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This paper presents the development of low-cost, disposable impedance-based sensors for real-time, in-line
monitoring of suspension cell culture. The sensors consist of electrical discharge machining (EDM) cut aluminum
electrodes and polydimethylsiloxane (PDMS) spacers, both of which are low-cost materials that can be safely
disposed of. Our research demonstrates the capability of these low-cost sensors for in-line, non-invasive moni-

toring of suspension cell growth in cell manufacturing. We use a hybrid equivalent circuit model to extract key
features/parameters from intertwined impedance signals, which are then fed to a novel physics-inspired (gray-
box) model designed for a-relaxation. This model determines viable cell count (VCC), a critical quality attribute
(CQA) in cell manufacturing. Predicted VCC trends are then compared with image-based cell count data to verify

their accuracy.

1. Introduction

Cell therapies have shown great potential and excellent clinical re-
sults in treating various cancers [1,2], blood disorders [3,4], and auto-
immune diseases [5,6]. In recent years, U.S. Food and Drug
Administration (FDA) has approved two types of chimeric antigen re-
ceptor (CAR)-T cell therapies [7,8], which is widely considered to be a
milestone in cancer treatment. However, as autologous therapies, both
approved CAR-T cell therapies are much more expensive than allogeneic
cell therapies due to the non-reusability of the bioreactor or the parts
that come into direct contact with cells. The extremely high costs hinder
the accessibility of these promising treatments. Currently, one of the
foremost demands in the CAR-T cell therapy industry is to bring the cost
to a level affordable for average families and reimbursable to health
insurance providers. Scaling up the cell manufacturing process and
employing automated process control are two effective approaches to
achieve this goal, as consumables and labor costs are the two major
components in this industry. Both approaches require non-intrusive, in-
line monitoring of critical quality attributes (CQAs).

Viable cell count (VCC) is a CQA that directly reflects overall cell
growth and provides valuable information for decision-making in a cell
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manufacturing process. Mainstream methods for cell growth monitoring
rely heavily on sampling and microscopy, which are usually labor-
intensive and time-consuming. Although various technologies are now
available to reduce the human labor involved in optical monitoring
methods [9], most technologies are limited by the focus range and speed
[10,11]. Therefore, these methods are always considered invasive and
off-line during cell culturing.

Electric impedance spectroscopy is an alternative approach to
achieving non-invasive and label-free cell growth monitoring by char-
acterizing the change in electrical properties induced by cell expansion
[11-14]. Probes embedded in the culturing system can monitor cell
growth without sampling, thus avoiding disturbance and the chance of
contamination in the culturing media. Aside from noninvasiveness,
impedance measurements’ primary merit is their selectivity in cell
monitoring, as they only respond to viable cells. The selectivity grants
impedance measurements the ability to monitor viable cell count, a CQA
that is impractical to obtain by conventional optical methods without
staining the cells. VCC can detect anomalies, provide harvest time in-
structions, and assess cell products to indicate overall growth. Besides
VCC, this technique has also proven effective in monitoring cell
viability, morphology, and orientation [15,16]. The past few decades
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have witnessed diverse impedance-based measurements for cell growth
monitoring for a variety of purposes and applications, including electric
cell-substrate impedance sensing (ECIS), electric impedance spectros-
copy (EIS), impedance flow cytometry (IFC), and impedance sensing for
cells cultured in 3D scaffolds.

Despite their great potential, impedance-based cell growth sensors
face several hurdles in their application in in-line cell growth monitoring
in cell manufacturing processes. A knowledge gap exists in describing
the electrical property of a living cell and its dependency on different
attributes of the cell. Researchers have studied the dependence on VCC
[17], cell size [18], cell morphology [19], cell viability [20], and culture
media conductivity [21]. However, a comprehensive analysis of the
combined effect of these factors and an expedition toward distinguishing
them is lacking. Multiple factors, including VCC, cell size, and culturing
media conductivity, all contribute to the electrical property of the cell
suspension, thus affecting impedance readings simultaneously [18]. In a
cell manufacturing process, these factors are all constantly changing. On
the one hand, the sensor readings contain all that information, paving
the way to simultaneously sensing multiple CQAs. On the other hand,
the intertwined information poses a significant challenge to analyzing
the sensor readings. A possible approach to overcome this knowledge
gap is to study the impedance spectrum in a wider frequency range. Two
dielectric relaxation processes have been found to have a close rela-
tionship with particle size and concentration in a colloid suspension
system: o-relaxation and p-relaxation. p-relaxation, appearing at the
kHz-MHz frequency range, is well-explored in biomass characterization.
However, a-relaxation (also known as low-frequency dielectric disper-
sion (LFDD), appearing around the kHz frequency range, is seldom
studied. The mechanism of a-relaxation is not fully clear to date, but
great potential and research opportunities lie in it. In this work, we have
developed a novel physics-inspired method to analyze the a-relaxation
signal with promising results in VCC monitoring.

