

1 **Title:** A single septin from a polyextremotolerant yeast recapitulates many canonical functions
2 of septin hetero-oligomers.

3 **Affiliations:** Grace E Hamilton¹, Katherine N Wadkovsky,¹ Amy S Gladfelter²

4 ¹University of North Carolina

5 ²Duke University School of Medicine, Department of Cell Biology

6 **Running Head:** Biochemistry of Group 5 septin AspE.

7 **Abbreviations:** List only nonstandard abbreviations that are used three or more times in the text.

8 **Abstract:** Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi.
9 Septins are conserved cytoskeletal proteins and key contributors to cell polarity and
10 morphogenesis. They sense membrane curvature, coordinate cell division, and influence
11 diffusion at the plasma membrane. Four septins homologs are conserved from yeasts to humans,
12 the two systems in which septins have been studied most extensively. But there is also a fifth
13 family of septin proteins that remain biochemically mysterious. Members of this family, known
14 as Group 5 septins, appear in the genomes of filamentous fungi, and thus have been understudied
15 due to their absence from ascomycete yeasts. *Knufia petricola* is an emerging model
16 polyextremotolerant black fungus that can serve as a model system for understudied Group 5
17 septins. We have recombinantly expressed and biochemically characterized *KpAspE*, a Group 5
18 septin from *K. petricola*, demonstrating that this septin—by itself *in vitro*—recapitulates many
19 of the functions of canonical septin hetero-octamers. *KpAspE* is an active GTPase that forms
20 diverse homo-oligomers, senses membrane curvature, and interacts with the terminal subunit of
21 canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern
22 the higher order structures formed by canonical septins, which in *K. petricola* cells form
23 extended filaments. These findings provide insight into how septin hetero-oligomers evolved
24 from ancient homomers and raise the possibility that Group 5 septins govern the higher order
25 structures formed by canonical septins.

26

27 **Significance Statement:**

28 • Septins are understudied cytoskeletal proteins. Here, we biochemically characterized
29 *KpAspE*, a novel Group 5 septin from a polyextremotolerant black fungus.
30 • *KpAspE* in isolation recapitulates many properties of canonical septin hetero-octamers *in*
31 *vitro* and interacts with the Cdc11, the terminal subunit of those octamers.
32 • These findings provide insight into how ancient septins may have evolved and diversified
33 from homopolymers and suggest that many of the septin functions were present in the
34 ancestral protein.

35

36

37 Introduction

38

39 The dynamic protein filaments of the cytoskeleton allow cells to sense and change their
40 shapes, an ability fundamental to their survival. Septins are perhaps the least-understood
41 polymers of the cytoskeleton. But they participate in many essential cellular processes, including
42 cytokinesis, membrane organization, polarization, and morphogenesis (Field et al., 1996;
43 Gladfelter et al., 2005; Longtine et al., 2000; McMurray & Thorner, 2009). Unsurprisingly,
44 septin dysfunction is linked with numerous human diseases, including male infertility and cancer
45 (Dolat et al., 2014). Septins are conserved across eukaryotes (with the exception of land plants)
46 (Nishihama et al., 2011; Shuman & Momany, 2021), but they are most intensively studied in the
47 system in which they were discovered: *S. cerevisiae* (Hartwell, 1971).

48 In budding yeast, the five mitotic septins assemble stepwise into palindromic hetero-
49 octamers, the terminal subunit of which may be either Cdc11 or Shs1 (Khan et al., 2018; Weems
50 & McMurray, 2017) (Figure 1). Octamers contain two kinds of interfaces: NC- interfaces made
51 up of the N- and C-termini of the two interacting septins; and G-interfaces that occur through the
52 GTPase domains of both septins (Kim et al., 2012). All septins contain a central P-loop GTPase
53 domain, although not all hydrolyze GTP (Versele & Thorner, 2004). GTP binding and hydrolysis
54 rates affect oligomer composition (Weems et al., 2014), but GTP hydrolysis by septins has been
55 difficult to directly detect in cells (Vrabioiu et al., 2004). Septin octamers are the predominant
56 species in the cytoplasm of fungal cells (Bridges et al., 2014), but octamers at the plasma
57 membrane self-assemble into diverse higher-order structures including filaments, bundles, bars,
58 meshes, and collars (Bridges et al., 2014; DeMay et al., 2011; Hernández-Rodríguez et al., 2012;
59 Hernández-Rodríguez et al., 2014). *In vivo* and *in vitro*, septins localize to regions of positive
60 membrane curvature, using an amphipathic helix in the C-terminus of Cdc12 (Bridges et al.,
61 2016; Cannon et al., 2019; Shi et al., 2023). The ability to sense membrane curvature has also
62 been demonstrated in human septins (Bridges et al., 2016; Nakazawa et al., 2023).

