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Investigating Personalization Techniques for Improved
Cybersickness Prediction in Virtual Reality Environments

Umama Tasnim?*, Rifatul Islam*, Kevin Desai, and John Quarles
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Figure 1: Overview of the Proposed Approach: (a) Simulation 21 data acquisition which includes eye-tracking, heart rate, and EDA
data; (b) Preprocessing of the data; (c) Cybersickness Prediction Models(d) Outline of the personalized approach; (e)
Leave-One-Out Cross-Validation (LOOCV) method; (f) Summary of DeepTCN model results demonstrating the significant
enhancements achieved by our proposed models over non-personalized models.

Abstract—In recent cybersickness research, there has been a growing interest in predicting cybersickness using real-time physiolog-
ical data such as heart rate, galvanic skin response, eye tracking, postural sway, and electroencephalogram. However, the impact of
individual factors such as age and gender, which are pivotal in determining cybersickness susceptibility, remains unknown in predic-
tive models. Our research seeks to address this gap, underscoring the necessity for a more personalized approach to cybersickness
prediction to ensure a better, more inclusive virtual reality experience. We hypothesize that a personalized cybersickness predic-
tion model would outperform non-personalized models in predicting cybersickness. Evaluating this, we explored four personalization
techniques: 1) data grouping, 2) transfer learning, 3) early shaping, and 4) sample weighing using an open-source cybersickness
dataset. Our empirical results indicate that personalized models significantly improve prediction accuracy. For instance, with early
shaping, the Deep Temporal Convolutional Neural Network (DeepTCN) model achieved a 69.7% reduction in RMSE compared to its
non-personalized version. Our study provides evidence of personalization techniques’ benefits in improving cybersickness prediction.
These findings have implications for developing personalized cybersickness prediction models tailored to individual differences, which
can be used to develop personalized cybersickness reduction techniques in the future.

Index Terms—Cybersickness, Cybersickness Personalization, Cybersickness Prediction, Transfer Learning, Early Shaping, Deep
Learning, Machine Learning
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INTRODUCTION

Despite the vast potential of virtual reality(VR) in gaming, education,
healthcare, and entertainment, the comfortable use of VR is often im-
peded by cybersickness—a discomfort akin to motion sickness expe-
rienced by some users when engaging with VR. These discomforts
may include but are not limited to dizziness, headaches, sweating,
and nausea [22]. Moreover, individual factors, including age, gender,
and prior VR experience, often influence the severity of these symp-
toms [4] referred to as individual susceptibility to cybersickness [48].
For instance, previous results have suggested that younger individuals
are generally less susceptible than older ones, women more suscep-
tible than men, and novice users in VR are likely more prone to cy-
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bersickness [37]. Despite the inconsistency in frequency and severity
of cybersickness observed across prior research, attributed to individ-
ual differences [61], integrating these differences into the automatic
prediction and mitigation of cybersickness remains a largely under-
explored research area.

A range of subjective questionnaires has been proposed by re-
searchers as potential instruments for the assessment and prediction of
cybersickness [9, 14,22]. For example, the Simulator Sickness Ques-
tionnaire (SSQ) [22] and the Virtual Reality Motion Sickness Ques-
tionnaire (VRSQ) [26] aim to evaluate cybersickness severity follow-
ing VR immersion. However, these post-immersion questionnaires are
unable to provide a granular understanding of cybersickness during
immersion and fail to integrate individual differences. In contrast, the
cybersickness Susceptibility Questionnaire (CSSQ) [9] and the Mo-
tion Sickness Susceptibility Questionnaire (MSSQ) [14] are designed
to determine an individual’s susceptibility to cybersickness before VR
immersion. Despite this, their current iterations have not been thor-
oughly validated for predictive performance in estimating cybersick-
ness and do not adequately account for the integration of individual
differences [29,42]. If users with high cybersickness susceptibility can
be accurately identified, VR experiences could be tailored with slower
movements, reduced visual effects, and shorter durations to minimize
discomfort. Personalized cybersickness predictions could help users

radually build uP their VR tolerance, allowing them to enjoy more
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complex and immersive experiences without discomfort over time.

Recently, deep learning approaches have emerged as promising
methods for predicting cybersickness. Various deep learning tech-
niques, such as those utilized by Islam et al. [16, 17], have achieved
high predictive accuracy through the use of eye-tracking and head-
tracking data. Additionally, hybrid multimodal deep fusion neural net-
works, including Long Short-Term Memory networks, N-BEATS, and
Deep Temporal Convolutional Networks (DeepTCN) have been em-
ployed to anticipate cybersickness onset up to 60 seconds in advance.
Other researchers have unveiled significant associations between cy-
bersickness intensity and physiological parameters, such as brain ac-
tivity and individual factors like age and sensitivity [19,34,45]. How-
ever, the impact of individual differences on cybersickness prediction
remains understudied [62].

To address these inconsistencies, this study focuses on personaliz-
ing cybersickness prediction methods, considering deep-learning ap-
proaches like data grouping based on age and gender, early-shaping,
and transfer learning [54](Figure ). The results indicate that age and
gender significantly impact cybersickness prediction, especially con-
cerning eye-tracking data. Furthermore, the personalization methods
providing the best outcomes were transfer learning and early-shaping,
emphasizing the potential of personalized models to enhance the per-
formance of cybersickness prediction [57,61].

Our vision is that each user should have a model that is personalized
to their data. Based on our current approach, this would require users
to interact with VR for a few minutes. Data collected from this short
interaction could be used to fine-tune an existing aggregate model with
their specific data, either through early shaping, or transfer learning.
Gender-specific models would already be pre-trained and only require
that the user select their gender, which would select the appropriate
model.

Overall, this study offers critical insights into the significance of
personalization in cybersickness prediction, emphasizing that the ap-
plication of personalization techniques can considerably enhance the
performance of these prediction models. The findings presented herein
underscore the potential benefits of incorporating personalized models
in the prediction and mitigation of cybersickness, thereby contributing
to improved user experiences in virtual environments. Future inves-
tigations in this domain should continue exploring and refining cy-
bersickness reduction strategies, delving further into developing more
sophisticated personalized models.