The two aforementioned low-frequency dielectric relaxation pro-
cesses inevitably run into the electrode polarization (EP) effect [22].
Most sensors rely on expensive materials and complex setups to elimi-
nate or minimize the EP effect. Some researchers use platinum for
electrodes, conduct surface treatment, or adopt complex experimental
setups to eliminate or reduce the EP effect [23,24]. Since all approved
CAR-T cell therapies available today are autologous, cells manufactured
for each patient differ. Parts in the bioreactor that have direct contact
with cells typically cannot be reused for another patient, including
impedance-based cell growth sensors. Thus, a disposable impedance-
based cell growth sensor is the right choice for CAR-T cell
manufacturing. To reduce the cost, the materials used for the sensors
must be low-cost and biocompatible.

This paper designs and fabricates disposable 3D sensors using low-
cost materials and a compact design. The sensors adopt a two-
electrode parallel-plate design consisting of electrical discharge
machining (EDM) cut aluminum electrodes and polydimethylsiloxane
(PDMS) spacers. The sensors can be easily customized for applications in
different bioreactors to achieve low-cost, in-line, and non-invasive
monitoring of the suspension cell growth in cell manufacturing. The
parallel-plate sensor can provide reliable localized cell density infor-
mation with a well-defined sensing region with an almost uniform
electric field.

A novel physics-inspired method analyzes the impedance data
collected with the measurement system. We first use a hybrid equivalent
circuit model to extract features from the intertwined impedance sig-
nals. Then we plug selected features into a physics-inspired model to
predict VCC. Finally, the trend of predicted VCC is compared with
image-based cell count data to verify the accuracy and determine un-
known coefficients in the model. Data collected from multiple cell
expansion runs are used to validate our method. The results show that
our approach is promising to monitor the suspension cell growth in cell
manufacturing and offer critical information, such as abnormality and
estimated harvesting time, for decision-making in practice.
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2. Materials and experimental methods
2.1. Cell culture

Human leukemic T-cells (Jurkat E6-1; American Type Culture
Collection, ATCC) were cultured in an ATCC-formulated culture me-
dium (RPMI-1640; GE Healthcare) with 10% fetal bovine serum, 2 mM
L-glutamine, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), 1 mM sodium pyruvate, 4500 mg/L glucose, and 1500
mg/L sodium bicarbonate in a 75 cm? Petri Dish (NuncEasYFlask;
ThermoFisher Scientific). All of the cells were cultured in a humidified
incubator controlled at 37 C and 5% COs, and all the culture media were
pre-heated to avoid the temperature effect on the impedance measure-
ment. The cells were counted by an automated cell counter (TC20; Bio-
Rad Laboratories, Inc.), and the concentration was maintained between
1 x 10° and 1 x 10° cells/mL.

2.2. Fabrication and assembly of the disposable 3D impedance sensor

The disposable impedance-based sensor consists of a pair of parallel-
plate aluminum electrodes and PDMS (Sylgard 184, Dow Corning)
spacers to maintain a gap between the two electrodes. Fig. 1(a) presents
the process flow of the disposable impedance-based sensor. Firstly, a
precise EDM cut a square bottom electrode with a thin tail from a 0.4
mm thick aluminum plate (Corrosion-Resistant 3003, McMaster-Carr®).
The edge length of the electrode ranged from 9 mm to 16 mm. The
surface of the cut aluminum plates was sanded using P600 sandpaper to
remove any residual oil in the manufacturing process. The tail was
gently bent up with an interconnection wire carefully soldered to its end
with stable and low contact resistance. Secondly, four cured PDMS
spacers were aligned to the four corners of the bottom electrode. The
thickness of the spacer varied from 0.5 mm to 2 mm, while the edge
length of the spacer was 2 mm. Then, the top electrode was aligned on
the PDMS spacers to form the parallel plate structure. One uncured
PDMS drop was placed at each corner and cured at 125 ‘C for 20 min to
bond the electrodes and spacers. Fig. 1(b) shows a photo of an as-
assembled sensor. A sensor array for distributive sensing in the biore-
actor was completed by repeating the above procedures. The assembled
sensors were immersed in ethanol for 10 min and completely air-dried
under UV light for 2 h in a biological safety cabinet (BSC) to sterilize
the entire structure. At last, a layer of uncured PDMS painted on the
bottom of the sensors glues them to the Petri dish. The sensor array and
Petri dish were placed inside the BSC for 48 h at room temperature to
cure the PDMS layer completely.

