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ABSTRACT

Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is
often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning
models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continu-
ity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image
processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We
show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix composi-
tions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer
spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and
whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent
of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness
and reproducibility of 3D culture analysis across biological and clinical research.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0189222

I. INTRODUCTION

Cellular viability is a fundamental metric used to characterize
the growth characteristics and proliferative capability of cell or tis-
sue cultures. Viability assays are used throughout biology and pre-

results are supported by performing orthogonal measurements,
such as sample imaging.

As the application of deep learning to image analysis has
increased in the biomedical field,”” many researchers have found value
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clinical toxicology to understand a wide range of behaviors, such as
changes in cell growth induced by therapeutic perturbations or
change in cell culture conditions. Assaying techniques range from
colorimetric indicator dyes' * or fluorescence probes™’ to an anal-
ysis of the metabolic activity by chemically lysing the cells to deter-
mine the amount of ATP present using luminescence.” The results,
typically reported from 0% to 100%, are obtained by evaluating the
ratio of healthy to dead cells or the metabolic activity of healthy
cells in a sample population. In some cases, cell viability assay

in automating image analysis pipelines to extract quantitative informa-
tion about the cellular systems studied.'”'" These computational mod-
els can segment and identify single cells and cell types,'” " predict
phenotypes of the cells,'”'® assign fluorescent markers to cell
images, """ and quantify viability of the cells within a given image."”
The principles behind these models have enabled advances beyond
single cell and apply to tissue-level analyses,”’ medical imaging,”
and predictive diagnostics for diseases such as cancer.”” ”° However, a
weakness of both the original viability assays and the imaging
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techniques is that they were initially developed for use in 2D culturing
conditions in flasks/dishes or multi-well plate formats.

Recent research has demonstrated that cells grown in 3D cultur-
ing systems better recapitulate the matrix interactions and cell pheno-
types found in physiological tissue.”” The representation of these
complex interactions provides an improved in vitro method for com-
pound screening over 2D systems. While improvements in imaging
technology have advanced the ability to capture qualitative informa-
tion about 3D cell models and tissues,”* " the need for longitudinal
quantitative assessment of culture viability is still present. Various
strategies are being pursued to address this challenge. One manufac-
turer has adapted their assay to create a 3D culture specific product.
This product is called CellTiter-Glo 3D (CTG) and has quickly become
an industry standard assay used to report viability by measuring the
metabolic activity of the culture. However, the CTG development pro-
cedure requires complete cell lysis. For other methods, researchers
have investigated the comparative use of previously developed assays"
and recommend complementary imaging for experiments utilizing 2D
specific reagents to cross reference results.”’ Although the field has
begun adapting viability assays’* ** and deep learning techniques to
the dynamic nature of 3D systems,” ° quantification of viability
largely requires additional experimental steps for fluorescently labeling
the culture system’~® or developing metabolic assays.””"’ This
remaining challenge provides a unique opportunity to utilize deep
learning to augment 3D viability assays.

In the present work, we develop and validate a Segmentation
Algorithm to Assess the ViabilitY (SAAVY) of 3D cultures. We
designed SAAVY to automatically identify and analyze features com-
mon to spheroid and organoid structure that experts correlate with cel-
lular viability, such as the transparency of the spheroid and the overall
morphology.”' " SAAVY is designed for use with label-free optical
images that are saved in the universal imaging formats (png, tiff, and
jpeg), making it independent of the microscope system used to acquire
the images. We trained and tested SAAVY against clear and noisy
backgrounds. This approach ensured that SAAVY can withstand a
degree of background noise that can arise from common biological
defects, such as dead cell fragments or matrix particulate deposits.
SAAVY calculates the viability of each uniquely identified spheroid in
an image and an overall average viability for all 3D structures present
in a well. It also reports the total spheroid count per image, spheroid
radius, spheroid area, and other metrics of relevance. The total analysis
time per well is approximately 0.3s. This type of integrated analysis
provides insight into a biological system’s response at both the individ-
ual spheroid and entire well level. Finally, SAAVY is agnostic of micro-
scope system or manufacturer and does not require fluorescent or
colorimetric indicators, enabling longitudinal response studies to be
performed.