2 BACKGROUND

In the subsequent section, we briefly discuss several key aspects perti-
nent to our work: 1) cybersickness , 2) cybersickness measurement, 3)
the current state of the art in cybersickness prediction, 4) the influence
of individual factors in cybersickness, and 5) personalization of deep
learning. These components are intended to provide a holistic compre-
hension of the existing challenges and underpin the motivation for our
research endeavor, underscoring the need for advancing personalized
cybersickness prediction methods.

2.1 Cybersickness

Cybersickness is a collection of motion sickness-like symptoms that
can happen both during and after the VR experience, including cold
sweats, nausea, dizziness, and disorientation [23]. Vestibular (balance
and spatial orientation senses) and visual information processing are
the two main senses affected by cybersickness [11]. Popular explana-
tions for cybersickness include the postural instability theory and the
sensory conflict theory [7,32,58]. The most widely accepted of these
theories is the sensory conflict theory, which contends that people who
experience cybersickness do so because they mistakenly perceive that
they are moving when, in fact, they are still. Postural instability oc-
curs when a person’s perception and familiar surroundings are incon-
sistent [24].

2.2 Cybersickness Measurement

Most previous work has assessed cybersickness through self-reported
questionnaires. The simulator sickness questionnaire (SSQ) is the

most widely used tool for assessing the signs of cybersickness [22].
The SSQ consists of 16 questions broken down into three categories
(nausea, oculomotor, and disorientation) to assess the severity of each
potential cybersickness symptom. In addition, Hyun et al. introduced
the Virtual Reality Sickness Questionnaire (VRSQ) [26] which re-
duced the previous SSQ items from 16 to 9. This also resulted in
limiting the assessment to two factors: oculomotor and disorientation.
Even though the VRSQ was created specifically for VR, the SSQ is
still widely used as the validity of the VRSQ has not yet been uni-
versally accepted.The Fast Motion Sickness Scale (FMS) was estab-
lished by Keshavarz et al. in response to the limitations of subjec-
tive measurements following VR immersion [25]. High correlations
were found between the SSQ and the FMS scoring system, which asks
for short self-assessments on a 0-to-20 scale. However, to gather the
subjective measurements of cybersickness during VR immersion, the
dataset we used included an FMS scale from 0-10.

While subjective measures of cybersickness are useful, researchers
have also conducted objective measures to better understand and quan-
tify the severity of cybersickness [12,28,59]. Objective measures in-
clude physiological measures such as heart rate (HR), heart-rate vari-
ability (HRV), electrodermal activity (EDA), stomach tachyarrhyth-
mia, eye-blink rate, and electroencephalography (EEG) [13, 44, 51].
These measures can be used to assess when and how cybersickness
is affecting an individual and help compare the severity of cybersick-
ness across different individuals and virtual environments. Recent re-
search has focused on the correlation between other objective mea-
sures and cybersickness, including gaze, pupillometry, and postural
stability [1,5, 15,43]. Nam et al. [43] investigated cybersickness by
using physiological measures such as the center gaze ratio and scan-
path length. According to Reddy et al. the change in pupil diame-
ter is a physiological measure of cybersickness [49]. Litleskare et al.
described in their study how postural stability can be used to assess
cybersickness among a group of people in terms of both predictors
and objective measures [35]. Kourtesis et al. introduce The CSQ-VR,
which makes it possible to evaluate cybersickness while engaging in
VR, based on pupil size, a biomarker of cybersickness [30]. Com-
pared to SSQ and VRSQ, CSQ-VR showed noticeably improved in-
ternal consistency.

2.3 Cybersickness Prediction

There has been much research on predicting cybersickness more pre-
cisely. Monteiro et al. investigated that compression rate can be used
as a potential marker or indicator for cybersickness [41]. The com-
pression rate refers to the amount of data being transmitted from the
VR system to the user, which can be affected by various factors such as
the complexity of the virtual environment, the frame rate of the system,
and the latency of the tracking sensors. They focused on how users’
cybersickness levels were recorded while playing two VR games and
found correlations between cybersickness and variations in the com-
pression rate of movement data. Martin et al. used machine learning
models to predict cybersickness using physiological signals (heart rate
and electrodermal activity) that were recorded during VR game ses-
sions with an accuracy of up to 91 percent and explained variance
up to 75 percent (in a regression approach) [38]. Kundu et al. [31]
used three XML (Logistic Regression, Decision Tree, and Explainable
Boosting Machine (LR)) models to predict cybersickness using pub-
licly available physiological and gaming datasets. Islam et al. [17]
proposed multimodal deep fusion neural networks in order to forecast
cybersickness 30-90 seconds in advance. Although there has been in-
creasing research on automatic cybersickness prediction, very few re-
searchers have focused on improving cybersickness prediction through
personalization. Kim et al. described that it is feasible to automatically
anticipate the cybersickness level that represents brain activity [27].
They captured brain activity using 8 channels of EEG data as more
than 200 individuals viewed 44 different VR contents. After extensive
preparation, they demonstrate that, without EEG data, the proposed
approach reliably assesses cognitive states.
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2.4

Cybersickness has become one of the major research questions in vir-
tual reality environments. More precisely, some research shows that
cybersickness varies from person to person according to race, age,
gender, etc [10,39,40,47]. A recent study by Pohlmann et al. high-
lights the importance of gender for cybersickness studies. Martingalo
et al. [39] investigate if the susceptibility to cybersickness varies
among racial groupings. Six independent, racially varied samples (n =
931) were used to gather self-reported cybersickness ratings. Three out
of six studies revealed significant racial disparities in cybersickness. In
comparison to white individuals, black participants experienced cyber-
sickness on average a third of a standard deviation lower (d = -0.31,
p i-001). Melo et al. [40] study focused on examining the role type
and gender in a VE and their effects on the perception of presence
and cybersickness. They conclude no disparities between the genders
were discovered using immersive virtual reality (VR) setups. Luong et
al. [36] investigated the relationship between cybersickness and demo-
graphic, user experience, and behavioral parameters; they conducted a
large lab-in-the-field study with (n = 837). The experiment concludes
that, compared to male participants, female participants experienced
significantly higher degrees of cybersickness, and no significant effect
was found on age. This leads us to investigate more about the person-
alization of cybersickness [10].