2.3. Impedance measurement for the sensor array

Fig. 2(a) presents the schematic of the impedance measurement
system, while Fig. 2(b) displays photographs of the actual apparatus.
Impedance spectra were measured using an LCR meter (E4980AL;
Keysight Technologies) with a sinusoidal signal of 22 mVrms, based on
the literature [25]. The measurements were taken at 15 selected fre-
quencies ranging from 300 Hz to 100 kHz, with the sensor array con-
nected to the LCR meter sequentially through a multiplexer (PXI-2530B;
National Instruments). To acquire impedance data of the sensor array,
we utilized LabVIEW-coded customized software that recorded the data
every 15 min. To balance the need for speed and accuracy in measure-
ment, we opted for using 15 frequencies with 25 data points per fre-
quency. This configuration provided sufficient information for capturing
the most critical features in the impedance spectra, while also ensuring a
short data acquisition time that is imperative for in-line cell monitoring.
Before experimentation, all sensors were short-circuited by clipping
their two electrodes together to account for any impedance introduced
by the multichannel system, which was then subtracted from the
measured results obtained during cell culture to minimize system error.
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Fig. 1. (a) Process flow of an impedance-based biosensor; (b) Photo of an as-fabricated impedance-based biosensor.
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Fig. 2. (a) Schematic of the multiplexed impedance measurement system with a biosensor array; (b) Photos and details of the impedance measurement setup.

3. Data process methods

circuit model. Then, we feed the extracted features into a physics-
inspired model developed in this paper. Finally, we use the image-

This section presents our new data process methods to understand based cell count data to evaluate the model and determine the un-
the relationship between the measured impedance signal and VCC. As known coefficients.
shown in Schematic 1, the collected data are processed in three steps.
First, we preprocess the raw impedance data, removing or minimizing
noise and system error. After data preprocessing, we define and extract
features from impedance signals using a two-component equivalent
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Schematic 1. Flowchart of the data processing methods. The plots in the image do not represent data in this paper.

3.1. Data preprocessing

3.1.1. Averaging and noise filtering

The LCR meter collects impedance data for 15 selected frequencies
ranging from 300 Hz to 100 kHz. At each frequency, the instrument
measures 25 impedance data points, and we average the 25 data points
to obtain one impedance for the input of the spectrum fitting algorithm.
Due to the high humidity in the incubator and the Petri Dish, the
exposed metallic cables sometimes, cause erroneous data with very large
variations. We also calculate the standard deviation from each set of raw
impedance data and use it as a filter to remove data with large noise. If
the ratio of the standard deviation to the mean value for any frequency
exceeds 0.02, the entire spectrum over 15 frequencies is discarded for
that measurement.

3.1.2. System error correction

As mentioned in Section 2.3, a short-circuit test is conducted before
each experiment for system error correction. The short-circuit test data
is collected and preprocessed in the same way as the experimental data
described in Section 3.1.1. Then, we subtract the averaged short-circuit
data from each averaged experiment data to obtain the corrected
impedance spectra used for feature extraction in Section 3.2.

3.2. Equivalent circuit model for feature extraction

3.2.1. Two-component equivalent circuit model

Raw data collected from the LCR meter are impedance spectra con-
taining information from the cell culture between the two electrodes.
First, we need to extract features from the sensor readings to disentangle
the signal from different sources and find the relationship between
sensor readings and cell growth. In this research, we deliberately choose
a compact design and low-cost materials to evaluate their potential in
scaled-up applications. However, these sensors inevitably run into sig-
nificant noise due to the EP effect. A two-component equivalent circuit
model processes the raw impedance data from the LCR meter to account

Rz C

for the EP effect. The model consists of two components in series:

e Cell suspension component;
e EP effect component.

As shown in Schematic 2, the cell suspension component describes
the electrical property of the cell suspension between the two electrodes,
while the EP effect component describes the electrical property in the
vicinity of the electrode surface. Since the current goes through the two
components consecutively, they are supposed to be in series. We adopt
the conductivity Debye relaxation model for the cell suspension
component [21] and the constant phase element (CPE) model for the EP
effect component [26].

