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Abstract
Green infrastructure (GI) is an ecologically informed approach to stormwater management that is potentially sustainable

and effective. Infiltration-based GI systems, including rain gardens, permeable pavements, green roofs infiltrate surface

water and stormwater run-off to recharge ground water systems. However, these systems are susceptible to clogging and

deterioration of their function, and we have limited understanding of the evolution of their function due to the lack of long-

term monitoring. The ability of these systems to infiltrate water depends on the unsaturated hydraulic conductivity function

K of the soil. We introduce a novel approach based on physics informed neural networks (PINNs) to estimate K of a

homogeneous column of soil using data from volumetric water content sensors and by solving the Richards–Richardson

partial differential equation (RRE). We introduce and compare two different deep neural network architectures to solve

RRE and estimate K. To generate the ground truth, we simulate three types of soil water dynamics using HYDRUS-1D and

compare the results of these two neural network architectures in terms of the estimation of K. We investigate the effect of

inter-sensor placement on the estimation of K. Both architectures show satisfactory performance on homogeneous soil with

three volumetric water content sensors with different advantages. PINN-based estimation of K can be used fundamental

tool for assessment of the evolution of the performance of GI over time, while requiring as input only the data from simple

soil moisture sensors that are easily installed at the time of GI construction or even retrofitted.

Keywords Green infrastructure � HYDRUS-1D � Physics informed neural networks � Richards equation � Machine learning

1 Introduction

In the past two decades, green infrastructure (GI) has

developed into a sustainable and effective method for

maintaining and improving urban quality of life [1, 2]. GI

manages urban storm water by utilizing vegetation and

permeable materials to route water through slower hydro-

logic pathways often improving water quality and provid-

ing habitat. However, in urban systems, implementation of

GI is limited by available space and the need to re-establish

connections between surface and subsurface flowpaths.

Further, the tendency to focus monitoring in periods

immediately following installation limits our ability to

understand the evolution of system function and may

obscure issues that develop and worsen over time [3]. In

particular, infiltration-based GI systems, including rain

gardens, permeable pavements, green roofs, and bioswales,

are susceptible to clogging and consequent deterioration in

system function [4].

Infiltration-based GI routes surface water and storm

water run-off to recharge groundwater systems [5]. Their

infiltration rates vary with the hydraulic conductivity (K) of

the soil, and decreases in K will limit the recharge [6]. In

most cases, infiltration is measured as a falling head with
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pressure sensors or via time difference in soil moisture

dynamics between moisture sensor depths. However, nei-

ther approach resolves the hydraulic properties of the

porous media (see data description section) and therefore

our ability to evaluate GI infiltration mechanistically is

limited.

Laboratory methods used to identify the hydraulic

conductivity are unsatisfactory, as sampling introduces

artifacts in the measured hydraulic properties of the soil,

thus, giving us results that might not be representative of

field conditions [7]. That said, movement of water in

unsaturated porous media is complicated by hysteresis in

the relationship between soil moisture content and

hydraulic conductivity. Inference of K generally relies on

numerical solutions of the Richards–Richardson equation

(RRE) [8, 9]. Numerical approaches involve implicit time

discretization schemes and finite volume or finite element

discretization in space [10].These methods could become

computationally expensive, as they require repeated eval-

uation of the forward problem [11]. Also, the solution of

the RRE may deteriorate upon broader application, when

certain conditions are not met [12].

Typically the solution of the RRE and its inverse is

found using empirical parametric models, defining the

hydraulic conductivity as a function of matric potential, W,

or volumetric water content, h (soil moisture), as well as

defining the relationship between W and h [8]. The Mua-

lem-Van Genuchten [13] and the Brooks and Corey’s [14]

models are the most commonly used [15]. These models

depend on the knowledge of some soil properties such as

pore-size distribution and the saturated water content,

which need to be estimated.

Another challenge in the identification of the inverse

solution is that most methods require knowledge of initial

and boundary conditions [7, 16], which are needed to

evaluate the forward problem. However, they are difficult

to identify under field conditions. An approach to over-

come this problem is to model using Gaussian process (GP)

regression [17–19]. But this method comes with its own set

of drawbacks, mainly that it does not deal well with non-

linearities (in our case the nonlinear parameters of the

RRE), and local linearization might be required to cir-

cumvent this [20]. Rai et al. [17] proposed to deal with the

nonlinearity of the parameters by using the Van Genuchten

model and by trying to estimate its parameters as part of

the GP regression model; their approach is limited to using

a predefined model for the hydraulic parameters. More-

over, GP modeling is limited by the Gaussian prior

assumption.