Individual differences in cybersickness susceptibility

2.5 Deep Learning Models for Cybersickness Predictions

In the context of our study, we briefly discuss the deep learning models
that we have used for cybersickness prediction and personalization.
The Deep Temporal Convolutional Network (DeepTCN): The
DeepTCN model has emerged as a robust model for predicting cy-
bersickness [17]. This model is characterized by its deep learning ar-
chitecture, which leverages temporal convolutions to effectively cap-
ture time-dependent features in data [6, 33]. The model’s strength
lies in its ability to handle long sequences of data, making it partic-
ularly suitable for analyzing time-series data associated with cyber-
sickness symptoms. Unlike traditional convolutional neural networks,
DeepTCN employs dilated convolutions, enabling the model to cover a
broader range of input data without losing resolution or clarity. Its lay-
ered structure, consisting of convolutional layers followed by pooling
layers, allows for the extraction of complex patterns and dependencies
in the data. In the context of cybersickness prediction, DeepTCN’s
architecture facilitates the analysis of physiological signals over time,
offering nuanced insights into how symptoms develop and change in
response to various stimuli [17].

Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM): The CNN-LSTM model, a hybrid architecture that
combines Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks, offers a unique approach to cyber-
sickness prediction [16, 18, 20]. The CNN component extracts spa-
tial features from input data, such as patterns in physiological signals,
while the LSTM part efficiently processes time-series data, capturing
temporal dependencies. This synergy makes the CNN-LSTM model
adept at handling the complex nature of cybersickness, where both
spatial and temporal features play a crucial role. Separately, the LSTM
model, with its ability to remember long-term dependencies, is also
well-suited for cybersickness prediction. It effectively analyzes time-
series data from physiological sensors, providing insights into the pro-
gression of cybersickness symptoms over time.

Autoregressive Integrated Moving Average (ARIMA): The
ARIMA model, traditionally used in econometrics and weather fore-
casting, has been adapted for cybersickness prediction [60]. This
model excels due to its straightforward yet efficient approach to an-
alyzing time-series data, especially when dealing with non-stationary
datasets. In the context of cybersickness, ARIMA can be used to an-
alyze trends and patterns in physiological data over time, providing
forecasts of cybersickness occurrence based on the data. In our re-
search, we have employed ARIMA to establish baseline predictions
against which more complex models are compared. While it may not
capture the intricate relationships between various physiological indi-
cators as effectively as deep learning models, ARIMA’s predictions
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offer valuable benchmarks and have been instrumental in validating
the more sophisticated approaches taken by DeepTCN, CNN-LSTM,
and LSTM models in cybersickness prediction.

2.6 Personalizing Prediction Models

There has been some work on how to personalize models, e.g., deep
learning models, but not with respect to cybersickness prediction. We
investigated the personalization of cybersickness prediction models
with the following methods.

2.6.1 Grouping

Data grouping is one of the first methods we tried to investigate in our
model. Grouping with common characteristics can help to improve
prediction for other data in that group. For example, we might con-
sider demographic information (such as age, gender, and race). In a
similarity-based approach, data points that are similar to each other
are grouped together [8]. In our work, we grouped the data based on
participant age and gender using a similarity-based approach.

2.6.2 Transfer Learning

Transfer learning refers to the process of enhancing learning in a new
task by leveraging knowledge gained from a related task that has al-
ready been mastered [63]. Typically, a pre-trained model has already
learned to recognize features from a large dataset. By using a pre-
trained model as a starting point, the new model can learn more ef-
ficiently, as it does not need to start from scratch and learn all the
features from the data. Instead, it can build on the features learned by
the pre-trained model and fine-tune them for the specific task. This
approach has been shown to be effective in many computer vision and
natural language processing tasks, where large amounts of labeled data
are often required for training deep learning models. According to
Schneider et al. [54] Transfer learning is one of the proven personal-
ization methods.

2.6.3 Early Shaping

Early shaping (i.e., Curriculum learning) refers to a machine learn-
ing technique where the training data is presented to the model in a
pre-defined order or curriculum, with easier examples presented first
and more complex examples gradually introduced, to facilitate better
and faster learning [3]. This is done to help the model learn more
efficiently and generalize better to new, unseen data. According to
Schneider et al. [54], early shaping is another personalization method
that is similar to transfer learning but performed in the opposite order.
For early shaping, we trained the model based on one individual’s data
first and then finished the training with the rest of the data from the
training dataset.

2.6.4 Sample Weighing

Sample weighing is a process of assigning different weights to individ-
ual data points or observations in a dataset to account for their varying
levels of importance or representations in the analysis. This technique
is commonly used in statistics and machine learning to address imbal-
anced data distribution, where some classes or categories have signifi-
cantly fewer examples than others. The idea behind sample weighing
is to give more weight to samples that are more important or difficult
to learn, and less weight to samples that are less important or easier to
learn [54]. By doing this, the model can learn more effectively from
the data and improve its performance. The weights can then be used
during training to adjust the contribution of each sample to the overall
loss function that the model is trying to optimize.

3 PROPOSED CONTRIBUTION

Existing studies have established that individual characteristics, in-
cluding race, age, gender, eye movement, and physiological responses,
significantly influence the onset of cybersickness [57,61]. In light of
these findings, our primary research question (RQ) is formulated as
follows: RQ: “How does the performance of a model, trained for
either individual users or small groups sharing common individual
factors such as age and gender, impact cybersickness prediction?”.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 11,2024 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.



TASNIM ET AL.: INVESTIGATING PERSONALIZATION TECHNIQUES FOR IMPROVED CYBERSICKNESS...

We hypothesize that, “A personalized cybersickness prediction model
will outperform non-personalized models when trained based on in-
dividual factors”. To test and validate the hypothesis and identify the
most effective method of personalization for cybersickness prediction,
we developed and evaluated four distinct personalization strategies.
The key contributions of this paper are as follows:

¢ Development of Personalized Cybersickness Prediction Mod-
els: We adapted several established deep learning personaliza-
tion techniques, such as Transfer Learning, Early Shaping, and
Sample Weighting [54], specifically for cybersickness predic-
tion.