The study of electrical properties of cell suspension has stemmed
from the study of colloidal suspensions. When applied with an AC
electric field, colloids suspended in liquid electrolytes exhibit Maxwell-
Wagner (M-W) dielectric relaxation [27]. M-W relaxation process hap-
pens at the interface of two different materials. An ideal M-W relaxation
is a single-time relaxation described with a Debye relaxation model:

ep(®)

1 Jrjan'Jrsh7 M
where @ = 2xf is the radial frequency of the input AC signal, and the
complex permittivity spectrum ef,(w) is determined by the relaxation
time constant 7, relaxation strength Ae, and permittivity at the high-
frequency limit ¢,. Considering the lossy nature of the cell culture in
the culturing media, we adopt the conductivity Debye relaxation model:

op(w) + 00, (2)

:1+jwr

where the complex conductivity spectrum o, (w) is determined by the
relaxation time constant 7, relaxation strength A, and conductivity at
the low-frequency limit 6. In most scenarios, relaxation processes
observed in electrolytes are non-ideal, deviating from the Debye model.

Culturing media

_|:,_| |_ Electrode
\\\ CPE Living cells
© 7/ —0
- Charged molecules
Ri1

Schematic 2. The two-component equivalent circuit consisting of a cell suspension component and an EP component in series.
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Colloidal suspension systems often adopt Cole-Cole relaxation to
describe their dielectric behavior [28]. However, based on initial anal-
ysis of the experimental data, we have found that the conductivity Debye
relaxation is enough for describing the experimental data. Moreover,
since the Cole-Cole relaxation model is close to a CPE component in
series or parallel to resistors, the feature extraction algorithm may
wrongly attribute the features to an incorrect component. To better
integrate with the EP effect component, the cell suspension component
(conductivity Debye model) can be rewritten as an equivalent circuit
model:

. 1
e =TT 3

1
Rtpe R

where R, = C = CgAort. As shown in Schematic 2, in the

_1 Ry = _1
Coop’ CoAc?
equivalent circuit, capacitor C is in series with resistor R, and the
subcircuit is in parallel with resistor R;. Cy is the cell constant ac-
counting for the sensor geometry. Here, we can assume Cy = 1 since it is
a real constant, and we can let the actual information carried with Ac
and oy. The effect of the cell constant Cy can be neutralized with
calibration.

It is worth pointing out that Ry, R, and C also have physical signif-
icance. The subcircuit of R, and C in series can be viewed as a dielectric
Debye relaxation model with the permittivity at the high-frequency limit
en = 0, while R; indicates conductivity at the low-frequency limit. With
Co =1, Cis equivalent to Ae in Debye dielectric relaxation model. The
conductivity Debye model can be rewritten in a permittivity fashion:

" Ae 0o
€ = +—, 4
) 1 +jor  jo @
where Ae = c% = Aor. Our initial analysis shows that the permittivity at

the high-frequency limit ¢, is very close to 0, while the conductivity at
the low-frequency limit o, is not negligible.

Three or four dielectric relaxation processes are typically observable
in cell suspensions: a, f, v, and sometimes §-relaxation, depending on the
specific system under test [27]. The relaxation process most widely used
to indicate VCC is the p-relaxation, which appears at kHz-MHz fre-
quencies. This relaxation process is well-explored and has proven
capable of indicating VCC. The a-relaxation, appearing at around kHz
range, is much less explored in suspension systems, and its potency in
indicating VCC is not verified. However, the a-relaxation has some ad-
vantages over the p-relaxation. Since the frequency range of the
B-relaxation is higher, it is more prone to electromagnetic and stray
capacitance noises. Coaxial cables are usually necessary to protect
against those noises, making the sensor bulky and expensive. The
a-relaxation with a lower frequency range is less reliant on noise-
canceling techniques such as coaxial cables, allowing more flexibility
in the sensor design. In this work, we have found that a-relaxation also
has the capability to indicate cell density with parallel-plate sensors.
Specifically, we use linear regression to find out the best combination of
the extracted features and found that a certain combination of the
relaxation strength Ae and the time constant 7 of the a-relaxation can
accurately indicate cell density.

EP effect has been bugging researchers from obtaining an accurate
spectrum that reflects the dielectric properties of the object under test,
especially in analyzing liquids. Ions within the liquid can be blocked by
the electrodes, while they are also diffusing due to thermal fluctuations,
resulting in an electric double layer that behaves like a non-ideal
capacitor. Experimental and mathematical methods have been devel-
oped to eliminate or reduce the influence of the EP effect [24]. Experi-
mental methods will likely raise the cost of the sensors since they require
expensive metals or complex sensor design and measurement settings,
which contradicts our goal of lowering the cost. Moreover, some
mathematical approaches show promising results in compensating for
the EP effect [22]. Therefore, we focus on mathematical methods to
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alleviate the EP effect. The EP effect can be modeled as a constant phase
element (CPE) [29]:

7 = ; 5)

EP 0 (J w)n-,

where Q > 0 quantifies the strength of the EP effect, and n € [0, 1] is the
phase of the CPE component. When n = 1, the CPE component describes
purely capacitive behavior, while for n = 0.5, it describes purely
diffusive behavior. The CPE model is appropriate in describing the EP
effect on aluminum electrodes [30].