In this paper, we propose a physics-informed neural

network (PINN) framework to estimate the hydraulic

conductivity. Usage of PINNs and their advantages and

limitations for different geoscientific applications such as

geothermic and hydrological applications have been stud-

ied in multiple works [20–24]. In this work, we contrast our

framework to estimate the hydraulic conductivity (archi-

tecture 1) with an existing framework proposed by Bandai

et al. [26] which is itself a PINN model as described by

Raissi et al. [20] (architecture 2). Both architectures use

multi-depth time series data of volumetric water content,

and both use the residuals of the RRE as a loss function to

represent the physical constraints describing soil–water

dynamics.

Neither of the above-mentioned architecture 1 nor

architecture 2 requires knowledge of initial or boundary

conditions, which are hardly available under field condi-

tions such as in GI; they don’t require any predefined shape

for the hydraulic conductivity function nor prior approxi-

mations for it; they only use data that are easily available

from a simple array of soil moisture sensors and they don’t

require matric potential measurements to find the inverse

solution.

Tools that utilize common monitoring data streams to

assess hydraulic conductivity and infer changes in K fill an

important gap in our ability to manage and enhance green

infrastructure systems. For example, fine sediment parti-

cles, contributed by erosion of surrounding soil, decrease

K, causing water backups and degrading GI system func-

tion. In addition, decay of biological components in green

infrastructure media (e.g., mulch) can also diminish K,

therefore changes in hydraulic conductivity can signal the

need for particular maintenance tasks [27].

As we are interested in the practical application of these

methods in managing GI and to allow the estimation of the

hydraulic conductivity function evolution as a GI perfor-

mance metric, we investigate the usage of a simple and

convenient moisture sensor array set-up that uses three

moisture sensors to estimate K by finding the inverse

solution of the RRE. Three sensors are the absolute mini-

mum for application of the methods documented here (in

order to estimate the second derivative of the volumetric

water content w.r.t. space to solve the RRE), these sensors

are: sensor 0 (S0) at depth z0, sensor 1 (S1) at depth z1 and

sensor 2 (S2) at depth z2, as shown in Fig. 1.

We model the effect of placing the sensors at different

depths and with different inter-sensor distances on the

estimation of the hydraulic conductivity. We consider

homogeneous and non-homogeneous soil architecture for

our simulations. Through simulations we also learn the

ground truth for the hydraulic conductivity to evaluate the

performance of the two architectures described above.
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2 Methods

2.1 The Richards–Richardson equation (RRE)

The law governing the unsaturated flow of water in porous

media is Darcy’s law [28]:

q ¼ �K hð Þrh ð1Þ
h ¼ w hð Þ þ Z ð2Þ

where q is the water flow velocity [length, time]-1, K is the

hydraulic conductivity [length, time]-1, and h is the

hydraulic head (total potential) [length], w is the matric

potential [length] and Z the elevation head [length] along

the vertical dimension z (positive upwards). Notice that we

don’t account for hysteresis, by assuming the relationship

between h and w, and between K and h(or K and w) to be

unique, as per the Mualem-Van Genuchten model [13].

The RRE is derived from Darcy’s law and the continuity

requirement (incompressible fluid, and not accounting for

water vapor) and is defined as:

oh
ot

¼ �r � q ð3Þ

oh
ot

¼ r � Krwð Þ þ oK

oz
ð4Þ

This form is called the mixed formulation, which

includes h and W as variables. This formulation is used in

the second PINN method (second architecture).

In this study, we only consider one-dimensional flow

along the z-dimension, so the equation becomes:

oh
ot

¼ oK

oz

oW
oz

þ K
o2W
oz2

þ oK

oz
ð5Þ

In order to get a formulation that only depends on h, we
define the moisture diffusivity D [length]2[time]-1 as:

D hð Þ ¼ K hð Þ dW
dh

ð6Þ

From (5) and (6) we get the moisture formulation, which

will be used in our proposed method (first architecture):

oh
ot

¼ r � Drhð Þ þ oK

oz
ð7Þ

Considering only the z-dimension we get:

oh
ot

¼ o

oz
D
oh
oz

� �
þ dK

dh
� oh
oz

ð8Þ

oh
ot

¼ D
o2h
oz2

þ oD

oh
oh
oz

oh
oz

þ dK

dh
� oh
oz

ð9Þ

oh
ot

¼ D
o2h
oz2

þ oD

oh
oh
oz

� �2

þ dK

dh
� oh
oz

ð10Þ

2.2 First deep learning architecture

The goal of our network is to estimate the nonlinear

coefficients on the right-hand side of Eq. (10): D̂ hð Þ, dD̂ hð Þ
dh

and
dK̂ hð Þ
dh

. Then, an estimate of the hydraulic conductivity

function K̂ is obtained by integrating the estimated
dK̂ hð Þ
dh

over all observed values of h. These estimated coefficients

are then multiplied by their respective terms, o2h
oz2
, oh

oz

� �2
and

oh
oz . Finally, they are summed to predict the value of the

derivative of the volumetric water content w.r.t. time oh
ot ,

i.e., the left-hand-side of the RRE as shown in Fig. 2a.

The estimation of these coefficients is achieved using a

set of volumetric water content data collected at three fixed

depths h t ið Þ; zq
� �i¼N

i¼1
, where N is the number of measure-

ment points in time and the depths zq 2 z0; z1; z2f g. The
network uses discrete time and finite difference approxi-

mations of the derivatives of h with respect to z, evaluated

at depth level z1 (i.e., the middle sensor S1). The desired

neural network f X;Wð Þ(Fig. 2) takes as input current and
past estimates of (1) the first derivatives w.r.t. z, (2) the

square of the first derivative w.r.t. z, (3) the second

derivative w.r.t. z (4) and the value of the volumetric water

content measured by the middle sensor S1 as shown in

Fig. 1. Then, the network outputs the estimates of

D t ið Þ; z1
� �

,
oD t ið Þ;z1½ �

ot and
oD t ið Þ;z1½ �

ot . W represents the net-

work’s parameters (weights and biases) and X represents

its input.

Fig. 1 Modeled GI soil profile with an array of 3 volumetric water

content sensors placed at depths z0, z1 and z2. d01 and d12 are the inner
distances between sensors S0 and S1 and S1 and S2 respectively
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The first and second derivative of the volumetric water

content w.r.t to space are evaluated at sensor S1 (at depth

z1) using first-order finite difference approximation. We

use the forward and backward difference of the first

derivative w.r.t space as inputs. We use p past estimates as

well:

oh t i�jð Þ; z1
� �
oz f

;
oh t i�jð Þ; z1
� �
oz b

; j ¼ 0; 1; . . .; p ð11Þ

The forward difference is defined as:

oh t ið Þ; z1
� �
oz f

¼
h t ið Þ; z2
� �

� h t ið Þ; z1
� �

d12
ð12Þ

while the backward difference is defined as:

oh t ið Þ; z1
� �
oz b

¼
h t ið Þ; z1
� �

� h t ið Þ; z0
� �

d01
ð13Þ

d12 and d01 are inner distances between the sensors as

defined in Fig. 1.

We also add the squared values of the forward and

backward derivatives as input as mentioned above.

Fig. 2 a First network architecture. Figure b is the detailed architecture of the network f(X; W)
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oh t i�jð Þ; z1
� �
oz f

 !2

;
oh t i�jð Þ; z1
� �
oz f

 !2

; j ¼ 0; 1; . . .; p

ð14Þ

The second derivative estimate at sensor S1 is defined as:

o2h t ið Þ; z1
� �
oz2

ffi

oh t ið Þ; z1
� �
oz f

�
oh t ið Þ; z1
� �
oz b

d12 þ d01ð Þ
2

ð15Þ

We use current and p past estimates of the second

derivative as part of the input.

o2h t i�jð Þ; z1
� �
oz2

; j ¼ 0; 1; . . .; p ð16Þ

We also add current moisture value sensor S1 to the

input:

h t ið Þ; z1
� �

ð17Þ

The network then outputs (1) D̂ t ið Þ; z1
� �

which gets

multiplied by
o2h t ið Þ;z1½ �

oz2
, (2)

dD̂ t ið Þ;z1½ �
dh which gets multiplied

by the central difference approximation of the first

derivative w.r.t space defined as:

oh t ið Þ; z1
� �
oz c

ffi af
oh t ið Þ; z1
� �
oz f

þ ab
oh t ið Þ; z1
� �
oz b

ð18Þ

af ¼
d12

d12þd01
; ab ¼

d01
d12þd01

ð19Þ

The network is summarized as follows and is shown in

Fig. 2:

D̂ t ið Þ; z1
� �

;
dD̂ t ið Þ; z1
� �
dh

;
dK̂ t ið Þ; z1
� �
dh

" #
¼ f X;Wð Þ ð20Þ

X ¼

oh t i�jð Þ; z1
� �
oz f

;
oh t i�jð Þ; z1
� �
oz b

oh t i�jð Þ; z1
� �
oz f

 !2

;
oh t i�jð Þ; z1
� �
oz f

 !2

o2h t i�jð Þ; z1
� �
oz2

h t ið Þ; z1
� �

2
666666666666664

3
777777777777775

j ¼ 0; 1; . . .; p

ð21Þ

oĥ t ið Þ; z1
� �
ot

¼ D̂ t ið Þ; z1

h i o2h t ið Þ; z1
� �
oz2

þ
dD̂ t ið Þ; z1
� �
dh

oh t ið Þ; z1
� �
oz c

 !2

þ
dK̂ t ið Þ; z1
� �
dh

:
oh t ið Þ; z1
� �
oz c

ð22Þ

The network parameters W are found by minimizing the

loss function L that we define as the mean squared error

(MSE) of the residuals r of the RRE:

L Wð Þ ¼ 1

NB

XNB

n¼1

r t ið Þ; z1

h i��� ���2 ð23Þ

r t ið Þ; z1
� �

¼
oĥ t ið Þ; z1
� �
ot

�
oh t ið Þ; z1
� �
ot

ð24Þ

where NB represents the size of a training batch. The

ground truth first derivative w.r.t. time is estimated using

the following first order finite difference approximation:

oh t ið Þ; z1
� �
ot

ffi
h t ið Þ; z1
� �

� h t i�1ð Þ; z1
� �

Dt
ð25Þ

where Dt is the sampling period of the volumetric water

content h (see data description section). Here, we have set

the number of past values p used in the input to 2, thus the

number of features of the input X is 16. The network f is

made of 4 layers (Fig. 2b). The first 3 layers are residual

layers. Each residual layer is made of a batch normalization

(batch norm) layer, a ReLU activation function, a fully

connected layer (with biases), then another set of batch

Norm, ReLU and fully connected layers. The output of the

layer gets summed with its input hence the name residual

layer [29]. However, for the first skip connection, we use a

fully connected layer of size 16 9 32 in order to upscale

the input features so that they have the same number of

features as the output of the layer. For the other two

residual layers, the input is directly summed to the output.

The last layer (4th layer) is made of a fully connected

layer. A ReLU activation function is used only for the

output that represents the estimate of the diffusivity D̂. This

was done to constrain its value to be positive. For the

outputs
dK̂ t ið Þ;z1½ �

dh
and

dD̂ t ið Þ;z1½ �
dh

, no activation functions were

used.

Each estimate of
dK̂ t ið Þ;z1½ �

dh
is associated with a specific

input value of volumetric water content to h[t(i), z1], which

means that there will be multiple estimates of dK̂
dh

for each

unique h value. So, for each unique value of h, we compute

the following value:

dK̂ hð Þ
dh

¼ median
dK̂ t ið Þ; z1
� �
dh

 !
ð26Þ

Which we then integrate using the trapezoidal rule to get

an estimate of the hydraulic conductivity function K̂ hð Þ.
The network was created on PyTorch (v 1.12.1, CUDA

11.6) using Python (v 3.8.2). We trained the network using

ADAM optimizer with weight decay [30]. With a learning

rate of 0.002, b1 equal to 0.9, and b2 equal to 0.999. The
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number of epochs was 500 and the batch size N was set to

80.

2.3 Second deep learning architecture

The framework used for the second approach is the one

proposed by Bandai et al. [26, 31] and it is based on PINNs

as in the work of Raissi et al. [20]. PINNs are used to find

the inverse of the RRE using the same set of volumetric

water content data mentioned in the previous section

h t ið Þ; z ið Þ� �i¼N

i¼1
. The PINNs used here are made of three

networks as shown in Fig. 3.