The accuracy of SAAVY in analyzing pancreatic ductal adenocar-
cinoma (PDAC) spheroids in clear and noisy backgrounds was vali-
dated through a blinded comparison with a pair of spheroid analysis
experts. Subsequently, a series of application-driven experiments were
conducted. We first compared SAAVY analysis with an industry stan-
dard metabolic assay for 3D cultures, including spheroid expert analy-
sis as ground truth. To challenge SAAVY’s ability to detect viability
changes in response to a perturbation, we then performed a label-free
imaging-based longitudinal study investigating the effect of an FDA-
approved therapeutic on the pancreatic cancer spheroids.

pubs.aip.org/aip/apb

Il. RESULTS AND DISCUSSION

To segment the biological regions of interest in an image,
prior image recognition approaches focused on utilizing relatively
simple edge detection techniques to identify spheroid bound-
aries.”""” However, edge detection with watershed has poor reli-
ability when spheroids or organoids overlap or when background
noise is present, limiting the utility to images with low spheroid
density or complete separation of cell colonies.”’ Other characteri-
zation workflows reduced or eliminated this overlap by altering
culturing conditions (e.g., growing singe spheroids per well) or
image acquisition settings (e.g., increased magnification on the
sample wells to obtain one spheroid per image) on a case-by-case
basis.””**** This bespoke approach relies on image-stitching and
partial data rejection of overlapping regions of interest, which can
lead to unintentional bias in the final dataset.””** Our goal is to
develop an algorithm that can analyze an image of an entire well
with minimal data rejection while resisting the influence of back-
ground noise, which requires a different approach to segmentation.

As a proof of concept, PDAC spheroid samples are used. PDAC
spheroids are of a cystic phenotype and tend to grow randomly
throughout the well."” This growth pattern leads to a high frequency of
overlapping cell structures and makes them difficult to analyze using
edge detection machine-learning approaches. Healthy cystic spheroids
are distinguished by their open lumen and transparent centers with
distinct, circular edges when viewed in plane. The transparency and
circular morphology of healthy spheroids are in stark contrast with the
opaque, blebbed spheroids that characterize dead spheroids of this
type. This correlation between transparency and morphology and
spheroid viability in brightfield images has been previously studied.”””’
For example, this characteristic indicator is seen in kidney,‘32 ectocervi-
cal,” colon/intestinal,”* nasal epithelial,” and liver’” model systems.
As a part of this work, an informal survey of spheroid and organoid
experts across cancer fields was performed, and they identified the
same metrics. These results are included in the supplementary mate-
rial. As a result, the ability to correlate opacity to spheroid viability
forms the foundation of our label-free image-based quantification
approach.

A. SAAVY design

An overview of SAAVY is presented in Fig. 1, and details are
included in the supplementary material. SAAVY is first created by
fine-tuning a pre-trained Mask R-CNN model in PyTorch.”® This
implementation is particularly attractive due to its improved ability to
separate overlapping features. This transfer learning approach reduced
the total cost for bespoke images of cystic spheroids and allowed us to
move forward with a relatively small number of expert-annotated
images.”” We further refined our model with a balanced dataset con-
sisting of 24 images of PDAC spheroids with clear and noisy back-
grounds that spanned the entire viability range. The details on this
process are contained in the supplementary material.

SAAVY analyzes brightfield, label-free images of tissue culture
spheroids by segmenting each individual spheroid and outlining the
identified region on the output image. Subsequently, SAAVY quanti-
fies the viability of each uniquely identified spheroid using the average
intensity of the segmented region compared to the background using a
weighted average model as detailed in the supplementary material.
This approach allows for an increased level of background noise to be
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FIG. 1. Overview of the SAAVY Training and Validation approach. (a) The training method for SAAVY is identified where we processed the images saved in the png file format
for annotation and user-supervised training. The viability algorithm is developed during this step based on expert-determined characteristics for generating viability estimates.
However, to avoid overfitting, the spheroid experts were not directly involved in the training. The training dataset was 30 images and required approximately 1 h. (b) Batch anal-
ysis was run on the experimental (validation) dataset images passed through SAAVY, which identified the mask of the region of interest in green and output a .csv file with other
measured information about the image. Analysis time per image was 0.3 s. Both training time and analysis time are dependent on the computational power available and could

be further accelerated.

present without negatively impacting the assessment ability. Several
other metrics are calculated by SAAVY including the average viability,
the average spheroid size, and total spheroid count across each image.
With our hardware configuration, each image required 0.3 s for the
entire analysis process. While viability assessments of 3D cultures are
routinely performed as a quality check during experimentation by
experts, the single-spheroid level quantitative analysis across an entire
well is not easily obtained from expert analysis and is not possible
using biochemical measurements. Therefore, SAAVY provides several
orthogonal dimensions for analytics on an accelerated timescale.