63 The number of septin genes varies between organisms, from as few as one in the green
64 alga *Chlamydomonas reinhardtii* to as many as a dozen in humans (Shuman & Momany, 2021).
65 Opisthokont septins are presently classified into five Groups, with members of the same group
66 able to occupy orthologous positions in septin heteropolymers (Delic et al., 2024; Kinoshita,
67 2003; Shuman & Momany, 2021). For example, *S. cerevisiae* Cdc11 and Shs1 are both Group 3
68 septins, as one or the other occupies the terminal positions in every septin octamer. The extant
69 diversity of septin orthologs and paralogs is thought to be due to a history of gene duplication
70 and divergence (Auxier et al., 2019; Cannon et al., 2023). This suggests that septin octamers, like
71 many hetero-oligomeric proteins, evolved from an ancestral homo-oligomer (Mallik & Tawfik,
72 2020). Thus, any modern septins that exist primarily as homo-oligomers may offer us a window
73 into the evolutionary history of septins.

74 The vast majority of studies on opisthokont septins focus on members of Groups 1-4,
75 which assemble into canonical hetero-octamers. Far less is known about Group 5 septins, which
76 are found in filamentous fungi (Delic et al., 2024; Shuman & Momany, 2021). Septins have also
77 been identified in the genomes of some non-opisthokonts, including ciliates, diatoms,
78 chlorophyte algae and brown algae (Delic et al., 2024; Shuman & Momany, 2021; Vargas-Muñiz
79 et al., 2016; Yamazaki et al., 2013). In the ciliate *Tetrahymena thermophila*, all three septins in its
80 genome are Group 8 septins; they localize to and stabilize mitochondria (Wloga et al., 2008).
81 The green alga *Chlamydomonas reinhardtii* has only one septin gene, the product of which is a

82 Group 6 septin known as *CrSEPT*. Crystal structures of *CrSEPT* reveal that it dimerizes across a
83 G-interface and that a catalytic arginine residue is essential for dimerization (Pinto et al., 2017).
84 Intriguingly, this arginine finger, which is present in the majority of non-opisthokont septins, is
85 also present in some Group 5 septins, and they are the only group of opisthokont septins with this
86 feature (Delic et al., 2024). To our knowledge, there is no structural data on Group 5 septins, not
87 even in the model filamentous fungus *Aspergillus nidulans*, in which the Group 5 septin known
88 as AspE was first described (Hernández-Rodríguez et al., 2014; Momany et al., 2001). *In vivo*
89 studies of *AnAspE* suggest that it does not incorporate into heteropolymers with the canonical
90 septins of Groups 1-4, although it was required for their assembly into higher-order structures
91 during multicellular development (Hernández-Rodríguez et al., 2014). Biochemical data on
92 fungal Group 5 septins is lacking, despite the importance of septins in the virulence of plant and
93 human fungal pathogens (Boyce et al., 2005; Chen et al., 2016; Dagdas et al., 2012; Kozubowski
94 & Heitman, 2010; Warenda et al., 2003).

95 In order to address this gap in our knowledge, we turned to black yeasts, a group of
96 melanized ascomycetes that have adapted to survive in diverse extreme environments and exhibit
97 dramatic plasticity in their morphology and mode of cell division (Goshima, 2022; Mitchison-
98 Field et al., 2019; Nai et al., 2013; Ruibal et al., 2009; Réblová et al., 2013). *Knufia petricola* is
99 an emerging model black fungus for which genetic tools have been developed (Erdmann et al.,
100 2022; Voigt et al., 2020). In addition to orthologs of the canonical septins (members of Groups 1-
101 4), we identified a Group 5 septin in the genome of *K. petricola*. We recombinantly expressed
102 and purified this septin, dubbed *KpAspE* (for its *Aspergillus* ortholog). *in vitro*, *KpAspE*
103 recapitulates many of the features of canonical septin hetero-oligomers. Gel filtration and mass
104 photometry indicate that *KpAspE* forms homo-oligomers in a pH-dependent manner. In a
105 membrane curvature-sensing assay, *KpAspE* appears able to both bind supported lipid bilayers
106 and discriminate between different degrees of positive membrane curvature—in a similar manner
107 to heteropolymeric septins. Of the four canonical *Knufia* septins, only *KpCdc11* was able to
108 interact with *KpAspE* in a yeast two-hybrid assay. Taken together, these results suggest that
109 *KpAspE* homo-oligomers may replicate some of the most vital functions of canonical septin
110 hetero-oligomers. Additionally, we found that *K. petricola* undergoes a dimorphic switch to
111 pseudohyphal growth in response to carbon starvation and that the canonical septin *KpCdc12*
112 localizes to thick filaments in both round and pseudohyphal cells.