The first network predicts the value of the matric

potential W:

ŵ ið Þ ¼ fw t ið Þ; z ið Þ;Ww
	 


ð27Þ

where WW represents the network parameters. The network

fw is made of 8 fully connected layers and uses the

hyperbolic tangent function, tanh, as activation function

after each layer. However, the last layer of this network

uses the negative exponential function, � exp xð Þ, as acti-

vation function, to force all the predicted values of matric

potential to be negative. The fully connected layers are

made of 40 neurons. The predicted value of moisture

potential ŵ ið Þ is converted to logarithmic scale:

ŵ ið Þ
log ¼ � loge �ŵ ið Þ

� �
ð28Þ

w ið Þ
log is then fed to two networks, which predict h and K

(Fig. 3a, b):

ĥ ið Þ ¼ fh ŵ ið Þ
log;Wh

� �
ð29Þ

K̂ ið Þ ¼ fK ŵ ið Þ
log;WK

� �
ð30Þ

Note that this architecture assumes the relationship

between h and w, and between K and w to be unique as we

use the Mualem-Van Genuchten model (see data descrip-

tion section). Network fh is made of 3 fully connected

layers and network fK is made of 1 fully connected layer.

Both networks’ fully connected layers are made of 40

neurons, and the hyperbolic tangent (tanh) was used as

activation function.

The parameters of the networks represented by the set

W ¼ WW;Wh;WKf g, are found by minimizing the follow-

ing loss function:

L Wð Þ ¼
PN
i¼1

ĥ t ið Þ; z ið Þ� �
� h t ið Þ; z ið Þ� �� �2

þ
PN
i¼1

r t ið Þ; z ið Þ� �	 
2
ð31Þ

r t ið Þ; z ið Þ� �
¼ oĥ

ot
� oK̂

oz

oŵ
oz

� K̂
o2ŵ
oz2

� oK̂

oz

�����
t ið Þ;z ið Þ½ �

ð32Þ

where N is the total number of measurements points. The

first term of the loss function represents the error of the

estimated volumetric water content and r is the residual of

the RRE. In order to compute the residual, the derivatives

Fig. 3 The second network architecture physics informed neural

networks (PINNs) as described in [6]. a is the network fw that outputs

the estimated matric potential ŵ. b is the network fk that outputs the

estimated hydraulic conductivity K̂. c is the network fh that outputs

the estimated volumetric water content ĥ. The number of layers of

layers and neurons in this figure is not the actual one but only

representative
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oĥ
ot ;

oK̂
oz ;

oŵ
oz ;

o2ŵ
oz2

are evaluated using automatic differentiation

[32]. The residuals as well as the error of the volumetric

water content are evaluated at all measurement points.

Tanh is used as activation function (as well as - exp(x))

because it is twice differentiable, which is necessary

because we need to compute the second derivative o2ŵ
oz2

.

The described network architecture is the same as the

one used by the best performing model in [26]. An

important caveat is that the best model was found on

PINNs that used volumetric water content data from 10

measurement depths, while we use three measurement

depths in this study. The weights Ww of the network fw
(Fig. 3a) are initialized using Xavier uniform initializa-

tion[33]. For the networks fK(Fig. 3b) and fh (Fig. 3c), the

weights were initialized by a squared Xavier uniform ini-

tialization. This forces the networks to start the training

from a space where they are increasing monotonic func-

tions of ŵ. Bandai et al. [26] describe the preference to

make the networks increasing monotonic functions of ŵ by

the fact that it aligns with the physical nature of soil–water

dynamics. The networks were trained using the Adam

optimizer followed by the L-BFGS-B optimizer. The Adam

optimizer used a learning rate equal to 0.001, b1 equal to

0.9, and b2 equal to 0.999. The number of epochs was

5000, and the batch size was equal to the size of all the

measurements points (number of batches = 1). The

L-BFGS-B optimizer parameters were set to the following:

maxcor = 50, maxls = 50, maxiter = 50, 000, max-

fun = 50, 000, ftol = 2.220446049250313 9 10-16. The

PINNs were created using TensorFlow v 1.14 as in the

original work.