The initial training and validation dataset contains a series of
label-free microscopy images of PDAC spheroids cultured either in a
clear or a noisy culture matrix. The images were annotated by the pro-
gramming expert with no input from either spheroid expert. The noisy
matrix was created by intercalating opaque nanoparticles throughout
the gel. Images are acquired at days 0, 4, and 6 of spheroid growth at
4x magnification, and each image captures the entire 10 ul gel seeded
in a 96-well plate. The resultant dataset contains 1328 widefield images
taken using an ECHO Revolve microscope. Notably, no images or
wells were rejected from the dataset. Additional experimental details
are included in the supplementary material.

Representative examples of SAAVY-analyzed images across all
days and both clear and noisy backgrounds are presented in Fig. 2.
Both the original and the analyzed images are shown. As can be seen,
SAAVY is able to identify spheroids in the presence of potential con-
founds and in cases where spheroids are overlapping. Notably, the
entire image was analyzed at once. As a part of this work, SAAVY
detected and provided information about 114726 unique spheroids
across the 2792 images taken on either an ECHO Revolve or an
Operetta CLS microscope. The compatibility with two different imag-
ing systems demonstrates its potential impact on the field.

The overall predictive accuracy of SAAVY was determined by
calculating the intersection over union (IoU) for a subset of images

randomly selected from the dataset highlighted in Fig. 2 for the ECHO
Revolve and from a different dataset for the Operetta. The average IoU
for the ECHO is 0.622, and the average IoU for the Operetta is 0.653.
The details on this method and additional analysis are included in the
supplementary material.

B. SAAVY to expert comparison

SAAVY performance was evaluated as compared to a pair of
blinded spheroid experts for the entire image population of clear and
noisy background gels. The justification for expert selection and the
blinding method is detailed in the supplementary material.
Additionally, before comparing the expert assessments, their findings
were harmonized. The steps involved in this process are detailed in the
supplementary material.

Two indicators of SAAVY performance are evaluated: spheroid/
no spheroid identification (ID) and live/dead detection (LD). ID is
characterized as SAAVY assigning the appropriate value to each image
according to the absence (value of —1) or presence (values of zero and
above) of spheroids in the image. LD is characterized as SAAVY
assigning viability values that correlate with live (>0%) or dead (0%)
spheroids. This corresponds to the typical binary interpretation of
other viability assays to keep analysis consistent with previous research.
On days 4 and 6, ground truth was determined by expert 1, and the
details for this decision are included in the supplementary material.
Both ID and LD performance are quantified using the Fl-score and
summarized in Table I.

The quantification of differences between the distributions was
first calculated to compare SAAVY to each expert. For this quantifica-
tion, Earth Mover’s Distance (EMD) was used.”’ Values of 0 corre-
spond to less distance between the distributions, or classically that the
effort is minimized to transform one distribution into the other. The
EMD values are represented by the ‘similarity’ row in Table I. Further,
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Clear

Noisy

FIG. 2. Images representative of before (top row) and after (bottom row) SAAVY analysis. The images are further subset by day: (a) DO, (b) D4, and (c) D6. For each day, both
clear (no added nanoparticles) and noisy (5 mg/ml of added nanoparticles) images are shown. These are representative images selected from the total 416 images analyzed.

Scale bar is 890 um for all images.

the reliability was quantified using Krippendorff's alpha, a measure of
inter-rater reliability. Values close to 1 suggest perfect reliability,
whereas values closer to zero and negative values suggest poor reliabil-
ity and systemic differences, respectively. The supplementary material
contains a comparison of other common metrics and data correlations
that we calculated for this analysis.

On day 4, SAAVY shows a decrease in reliability compared to
expert 2 in clear samples (Table I). The same is not true for SAAVY as

TABLE 1. Summary of calculated metrics comparing spheroid expert 1, spheroid
expert 2, and SAAVY throughout each sample sub-grouping (day and background
type). Spheroid identification (ID) and live/dead (LD) analysis across all days and
background types are presented first. Ellipses (...) are noted in columns where that
method was used as either the ground truth (expert 1) or standard for comparison
(SAAVY). Similarity and reliability are then quantified for each distribution compari-
son. We used the Earth Mover’s distance to quantify the similarity between the two
distributions and Krippendorff's alpha to quantify the reliability of each expert.
Equations for accuracy and F1-score calculations are included in the supplementary
material. Red cell highlights indicate better performance, whereas blue values indi-
cate weak performance.

