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Abstract

Green infrastructure (GI) is an ecologically informed approach to stormwater management that is potentially sustainable
and effective. Infiltration-based GI systems, including rain gardens, permeable pavements, green roofs infiltrate surface
water and stormwater run-off to recharge ground water systems. However, these systems are susceptible to clogging and
deterioration of their function, and we have limited understanding of the evolution of their function due to the lack of long-
term monitoring. The ability of these systems to infiltrate water depends on the unsaturated hydraulic conductivity function
K of the soil. We introduce a novel approach based on physics informed neural networks (PINNs) to estimate K of a
homogeneous column of soil using data from volumetric water content sensors and by solving the Richards—Richardson
partial differential equation (RRE). We introduce and compare two different deep neural network architectures to solve
RRE and estimate K. To generate the ground truth, we simulate three types of soil water dynamics using HYDRUS-1D and
compare the results of these two neural network architectures in terms of the estimation of K. We investigate the effect of
inter-sensor placement on the estimation of K. Both architectures show satisfactory performance on homogeneous soil with
three volumetric water content sensors with different advantages. PINN-based estimation of K can be used fundamental
tool for assessment of the evolution of the performance of GI over time, while requiring as input only the data from simple
soil moisture sensors that are easily installed at the time of GI construction or even retrofitted.

Keywords Green infrastructure - HYDRUS-1D - Physics informed neural networks - Richards equation - Machine learning

1 Introduction permeable materials to route water through slower hydro-

logic pathways often improving water quality and provid-

In the past two decades, green infrastructure (GI) has
developed into a sustainable and effective method for
maintaining and improving urban quality of life [1, 2]. GI
manages urban storm water by utilizing vegetation and
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ing habitat. However, in urban systems, implementation of
Gl is limited by available space and the need to re-establish
connections between surface and subsurface flowpaths.
Further, the tendency to focus monitoring in periods
immediately following installation limits our ability to
understand the evolution of system function and may
obscure issues that develop and worsen over time [3]. In
particular, infiltration-based GI systems, including rain
gardens, permeable pavements, green roofs, and bioswales,
are susceptible to clogging and consequent deterioration in
system function [4].

Infiltration-based GI routes surface water and storm
water run-off to recharge groundwater systems [5]. Their
infiltration rates vary with the hydraulic conductivity (K) of
the soil, and decreases in K will limit the recharge [6]. In
most cases, infiltration is measured as a falling head with
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pressure sensors or via time difference in soil moisture
dynamics between moisture sensor depths. However, nei-
ther approach resolves the hydraulic properties of the
porous media (see data description section) and therefore
our ability to evaluate GI infiltration mechanistically is
limited.

Laboratory methods used to identify the hydraulic
conductivity are unsatisfactory, as sampling introduces
artifacts in the measured hydraulic properties of the soil,
thus, giving us results that might not be representative of
field conditions [7]. That said, movement of water in
unsaturated porous media is complicated by hysteresis in
the relationship between soil moisture content and
hydraulic conductivity. Inference of K generally relies on
numerical solutions of the Richards—Richardson equation
(RRE) [8, 9]. Numerical approaches involve implicit time
discretization schemes and finite volume or finite element
discretization in space [10].These methods could become
computationally expensive, as they require repeated eval-
uation of the forward problem [11]. Also, the solution of
the RRE may deteriorate upon broader application, when
certain conditions are not met [12].

Typically the solution of the RRE and its inverse is
found using empirical parametric models, defining the
hydraulic conductivity as a function of matric potential, ¥,
or volumetric water content, 6 (soil moisture), as well as
defining the relationship between ¥ and 0 [8]. The Mua-
lem-Van Genuchten [13] and the Brooks and Corey’s [14]
models are the most commonly used [15]. These models
depend on the knowledge of some soil properties such as
pore-size distribution and the saturated water content,
which need to be estimated.