Since the EP effect occurs in the vicinity of the electrodes while most
cell suspension is in between, the EP effect component and cell sus-
pension component should be in series (See Schematic 2). Thus, the total
impedance can be expressed as:

Z&;tal = Zéell + Z;;Pv (6)
where Z(.,,, and Zp,, are as defined in Equation (2) and Equation (5). The
final model includes five parameters: R1, Ro, C, Q and n. From these five
parameters we can derive physically significant features including Ao,
Ag, 1, 09, and oy,.

3.2.2. Loss function

Under sinusoidal AC conditions, complex permittivity and imped-
ance spectra bear the same information but convey different messages,
while both have physical significance. In other words, the complex
electrical variable has two forms: permittivity and impedance. When
this two-sided coin encounters a fitting problem, a dilemma arises: A
fitted curve with minimum error in impedance may be non-optimal in
permittivity and vice versa. This arose because the transformation be-
tween impedance and permittivity is not linear, and what was very close
in numerical values to each other may become far away after the tran-
sition. In cases where impedance has more importance over permit-
tivity, data are presented and fitted using impedance (e.g.,
transepithelial/transendothelial electrical resistance (TEER) [31]). In
contrast, in other cases where permittivity is dominant, permittivity is
used instead (e.g., dielectric properties of liquids [32]). However,
impedance and permittivity are both essential and intertwined in this
research. Previous research has addressed this property of impedance
data with different weights according to the frequencies [33]. This
technique balances the significance of high-frequency and low-
frequency data while leaving flexibility to change the weights for the
best result. However, using this technique usually results in a lack of
reasoning for the choice of weights. To better address this unique
property of impedance spectra, we deliberately define a distance func-
tion to balance impedance and permittivity. By taking the logarithm on
permittivity and impedance, we find out that the distance is preserved in
the transition:

Ine; —Ing; = In =1InZ, —InZ, %)

o In———
JCwZ, JCwZ,

Formatting data into InZ" (and thus defining the distance as
[|InZ] —InZ;||) will result in a consistent definition of distance, whether
impedance or permittivity is used. We estimate those eight parameters
by minimizing the following loss function:

* K ok .
L(Z.Z') =) |InZ, —nz;]|, ®
=1

where 2}k is the predicted impedance at the kth frequency in the fre-
quency list using Equation (6), and Z;k is the corresponding impedance
measurements.

The eight parameters that reflex physics-based features are extracted
from impedance data by minimizing the loss function defined in Equa-
tion (8). We employ the Basinhopping and Sequential Least Squares
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Programming methods to solve the global minimization problem
[34-36]. Due to the nonlinear and non-convex nature of the optimiza-
tion problem, the feature extraction is non-trivial even with the com-
plete equivalent circuit model and the fitting tool in hand. To avoid local
optima, we initially try random initial values to find the best one for the
first valid impedance spectrum. Then, we use the extracted features for
the first valid spectrum as the initial guess of the second valid spectrum,
and so on. This approach leverages the similarity between two adjacent
spectra acquired within 15 min, making the previous fitted result a good
guess for the upcoming spectrum, unless large external noise is
introduced.

3.3. Physics-inspired model for VCC prediction

VCC is an essential CQA in cell manufacturing, guiding decision-
making in cell culture processes. We use a physics-inspired (gray-box)
model to predict VCC and evaluate its accuracy with image-based cell
count data. Unlike a physics-based model, which solely relies on
knowledge, and a data-driven model, which solely depends on data, a
physics-inspired model involves both. A physics-inspired model takes
advantage of knowledge summarizing past observations while bypassing
the current knowledge gap to produce fruitful outcomes. Our physics-
inspired model generalizes existing formulas and uses experimental
data to determine uncertain parameters. In Section 3.2, five features are
extracted from experimental data, and features with physical signifi-
cance are reconstructed. Among those features, we have found two
features that prove effective in predicting VCC with the physics-inspired
model: Ae and 1. The physics-inspired model can be expressed as below:

logVCC = logc + c;logAe + cslogt 9

where ¢; > 0, ¢z and c3 are parameters to be determined in the linear
regression.