2.4 Data description

The volumetric moisture content measurement data was

generated using HYDRUS-1D software [34]. A column of

homogeneous soil of 100 cm was simulated and uniformly

discretized at 0.1 cm intervals. Three types of soils were

simulated: sandy loam, loam and silt loam. The Mualem-

Van Genuchten model was used to parametrize the

hydraulic conductivity function K wð Þ and the soil–water

retention curve h wð Þ [13]:

h wð Þ ¼ hr þ
hs � hr

1þ ð�awÞnð Þm ð33Þ

K h wð Þð Þ ¼ KsS
l
e 1� 1� S

1
m
e

� �m� �2
ð34Þ

Se ¼
h� hr
hs � hr

ð35Þ

m ¼ 1� 1

n
ð36Þ

The fitting parameters of these functions for the three

types of simulated soils are shown in Table 1.

Notice that h and K are increasing monotonic functions

of w.The initial matric potential was set to - 1000 cm for

all depths. And, the Neumann boundary condition was used

as the bottom boundary condition:

ow
oz

¼ 0 ð37Þ

The upper boundary condition was set to atmospheric

condition. To generate the time series data, three days of

upper boundary water density flux were simulated

(Table 2). The volumetric water content was sampled

every 0.012 day). The scenarios are generated to provide

the same number of training points for the estimation of the

derivative of the volumetric water content w.r.t. z (finite

difference estimation of the first and second derivative of

the middle sensor S1) for the first architecture. The second

architecture uses only the data from scenario 1.

We used simulated measurement data at depths z = - 1,

- 3, - 5, - 7, - 9, - 11, - 13, - 15, - 17, - 19 cm (z

positive upward) to evaluate the effect of sensor placement

configuration, both depths and inter-sensor distances. Thus,

we will show the results for
10

3

� �
¼ 120 configurations in

this study as we are simulating using an array of 3 moisture

sensors data. To compare between the estimated hydraulic

conductivity functions, we calculate the following relative

error:

�k ¼
PNh

i¼1

K̂ h ið Þ
� �

� K h ið Þ
� ���� ���2

K h ið Þ
� ���� ���2

ð38Þ

where Nh is the number of point volumetric water content

values for which K̂ was estimated. This error is estimated

at 500 evenly spaced values of h for both architectures,

where the beginning and the end of the interval correspond

to the minimum and maximum value of h the data from

scenario 1 for each simulated soil. The hydraulic conduc-

tivity values were linearly interpolated for h values that

weren’t part of the training data.

3 Results

3.1 Homogeneous soil columns

To compare the overall performances of the estimation of

the hydraulic conductivity function between both deep

learning architectures, we show the median of the esti-

mated K̂ hð Þ for the 120 configurations of sensor placement

for three different types of soils as described in Sect. 2.4
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(data description) (Fig. 4). We also show an envelope that

spans from the 1st to 3rd quartiles of the estimated

hydraulic conductivity values, allowing comparison of the

variance in the estimations between both methods.

The errors of the median curves eK (Eq. 38) for both

architecture for all soils are shown in Table 3. We can see

that the errors of the median curves are smaller for archi-

tecture 2 for all three types of soils compared to architec-

ture 1. Moreover, the 1st to 3rd quartile envelopes of

architecture 2 are smaller than those of architecture 1.

Thus, we can conclude that architecture 2 has better per-

formance over all sensor placements trials. We note also

that the estimation errors for both architectures are smaller

with bigger hydraulic conductivity functions

(Ksandy loam[Kloam[Ksilt loam).

However, when comparing the results of the best con-

figurations for each architecture, in Fig. 5 and Table 4, for

soil of type sandy loam, we notice that the error is smaller

for the first architecture compared to the second architec-

ture, but the latter has smaller errors for the other two soils.

We note also that the average depths of the sensor con-

figurations for architecture 1 are smaller than those of

architecture 2.

In order to document the effect of the inter-sensor dis-

tances on the network performance, we first compare the

results of both architectures using the average inter-sensor

distance, regardless of their depths. In Fig. 6, the x-axis is

the average inter-sensor distance x ¼ d01þd12
2

(d01, and d12
are defined in Fig. 1) and the y axis represents the

corresponding average error of the hydraulic conductivity

function calculated for all configurations.

We can see that the second architecture (Fig. 6b, d, f) is

agnostic to the effect of having different inner distances.

However, the first architecture’s performance (Fig. 6a, c, e)

worsens as the inner distances get bigger. Which aligns

with the fact that we use finite difference approximations

for this architecture. The results are consistent across all

soil types. We also notice that the errors of the first

architecture are one order of magnitude larger than those of

the second architecture, specifically when the inter-sensor

distances are large. Similar conclusions can be drawn by

only considering the errors with respect to equal inner

distances between the sensors, i.e., X axis = d01 = d12
(results are shown in supplemental Fig. 1).