Another challenge in the identification of the inverse
solution is that most methods require knowledge of initial
and boundary conditions [7, 16], which are needed to
evaluate the forward problem. However, they are difficult
to identify under field conditions. An approach to over-
come this problem is to model using Gaussian process (GP)
regression [17-19]. But this method comes with its own set
of drawbacks, mainly that it does not deal well with non-
linearities (in our case the nonlinear parameters of the
RRE), and local linearization might be required to cir-
cumvent this [20]. Rai et al. [17] proposed to deal with the
nonlinearity of the parameters by using the Van Genuchten
model and by trying to estimate its parameters as part of
the GP regression model; their approach is limited to using
a predefined model for the hydraulic parameters. More-
over, GP modeling is limited by the Gaussian prior
assumption.

In this paper, we propose a physics-informed neural
network (PINN) framework to estimate the hydraulic
conductivity. Usage of PINNs and their advantages and
limitations for different geoscientific applications such as
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geothermic and hydrological applications have been stud-
ied in multiple works [20-24]. In this work, we contrast our
framework to estimate the hydraulic conductivity (archi-
tecture 1) with an existing framework proposed by Bandai
et al. [26] which is itself a PINN model as described by
Raissi et al. [20] (architecture 2). Both architectures use
multi-depth time series data of volumetric water content,
and both use the residuals of the RRE as a loss function to
represent the physical constraints describing soil-water
dynamics.

Neither of the above-mentioned architecture 1 nor
architecture 2 requires knowledge of initial or boundary
conditions, which are hardly available under field condi-
tions such as in GI; they don’t require any predefined shape
for the hydraulic conductivity function nor prior approxi-
mations for it; they only use data that are easily available
from a simple array of soil moisture sensors and they don’t
require matric potential measurements to find the inverse
solution.

Tools that utilize common monitoring data streams to
assess hydraulic conductivity and infer changes in K fill an
important gap in our ability to manage and enhance green
infrastructure systems. For example, fine sediment parti-
cles, contributed by erosion of surrounding soil, decrease
K, causing water backups and degrading GI system func-
tion. In addition, decay of biological components in green
infrastructure media (e.g., mulch) can also diminish K,
therefore changes in hydraulic conductivity can signal the
need for particular maintenance tasks [27].

As we are interested in the practical application of these
methods in managing GI and to allow the estimation of the
hydraulic conductivity function evolution as a GI perfor-
mance metric, we investigate the usage of a simple and
convenient moisture sensor array set-up that uses three
moisture sensors to estimate K by finding the inverse
solution of the RRE. Three sensors are the absolute mini-
mum for application of the methods documented here (in
order to estimate the second derivative of the volumetric
water content w.r.t. space to solve the RRE), these sensors
are: sensor 0 (Sp) at depth zp, sensor 1 (S;) at depth z; and
sensor 2 (S5) at depth z,, as shown in Fig. 1.

We model the effect of placing the sensors at different
depths and with different inter-sensor distances on the
estimation of the hydraulic conductivity. We consider
homogeneous and non-homogeneous soil architecture for
our simulations. Through simulations we also learn the
ground truth for the hydraulic conductivity to evaluate the
performance of the two architectures described above.
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Fig. 1 Modeled GI soil profile with an array of 3 volumetric water
content sensors placed at depths z, z; and 2,. dy; and d,, are the inner
distances between sensors Sy and S; and S; and S, respectively

2 Methods
2.1 The Richards-Richardson equation (RRE)

The law governing the unsaturated flow of water in porous
media is Darcy’s law [28]:

q=—K(0)Vh (1)
h=y(0)+2 2)

where q is the water flow velocity [length, time] ™', K is the
hydraulic conductivity [length, time]™', and h is the
hydraulic head (total potential) [length], ¥ is the matric
potential [length] and Z the elevation head [length] along
the vertical dimension z (positive upwards). Notice that we
don’t account for hysteresis, by assuming the relationship
between 6 and , and between K and O(or K and ) to be
unique, as per the Mualem-Van Genuchten model [13].
The RRE is derived from Darcy’s law and the continuity
requirement (incompressible fluid, and not accounting for
water vapor) and is defined as:

o0
00 oK
EZV'(KV‘//)‘FG—Z (4)

This form is called the mixed formulation, which
includes 0 and ¥ as variables. This formulation is used in
the second PINN method (second architecture).

