the raw impedance data, removing or minimizing 
noise and system error. After data preprocessing, we define and extract 
features from impedance signals using a two-component equivalent 

circuit model. Then, we feed the extracted features into a physics- 
inspired model developed in this paper. Finally, we use the image- 
based cell count data to evaluate the model and determine the un
known coefficients. 

Fig. 1. (a) Process flow of an impedance-based biosensor; (b) Photo of an as-fabricated impedance-based biosensor.  

Fig. 2. (a) Schematic of the multiplexed impedance measurement system with a biosensor array; (b) Photos and details of the impedance measurement setup.  
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3.1. Data preprocessing 

3.1.1. Averaging and noise filtering 
The LCR meter collects impedance data for 15 selected frequencies 

ranging from 300 Hz to 100 kHz. At each frequency, the instrument 
measures 25 impedance data points, and we average the 25 data points 
to obtain one impedance for the input of the spectrum fitting algorithm. 
Due to the high humidity in the incubator and the Petri Dish, the 
exposed metallic cables sometimes, cause erroneous data with very large 
variations. We also calculate the standard deviation from each set of raw 
impedance data and use it as a filter to remove data with large noise. If 
the ratio of the standard deviation to the mean value for any frequency 
exceeds 0.02, the entire spectrum over 15 frequencies is discarded for 
that measurement. 

3.1.2. System error correction 
As mentioned in Section 2.3, a short-circuit test is conducted before 

each experiment for system error correction. The short-circuit test data 
is collected and preprocessed in the same way as the experimental data 
described in Section 3.1.1. Then, we subtract the averaged short-circuit 
data from each averaged experiment data to obtain the corrected 
impedance spectra used for feature extraction in Section 3.2. 

3.2. Equivalent circuit model for feature extraction 

3.2.1. Two-component equivalent circuit model 
Raw data collected from the LCR meter are impedance spectra con

taining information from the cell culture between the two electrodes. 
First, we need to extract features from the sensor readings to disentangle 
the signal from different sources and find the relationship between 
sensor readings and cell growth. In this research, we deliberately choose 
a compact design and low-cost materials to evaluate their potential in 
scaled-up applications. However, these sensors inevitably run into sig
nificant noise due to the EP effect. A two-component equivalent circuit 
model processes the raw impedance data from the LCR meter to account 

for the EP effect. The model consists of two components in series:  

• Cell suspension component;  
• EP effect component. 

As shown in Schematic 2, the cell suspension component describes 
the electrical property of the cell suspension between the two electrodes, 
while the EP effect component describes the electrical property in the 
vicinity of the electrode surface. Since the current goes through the two 
components consecutively, they are supposed to be in series. We adopt 
the conductivity Debye relaxation model for the cell suspension 
component [21] and the constant phase element (CPE) model for the EP 
effect component [26]. 

The study of electrical properties of cell suspension has stemmed 
from the study of colloidal suspensions. When applied with an AC 
electric field, colloids suspended in liquid electrolytes exhibit Maxwell- 
Wagner (M-W) dielectric relaxation [27]. M-W relaxation process hap
pens at the interface of two different materials. An ideal M-W relaxation 
is a single-time relaxation described with a Debye relaxation model: 

ε*
D(ω) =

Δε
1 + jωτ + εh, (1)  

where ω = 2πf is the radial frequency of the input AC signal, and the 
complex permittivity spectrum ε*

D(ω) is determined by the relaxation 
time constant τ, relaxation strength Δε, and permittivity at the high- 
frequency limit εh. Considering the lossy nature of the cell culture in 
the culturing media, we adopt the conductivity Debye relaxation model: 

σ*
D(ω) =

Δσ
1 + jωτ + σ0, (2)  

where the complex conductivity spectrum σ*
D(ω) is determined by the 

relaxation time constant τ, relaxation strength Δσ, and conductivity at 
the low-frequency limit σ0. In most scenarios, relaxation processes 
observed in electrolytes are non-ideal, deviating from the Debye model. 

Schematic 1. Flowchart of the data processing methods. The plots in the image do not represent data in this paper.  