Day 4

Clear Noisy

Expert 1 Expert 2 SAAVY Expert 1 Expert 2 SAAVY

ID F1-score
LD F1-score
Similarity
Reliability

Day 6

ID F1-score
LD F1-score
Similarity 0.045  0.048

reliabiiy [ OGONNONGNN

compared to expert 1 in clear backgrounds, and the reliability is
improved for both experts for noisy background gels. The similarity
also follows this trend for day 4. On day 6, SAAVY is nearly equally
reliable when compared to both experts for both background types.
However, the SAAVY distribution is more like the spheroid experts
for noisy backgrounds as compared to clear backgrounds. The distri-
butions are visualized for all permutations in the supplementary mate-
rial for further comparison.

Day 4 showed clear improvement for both experts and SAAVY
with Fl-scores of 1.0 for both ID and LD analyses, which suggests per-
fect agreement with the ground truth. When spheroids are observed
after the given time for growth, they are distinguishable from the back-
ground. The fact that SAAVY matches experts at this task suggests
that the algorithm can successfully identify and analyze spheroids in
clear backgrounds comparably well to human experts. LD analysis
matched this trend of perfect Fl-scores (1.0) for both SAAVY and
expert on day 4. For noisy backgrounds, the same holds true though
the Fl-score decreases slightly to 0.992. Day 6 is when differences
between SAAVY performance and the experts begin to appear.
Notably, SAAVY outperforms expert 2 as compared to ground truth
for spheroid identification. For LD analysis on clear backgrounds, it is
0.91 for expert 2 compared to 0.89 for SAAVY. On noisy backgrounds,
this is further improved to 0.96 for expert 2 and 0.95 for SAAVY.

Although SAAVY has slightly lower F1 scores than expert 2 for
live/dead performance, this difference is likely an artifact related to the
size of detectable viability differences characteristic to each expert.
SAAVY assigned viability values to a one-tenth of a percent as a direct
scaling of the viability per pixel is 0.4%. Additionally, as can be seen in
Fig. S5, SAAVY did not exhibit a bias in assignments toward any via-
bility range. In contrast, after data harmonization, the spheroid experts
classified viability in 10% increments. As a result, any spheroid with a
viability below 10% is classified as dead. Additionally, the distribution
of viability scores was biased toward the extreme ends. Therefore,
SAAVY may classify an image of spheroids as alive although they are
noted dead by experts due to its improved incrementation and non-
biased assessment. To test this hypothesis, a ROC threshold analysis
was completed to evaluate the level at which the threshold for live or
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dead can be raised to while optimizing the Fl-score for SAAVY in
clear samples. The threshold for SAAVY can be raised to 2.43% for
clear backgrounds leading to an Fl-score of 0.91, which matches
expert viability prediction while maintaining improved resolution.

C. Comparison against industry standard viability
assay

CellTiter-Glo (CTG) is a metabolic viability assay that has been
adapted and optimized for use when analyzing 3D tissue culture sys-
tems.””*” Unlike image analysis methods, CTG relies on correlating
the amount of cellular ATP released from lysed cells to the intensity of
the luminescent signal generated by an enzymatic reaction. These
assays are evaluated on a well-by-well basis through normalization of
the well signal to positive and background control measurements.
Although this assay is accepted and widely used as the industry-
standard, previous research utilizing this method has highlighted sev-
eral limitations. For example, specific metabolic effects may be
obscured when measuring viability on its own.”' °’ Inconsistent exper-
imental procedures are also of concern for CTG measurements.
Previous studies suggest measurements are dependent on variables
such as the shaking time and wait time for equilibrium before measur-
ing the plate luminescence.” This variation may lead to errors in the
normalization process standard for reporting the results of this assay.
Image-based methods remove the question of experimental variation
on reported viability.

We compare SAAVY viability to CTG viability measurements
through a non-inferiority study to test if SAAVY performs no worse
than the CTG method at characterizing viability. PDAC samples grown
in either clear or noisy matrices were analyzed by the experts, CTG, and
SAAVY. This approach resulted in 136 images with matched CTG data.
Without noise in the matrix, the CTG viability reading exceeded 100% a
total of seventeen times (24.3% of the measurements). Once matrix
impurities were introduced, the CTG viability reading exceeded 100% in
39 samples (57.4% of the measurements). It should be noted that prior
research has shown an increase in metabolic activity when grown in
similar nanoparticle matrices,”" so the CTG results agree with prior
findings.