¢ Incorporation of Individual Factors: Our approach involved
accounting for individual differences, such as age and gender,
in cybersickness. We utilized data grouping strategies in both
the training and testing phases of our cybersickness prediction
models.

e Application to Various Deep/Machine Learning Models: In
line with previous studies [17], we applied personalization tech-
niques to several models previously used for cybersickness
prediction, including Deep-TCN, ARIMA, LSTM, and CNN-
LSTM.

e Analysis of Training Data Impact: We conducted an extensive
analysis to understand the influence of different types of training
data (e.g., eye tracking, heart rate, and electrodermal activity) on
the personalized model’s performance.

e Rigorous Model Evaluation: For evaluating our models, we
employed the leave-one-out cross-validation (LOOCV) method.
In this method, the model is trained on all data points except one,
which serves as the test set. This comprehensive approach allows
our models to be tested against all possible scenarios within the
dataset, offering a more rigorous evaluation compared to a ran-
dom train/test split.

The methodologies and findings presented in this paper significantly
advance the field of personalized cybersickness prediction, offering a
new paradigm for understanding and mitigating the impact of cyber-
sickness across diverse user groups.

4 METHODS

In this research study, we employed several methods for personalizing
cybersickness prediction models, including data grouping, early shap-
ing, sample weighing, and transfer learning (Figure 2). To assess the
efficacy of these personalization approaches, we employed previously
established models for predicting cybersickness, including DeepTCN,
CNN-LSTM, LSTM, and ARIMA [5, 17,38]. The models are tested
and validated using data sources by Islam et al. [17].

4.1 Dataset

In this study, we employed the ‘Simulations 2021° public dataset' and
extended the open-source code base developed by Islam et al. [17].
The ‘Simulations 2021” dataset includes data from 30 participants,
characterized by a mean age of 30.04 years (standard deviation: 4.12
years) and diverse ethnic backgrounds, including Asian, Black, Cau-
casian, Hispanic, and Pacific Islander. This dataset encompasses a
range of physiological metrics — heart rate (HR), eye tracking, head
tracking, and electrodermal activity (EDA) — along with individual
demographic factors (age, sex, ethnicity). Additionally, it features the
Fast Motion Sickness Scale (FMS) scores, ranging from 0 to 10, which
serve as the ground truth. These scores represent the participants’ dis-
comfort levels compared to their baseline comfort state at rest (FMS
= 0). Although the dataset contains head-tracking data, for this study,
we did not consider head-tracking data as they were not reported not
significant in terms of cybersickness prediction by Islam et al. All the
data were time-synchronized for each individual. The details of the
dataset are presented in Table 1.

'Simulation 2021 Dataset: https://sites.google.com/view/savelab/research
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Table 1. Simulation 2021 Dataset Description by Islam et. al [17]. Head-
tracking data is not used in this study as they were reported as not
significant.

Data
Number of Participants: 30
Mean Age: 30.04 years
Standard Deviation of Age: 4.12 years
Male: 15, Female: 15
Individual Factors: Age, Sex
FMS Score Range: 0-10
(Baseline FMS at rest = 0)
Left pupil diameter (mm)
Right pupil diameter (mm)
Left normalized gaze direction

Data Type

Participant Information

Eye-Tracking Data
Right normalized gaze direction
Convergence distance (mm)
Head Quaternion
Rotation (i.e., X, y, z and w)
Heart rate (HR)
Electrodermal activity (EDA)

Head-Tracking Data

Physiological Data

4.2 Data Pre-processing

The initial phase of our data preprocessing involved outlier detection.
We employed a z-score analysis, excluding any data points that devi-
ated more than three standard deviations from the mean [53]. Sub-
sequently, to mitigate sensitivity to abrupt fluctuations, we applied a
rolling average method with a window size of 5 [16]. This step effec-
tively smoothed sudden noise, such as abrupt peaks and valleys in the
dataset. Given the varied sampling rates across the data, a standardiza-
tion to a 1Hz sampling rate was necessary. In doing so, we adopted an
undersampling approach, ensuring no significant loss of information
by computing the mean of the respective data samples within each pe-
riod. The final preprocessing step entailed data normalization, which
was achieved using the following formula:

="k (1)

c
In this equation, 7, represents an individual data point (for n ranging
from 1 to 30), where u is the mean and o signifies the standard devia-
tion of the respective data. Note that all the data for each individual is
time-synchronized, thus preserving the time dimension of the dataset.

4.3 Personalization of cybersickness Prediction

This section provides an elaboration of the four personalization strate-
gies utilized in the study, as depicted in Figure 2. The succeeding
subsections detail each of the four personalization methods employed
in our methodology.

4.3.1

For the personalization of cybersickness prediction, there are many
potential factors to group the data, such as age, gender, ethnicity, and
such [2, 56]. In our model, we grouped our dataset by participants’
age and gender, as these factors are already been integrated with the
Simulation 2021 dataset.

Age: Previous research suggests that age is a significant factor in sus-
ceptibility to cybersickness [2,46]. In our study, we analyzed a dataset
of 30 subjects stratified into two age groups based on the median age of
27 years. The Group 1 included individuals aged 18-27 years (based
on median split), with a mean age of 23.43 years (SD = 2.68), while
Group 2 comprised participants aged 28-60 years, averaging 36.23
years (SD = 10.43).

Gender: In order to evaluate the impact of gender on cybersickness
prediction, we evenly split between 15 male and 15 female participants

Cybersickness Personalization using Data Grouping
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Fig. 2. This figure illustrates our approach to personalizing cybersickness prediction and evaluation using LOOCV (Leave-One-Out Cross-
Validation). (a) lllustrates the DeepTCN Model Architecture, employing a Dilated Convolution Neural Network. (b) Depicts the CNN-LSTM model.
(c) Explicates the model’s evaluation and validation via the LOOCV approach, detailing the division of training and test data in each fold. (d) High-
lights our personalization strategy, which incorporates Transfer Learning, Early Shaping, Data Grouping, and Sample Weighting, with individual

data denoted by 7,.

[37,56]. Additionally, we employed leave-one-out cross-validation to
evaluate the predictive performance of our models.