In this study, we only consider one-dimensional flow
along the z-dimension, so the equation becomes:

00 0KdY o'" 0K
— = 4 K— 4+ —
ot 0z 0z 02 0z
In order to get a formulation that only depends on 6, we
define the moisture diffusivity D [length]z[timeTl as:

(5)

D(O) = K(0) 5 (6

From (5) and (6) we get the moisture formulation, which
will be used in our proposed method (first architecture):
o0 0K

Considering only the z-dimension we get:
o0 0 o0 dK 00
aa %) ra s ®)
o0 %0 0D00d0 dK 00

S _p_ Ty 9
o Pz T00:0: a0 ®)
o0 %0 oD [00\*> dK 00
——_p—4+ (= i (10)
o oz " a0\oz) Tdo oz

2.2 First deep learning architecture

The goal of our network is to estimate the nonlinear

coefficients on the right-hand side of Eq. (10): D(0), %
and % Then, an estimate of the hydraulic conductivity

function K is obtained by integrating the estimated %
over all observed values of 0. These estimated coefficients

2
are then multiplied by their respective terms, %’, (%) and

g—f. Finally, they are summed to predict the value of the

derivative of the volumetric water content w.r.t. time %),
i.e., the left-hand-side of the RRE as shown in Fig. 2a.
The estimation of these coefficients is achieved using a

set of volumetric water content data collected at three fixed

depths G[t(i),zq] ZIIV, where N is the number of measure-
ment points in time and the depths z, € {20,21,22}- The
network uses discrete time and finite difference approxi-
mations of the derivatives of 6 with respect to z, evaluated
at depth level z; (i.e., the middle sensor S). The desired
neural network f(X; W)(Fig. 2) takes as input current and
past estimates of (1) the first derivatives w.r.t. z, (2) the
square of the first derivative w.rt. z, (3) the second
derivative w.r.t. z (4) and the value of the volumetric water
content measured by the middle sensor §; as shown in
Fig. 1. Then, the network outputs the estimates of

; oD|1), op|1,
D[t(”,zl}, % and %. W represents the net-
work’s parameters (weights and biases) and X represents
its input.
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Fig. 2 a First network architecture. Figure b is the detailed architecture of the network f{X; W)

The first and second derivative of the volumetric water 69[t(i), z1] H[t(i), 2] - H[t(i), z1]
content w.r.t to space are evaluated at sensor S; (at depth oz ¢ = s (12)
z1) using first-order finite difference approximation. We
use the forward and backward difference of the first ~ Wwhile the backward difference is defined as:
derivative w.r.t space as inputs. We use p past estimates as

00 01D, z,] — 01
well: [ 721] _ [ 721] [ ,ZO] (13)
(i) (i) R dor
a0 ("), 00|, . .
[ 3 Zl] , [ 5 Zl] J=0,1,...p (11) di» and dj; are inner distances between the sensors as
S Loh defined in Fig. 1.
The forward difference is defined as: We also add the squared values of the forward and

backward derivatives as input as mentioned above.
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o 2 . 2
69[1‘("/>,Zl] ’ aﬂ[z(l—j),ZJ Jj=0,1,....p
0z g O s

The second derivative estimate at sensor S, is defined as:
60[1‘(0,21] 60[t(i),zl]
20 (i -
0 H[I(),Zl] ~ 0z g 0z b (]5)
0z2 (dia +do)
2
We use current and p past estimates of the second
derivative as part of the input.
629[I(i7j>721}
0z2 ’

We also add current moisture value sensor S; to the
input:

(14)

j=0,1,....p (16)

011, 21] (17)
The network then outputs (1) lj[t(i),zl] which gets

2 [ (i) M40
multiplied by e ()gzz“’m] , (2) dD[;e’”]} which gets multiplied

by the central difference approximation of the first

derivative w.r.t space defined as:

00t 7 00[t® 7 00[:® 7
(0], W00.a] | 20[i0.a
0z 0z g 0z »

v dip oy = do

T diptdy dix+do

(18)

(19)

The network is summarized as follows and is shown in
Fig. 2:

dD[tD,z] dK [t z]

57,0
al =g a0

] =f(X;W) (20)

[ 00[") 2] 00[1) 7] |
oz oz »
(69[%,-;), a >2 (ag[t(ij)7zl] )2
X= & g % 1) Jj=o1..p
%0 [,(ifj),zl]
0z2
O[I(i),zl]
1)

The network parameters W are found by minimizing the
loss function L that we define as the mean squared error
(MSE) of the residuals r of the RRE:

Np

L(W) =NLBZ

n=1

r{t(i),zl} ‘2 (23)

‘ a0[1, a0 (1,
10, = 0] la] (24)
ot ot
where Np represents the size of a training batch. The
ground truth first derivative w.r.t. time is estimated using
the following first order finite difference approximation:
‘ ‘ -
00[1,z1] _ 0[] — 0[] (25)

ot At

where At is the sampling period of the volumetric water
content 0 (see data description section). Here, we have set
the number of past values p used in the input to 2, thus the
number of features of the input X is 16. The network f is
made of 4 layers (Fig. 2b). The first 3 layers are residual
layers. Each residual layer is made of a batch normalization
(batch norm) layer, a ReLU activation function, a fully
connected layer (with biases), then another set of batch
Norm, ReLU and fully connected layers. The output of the
layer gets summed with its input hence the name residual
layer [29]. However, for the first skip connection, we use a
fully connected layer of size 16 x 32 in order to upscale
the input features so that they have the same number of
features as the output of the layer. For the other two
residual layers, the input is directly summed to the output.

The last layer (4th layer) is made of a fully connected
layer. A ReLU activation function is used only for the

output that represents the estimate of the diffusivity D. This
was done to constrain its value to be positive. For the

dE [0 2] dp[r 1] . .
outputs —q- and q; > Do activation functions were
used.
. dg[i 4] . . . .
Each estimate of Qs associated with a specific
input value of volumetric water content to H[I(i), z1], which
dg

means that there will be multiple estimates of d {; for each

unique 0 value. So, for each unique value of 6, we compute
the following value:

dK(0) . (dK[1D z]
T = median <T (26)

Which we then integrate using the trapezoidal rule to get
an estimate of the hydraulic conductivity function K(0).

The network was created on PyTorch (v 1.12.1, CUDA
11.6) using Python (v 3.8.2). We trained the network using
ADAM optimizer with weight decay [30]. With a learning
rate of 0.002, f; equal to 0.9, and f3, equal to 0.999. The
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number of epochs was 500 and the batch size N was set to
80.

2.3 Second deep learning architecture

The framework used for the second approach is the one
proposed by Bandai et al. [26, 31] and it is based on PINNs
as in the work of Raissi et al. [20]. PINNSs are used to find
the inverse of the RRE using the same set of volumetric
water content data mentioned in the previous section

H[I("),zm;jlv. The PINNs used here are made of three
networks as shown in Fig. 3.

The first network predicts the value of the matric
potential ¥:

YU = £y, (19,20, W) (27)

where Wy represents the network parameters. The network
fy is made of 8 fully connected layers and uses the
hyperbolic tangent function, tanh, as activation function
after each layer. However, the last layer of this network
uses the negative exponential function, — exp(x), as acti-
vation function, to force all the predicted values of matric
potential to be negative. The fully connected layers are
made of 40 neurons. The predicted value of moisture

potential lﬁ(” is converted to logarithmic scale:

w};)g is then fed to two networks, which predict § and K

(Fig. 3a, b):
09 = fo(Vis Wa) (29)
KO = fic (s W) (30)

Note that this architecture assumes the relationship
between 0 and , and between K and  to be unique as we
use the Mualem-Van Genuchten model (see data descrip-
tion section). Network fy is made of 3 fully connected
layers and network fx is made of 1 fully connected layer.
Both networks’ fully connected layers are made of 40
neurons, and the hyperbolic tangent (tanh) was used as
activation function.