3.3.1. Maxwell-Wagner relaxation

We use a physics-inspired model to relate the extracted features with
VCC. The model is inspired by a dielectric relaxation model where cells
are assumed as colloidal suspensions where the colloids have thin,
insulating shells (cell membranes) and conducting kernels (cytoplasm).
Those simplified cells can induce Maxwell-Wagner relaxation. In the
relaxation process, ions in the cytoplasm and the culture media move
under AC electric field force and stop and gather when they reach the
cell membrane. Since the cell membrane is only insulating if viable and
becomes permeable if dead, only viable cells can be detected with the
impedance sensor, and dead cells are transparent. This feature is a
valuable addition to monitoring total cell count, as impedance sensors
are now capable of exclusively monitoring viable cells.

Maxwell-Wagner relaxation gives rise to a-relaxation and p-relaxa-
tion in a spherical single-shelled cell model. The p-relaxation of spher-
ical single-shelled cells can be described in the equation below [27]:

Gy
- 480

Ae P, (10)

where the relaxation strength Ae is proportional to cell radius r, cell
volume fraction P, and specific capacitance of the cell membrane C,,,. &y
is the vacuum dielectric constant. Since the relaxation strength Ae¢ is
proportional to cell volume fraction P, A¢ is often used to indicate viable
cell concentration. Noticing that viable P is equal to the product of VCC
and cell volume, we can rewrite Equation (10) as:

Aeg,

V =
ce 3C,mrt’

(1)

Ae alone is sufficient to predict VCC, given that the average cell
radius does not change much. However, in T-cell culturing, such as-
sumptions do not hold. T-cells grow dramatically in size when activated
and start to multiply. In our experiments, the cells are thawed and
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centrifuged together, and thus they may multiply synchronously to some
extent, resulting in a variation in the average size as they expand [37].
Therefore, we have to include more features to predict cell radius r.
According to previous research [21], cell radius r can be reflected by
the time constant 7 of Maxwell-Wagner relaxation:
2TK;K,

_ 12
g Con(k + 2x,) a2

where «; is the conductivity of cytoplasm, and «, is the conductivity of
culture media. Assuming that x;, x, and C,, are constants, r is propor-
tional to 7. Plugging this relationship into Equation (11), we have the
following equation:

VCC = ¢, Aer™?, 13)

where c; is a calibration coefficient. Since impedance measurements are
sensitive to changes in electrode geometries, c; is expected to change
between different experiments due to the inevitable error introduced in
the sensor manufacturing process. Although Equations (10-13) are
meant for p-relaxation rather than o-relaxation, we obtained insights
into the possible relations between dielectric features and VCC: they
may be governed by a power-law.

3.3.2. a-relaxation and physics-inspired model

As indicated previously, a-relaxation is a dielectric relaxation pro-
cess typically appearing at around kHz frequencies. Although o-relaxa-
tion has large relaxation strength, potentially making it a good indicator
of the electrical property of the system under test, researchers still
seldom use it to indicate cell density in cell cultures or concentration in
colloid suspensions for the following two reasons. First, the mechanism
of a-relaxation is not fully explained today. Researchers have made a
great effort to study this phenomenon in colloid suspension systems and
made significant progress, but there are still discrepancies between the
theoretical and experimental behaviors [38]. Second, the a-relaxation
frequency range largely overlaps with the EP effect, making it chal-
lenging to observe. In our work, we try to extract highly accurate
a-relaxation features and relate them to image-based cell density data
with a physics-inspired model to overcome or bypass the above-
mentioned difficulties.

Inspired by Equations (10-13), the extracted features of a-relaxation
could also have a power-law relationship with cell density. Power law
assumes that the relationship between the parameters holds for all
scales, which is in principle not valid for cell suspension systems.
However, the cell density of cell cultures is usually confined within a
specific range since the cells may not grow well otherwise. The power
law will likely be a good approximation in this confined range. There-
fore, we develop a physics-inspired model from Equation (13) to
incorporate a data-driven method with the physical knowledge. Namely,
we assume a power law between all variables in Equation (13), where all
the exponents are treated as unknown parameters to be trained by
experimental data. The untrained physics-inspired model can be
expressed as below:

VCC = ¢, A&7, 14
where c1, c2, and c3 are calibration coefficients. Taking logarithms on
both sides, we have:

logVCC = logc, + c;logAe 4 c3log 7, (15)

the base of the logarithm can be chosen for arithmetic or algorithmic
convenience. In this form, the training problem reduces to linear
regression.
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4. Results and discussion
4.1. Feature extraction

The impedance spectrum is automatically acquired with the LCR
meter every 15 min. However, image-based cell count data used to train
the model are much less frequently obtained since the process involves
manual sampling and the consumption of lab supplies. Therefore, only a
few impedance spectra with corresponding image-based cell count data
are necessary for model training.