We compared CTG to SAAVY using Pearson’s correlation, Earth
Mover’s distance for similarity, and Krippendorff’s alpha for rater reli-
ability across day 6 data for clear and noisy backgrounds. Figure 3
summarizes the results of the correlation comparisons. SAAVY and

Combined Clear

Expert 1

Expert 2

SAAVY

CTG- 038 = 0.28

0.34

1 L 1
Expert 1 Expert 2 SAAVY  CTG

Expert 1 Expert 2 SAAVY  CTG

ARTICLE pubs.aip.org/aip/apb

CTG have similar distributions for clear and noisy background types
with EMD values of 0.023 and 0.010, respectively. We believe this
agreement is due to the absence of spheroids in some images in this
dataset, as the noisy background either obscured detection or killed the
growing spheroids by this day. Figure S16 includes a histogram break-
down of these data to visualize the distributions. The reliability analy-
sis, however, suggests that CTG is a more reliable rater on clear gels
(k-alpha, 0.384) compared to noisy (k-alpha 0.076).

We could not complete a confusion matrix analysis for SAAVY
and CTG because CTG cannot produce a negative result. We perform
a threshold analysis on CTG to determine what the viability percent
could be raised to with the goal of enhancing the overall performance
of the CTG test. However, because of the inability of CTG to provide
negative (0% viable by LD analysis) measurements, we looked to a
metric other than Fl-score during our threshold analysis. Youden’s J-
statistic was used to determine that the cutoff for CTG can be raised to
18.00% and 48.15% for clear and noisy backgrounds, respectively. This
suggests that the CTG assay is not specific when capturing cell state
characteristics and points toward the potential impact of an image-
based companion for viability measurement.

D. Nondestructive tracking of perturbation
longitudinal impact on 3D cultures

One current hurdle in longitudinal studies using high-
throughput, automated 3D culture methods is the requirement of
labeling the sample to assess viability. A nondestructive, label-free
approach would allow continuous monitoring of the same spheroid,
increasing research rigor and allow primary cells and samples to be
used. As a step in this direction, SAAVY’s ability to longitudinally
track PDAC spheroid growth within the same sample is demonstrated
by analyzing label-free images and creating a viability response curve.

An Operetta CLS high content imager is used to automate the
image acquisition process. During this experiment, we took z-stack
images of each well in a 96-well plate 20 um apart from 0 um at the
hydrogel/well-plate interface to 700 um at the top of the hydrogel
resulting in 36 images per each well. Imaging for this experiment was
conducted on six days following the seeding of the experimental plate
on day 0. The final longitudinal image set included 12528 images
where 2376 images were selected for analysis (105 723 spheroids). The
z-height used in Figs. 4(a) and 4(c) was located at our chosen mid-
plane in the well at 320 um. Five planes above and below the midplane

1.0
0.44 Expert 1
0.8

- 06 Expert 2

Noisy

-04  saavy

0.2 0.2
CTG- 0.38 0.26 b
0.0 0.0

Expert 1 Expert 2 SAAVY  CTG

FIG. 3. Pearson’s R correlation analysis presented as heatmaps comparing experts, SAAVY, and CTG for the overall (combined), clear background, and noisy background
datasets. Red indicates R values closer to 1 (perfect, positive correlation), and blue indicates no correlation. CTG values are poorly correlated with all other measurements
regardless of the data subset. This is likely due to the relative interpretability of CTG results.

APL Bioeng. 8, 016121 (2024); doi: 10.1063/5.0189222
© Author(s) 2024

8,016121-5

22:STvL oz Ainr LL


pubs.aip.org/aip/apb

APL Bioengineering

ARTICLE

pubs.aip.org/aip/apb

100

?)

801

601

401

Viability (%)

201

m
—
e
=)

Day

Average Spheroid logArea (u

@-o0pM = 1pM =M= 5pM e 10pM <= 15UM =dp= 20 pM

N © o w v
o U o un

By
=)

Day

FIG. 4. Longitudinal analysis of PDAC response to gemcitabine evaluated at whole-well resolution. (a) Images on the top row depict a representative sample well during each day of a six-
day dose-response assay. The chosen well was perturbed with 10 M drug (gemcitabine) on day 4 after imaging. Images are of the same focal plane (320 xm) throughout the course of
the experiment. The scale bar is 500 m. (b) and (c) Line plots of SAAVY application to analyze the viability and growth of spheroids at whole-well resolution across the dose-response
experiment where: (b) the raw viability of each drug-response group over the assay and (c) the average log-transformed spheroid area (1m?) of each drug-response group over time.

were included for individual spheroid analyses. However, to scan the
largest region within the center of the gel to test uniformity of SAAVY
analyses, we chose planes 40 um apart. Further details are included in
the supplementary material.