The parameters of the networks represented by the set
W = {Wy, Wy, Wk}, are found by minimizing the follow-
ing loss function:

Nosoo o . .\2 N 12
Lw) = 3 (0[1,20] — 09, 207) "+ 3 (r[10, 20))
=1 i=1
(1)
o 00 OKdy LM oK
i) ) =YW oV R
r[l % ] or 0z 0z 02 0z o0 (32)
) 46

where N is the total number of measurements points. The

l/;l((l»)g = —log, (_lﬁ(”) (28)  first term of the loss function represents the error of the
estimated volumetric water content and r is the residual of
the RRE. In order to compute the residual, the derivatives
(b) Automatic differentiation
oK
0z
P %)
9z 0z2
SN a0
at

'

N 1
_ [+ , O] — g[+@® , O] ) ,ONP b [0 L] =22 OB CY Yy on
Ly = ) [0[e0,20] = 0[e®, 2O + ) (1,20 R T T

z

i=1 i=1

Fig. 3 The second network architecture physics informed neural
networks (PINNGs) as described in [6]. a is the network fy that outputs

the estimated matric potential lﬁ b is the network f; that outputs the
estimated hydraulic conductivity K. ¢ is the network fj that outputs
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the estimated volumetric water content §. The number of layers of
layers and neurons in this figure is not the actual one but only
representative



Neural Computing and Applications (2024) 36:5555-5569

5561

.
o %K %—"’ , % are evaluated using automatic differentiation

[32]. The residuals as well as the error of the volumetric
water content are evaluated at all measurement points.
Tanh is used as activation function (as well as — exp(x))
because it is twice differentiable, which is necessary
because we need to compute the second derivative 6627',#

The described network architecture is the same as the
one used by the best performing model in [26]. An
important caveat is that the best model was found on
PINNs that used volumetric water content data from 10
measurement depths, while we use three measurement
depths in this study. The weights W, of the network f
(Fig. 3a) are initialized using Xavier uniform initializa-
tion[33]. For the networks fx(Fig. 3b) and f (Fig. 3c), the
weights were initialized by a squared Xavier uniform ini-
tialization. This forces the networks to start the training
from a space where they are increasing monotonic func-
tions of 1/} Bandai et al. [26] describe the preference to
make the networks increasing monotonic functions of xﬁ by
the fact that it aligns with the physical nature of soil-water
dynamics. The networks were trained using the Adam
optimizer followed by the L-BFGS-B optimizer. The Adam
optimizer used a learning rate equal to 0.001, f§; equal to
0.9, and f, equal to 0.999. The number of epochs was
5000, and the batch size was equal to the size of all the
measurements points (number of batches =1). The
L-BFGS-B optimizer parameters were set to the following:
maxcor = 50, maxls =50, maxiter =50, 000, max-
fun = 50, 000, ftol = 2.220446049250313 x 10~'°. The
PINNs were created using TensorFlow v 1.14 as in the
original work.

2.4 Data description

The volumetric moisture content measurement data was
generated using HYDRUS-1D software [34]. A column of
homogeneous soil of 100 cm was simulated and uniformly
discretized at 0.1 cm intervals. Three types of soils were
simulated: sandy loam, loam and silt loam. The Mualem-
Van Genuchten model was used to parametrize the
hydraulic conductivity function K(i) and the soil-water
retention curve (i) [13]:

0, — 0,

=

K(O)) = K,S. (1 . (1 - sé)m)2 (34)

0—0,

= 35
Se=0."0, (35)
m—1-1 (36)

The fitting parameters of these functions for the three
types of simulated soils are shown in Table 1.

Notice that § and K are increasing monotonic functions
of . The initial matric potential was set to — 1000 cm for
all depths. And, the Neumann boundary condition was used
as the bottom boundary condition:

oy
P

The upper boundary condition was set to atmospheric
condition. To generate the time series data, three days of
upper boundary water density flux were simulated
(Table 2). The volumetric water content was sampled
every 0.012 day). The scenarios are generated to provide
the same number of training points for the estimation of the
derivative of the volumetric water content w.r.t. z (finite
difference estimation of the first and second derivative of
the middle sensor S,) for the first architecture. The second
architecture uses only the data from scenario 1.