4.3.2 Cybersickness Personalization using Transfer Learning

We utilized transfer learning to personalize cybersickness prediction.
First we pre-trained the models using the dataset from Islam et al.
[17] for (n— 1) individuals, denoted as ,_;. This pre-training phase
allowed the models to retain key features from the dataset applicable
to (n— 1) individuals, as illustrated in Figure 2.d.

Subsequently, we modified the pre-trained models by removing
their last “fully connected dense” layer and introducing a new, un-
trained layer of the same type. This modification was followed by
re-training solely on this newly added layer, tailoring it to the data of
the remaining individual not included in the pre-training phase (i.e.,
the residual one individual). Through this approach, the model lever-
ages the comprehensive knowledge acquired during pre-training while
focusing the re-training process on the unique characteristics of the
residual individual, thus personalizing the features for a single indi-
vidual.

We repeated this process for each individual in the dataset using a
LOOCYV strategy, thereby creating a personalized model for every par-
ticipant. The effectiveness of our approach was quantitatively assessed
by averaging the RMSE values obtained from each model, as depicted
in Figure 2.c, which outlines our LOOCYV validation methodology.

4.3.3 Cybersickness Personalization using Early-Shaping

We employed early shaping, a form of curriculum learning, to person-
alize the prediction of cybersickness as indicated in the dataset [17].
Early shaping, in the context of deep learning, involves progressively
training models on tasks of increasing complexity. In our implemen-
tation, this technique began with the partial training of the model on
data from a single individual, denoted as /; (See Figure 2.d). This step
allowed the model to initially adapt to specific individual patterns, lay-
ing a foundational personalization of the cybersickness factors. Subse-

quently, we extended the training to incorporate the residual data from
the remaining (n-1) participants, denoted as /,,_ ;. This step was crucial
for the model to generalize its learning across different individual fac-
tors while retaining the nuanced understanding gained from the initial
individual-specific training. By employing LOOCYV validation tech-
niques throughout this process, we ensured a robust evaluation of the
model’s performance, culminating in the reporting of the mean RMSE
value (Figure 2.c).

4.3.4 Cybersickness Personalization using Sample Weighing

Finally, we utilized a sample weighting personalization technique. Ini-
tially, we created a training batch of size three, designated as Dy, op-
timized through hyper-parameter tuning. The model training involved
data from both the (I, — Dy) group and the individual D; dataset.
This procedure increased the representation of the Dy individual’s data
within the training sample. This personalized training method was
systematically applied to each subject using the LOOCV validating
approach (Figure 2.c) and reported the mean RMSE values.

4.4 Model Architecture for Cybersickness Prediction

We have employed several models, such as DeepTCN LSTM, CNN-
LSTM, and ARIMA, drawing inspiration from previous studies [17]
for the cybersickness prediction task. These models were evaluated
based on their mean RMSE values during the LOOCYV validation pro-
cess. The following sections will detail the architecture of each model
used in our approach.

e DeepTCN: The Temporal Convolutional Network (TCN) is a
type of deep learning model specifically designed for time-series
data, as described in previous works [6,33]. Our proposed Deep
TCN model consists of five layers that apply filters across a slid-
ing window of input data (X,;). Each TCN layer, featuring ex-
ponentially increasing dilations, is adept at capturing long-term
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dependencies in the data. This model is enhanced with resid-
ual and skip connections and is tasked with predicting FMS val-
ues. In the construction of our DeepTCN, we utilized five resid-
ual blocks, adopted ReLU as the activation function, and imple-
mented Weighted Batch Normalization. A dropout rate of 0.4
was chosen to prevent overfitting. The input and output of the
model are denoted as X, (i.e., HR, EDA, EYE) and Y, (i.e. FMS),
respectively.

e LSTM: Long Short-Term Memory (LSTM), a variant of Recur-
rent Neural Networks (RNN), is commonly utilized in cybersick-
ness prediction, as evidenced in prior studies [34, 55]. In our
model, we incorporated an input layer followed by two LSTM
layers containing 60 and 120 neurons, respectively. The second
LSTM layer includes a recurrent dropout rate of 0.2 to enhance
model generalization. This is succeeded by a dense layer with
256 units and a subsequent dropout layer with a rate of 0.2 to
prevent overfitting. Finally, we added a dense layer with ReLU
as an activation function.

e CNN-LSTM: The CNN-LSTM model combines the strengths of
Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTMs) networks, forming a hybrid architecture as
detailed in [18,20]. Our proposed model starts with an input
layer, followed by a 1D convolution layer equipped with 60 fil-
ters and a kernel size of 5. Subsequent to this, a max pooling
layer with a pool size of 2 is applied. The architecture then
includes two LSTM layers, each with 200 neural units, and a
dropout layer with a rate of 0.15 to minimize overfitting. Addi-
tionally, a dense layer of 200 neural units with ReLU activation
is included. The architecture concludes with a dense output layer
containing ten units, also utilizing ReL U activation.

e ARIMA: The Autoregressive Integrated Moving Average
(ARIMA) model, a renowned method for time-series forecast-
ing, is extensively discussed in prior research [55,64]. ARIMA
is composed of three integral components: Autoregressive (AR),
Integrated (I), and Moving Average (MA). The AR component
establishes the relationship between a current observation and its
preceding values or lags. The MA component, conversely, mod-
els the connection between an observation and the residual errors
from applying a moving average model to past observations. In
our implementation of the ARIMA model, we configured the AR
parameter (p) as 30, representing the number of lag observations.
The integrated parameter (d) was set to 1, indicating the level of
differencing applied to achieve stationarity. Finally, the MA pa-
rameter (q) was set to 3, defining the size of the moving average
window (adapted from Islam et. al. [17]).