Gemcitabine, an anti-metabolite therapeutic commonly used to
treat pancreatic cancer, was used for compound perturbation at con-
centrations of 1, 5, 10, 15, and 20 uM. We included wells of untreated
PDAC spheroids for a positive control. Treatment was added after
imaging on day 4 to all wells using appropriate volumes of a stock
100 uM solution of gemcitabine in DMSO. An example well from the
10 uM perturbation group was highlighted in Fig. 4(a) to note the
change in morphology and color of spheroids over time in this
experiment.

Whole-well viability, plotted by treatment group, is presented in
Fig. 4(b). Critically, we did not normalize the reported viabilities in this
plot and used the raw output from SAAVY to emphasize the low error
within repeated sample conditions. The decreased viabilities reported
by SAAVY on days 1 and 2 is likely due to the smaller size of the sphe-
roids at this time, specifically taking into consideration that our train-
ing was done on day 4 and day 6 spheroids. However, the stability of
viability across days 3 and 4 of spheroid growth is suggestive of the
overall reliability of SAAVY to track samples across different days.

SAAVY detects viability responses across all sample groups. The
untreated and 1 uM groups trend similarly for viability across all days.
Interestingly, the mechanisms of compound diffusion are potentially
identified in our image-based assay as well. We note a delayed
spheroid-death response from the 5 M concentration, perhaps due to
diffusion time through the gel leading to decreased availability of com-
pound 24-h after treatment compared to 48-h post-treat. In contrast,

we see a smaller change in viability across the 15 and 20 uM concentra-
tions. Upon qualitative analysis of the images, we observed a distinctly
different morphology of the spheroids. Spheroids at these higher com-
pound concentrations look like they have collapsed on themselves,
compared to the lower (5 and 10 M) where the spheroid looks like it
has exploded and has characteristic blebbed edges suggesting cell apo-
ptosis [as shown in the day 5 and day 6 images in Fig. 4(a)].

We investigate if the decreased viability trends with spheroid
area, as we expect the area to decrease as the spheroids die. This is con-
firmed by visualizing the average logarithmic transformed area across
each day of the assay, seen in Fig. 4(c). We see an upward trend in
spheroid growth across all treatment groups through day 4 of the
assay. This metric allows us to investigate further trends in spheroid
response to compound treatments. For the control group, we see con-
tinued growth through the final day of imaging. We see an expected
decrease in the spheroid size from day 4 to day 6 in the 5, 10, 15, and
20 uM treatment groups that correlates with the decreased viability
seen on these days. For the lowest concentrations of treatment, the size
increases until day 5, though at a slightly lesser rate than the control
group, where it then stays constant between day 5 and day 6. When
taken into context with the viability data, this suggests that this smaller
concentration of compound may be enough to stall continued growth
without eradicating the tumor cells. A potential rate-based result
underscores the important role that image-based surveillance methods
play during cell viability experiments.

To further investigate these rate-based changes, we performed a
single spheroid level analysis, and we plot day 6 metrics against day 4
metrics on spheroids taken from the same sample. The scatterplot rep-
resentation in Fig. 5 underscores the visual changes that take place in
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FIG. 5. Scatter plots of individual spheroids from day 6 plotted against day 4 sphe-
roids colored according to a Gaussian kernel density estimation where blue is lower
density and red is higher density. The plots either present the viability (a) and (b) or
the log(Area) (c) and (d) for either the control group or the 10 uM gemcitabine
(GEM) concentration perturbation group.
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the sample with the introduction of perturbation compound. The
black diagonal line in each plot is a guide to the eye. Any spheroid
above the line is increasing in viability or area from day 4 to day 6;
conversely, data below the line have experienced a decrease.

In the viability plots [Figs. 5(a) and 5(b)], we see the highest den-
sity of spheroids, represented by the red colored points on the scatter,
moving from the top right of the plot in the control group to the bot-
tom right of the plot in the 10 uM concentration group. This distribu-
tion shift clearly highlights the negative viability trend in individual
spheroid response. The area plots in Figs. 5(c) and 5(d) show an inter-
esting nuance to the spheroid size. Where the whole-well analysis sug-
gests that the area of spheroids decreases with perturbations and cell
death, additional information is revealed when the data are analyzed at
the single spheroid level.