We used simulated measurement data at depths z = — 1,
-3-5-7,-9,—-11,—13, - 15,— 17, — 19cm (z
positive upward) to evaluate the effect of sensor placement
configuration, both depths and inter-sensor distances. Thus,

0 (37)

we will show the results for ( 130

this study as we are simulating using an array of 3 moisture
sensors data. To compare between the estimated hydraulic
conductivity functions, we calculate the following relative
error:

k(o) (o) .

G

where Ny is the number of point volumetric water content

) = 120 configurations in

values for which K was estimated. This error is estimated
at 500 evenly spaced values of 6 for both architectures,
where the beginning and the end of the interval correspond
to the minimum and maximum value of 0 the data from
scenario 1 for each simulated soil. The hydraulic conduc-
tivity values were linearly interpolated for 6 values that
weren’t part of the training data.

3 Results
3.1 Homogeneous soil columns

To compare the overall performances of the estimation of
the hydraulic conductivity function between both deep
learning architectures, we show the median of the esti-
mated K (0) for the 120 configurations of sensor placement
for three different types of soils as described in Sect. 2.4
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Table 1 Fitting parameters for

3 -3 3 -3 -1 -1
the Mualem-Van Genuchten 0 fem” cm™] Oslem’ em™] afem™] " K; [cm day ] !
model for all simulated soils Sandy loam  0.065 0.41 0.075 1.89 106.1 0.5
Loam 0.078 0.43 0.036 1.56 24.96 0.5
Silt loam 0.067 0.45 0.02 1.41 10.8 0.5

Table 2 The 3 scenarios of surface water flux density q [cm day ']
(positive upward) generated using HYDRUS-1D

Time [day] Scenario 1 Scenario 2 Scenario 3
q [cm/dayfl] q [cm/dayfl] q [cm/dayfl]

0.25 — 10 - 10 - 15

0.5 0 0 0

1 0.3 0.3 0.4

1.5 0 5 -1

2 0.3 0.3 0.5

2.25 - 10 -5 X

2.5 0 -5 -5

3 0.3 0.3 0.3

X no event

(data description) (Fig. 4). We also show an envelope that
spans from the 1st to 3rd quartiles of the estimated
hydraulic conductivity values, allowing comparison of the
variance in the estimations between both methods.

The errors of the median curves ex (Eq. 38) for both
architecture for all soils are shown in Table 3. We can see
that the errors of the median curves are smaller for archi-
tecture 2 for all three types of soils compared to architec-
ture 1. Moreover, the Ist to 3rd quartile envelopes of
architecture 2 are smaller than those of architecture 1.
Thus, we can conclude that architecture 2 has better per-
formance over all sensor placements trials. We note also
that the estimation errors for both architectures are smaller
with  bigger  hydraulic  conductivity  functions
(Ksandy loam =~ Kloam > Ksilt loam)~

However, when comparing the results of the best con-
figurations for each architecture, in Fig. 5 and Table 4, for
soil of type sandy loam, we notice that the error is smaller
for the first architecture compared to the second architec-
ture, but the latter has smaller errors for the other two soils.
We note also that the average depths of the sensor con-
figurations for architecture 1 are smaller than those of
architecture 2.

In order to document the effect of the inter-sensor dis-
tances on the network performance, we first compare the
results of both architectures using the average inter-sensor
distance, regardless of their depths. In Fig. 6, the x-axis is
the average inter-sensor distance x = ‘10‘—‘2“1'2 (dyy, and d,»
are defined in Fig. 1) and the y axis represents the
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corresponding average error of the hydraulic conductivity
function calculated for all configurations.