4.5 Model Setup and Evaluation

We used TensorFlow-2.4 on an NVidia DGX-1 server with Ubuntu
18.0 to train and evaluate our deep-learning models. For the gradi-
ent decent optimization and learning, we used the Adam optimizer for
200 training epochs and batch sizes of 128. All the hyperparameters
of the models during the training steps are fine-tuned with the Optuna
framework. To train and validate our models, we used the Leave-One-
Out Cross-Validation (LOOCYV) strategy [50], which involves gener-
ating numerous training and testing sets by methodically excluding
one observation from the dataset each time, training the model on the
remaining data, and then testing it against the excluded observation.
This approach allows for a thorough and rigorous evaluation com-
pared to a random train/test split of the model’s performance across
all data points (Figure 2.c). To evaluate the prediction performance of
our models, we employed the RMSE metric, as defined in Equation 2.
The RMSE values were calculated using the following formula:

N (FMSi — FMSi)?
RMSE = \/Zfl( 1</ ") )

Performance Comparison of the Models After Personalization in Terms of RMSE Value w.r.t Non-
Personalized Model

12 Deep-TCN * CNN-LSTM

162.1%

Mean RMSE
Mean RMSE

No-Personalization Transfer Learning _ Early Shaping _Sample Weighing fer Learning _ Early Shaping _ Sample Welghing
LSTM ARIMA

152.9%

75.9%

Mean RMSE
Mean RMSE

2 No-Personalization Transfer Learning  Early Shaping  Sample Weighing

No-Personalization Transfer Leaning _ Early Shaping _Sample Weighing

Fig. 3. Comparative Analysis of Deep Learning Models for Cybersick-
ness Personalization: Evaluating Various Personalization Techniques
Against Non-Personalized Baselines.

In this equation, F MSf denotes the actual fast motion scale (FMS)

values at time ¢ for individual i, and F' MS} the predicted FMS values
by the models.

5 RESULTS

This section details the mean RMSE values obtained from the LOOCV
evaluation, as shown in Tables 2 to 6. We present the RMSE values
for various data fusion methods, such as eye-tracking (EYE), electro-
dermal activity (EDA), and heart rate (HR), in Tables 3 to 6. Notably,
we excluded head-tracking data from our analysis, following the find-
ings of Islam et al. [17], which indicated negligible improvement in
results upon its inclusion. Initially, we compared the performance of
DeepTCN, CNN-LSTM, LSTM, and ARIMA models against a non-
personalized baseline (refer to Table 2 and Figure 3). Given that the
DeepTCN model demonstrated superior performance compared to its
counterparts, it was selected for all subsequent experiments. The fol-
lowing subsections provide an in-depth analysis of these results.

5.1 Model Performance with Transfer Learning, Early
Shaping, and Sample Weighing

In this comprehensive analysis, we incorporated various data modali-
ties, including eye-tracking (EYE), electrodermal activity (EDA), and
heart rate (HR). We evaluated the performance of DeepTCN, CNN-
LSTM, LSTM, and ARIMA models under different personalization
strategies: transfer learning, early shaping, and sample weighing. The
mean RMSE values from the leave-one-out cross-validation (LOOCV)
evaluation are presented in Table 2 and Figure 3. The results indicated
that the DeepTCN model significantly outperformed the others, with
early shaping and transfer learning reducing the RMSE by 69.7% and
58.0%, respectively, when compared to the baseline non-personalized
approach. Further details and insights on these RMSE improvements
are provided in Figure 3.

The study further demonstrated that transfer learning and early
shaping considerably enhanced cybersickness prediction across all
tested models. Specifically, the DeepTCN model recorded mean
RMSE values of 0.3383 with transfer learning and 0.2438 with early
shaping. This contrasts with the higher RMSE values of 0.8205 (sam-
ple weighing) and 0.8054 (non-personalized) for the same model. For
the CNN-LSTM models, non-personalized RMSE was 1.0167, which
decreased to 0.5891 with transfer learning and 0.3371 with early shap-
ing, representing improvements of 35.7% and 63.1%, respectively.
However, the sample weighing approach did not demonstrate signifi-
cant enhancement in prediction accuracy. Table 2 and Figure 3 detail
this analysis and confirm the superior performance of the DeepTCN
model. It was noted that, with the exception of sample weighing, per-
sonalization strategies generally led to improvements in RMSE values
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Table 2. Comparison of mean RMSE between three personalization approaches with different deep models(i.e., Transfer Learning, Early Shaping

and Sample Weighing)

Models Without Personalization | Transfer Learning | Early Shaping | Sample Weighing
Deep-TCN * 0.8054 0.3383 0.2438 0.8205
CNN-LSTM 1.0167 0.5891 0.3371 2.6648

LSTM 1.0792 0.6936 0.3983 2.7295

ARIMA 1.5436 0.8362 0.5437 2.7309

across all evaluated models.

5.2 Model Performance on Data Grouping

In our data grouping analysis, we exclusively utilized the DeepTCN
model, owing to its demonstrated superior performance relative to the
CNN-LSTM, LSTM, and ARIMA models. We employed various fu-
sion strategies for data grouping across different data modalities, in-
cluding heart rate (HR), electrodermal activity (EDA), and eye track-
ing (EYE). The criteria for data grouping were based on median age
splits and gender categories (male and female). The subsequent sub-
section provides a detailed account of the outcomes derived from this
data grouping approach.

5.2.1 Grouping based on Age

Tables 3 and 4 detail the results of cybersickness prediction for differ-
ent age groups, determined through a median age split (the median age
being 27 years). We present the mean RMSE values obtained during
the LOOCYV validation process for various fusion modalities (namely
EYE, EDA, HR) both with and without personalization across these
age groups (Group 1 and Group 2).

Table 3 demonstrates that, for Group 1 (age 18-27), utilizing EYE
tracking data in data grouping led to a decrease in the RMSE value
to 0.6236, a reduction of 49.97% compared to the RMSE prior to
grouping. However, the use of other fusion modalities resulted in in-
creased RMSE values. When all modalities were fused, the personal-
ized model exhibited a 5.51% improvement in RMSE over the model
without age-based grouping.

Conversely, Table 4 indicates that for Group 2 (age 28-60), employ-
ing EYE tracking data in data grouping reduced the RMSE to 0.5883,
a 52.80% decrease from the value before grouping. The fusion of all
modalities in the personalized model yielded an 11.81% improvement
in RMSE compared to models without age-based grouping. The per-
formance improvement for age Group 2 was better compared to age
Group 1.

5.2.2 Grouping based on Gender

Tables 5 and 6 present the cybersickness prediction results (i.e., FMS)
before and after implementing gender-based grouping (male and fe-
male categories). The mean RMSE values obtained from the LOOCV
validation process for each data modality (EYE, EDA, HR), both indi-
vidually and in combination, are reported in these tables, highlighting
the impact of gender-based data grouping.