Specifically, in the control group, two spheroid size populations
are clearly identifiable. The larger of the two is increasing in size, but a
small population is decreasing. In contrast, in the GEM-treated sam-
ples, there is a uniform size population that is stagnant in size. When
analyzed in conjunction with the data in Fig. 5(b), one possible conclu-
sion is that these spheroids are all dead. This type of analysis that
blends population-level and single spheroid level data is not possible
with other approaches and opens the door to reveal new mechanistic
insights.

To round out the analysis, we compare images at different z-
planes within the well and present these data as 2D histograms sepa-
rated by day in Fig. 6. We analyzed five image planes above and below
the mid-plane, which was the data presented and analyzed in Fig. 4.
Each subsequent plane was 40 yum separated from the one before it to
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FIG. 6. 2D histograms of spheroids in the 10 uM perturbation group separated by the focal plane from imaging against the percent viability (binned in 10% increments) of all
individually identified spheroids in the dataset. The total number of spheroids identified per each plane is noted in the “total” column between the plot and the color bar. The
black bar within each plane grouping is the group’s average viability. The color bar represents the total number of spheroids within each viability bin, where red colors indicate
high counts (closer to 300) and blue indicate low counts (closer to 0) of spheroids within each of the viability bins. Data are segmented by day accordingly. Subplots are for the

day of experiment: (a) day 1, (b) day 2, (c) day 3, (d) day 4, (e) day 5, and (f) day 6.
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span the middle region of the spheroid-laden hydrogel. This spacing
avoids interface effects, allowing us to capture the bulk characteristics.
Further details are included in the Supplemental Information.

We extracted information on each individual spheroid within the
images corresponding to the plane. All the 105723 segmented spheroids
are present in the plots detailing this analysis, with the other perturba-
tion groups and area visualizations included in the supplementary mate-
rial. In Fig. 6, we see the same trend of increasing spheroid viability
across days 1-4 until perturbation, followed by decreasing viability on
days 5 and 6. Importantly, we note the consistency of SAAVY to assign
variabilities within each of these planes. The average for each plane dis-
tribution is consistent across each grouping and each day.

The individual spheroid analysis presented in Figs. 5 and 6 sug-
gests that SAAVY can uniformly identify the overall spheroid popula-
tion within the growth matrix, and SAAVY analysis does not lose sight
of overall response dynamics of spheroids within the entire culture.

lll. CONCLUSIONS

We develop and validate a method to quantitate viability of 3D
tissue cultures in a label-free, nondestructive, and longitudinal manner
that easily integrates into existing tissue culture imaging procedures.
We showed comparable quantification using our algorithm, SAAVY,
to human expert estimation in both clear and noisy background
hydrogels with high tolerance to noise. We found improvements in
classification ability and sensitivity over standard CTG assay measure-
ment. Further, we showed the ability of SAAVY to longitudinally track
3D spheroid growth and viability for both untreated and therapeuti-
cally treated spheroids. Our algorithm uses the same principle that
human experts use to evaluate images yet streamlines the process by
automation. This facilitates integration of our viability method into
standard tissue culture procedures in a robust and time-independent
manner. The ability of our algorithm to output results of “no spheroid”
as well as quantitative morphological metrics when analyzing 3D tissue
culture constructs adds another analysis level on top of typical live/
dead classification and can provide more information to an experi-
mentalist regarding growth characteristics of a sample.

With the augmentation of biomedical imaging with computer
vision and other CNN approaches, it is possible to further develop
label-free imaging methods. Our system only covered the supervised
training of one tissue spheroid type, PDAC. The open-source nature of
our algorithm may allow for user-specified training of different kinds
of 3D spheroid culture images as well as tunability of the viability algo-
rithm to suit the characteristics of other cultures. There is opportunity
to expand the training data of SAAVY beyond one-spheroid type and
utilize other deep-learning methods, such as unsupervised learning, to
expand the capabilities of SAAVY. This work considered the plane of
best representation of each imaged spheroid in the experimental plates.
To truly evaluate efficacy of compounds and materials, it is important
to utilize the full reconstructive capabilities when merging 3D imaging
with deep learning. The area analysis in this study and other research
points toward the importance of the ability to study fully reconstructed
3D cultures in supporting drug discovery and uncovering drug affects
on overall growth dynamics.”” In this context, improved monitoring
may improve rigor in its ability to compare across experiments. The
time-agnostic and nondestructive manner of this algorithm quantifies
the qualities that researchers often judge when monitoring their cul-
ture. With further expansion of our training dataset to include various
disease types and 3D tissue culture systems, we believe that SAAVY

pubs.aip.org/aip/apb

may prove a useful tool for real-time analysis and can complement
image-based 3D culture assays where viability must be assured.