Schematic 2. The two-component equivalent circuit consisting of a cell suspension component and an EP component in series.  
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Colloidal suspension systems often adopt Cole-Cole relaxation to 
describe their dielectric behavior [28]. However, based on initial anal
ysis of the experimental data, we have found that the conductivity Debye 
relaxation is enough for describing the experimental data. Moreover, 
since the Cole-Cole relaxation model is close to a CPE component in 
series or parallel to resistors, the feature extraction algorithm may 
wrongly attribute the features to an incorrect component. To better 
integrate with the EP effect component, the cell suspension component 
(conductivity Debye model) can be rewritten as an equivalent circuit 
model: 

Z*
Cell =

1
1

R2+ 1
jωC

+ 1
R1

, (3)  

where R1 = 1
C0σ0

, R2 = 1
C0Δσ, C = C0Δστ. As shown in Schematic 2, in the 

equivalent circuit, capacitor C is in series with resistor R2, and the 
subcircuit is in parallel with resistor R1. C0 is the cell constant ac
counting for the sensor geometry. Here, we can assume C0 = 1 since it is 
a real constant, and we can let the actual information carried with Δσ 
and σh. The effect of the cell constant C0 can be neutralized with 
calibration. 

It is worth pointing out that R1, R2 and C also have physical signif
icance. The subcircuit of R2 and C in series can be viewed as a dielectric 
Debye relaxation model with the permittivity at the high-frequency limit 
εh = 0, while R1 indicates conductivity at the low-frequency limit. With 
C0 = 1, C is equivalent to Δε in Debye dielectric relaxation model. The 
conductivity Debye model can be rewritten in a permittivity fashion: 

ε*
D(f ) =

Δε
1 + jωτ +

σ0

jω, (4)  

where Δε = C
C0

= Δστ. Our initial analysis shows that the permittivity at 
the high-frequency limit εh is very close to 0, while the conductivity at 
the low-frequency limit σ0 is not negligible. 

Three or four dielectric relaxation processes are typically observable 
in cell suspensions: α, β, γ, and sometimes δ-relaxation, depending on the 
specific system under test [27]. The relaxation process most widely used 
to indicate VCC is the β-relaxation, which appears at kHz-MHz fre
quencies. This relaxation process is well-explored and has proven 
capable of indicating VCC. The α-relaxation, appearing at around kHz 
range, is much less explored in suspension systems, and its potency in 
indicating VCC is not verified. However, the α-relaxation has some ad
vantages over the β-relaxation. Since the frequency range of the 
β-relaxation is higher, it is more prone to electromagnetic and stray 
capacitance noises. Coaxial cables are usually necessary to protect 
against those noises, making the sensor bulky and expensive. The 
α-relaxation with a lower frequency range is less reliant on noise- 
canceling techniques such as coaxial cables, allowing more flexibility 
in the sensor design. In this work, we have found that α-relaxation also 
has the capability to indicate cell density with parallel-plate sensors. 
Specifically, we use linear regression to find out the best combination of 
the extracted features and found that a certain combination of the 
relaxation strength Δε and the time constant τ of the α-relaxation can 
accurately indicate cell density. 

EP effect has been bugging researchers from obtaining an accurate 
spectrum that reflects the dielectric properties of the object under test, 
especially in analyzing liquids. Ions within the liquid can be blocked by 
the electrodes, while they are also diffusing due to thermal fluctuations, 
resulting in an electric double layer that behaves like a non-ideal 
capacitor. Experimental and mathematical methods have been devel
oped to eliminate or reduce the influence of the EP effect [24]. Experi
mental methods will likely raise the cost of the sensors since they require 
expensive metals or complex sensor design and measurement settings, 
which contradicts our goal of lowering the cost. Moreover, some 
mathematical approaches show promising results in compensating for 
the EP effect [22]. Therefore, we focus on mathematical methods to 

alleviate the EP effect. The EP effect can be modeled as a constant phase 
element (CPE) [29]: 

Z*
EP =

1
Q(jω)

n, (5)  

where Q > 0 quantifies the strength of the EP effect, and n ∈ [0, 1] is the 
phase of the CPE component. When n = 1, the CPE component describes 
purely capacitive behavior, while for n = 0.5, it describes purely 
diffusive behavior. The CPE model is appropriate in describing the EP 
effect on aluminum electrodes [30]. 

Since the EP effect occurs in the vicinity of the electrodes while most 
cell suspension is in between, the EP effect component and cell sus
pension component should be in series (See Schematic 2). Thus, the total 
impedance can be expressed as: 

Z*
total = Z*

Cell + Z*
EP, (6)  

where Z*
Cell and Z*

EP are as defined in Equation (2) and Equation (5). The 
final model includes five parameters: R1, R2, C, Q and n. From these five 
parameters we can derive physically significant features including Δσ, 
Δε, τ, σ0, and σh. 