For the male group, as shown in Table 5, the combination of all
modalities post-grouping resulted in an RMSE of 0.4049. This repre-
sents a substantial decrease of 69.73% compared to the model without
gender-based grouping. Furthermore, each individual modality also
demonstrated a significant reduction in RMSE values following the
grouping, with the EYE tracking data achieving an RMSE of 0.378.

In contrast, the female group, detailed in Table 6, exhibited sig-
nificant improvements. Post-gender grouping, the combined modal-
ities achieved an RMSE of 0.213, a significant reduction of 84.05%
from the pre-grouping value. Specifically, the EYE tracking data re-
ported an RMSE of 0.2422, reflecting an 80.57% decrease compared
to its pre-grouping figure. Notably, the overall performance enhance-
ments in the female group surpassed those in the male group across all
modalities.

6 DiscuUsSION

The primary aim of our study was to investigate the effectiveness of
personalization in enhancing cybersickness prediction performance.
To achieve this, we implemented various personalization training
strategies, including transfer learning, early shaping, and sample
weighing. We also employed a data grouping method, organizing
data based on participants’ age and gender, and applied different data
fusion techniques as outlined in Tables 3-6. Our analysis involved
deep learning models such as DeepTCN, CNN-LSTM, LSTM, and
ARIMA. These models underwent training and testing via the Leave-
One-Out Cross-Validation (LOOCV) method, a more rigorous ap-
proach than the conventional random train/test split. We used mean
RMSE values as our primary evaluation metric. Our findings indicate
a significant improvement in cybersickness prediction when using the
proposed personalization approaches, particularly with the DeepTCN
model. This model demonstrated significant performance improve-
ment in terms of RMSE values, specifically in the early-shaping (an
improvement of 69.7%) and transfer learning (an improvement of
58.0%) personalization approaches. The following subsection dis-
cusses our key findings and potential limitations of our study.

6.1 Personalization with Transfer Learning, Early Shaping,
Sample Weighing

Our findings, as detailed in Table 2 and Figure 3, demonstrate that
both transfer learning and early shaping methods significantly en-
hanced cybersickness prediction across all models, outperforming the
non-personalized counterparts. Notably, in the case of the DeepTCN
model, the application of transfer learning resulted in a substantial
58% decrease in the RMSE value. This trend of improvement was
also observed in other models, including CNN-LSTM, LSTM, and
ARIMA, when employing early shaping and transfer learning tech-
niques.

The superior performance of early shaping and transfer learning
can be attributed to their inherent characteristics. Early shaping, by
adjusting the model in its initial stages based on specific features of
the dataset (/1 ), enables a more tailored and effective learning process.
This approach ensures that the model is better equipped to handle the
nuances of the dataset(/,,_;) from the onset [3, 54]. Transfer learn-
ing, on the other hand, leverages pre-existing knowledge from related
tasks or domains (pre-trained with 7,,_1). This method allows models
to bypass the initial learning phase, leading to faster convergence and
improved prediction performance for a specific individual (/) [54,63].
These methods, thus, contribute to a more refined and accurate model
training process, as evidenced by the enhanced RMSE values in our
study. We hypothesize that the gradual introduction of participants to
the training sample during early shaping may have contributed to the
significantly better performance of the cybersickness prediction mod-
els as compared to other personalization approaches.

However, our analysis indicated that the sample-weighing approach
failed to produce significant improvements in cybersickness prediction
across all tested models. For instance, the DeepTCN model exhibited
an increase of 1.9% in RMSE error compared to the non-personalized
model. More notably, the CNN-LSTM model demonstrated a substan-
tial 162.1% increase in RMSE error relative to its non-personalized
counterpart. Several factors could explain this underperformance in
RMSE with sample weighing. Primarily, sample weighing hinges on
the premise of assigning differential weights to each data point (Data
batch Dy) (Figure 2.d), presupposing the varying importance of each
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Table 3. Mean RMSE Results for Age Group 1 (Ages 18-27) Using Median Split Approach. This table presents the calculated mean RMSE values

derived from the leave-one-out cross-validation process.

Data Source RMSE Without Grouping | RMSE with Grouping (personalized) | Improvement
EYE * 1.2465 0.6236 49.97%
HR 1.3098 1.2645 3.46%
EDA 1.6239 1.2520 22.90%
EYE + HR 1.3765 1.0665 22.52%
EYE + EDA 1.5792 1.0188 35.49%
HR + EDA 1.6256 1.2080 25.69%
EYE + HR + EDA 1.3378 1.2641 5.51%

Table 4. Mean RMSE Results for Age Group 2 (Ages 28-60) Using Median Split Approach. This table presents the calculated mean RMSE values

derived from the leave-one-out cross-validation process.

Data Source RMSE Without Grouping | RMSE with Grouping (personalized) | Improvement
EYE * 1.2465 0.5883 52.80%
HR 1.3098 1.0811 17.46%
EDA 1.6239 1.0793 33.54%
EYE + HR 1.3765 1.0196 25.93%
EYE + EDA 1.5792 1.0703 32.23%
HR + EDA 1.6256 1.2827 21.09%
EYE + HR + EDA 1.3378 1.1798 11.81%

observation. This approach might not be suitable for datasets where
every observation contributes equally to model training. Misalignment
in weight assignment can lead to issues such as model overfitting or
underfitting, consequently degrading RMSE performance. Moreover,
in situations where data is inherently balanced or embodies complex
interrelationships, the sample weighing technique may not effectively
enhance prediction accuracy, as suggested by [54]. The data used in
our study likely did not benefit from this approach, leading towards
the need for a more thorough analysis of data batch size and its impact
on model performance when employing sample weighing.

6.2 Data grouping based on Age and Gender

Previous research, such as the study by Petri et al. [46], has highlighted
age as a potential factor influencing the severity of cybersickness. In an
effort to understand this relationship further, Arns et al. [2] conducted
a study to examine whether the established correlation between age
and motion sickness could be extrapolated to cybersickness. Contrary
to the traditional view, their findings suggested that older individu-
als might experience more severe cybersickness compared to younger
ones, thus challenging the conventional paradigm of age and motion
sickness in the context of cybersickness.