To analyze the effect of sensor depths on the perfor-

mance, in Fig. 7, we show the average relative error of the

hydraulic conductivity function eK depending on the

average depth of the sensor placement configuration, which

means that the x-axis is x ¼ z0þz1þz2
3

. The error of the sec-

ond architecture gets smaller as the depth of the average

depth of the sensor array gets higher (Fig. 7b, d, f). Which

shows that the second architecture achieves better perfor-

mance at deeper depths.

The converse is true for the first architecture (Fig. 7a, c,

e), the error is lower at shallower depths, which means that

the first architecture achieves better results for shallow

sensor placements, that have sharper wet fronts. Notice that

the best sensor configurations for the first architecture in

Fig. 5 are shallower than those of the second architecture,

which aligns with the last conclusion. However, for the first

architecture, we can see that the errors pass through a

maximum at 10–11 cm, and then get lower again for

deeper depths, although not as low as for the shallower

depths 3–6 cm. Similar conclusions can be drawn by only

considering the errors with respects to the middle sensor

depth z1 i.e., X axis = d1 (results are shown in supplemental

Fig. 2).

3.2 Non-homogeneous soil column

Although the proposed networks are intended to estimate

the hydraulic conductivity for homogeneous soil, we tested

their performance on a simulated non-homogeneous verti-

cal soil column. This is done because we expect the soil of

GI to be non-homogeneous in practice. The column is of

Table 1 Fitting parameters for

the Mualem-Van Genuchten

model for all simulated soils

hr cm3 cm�3½ � hs cm3 cm�3½ � a cm�1½ � n Ks cm day�1
� �

l

Sandy loam 0.065 0.41 0.075 1.89 106.1 0.5

Loam 0.078 0.43 0.036 1.56 24.96 0.5

Silt loam 0.067 0.45 0.02 1.41 10.8 0.5

Table 2 The 3 scenarios of surface water flux density q [cm day-1]

(positive upward) generated using HYDRUS-1D

Time [day] Scenario 1 Scenario 2 Scenario 3

q [cm/day-1] q [cm/day-1] q [cm/day-1]

0.25 - 10 - 10 - 15

0.5 0 0 0

1 0.3 0.3 0.4

1.5 0 5 - 1

2 0.3 0.3 0.5

2.25 - 10 - 5 X

2.5 0 - 5 - 5

3 0.3 0.3 0.3

X no event
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length 21 cm, made of three types of soil: sandy loam,

loam and silt loam, placed in order from top to bottom,

each of length 7 cm. We used the same 120 sensor place-

ment configurations, and we show the median and the 1st to

3rd quartile envelope plots in Fig. 8. We compare the

estimated hydraulic conductivity with the equivalent ver-

tical hydraulic conductivity Kz of the three-layered soil,

which is

Fig. 4 First versus second architecture median hydraulic conductivity curve of the 120 sensor placements and 1st to 3rd quartile envelope.

Figures a, c and e are the results of the first architecture. Figures b, d and f are the results of the second architecture

Table 3 Errors of the median curves eK for architectures 1 and 2 for

the three simulated soils

Soil type eK Architecture 1 eK Architecture 2

Sandy loam 1.16 0.79

Loam 13.44 2.25

Silt loam 20.88 6.63
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Fig. 5 First versus second architecture best sensor placement results. Figures a, c and e are the results of the first architecture. Figures b, d and

f are the results of the second architecture

Table 4 Errors eK and sensor

placements of the best estimated

hydraulic conductivity curves

for architectures 1 and 2 for the

three simulated soils

Soil type eK architecture 1 eK architecture 2

Sandy loam 0.00295 (- 3, - 5, - 9 cm) 0.01621 (- 7, - 13, - 19 cm)

Loam 0.04049 (- 1, - 3, - 15 cm) 0.00504 (- 9, - 11, - 19 cm)

Silt loam 0.15204 (- 1, - 3, - 15 cm) 0.12764 (- 13, - 15, - 17 cm)
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Kz ¼
dPn
i¼1

di
Ki

ð39Þ

where n is the number of layers of the soil, here 3, d is the

length of the column, which is 21 cm, di is the depth of

each layer, here 7 cm, and Ki is the layer’s hydraulic

conductivity function.