3.2.2. Loss function 
Under sinusoidal AC conditions, complex permittivity and imped

ance spectra bear the same information but convey different messages, 
while both have physical significance. In other words, the complex 
electrical variable has two forms: permittivity and impedance. When 
this two-sided coin encounters a fitting problem, a dilemma arises: A 
fitted curve with minimum error in impedance may be non-optimal in 
permittivity and vice versa. This arose because the transformation be
tween impedance and permittivity is not linear, and what was very close 
in numerical values to each other may become far away after the tran
sition. In cases where impedance has more importance over permit
tivity, data are presented and fitted using impedance (e.g., 
transepithelial/transendothelial electrical resistance (TEER) [31]). In 
contrast, in other cases where permittivity is dominant, permittivity is 
used instead (e.g., dielectric properties of liquids [32]). However, 
impedance and permittivity are both essential and intertwined in this 
research. Previous research has addressed this property of impedance 
data with different weights according to the frequencies [33]. This 
technique balances the significance of high-frequency and low- 
frequency data while leaving flexibility to change the weights for the 
best result. However, using this technique usually results in a lack of 
reasoning for the choice of weights. To better address this unique 
property of impedance spectra, we deliberately define a distance func
tion to balance impedance and permittivity. By taking the logarithm on 
permittivity and impedance, we find out that the distance is preserved in 
the transition: 

lnε*
1 − lnε*

2 = ln
1

jC0ωZ*
1

− ln
1

jC0ωZ*
2

= lnZ*
2 − lnZ*

1 (7) 

Formatting data into lnZ* (and thus defining the distance as 
||lnZ*

1 −lnZ*
2||) will result in a consistent definition of distance, whether 

impedance or permittivity is used. We estimate those eight parameters 
by minimizing the following loss function: 

L(Ẑ
*
, Z*) =

∑K

k=1
||lnẐ

*
fk − lnZ*

fk ||, (8)  

where Ẑ
*
fk 

is the predicted impedance at the kth frequency in the fre
quency list using Equation (6), and Z*

fk 
is the corresponding impedance 

measurements. 
The eight parameters that reflex physics-based features are extracted 

from impedance data by minimizing the loss function defined in Equa
tion (8). We employ the Basinhopping and Sequential Least Squares 
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Programming methods to solve the global minimization problem 
[34–36]. Due to the nonlinear and non-convex nature of the optimiza
tion problem, the feature extraction is non-trivial even with the com
plete equivalent circuit model and the fitting tool in hand. To avoid local 
optima, we initially try random initial values to find the best one for the 
first valid impedance spectrum. Then, we use the extracted features for 
the first valid spectrum as the initial guess of the second valid spectrum, 
and so on. This approach leverages the similarity between two adjacent 
spectra acquired within 15 min, making the previous fitted result a good 
guess for the upcoming spectrum, unless large external noise is 
introduced. 

3.3. Physics-inspired model for VCC prediction 

VCC is an essential CQA in cell manufacturing, guiding decision- 
making in cell culture processes. We use a physics-inspired (gray-box) 
model to predict VCC and evaluate its accuracy with image-based cell 
count data. Unlike a physics-based model, which solely relies on 
knowledge, and a data-driven model, which solely depends on data, a 
physics-inspired model involves both. A physics-inspired model takes 
advantage of knowledge summarizing past observations while bypassing 
the current knowledge gap to produce fruitful outcomes. Our physics- 
inspired model generalizes existing formulas and uses experimental 
data to determine uncertain parameters. In Section 3.2, five features are 
extracted from experimental data, and features with physical signifi
cance are reconstructed. Among those features, we have found two 
features that prove effective in predicting VCC with the physics-inspired 
model: Δε and τ. The physics-inspired model can be expressed as below: 

logVCC = logc1 + c2logΔε + c3logτ (9)  

where c1 > 0, c2 and c3 are parameters to be determined in the linear 
regression. 

3.3.1. Maxwell-Wagner relaxation 
We use a physics-inspired model to relate the extracted features with 

VCC. The model is inspired by a dielectric relaxation model where cells 
are assumed as colloidal suspensions where the colloids have thin, 
insulating shells (cell membranes) and conducting kernels (cytoplasm). 
Those simplified cells can induce Maxwell-Wagner relaxation. In the 
relaxation process, ions in the cytoplasm and the culture media move 
under AC electric field force and stop and gather when they reach the 
cell membrane. Since the cell membrane is only insulating if viable and 
becomes permeable if dead, only viable cells can be detected with the 
impedance sensor, and dead cells are transparent. This feature is a 
valuable addition to monitoring total cell count, as impedance sensors 
are now capable of exclusively monitoring viable cells. 