IV. METHODS
A. Tissue culture

Mouse-derived pancreatic cancer (PDAC) spheroids (line 8-14F-
7: KRAS G12D, PTEN loss, COX2 overexpression, female, 2 weeks old
at the time of sacrifice) were used. Pancreatic cancer spheroids were
cultured using an established protocol” included in the supplementary
material. For samples that do not include any nanoparticles, the cell-
laden hydrogel solution was plated in 10 ul increments in the center of
the wells on an opaque-walled 96-well plate (Corning). For samples
that included nanoparticles, nanoparticle solutions were combined
with cell-laden solutions to the desired concentration of cells and
nanoparticles then plated in the same manner mentioned above.

Images were taken of all seeded wells on the day of seeding (day
0, D0). The plates were left to incubate until day 4 (D4) where negative
control wells were treated with 10 uM gemcitabine added to the cell
media and images were captured of all wells. We incubated the plates
for an additional two days until day 6 (D6) where we took final images
of all then performed a 3D CellTiter Glo (CTG) assay (Promega) to
measure the metabolic activity of the spheroids grown in each condi-
tion. CTG was performed according to the documented protocol pro-
vided by Promega and read using a BioTex plate reader for
luminescent detection at 560 nm. Dose-response assays were plated in
the same manner described above and imaged at 320 um above the
bottom of the well plate for consistent cross sections across all six days
of experimental growth. Images were exported from the Operetta CLS
microscope with a brightfield correction factor applied to images to
reduce vignetting from background light within the imaged gel.

B. Image datasets

Our datasets include brightfield images taken during various
experiments, as noted in the tissue culture methods section above.
PDAC images were taken on an ECHO Revolve, 4x/0.13 objective
lens, or Operetta CLS with 5x/0.16 objective lens. ECHO images were
saved and exported in TIFF format. Images from CLS were exported
as PNG with a brightfield correction applied by the instrument soft-
ware to remove a vignette from the instrument’s inhomogeneous light
source. Both were converted to JPG and digitally resized to
1024 x 1024 for SAAVY viability analysis. The complete PDAC set
included 1328 images. Of these, 24 images were randomly selected for
training, and 416 images were used for the experimental viability esti-
mations where 136 were CTG matched. The longitudinal dataset
included 12 528 images where 2376 were selected for analysis.

C. Data training, pre-processing, and final run time

We first train SAAVY using a pre-existing image set from MS
COCO pretrained general model for transfer learning. We trained for
20 epochs. Based on analysis, we used the 15th checkpoint for image
production due to continuous loss after this point (Fig. S3). Using the
training dataset detailed above, we annotate the 24 training images
using VIA Image Annotator (2.0.11, Oxford) to specifically identify
cell spheroids. The total computational time for SAAVY on the 416-
image set is 2min and 5s (running an RTX 3080 and Intel Core i9-
10850K stock).
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D. Post hoc analysis

We assess confusion matrices for two classifications: spheroid/no
spheroid and live/dead detection. Accuracy and F1-score (SI, EQ-3,4)
were calculated where appropriate to get an overview of the perfor-
mance of SAAVY as compared to experts and how the experts com-
pare to each other. We assessed data matching by first converting data
to their respective probability density function and then calculating the
multiple distance metrics to assess the distances between all viability
estimation methods (Table S5).

Before performing any statistical analyses, we assessed overall
normality of the data according to the group analyzed. Where
appropriate, non-normal data were estimated normal according to
the central limit theorem and the appropriate groupwise analyses
were applied (either repeated measured analysis of variance with
Tukey post hoc test or related t-test for normal data or Wilcoxon
for nonparametric data from small samples). All analysis was com-
pleted in Python with the appropriate libraries noted in the supple-
mentary material.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following: (1) 3D culture
and experimental preparation methods, (2) dataset generation, (3)
SAAVY development, (4) analysis, and (5) experimental metadata,
and also extensive data from our single spheroid and planar analysis in
additional plots.
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