The errors of the median curves relative to the equiva-

lent hydraulic conductivity Kz for architecture 1 and 2 are

0.984 and 0.591. Although smaller than those of the

homogeneous soils, the median predicted K values are

close to zero. Also, the variance of the estimation is high

(specially for architecture 2).

Fig. 6 Effect of average inter-sensor distance on the performance of

the first vs second architecture best sensor placement results.

X axis = (d01 ? d12)/2. Figures a, c and e are the results of the first

architecture. Figures b, d and f are the results of the second

architecture. Y axis represents the mean relative error
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The best estimated hydraulic conductivity results are

shown in Fig. 9. The errors of architectures 1 and 2 are

0.413 and 0.178, and the corresponding sensor placements

are (- 1, - 5, - 7 cm) and (- 9, - 11, - 15 cm),

respectively. These errors are bigger than all the errors of

homogeneous soil configurations.

3.3 Discussion and conclusions

In this work, we present two deep learning approaches to

estimate the hydraulic conductivity function K using vol-

umetric water content data from 3 moisture sensors. The

first architecture shows the best estimate of K. Also, the

first architecture has lower estimation error compared to

the second architecture for sensor placements at shallower

Fig. 7 Effect of the average depth of the sensors on the performance of the first vs second architecture. X axis = (z0 ? z1 ? z2)/3. Figures a,
c and e are the results of the first architecture. Figures b, d and f are the results of the second architecture. Y axis represents the mean relative error
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depths. These two measures suggest the first architecture

may be more applicable in shallow GI applications with

sharp moisture gradients, such as green roofs which are

shallow and are exposed directly to rain. (These formula-

tions do not allow assessment of impacts of evapotranspi-

ration at these shallow depths.) Beyond shallow systems,

the second architecture had a better performance over all

sensor placements and was insensitive to the inner dis-

tances between the sensors compared to the first architec-

ture, which required smaller inner distances to give good

estimates of K. Therefore, the second architecture is more

flexible with sensor placement configurations.

The nebulous initial and boundary conditions lead to an

ill posed problem. That is, traditional methods would fail to

find the inverse solution of the RRE, as no unique solution

can be guaranteed. However, the proposed PINN archi-

tectures, and many other similar examples [20, 24, 25],

have demonstrated it is possible to find the inverse solution

of a differential equation using time-series data (or spatial

data). For this work, data is simulated assuming outputs

from an array of 3 moisture sensors.

However, the proposed methods are limited in important

ways. Some physical processes were not accounted for in

the formulation of the RRE and the architecture of the

networks. In particular, the effect of hysteresis [35] was not

accounted for, as we assumed the relationship between

K and h, h and w to be unique. Also, the effect of coupled

heat and water transport, and the effect of solute transport

were ignored. Moreover, the performance of both archi-

tectures on non-homogeneous soil is unsatisfactory, there-

fore developing a model that accounts for multi-layered

soils is needed for applications where changes in K at

specific depths are important (e.g., evaluation of plant root

impacts).

Fig. 8 First versus second architecture median hydraulic conductivity curve of the 120 sensor placements and 1st to 3rd quartile envelope. The

ground truth is the equivalent vertical hydraulic conductivity Kz of the non-homogeneous soil column

Fig. 9 First versus second architecture best sensor placement results. a Results of the first architecture b results of the second architecture. The

ground truth is the equivalent vertical hydraulic conductivity Kz of the non-homogeneous soil column
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Nevertheless, the presented methods can be used as a

fundamental tool for assessment of the evolution in the

hydraulic conductivity of GI soil over time, while requiring

as input only the data from simple soil moisture sensors

that are easily installed at the time of GI construction or

even retrofitted. The insight provided by these estimates of

changing K can clarify processes of both clogging and

expansion (e.g., creation of flow paths by roots), both of

which are often invoked, but poorly documented in field

conditions. In particular, these networks can be trained on

data subsets from distinct periods of time. For example, we

can compare winter K estimates with summer K estimates

to evaluate the role of vegetation and other biota on water

flow in the GI. Alternatively, we can evaluate differences

in K estimates from one year to K estimates in subsequent

years and evaluate both the relative importance and inter-

actions between clogging and root mechanics. This method

requires a minimal investment in sensors, allowing a sim-

ple and inexpensive approach for continuous monitoring of

complicated GI functions.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

023-09378-z.
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