Maxwell-Wagner relaxation gives rise to α-relaxation and β-relaxa
tion in a spherical single-shelled cell model. The β-relaxation of spher
ical single-shelled cells can be described in the equation below [27]: 

Δε =
9rCm

4ε0
P, (10)  

where the relaxation strength Δε is proportional to cell radius r, cell 
volume fraction P, and specific capacitance of the cell membrane Cm. ε0 
is the vacuum dielectric constant. Since the relaxation strength Δε is 
proportional to cell volume fraction P, Δε is often used to indicate viable 
cell concentration. Noticing that viable P is equal to the product of VCC 
and cell volume, we can rewrite Equation (10) as: 

VCC =
Δεε0

3Cmπr4, (11) 

Δε alone is sufficient to predict VCC, given that the average cell 
radius does not change much. However, in T-cell culturing, such as
sumptions do not hold. T-cells grow dramatically in size when activated 
and start to multiply. In our experiments, the cells are thawed and 

centrifuged together, and thus they may multiply synchronously to some 
extent, resulting in a variation in the average size as they expand [37]. 
Therefore, we have to include more features to predict cell radius r. 

According to previous research [21], cell radius r can be reflected by 
the time constant τ of Maxwell-Wagner relaxation: 

r =
2τκiκa

Cm(κi + 2κa)
, (12)  

where κi is the conductivity of cytoplasm, and κa is the conductivity of 
culture media. Assuming that κi, κa and Cm are constants, r is propor
tional to τ. Plugging this relationship into Equation (11), we have the 
following equation: 

VCC = c1Δετ−4, (13)  

where c1 is a calibration coefficient. Since impedance measurements are 
sensitive to changes in electrode geometries, c1 is expected to change 
between different experiments due to the inevitable error introduced in 
the sensor manufacturing process. Although Equations (10–13) are 
meant for β-relaxation rather than α-relaxation, we obtained insights 
into the possible relations between dielectric features and VCC: they 
may be governed by a power-law. 

3.3.2. α-relaxation and physics-inspired model 
As indicated previously, α-relaxation is a dielectric relaxation pro

cess typically appearing at around kHz frequencies. Although α-relaxa
tion has large relaxation strength, potentially making it a good indicator 
of the electrical property of the system under test, researchers still 
seldom use it to indicate cell density in cell cultures or concentration in 
colloid suspensions for the following two reasons. First, the mechanism 
of α-relaxation is not fully explained today. Researchers have made a 
great effort to study this phenomenon in colloid suspension systems and 
made significant progress, but there are still discrepancies between the 
theoretical and experimental behaviors [38]. Second, the α-relaxation 
frequency range largely overlaps with the EP effect, making it chal
lenging to observe. In our work, we try to extract highly accurate 
α-relaxation features and relate them to image-based cell density data 
with a physics-inspired model to overcome or bypass the above
mentioned difficulties. 

Inspired by Equations (10–13), the extracted features of α-relaxation 
could also have a power-law relationship with cell density. Power law 
assumes that the relationship between the parameters holds for all 
scales, which is in principle not valid for cell suspension systems. 
However, the cell density of cell cultures is usually confined within a 
specific range since the cells may not grow well otherwise. The power 
law will likely be a good approximation in this confined range. There
fore, we develop a physics-inspired model from Equation (13) to 
incorporate a data-driven method with the physical knowledge. Namely, 
we assume a power law between all variables in Equation (13), where all 
the exponents are treated as unknown parameters to be trained by 
experimental data. The untrained physics-inspired model can be 
expressed as below: 

VCC = c1Δεc2 τc3 , (14)  

where c1, c2, and c3 are calibration coefficients. Taking logarithms on 
both sides, we have: 

logVCC = logc1 + c2logΔε + c3log τ, (15) 

the base of the logarithm can be chosen for arithmetic or algorithmic 
convenience. In this form, the training problem reduces to linear 
regression. 
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4. Results and discussion 

4.1. Feature extraction 

The impedance spectrum is automatically acquired with the LCR 
meter every 15 min. However, image-based cell count data used to train 
the model are much less frequently obtained since the process involves 
manual sampling and the consumption of lab supplies. Therefore, only a 
few impedance spectra with corresponding image-based cell count data 
are necessary for model training. 