We can see that the second architecture (Fig. 6b, d, f) is
agnostic to the effect of having different inner distances.
However, the first architecture’s performance (Fig. 6a, c, €)
worsens as the inner distances get bigger. Which aligns
with the fact that we use finite difference approximations
for this architecture. The results are consistent across all
soil types. We also notice that the errors of the first
architecture are one order of magnitude larger than those of
the second architecture, specifically when the inter-sensor
distances are large. Similar conclusions can be drawn by
only considering the errors with respect to equal inner
distances between the sensors, i.e., X axis =dy = d;»
(results are shown in supplemental Fig. 1).

To analyze the effect of sensor depths on the perfor-
mance, in Fig. 7, we show the average relative error of the
hydraulic conductivity function €gx depending on the
average depth of the sensor placement configuration, which
means that the x-axis is x = 2342 The error of the sec-
ond architecture gets smaller as the depth of the average
depth of the sensor array gets higher (Fig. 7b, d, f). Which
shows that the second architecture achieves better perfor-
mance at deeper depths.

The converse is true for the first architecture (Fig. 7a, c,
e), the error is lower at shallower depths, which means that
the first architecture achieves better results for shallow
sensor placements, that have sharper wet fronts. Notice that
the best sensor configurations for the first architecture in
Fig. 5 are shallower than those of the second architecture,
which aligns with the last conclusion. However, for the first
architecture, we can see that the errors pass through a
maximum at 10-11 cm, and then get lower again for
deeper depths, although not as low as for the shallower
depths 3—6 cm. Similar conclusions can be drawn by only
considering the errors with respects to the middle sensor
depth z; i.e., X axis = d; (results are shown in supplemental
Fig. 2).

3.2 Non-homogeneous soil column

Although the proposed networks are intended to estimate
the hydraulic conductivity for homogeneous soil, we tested
their performance on a simulated non-homogeneous verti-
cal soil column. This is done because we expect the soil of
GI to be non-homogeneous in practice. The column is of
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Fig. 4 First versus second architecture median hydraulic conductivity curve of the 120 sensor placements and Ist to 3rd quartile envelope.
Figures a, ¢ and e are the results of the first architecture. Figures b, d and f are the results of the second architecture

length 21 cm, made of three types of soil: sandy loam,
loam and silt loam, placed in order from top to bottom,
each of length 7 cm. We used the same 120 sensor place-
ment configurations, and we show the median and the 1st to
3rd quartile envelope plots in Fig. 8. We compare the
estimated hydraulic conductivity with the equivalent ver-
tical hydraulic conductivity K, of the three-layered soil,
which is

Table 3 Errors of the median curves g for architectures 1 and 2 for
the three simulated soils

Soil type e Architecture 1 €k Architecture 2
Sandy loam 1.16 0.79
Loam 13.44 2.25
Silt loam 20.88 6.63
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Fig. 5 First versus second architecture best sensor placement results. Figures a, ¢ and e are the results of the first architecture. Figures b, d and
f are the results of the second architecture

Table 4 Errors gg and sensor

placements of the best estimated Soil type gk architecture 1 €x architecture 2

hydraulic conductivity curves Sandy loam 0.00295 (— 3, — 5, — 9 cm) 0.01621 (— 7, — 13, — 19 cm)

for architectures 1 and 2 for the

three simulated soils Loam 0.04049 (— 1, — 3, — 15 cm) 0.00504 (— 9, — 11, — 19 cm)
Silt loam 0.15204 (— 1, — 3, — 15 cm) 0.12764 (— 13, — 15, — 17 cm)
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Fig. 6 Effect of average inter-sensor distance on the performance of
the first vs second architecture best sensor placement results.
X axis = (do; + dy»)/2. Figures a, ¢ and e are the results of the first

d
s d; (39)

-1,
1

K. =

where n is the number of layers of the soil, here 3, d is the
length of the column, which is 21 cm, d; is the depth of
each layer, here 7 cm, and K; is the layer’s hydraulic
conductivity function.

architecture. Figures b, d and f are the results of the second
architecture. Y axis represents the mean relative error