Selected data are fitted with Equation (6) as the model and Equation
(8) as the loss function. Fitted results are visualized in both frequency-
implicit and frequency-explicit plots in Fig. 3. Each spectrum has a
minimal fitting error (RMSE < 2Q), indicating that the fitted model has
captured the most significant features in the spectra acquired. The
extracted and reconstructed features are shown in Fig. 4.

The extracted and reconstructed features show some patterns that
may provide some insights into what happened in the culturing process.
All features experience a steep change within the first few hours, which
may reflect the cell culture and sensor system’s stabilization. The cell
suspension may undergo a dramatic temperature change since the cul-
ture media is refrigerated until use. Also, the microscopic roughness on

Nyquist Plot
—~500 A
—400 A
—-300 A
(@]
=
N
—200 A
—100 A
0 -
50 100 150 200 250
Z'IQ
le—7 Cole-Cole Plot
=
W

00 02 04 06 08 10 12 14
&'IF le—6

Bioelectrochemistry 152 (2023) 108416

the surface of aluminum electrodes may result in a wet-in process, which
could significantly impact the acquired impedance. After 35 h, Q and n
experience a steep change, indicating a disruption in the electrode sur-
face, most likely due to the growth of microorganisms such as yeast and
bacteria, which stick to surfaces. The cell culture also turns turbid at the
end of the experiment, likely indicating bacteria or yeast contamination.
Due to the disruption of the electrode surface, the impedance data
collected after 35 h since the start may not reflect cell density effectively.
On the bright side, this could indicate contaminant microorganism
growth and inform the researchers and manufacturers in time to mini-
mize the loss in time and consumables. Some features show spikes, os-
cillations, and plateaus, which are unlikely to reflect true cell density.
These may have resulted from sources other than the change in cell
density. The spikes and oscillations may have resulted from a loose
connection in the sensing system, disruption in temperature due to
sampling at room temperature, and local minima in the optimization
process. The plateaus are the result of intentional algorithm design. As
described in Section 3.1.1, the preprocessing algorithm filters out
spurious data with large variances. In cases where the data is filtered
out, the fitting algorithm repeats the previous data since it receives no
new data. This helps preserve the previous fitting result for the initial
guesses in the next impedance spectrum.

Bode Plot - Magnitude
103

— fit
e data

10!

10° 104 105
flHz

Bode Plot - Phase angle

—60

—50

—40

o/°

—30 1

—20 A

—10

103 104 10°
flHz

Fig. 3. Fitting results using the two-component equivalent circuit model. Fitting error is minimal with RMSE < 2 Q for all spectra fitting.
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Fig. 5. (a) Results of LOOCV for all methods. The predicted value is plotted against the true value (averaged image-based cell density) for each data point. The
straight line is where the predicted value equals the true value. Data points closer to the line are better predicted. Testing R> = 0.937. (b) Training result for VCC
prediction using model trained with image-based cell count. Raw image-based cell density data are shown to show variability in cell counting. Training R> = 0.964.
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4.2. VCC prediction

A physics-inspired model is developed in Section 3.3. We collected
nine data points from the image-based cell counter throughout the cell
culture process to train the physics-inspired model, where each data
point is derived by averaging cell density from 3 samples independently
collected from the cell culture. Initial analysis shows that the second and
the ninth data points behave differently than the others, so these two
data points are discarded for model training.

Leave-one-out cross-validation (LOOCV) is employed to distinguish
effective training from pure hindsight. Among all seven data points,
each one is selected in turn to be the testing data, and the rest are
training data. LOOCV is used only for the evaluation of the methods.
Training and testing errors are reported for each method. Since all pa-
rameters are taken logarithms before running the linear regression al-
gorithm, the conversion back is necessary before evaluating the results.
Final model is trained using all seven data points for optimum perfor-
mance. The physics-inspired model achieves a testing R? of 0.937 in
LOOCV, and a training R? of 0.964 for the trained model. Cross-
validations and cell density predictions are plotted in Fig. 5. The
trained physics-inspired model can be expressed as:

VCC = ¢ Ae! 707739 14)

where the calibration coefficient ¢; = 0.0922. ¢; may differ for each
experiment, as the hand-made sensors inevitably introduce variability in
the cell constant Cy. It is worth noting that this formula is not very far-
away from Equation (13), which means that the formula for p-relaxation
may also apply to a-relaxation with plausible results. The trained pa-
rameters may provide insights into the investigation of a-relaxation of
living cells.
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The untrained physics-inspired model has several adjustable pa-
rameters that can transform the extracted features into various possible
curves. The linear regression algorithm can find the curve closest to the
true values using all features. However, too much flexibility can lead to
overfitting, where the model can only fit the training dataset but per-
forms poorly in predicting new data. To avoid overfitting, we used
LOOCYV to evaluate the trained model’s performance on new data. The
physics-inspired model shows excellent results in LOOCV, indicating
that the trained model revealed some nature about the cell suspension
rather than fitting meaningless curves close to the data points by coin-
cidence. We have also tried different combinations of extracted features
to improve the physics-inspired model’s accuracy, but most only show
high accuracy in the training process but very low accuracy in LOOCV.

The trained physics-inspired model is applied to data collected from
other cell culturing processes, and the predicted values are compared
with the true values in Fig. 6. These results demonstrate that the power-
law relationships suggested by the trained physics-inspired model is
effective in reflecting cell density with moderate deviation. In fact, cell
culturing in a Petri Dish without agitation may lead to variability in cell
density at different locations in the cell suspension. The variation be-
tween the image-based cell density data collected clearly shows this
effect. Taking this effect into account, the predicted cell density showing
a moderate deviation from the image-based data is reasonable.

Since the scaling factor c; is different for each culturing process, it
may contain case-specific parameters affecting sensor readings. For
example, a small change in the distance between the two electrodes in
our experimental setup may result in a significant difference in imped-
ance readings. One possible approach to obtaining the case-specific
parameters is to perform calibration before use. However, since the
sensor is designed for single use, the calibration cost is relatively high.
Another possible way to find these case-specific parameters and cancel
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Fig. 6. Results of applying trained model to new data. All curves are rescaled by adjusting the value of c;, while ¢, and c3 are kept the same.
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out their impact is to use multiple sensors with different geometries and
apply a calibration-free framework to the sensing system [39].

The electric property of suspension of monodisperse, spherical cells
is influenced by at least four independent variables: VCC, cell size, cell
membrane capacitance Cy,, and culturing media conductivity . In other
words, this system has at least four degrees of freedom. However, in the
physics-inspired method, we describe this system using only two vari-
ables: A¢ and 7. The final model expressed in Equation (9) cannot fully
describe the electric property of the cell suspension due to the lack of
freedom, but the performance shown in the physics-inspired model
suggests that those four variables mentioned above actually have some
dependence on each other. For example, cell size may be relevant to Cy,,
since the cell membrane may behave differently in different stages
within a cell cycle. Also, C,, may be relevant to «, since they both are
influenced by ion concentration and ion mobility. In scenarios where
those dependencies change or disappear (e.g., different patients or
different cell types), extra parameters and further analysis will be
necessary.

The use of a power-law relationship in the physics-inspired method
assumes that the relationship between variables is scale-invariant,
which may not be valid in all cases. However, this assumption is a
convenient and flexible mathematical model for data-driven analysis.
Additionally, power-law is likely to be appropriate in cases where the
variables, such as VCC and cell radius, do not change significantly over
orders of magnitude during the cell culture process. If the cell culture
process involves significant changes in the cell expansion over several
orders of magnitude, further investigations may be necessary to deter-
mine the appropriate mathematical models.

5. Conclusion

In this research, we have designed and fabricated low-cost, dispos-
able sensors for in-line monitoring of suspension cell growth and
demonstrated their use in predicting cell density with a novel physics-
inspired data analysis method. Consisting of EDM-cut aluminum paral-
lel plates and PDMS spacers, the sensors show good biocompatibility and
chemical stability. Raw impedance data is collected with our measure-
ment system and then analyzed with a two-component equivalent circuit
model to extract features. The feature extraction results show that the
equivalent circuit model can nicely represent the cell suspension system
under test. The extracted features are then plugged into our novel
physics-inspired data analysis methods to predict viable cell count.
Trained by image-based cell density values, the physics-inspired model
shows excellent LOOCV performance with testing R2 0.937. The
trained physics-inspired model also shows good performance in pre-
dicting cell density in new data. With the physics-inspired data analysis
method, the low-cost, disposable sensor can help decision-making, such
as deciding on harvesting time and detecting abnormalities in cell
manufacturing. The trained parameters in the physics-inspired model
may also provide insights into research in low-frequency electrical
properties of living cells.
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