Selected data are fitted with Equation (6) as the model and Equation 
(8) as the loss function. Fitted results are visualized in both frequency- 
implicit and frequency-explicit plots in Fig. 3. Each spectrum has a 
minimal fitting error (RMSE < 2Ω), indicating that the fitted model has 
captured the most significant features in the spectra acquired. The 
extracted and reconstructed features are shown in Fig. 4. 

The extracted and reconstructed features show some patterns that 
may provide some insights into what happened in the culturing process. 
All features experience a steep change within the first few hours, which 
may reflect the cell culture and sensor system’s stabilization. The cell 
suspension may undergo a dramatic temperature change since the cul
ture media is refrigerated until use. Also, the microscopic roughness on 

the surface of aluminum electrodes may result in a wet-in process, which 
could significantly impact the acquired impedance. After 35 h, Q and n 
experience a steep change, indicating a disruption in the electrode sur
face, most likely due to the growth of microorganisms such as yeast and 
bacteria, which stick to surfaces. The cell culture also turns turbid at the 
end of the experiment, likely indicating bacteria or yeast contamination. 
Due to the disruption of the electrode surface, the impedance data 
collected after 35 h since the start may not reflect cell density effectively. 
On the bright side, this could indicate contaminant microorganism 
growth and inform the researchers and manufacturers in time to mini
mize the loss in time and consumables. Some features show spikes, os
cillations, and plateaus, which are unlikely to reflect true cell density. 
These may have resulted from sources other than the change in cell 
density. The spikes and oscillations may have resulted from a loose 
connection in the sensing system, disruption in temperature due to 
sampling at room temperature, and local minima in the optimization 
process. The plateaus are the result of intentional algorithm design. As 
described in Section 3.1.1, the preprocessing algorithm filters out 
spurious data with large variances. In cases where the data is filtered 
out, the fitting algorithm repeats the previous data since it receives no 
new data. This helps preserve the previous fitting result for the initial 
guesses in the next impedance spectrum. 

Fig. 3. Fitting results using the two-component equivalent circuit model. Fitting error is minimal with RMSE < 2 Ω for all spectra fitting.  
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Fig. 4. Extracted and reconstructed features throughout the cell culturing process.  

Fig. 5. (a) Results of LOOCV for all methods. The predicted value is plotted against the true value (averaged image-based cell density) for each data point. The 
straight line is where the predicted value equals the true value. Data points closer to the line are better predicted. Testing R2 = 0.937. (b) Training result for VCC 
prediction using model trained with image-based cell count. Raw image-based cell density data are shown to show variability in cell counting. Training R2 = 0.964. 
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4.2. VCC prediction 

A physics-inspired model is developed in Section 3.3. We collected 
nine data points from the image-based cell counter throughout the cell 
culture process to train the physics-inspired model, where each data 
point is derived by averaging cell density from 3 samples independently 
collected from the cell culture. Initial analysis shows that the second and 
the ninth data points behave differently than the others, so these two 
data points are discarded for model training. 

Leave-one-out cross-validation (LOOCV) is employed to distinguish 
effective training from pure hindsight. Among all seven data points, 
each one is selected in turn to be the testing data, and the rest are 
training data. LOOCV is used only for the evaluation of the methods. 
Training and testing errors are reported for each method. Since all pa
rameters are taken logarithms before running the linear regression al
gorithm, the conversion back is necessary before evaluating the results. 
Final model is trained using all seven data points for optimum perfor
mance. The physics-inspired model achieves a testing R2 of 0.937 in 
LOOCV, and a training R2 of 0.964 for the trained model. Cross- 
validations and cell density predictions are plotted in Fig. 5. The 
trained physics-inspired model can be expressed as: 

VCC = c1Δε1.70τ−3.91, (14)  

where the calibration coefficient c1 = 0.0922. c1 may differ for each 
experiment, as the hand-made sensors inevitably introduce variability in 
the cell constant C0. It is worth noting that this formula is not very far- 
away from Equation (13), which means that the formula for β-relaxation 
may also apply to α-relaxation with plausible results. The trained pa
rameters may provide insights into the investigation of α-relaxation of 
living cells. 