The errors of the median curves relative to the equiva-
lent hydraulic conductivity K, for architecture 1 and 2 are
0.984 and 0.591. Although smaller than those of the
homogeneous soils, the median predicted K values are
close to zero. Also, the variance of the estimation is high
(specially for architecture 2).
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Fig. 7 Effect of the average depth of the sensors on the performance of the first vs second architecture. X axis = (zo + z; + 22)/3. Figures a,
c and e are the results of the first architecture. Figures b, d and f are the results of the second architecture. Y axis represents the mean relative error

The best estimated hydraulic conductivity results are
shown in Fig. 9. The errors of architectures 1 and 2 are
0.413 and 0.178, and the corresponding sensor placements
are (—1, —5, —7cm) and (— 9, — 11, — 15 cm),
respectively. These errors are bigger than all the errors of
homogeneous soil configurations.

@ Springer

3.3 Discussion and conclusions

In this work, we present two deep learning approaches to
estimate the hydraulic conductivity function K using vol-
umetric water content data from 3 moisture sensors. The
first architecture shows the best estimate of K. Also, the
first architecture has lower estimation error compared to
the second architecture for sensor placements at shallower
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Fig. 8 First versus second architecture median hydraulic conductivity curve of the 120 sensor placements and Ist to 3rd quartile envelope. The
ground truth is the equivalent vertical hydraulic conductivity Kz of the non-homogeneous soil column
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Fig. 9 First versus second architecture best sensor placement results. a Results of the first architecture b results of the second architecture. The
ground truth is the equivalent vertical hydraulic conductivity K, of the non-homogeneous soil column

depths. These two measures suggest the first architecture
may be more applicable in shallow GI applications with
sharp moisture gradients, such as green roofs which are
shallow and are exposed directly to rain. (These formula-
tions do not allow assessment of impacts of evapotranspi-
ration at these shallow depths.) Beyond shallow systems,
the second architecture had a better performance over all
sensor placements and was insensitive to the inner dis-
tances between the sensors compared to the first architec-
ture, which required smaller inner distances to give good
estimates of K. Therefore, the second architecture is more
flexible with sensor placement configurations.

The nebulous initial and boundary conditions lead to an
ill posed problem. That is, traditional methods would fail to
find the inverse solution of the RRE, as no unique solution
can be guaranteed. However, the proposed PINN archi-
tectures, and many other similar examples [20, 24, 25],

have demonstrated it is possible to find the inverse solution
of a differential equation using time-series data (or spatial
data). For this work, data is simulated assuming outputs
from an array of 3 moisture sensors.

However, the proposed methods are limited in important
ways. Some physical processes were not accounted for in
the formulation of the RRE and the architecture of the
networks. In particular, the effect of hysteresis [35] was not
accounted for, as we assumed the relationship between
K and 0, 6 and y to be unique. Also, the effect of coupled
heat and water transport, and the effect of solute transport
were ignored. Moreover, the performance of both archi-
tectures on non-homogeneous soil is unsatisfactory, there-
fore developing a model that accounts for multi-layered
soils is needed for applications where changes in K at
specific depths are important (e.g., evaluation of plant root
impacts).
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Nevertheless, the presented methods can be used as a
fundamental tool for assessment of the evolution in the
hydraulic conductivity of GI soil over time, while requiring
as input only the data from simple soil moisture sensors
that are easily installed at the time of GI construction or
even retrofitted. The insight provided by these estimates of
changing K can clarify processes of both clogging and
expansion (e.g., creation of flow paths by roots), both of
which are often invoked, but poorly documented in field
conditions. In particular, these networks can be trained on
data subsets from distinct periods of time. For example, we
can compare winter K estimates with summer K estimates
to evaluate the role of vegetation and other biota on water
flow in the GI. Alternatively, we can evaluate differences
in K estimates from one year to K estimates in subsequent
years and evaluate both the relative importance and inter-
actions between clogging and root mechanics. This method
requires a minimal investment in sensors, allowing a sim-
ple and inexpensive approach for continuous monitoring of
complicated GI functions.

Supplementary  Information The online version contains
supplementary material available at https://doi.org/10.1007/s00521-
023-09378-z.
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