Expanding upon these findings, our study sought to delve into the
role of age in cybersickness severity, particularly by grouping partici-
pants based on age and analyzing the effectiveness of HR, EDA, and
EYE data in predicting cybersickness. Our analysis revealed that in-
corporating EYE data notably enhanced the prediction performance
for both age groups (Table 3 and 4). However, the addition of HR
and EDA modalities did not yield a similar improvement, as indicated
by the increased RMSE values. This underscores the need for further
investigation into how various modalities influence cybersickness pre-
diction and their interplay with age-related factors.

Regarding gender differences in cybersickness, existing literature,
including works by MacArthur et al. [37], Stanney et al. [56], and
Kelly et al. [21], has not established significant differences in FMS val-
ues between genders. Our research supports this finding, as we did not
observe notable variations in FMS values across genders. However,
we did find that gender-based data grouping significantly enhanced
the accuracy of cybersickness prediction models. Our results indi-
cated a significant reduction in RMSE values post-grouping in both
male and female groups. Notably, in the female group, the application
of all data modalities collectively led to an RMSE value of 0.2133,

an 84.04% improvement over the non-personalized model, as shown
in Table 6. These findings contribute to the evolving discourse on the
role of gender in cybersickness and underscore the necessity of incor-
porating gender considerations in predictive models. Further investi-
gation is warranted to better understand the underlying mechanisms
of gender-based differences in cybersickness and to develop effective,
personalized prediction models for different gender groups.

6.3 Limitations

While our study demonstrated significant performance improvements
using early shaping and transfer learning across various machine learn-
ing and deep learning models for cybersickness prediction, it is im-
portant to acknowledge certain limitations. One key limitation is the
range of models and data groupings explored. While we have investi-
gated specific models and groupings, numerous other models and po-
tential data groupings remain unexplored. Given our findings that cer-
tain groupings yield better results than others, further exploration into
groupings based on participants’ demographic backgrounds could be
fruitful. However, this endeavor would require the collection of addi-
tional, diverse data. We remain optimistic that expanding our dataset
will enhance the personalization and effectiveness of our models.
Additionally, our study’s age distribution did not encompass in-
dividuals aged 70-90 years. The inclusion of a broader age range
could potentially alter the results. For a more comprehensive evalu-
ation of our proposed personalization techniques, utilizing more di-
verse datasets, encompassing a wider range of ages, is essential. Fu-
ture research should aim to include participants from varied demo-
graphic backgrounds, including different gender identities (including
non-binary), racial profiles, and a broader age spectrum. Such diver-
sity in the participant pool is crucial to increase the generalizability
and applicability of our findings in cybersickness prediction.
Although data was fed into the models sequentially based on time,
we did not include time specifically as a feature in our models. Pre-
vious work has shown that cybersickness severity often increases over
time but repeated exposure may lead to habituation [52]. Thus, in-
cluding time as a feature in our models could affect results. However,
several previous works in cybersickness prediction have also not used
time as a feature [16—18]. In the present work, because we were fo-
cused on investigating personalization approaches compared to prior
approaches without personalization, we chose to use the same feature
set as prior work. In the future, we plan to investigate how including

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 11,2024 at 13:53:06 UTC from IEEE Xplore. Restrictions apply.



2376

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 5, MAY 2024

Table 5. Mean RMSE Values for Male Participants Group. This table presents the results obtained from the Leave-One-Out Cross-Validation
(LOOCV) method, specifically reporting the mean RMSE for the group of male participants.

Data Source RMSE Without Grouping | RMSE with Grouping (personalized) | Improvement
EYE 1.2465 0.3785 69.63%
HR 1.3098 0.4617 64.75%
EDA 1.6239 0.6336 60.98%
EYE + HR 1.3765 0.5891 57.20%
EYE + EDA 1.5792 0.6230 60.55%
HR + EDA 1.6256 0.6535 59.80%
EYE + HR + EDA 1.3378 0.4049 69.73%

Table 6. Mean RMSE Values for Female Participants Group. This table presents the results obtained from the Leave-One-Out Cross-Validation
(LOOCV) method, specifically reporting the mean RMSE for the group of Female participants.

Data Source RMSE Without Grouping | RMSE with Grouping (personalized) | Improvement
EYE * 1.2465 0.2422 80.57%
HR 1.3098 0.5697 56.50%
EDA 1.6239 0.5888 63.74%
EYE + HR 1.3765 0.3722 72.96%
EYE + EDA 1.5792 0.2675 83.06%
HR + EDA 1.6256 0.4231 73.97%
EYE + HR + EDA 1.3378 0.2133 84.05%

time as a feature can affect cybersickness prediction results

7 CONCLUSION AND FUTURE WORK

This research primarily sought to assess the potential of enhancing cy-
bersickness prediction through personalized modeling. To realize this
objective, we employed and evaluated a variety of grouping and train-
ing strategies typically used for model personalization. The majority
of these methods yielded improved model performance, exemplified
by the early shaping approach, which resulted in a 69.7% reduction in
the RMSE value of the DeepTCN model, and transfer learning with
DeepTCN, which diminished the RMSE by 58% compared to non-
personalized models. Moreover, the significance of eye data for age-
based and gender-based improvements was highlighted through our
data grouping approach. Conclusively, our study identified early shap-
ing and transfer learning as the most potent methods for personalizing
cybersickness predictions. The overarching aim is to provide each in-
dividual with a model tailored to their specific data. In practice, this
would necessitate users to engage with VR for a brief period, allowing
for the fine-tuning of an existing aggregate model with their unique
data via early shaping or transfer learning. Pre-trained gender-specific
models would only need the user to specify their gender to select the
appropriate model. Future research will explore more extensive data
grouping, considering factors like cybersickness level and race, and
examine the applicability of personalization strategies for cybersick-
ness classification. Additionally, the effectiveness of other person-
alization techniques will be evaluated. The projected direction is to
utilize these techniques to develop adaptive cybersickness mitigation
systems, which hold critical implications for VR developers by poten-
tially enabling more adaptable environments to reduce cybersickness
incidences.
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