The untrained physics-inspired model has several adjustable pa
rameters that can transform the extracted features into various possible 
curves. The linear regression algorithm can find the curve closest to the 
true values using all features. However, too much flexibility can lead to 
overfitting, where the model can only fit the training dataset but per
forms poorly in predicting new data. To avoid overfitting, we used 
LOOCV to evaluate the trained model’s performance on new data. The 
physics-inspired model shows excellent results in LOOCV, indicating 
that the trained model revealed some nature about the cell suspension 
rather than fitting meaningless curves close to the data points by coin
cidence. We have also tried different combinations of extracted features 
to improve the physics-inspired model’s accuracy, but most only show 
high accuracy in the training process but very low accuracy in LOOCV. 

The trained physics-inspired model is applied to data collected from 
other cell culturing processes, and the predicted values are compared 
with the true values in Fig. 6. These results demonstrate that the power- 
law relationships suggested by the trained physics-inspired model is 
effective in reflecting cell density with moderate deviation. In fact, cell 
culturing in a Petri Dish without agitation may lead to variability in cell 
density at different locations in the cell suspension. The variation be
tween the image-based cell density data collected clearly shows this 
effect. Taking this effect into account, the predicted cell density showing 
a moderate deviation from the image-based data is reasonable. 

Since the scaling factor c1 is different for each culturing process, it 
may contain case-specific parameters affecting sensor readings. For 
example, a small change in the distance between the two electrodes in 
our experimental setup may result in a significant difference in imped
ance readings. One possible approach to obtaining the case-specific 
parameters is to perform calibration before use. However, since the 
sensor is designed for single use, the calibration cost is relatively high. 
Another possible way to find these case-specific parameters and cancel 

Fig. 6. Results of applying trained model to new data. All curves are rescaled by adjusting the value of c1, while c2 and c3 are kept the same.  
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out their impact is to use multiple sensors with different geometries and 
apply a calibration-free framework to the sensing system [39]. 

The electric property of suspension of monodisperse, spherical cells 
is influenced by at least four independent variables: VCC, cell size, cell 
membrane capacitance Cm, and culturing media conductivity κ. In other 
words, this system has at least four degrees of freedom. However, in the 
physics-inspired method, we describe this system using only two vari
ables: Δε and τ. The final model expressed in Equation (9) cannot fully 
describe the electric property of the cell suspension due to the lack of 
freedom, but the performance shown in the physics-inspired model 
suggests that those four variables mentioned above actually have some 
dependence on each other. For example, cell size may be relevant to Cm, 
since the cell membrane may behave differently in different stages 
within a cell cycle. Also, Cm may be relevant to κ, since they both are 
influenced by ion concentration and ion mobility. In scenarios where 
those dependencies change or disappear (e.g., different patients or 
different cell types), extra parameters and further analysis will be 
necessary. 

The use of a power-law relationship in the physics-inspired method 
assumes that the relationship between variables is scale-invariant, 
which may not be valid in all cases. However, this assumption is a 
convenient and flexible mathematical model for data-driven analysis. 
Additionally, power-law is likely to be appropriate in cases where the 
variables, such as VCC and cell radius, do not change significantly over 
orders of magnitude during the cell culture process. If the cell culture 
process involves significant changes in the cell expansion over several 
orders of magnitude, further investigations may be necessary to deter
mine the appropriate mathematical models. 

5. Conclusion 

In this research, we have designed and fabricated low-cost, dispos
able sensors for in-line monitoring of suspension cell growth and 
demonstrated their use in predicting cell density with a novel physics- 
inspired data analysis method. Consisting of EDM-cut aluminum paral
lel plates and PDMS spacers, the sensors show good biocompatibility and 
chemical stability. Raw impedance data is collected with our measure
ment system and then analyzed with a two-component equivalent circuit 
model to extract features. The feature extraction results show that the 
equivalent circuit model can nicely represent the cell suspension system 
under test. The extracted features are then plugged into our novel 
physics-inspired data analysis methods to predict viable cell count. 
Trained by image-based cell density values, the physics-inspired model 
shows excellent LOOCV performance with testing R2 = 0.937. The 
trained physics-inspired model also shows good performance in pre
dicting cell density in new data. With the physics-inspired data analysis 
method, the low-cost, disposable sensor can help decision-making, such 
as deciding on harvesting time and detecting abnormalities in cell 
manufacturing. The trained parameters in the physics-inspired model 
may also provide insights into research in low-frequency electrical 
properties of living cells. 
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