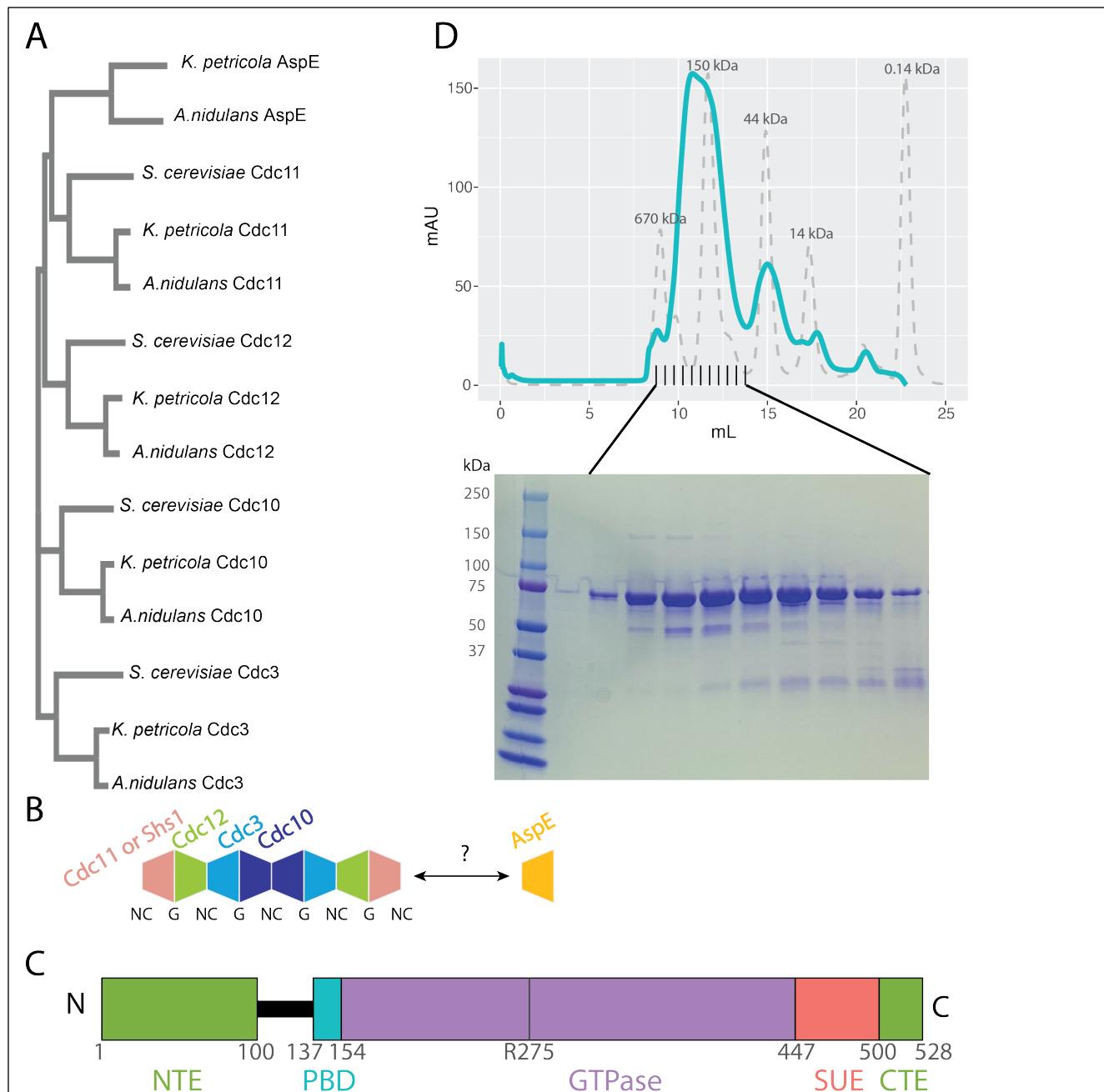
113 Results

114 Identification and purification of a *K. petricola* Group 5 septin

115 In order to begin characterization of the septin cytoskeleton in the emerging model fungus *K.*
116 *petricola*, we used the basic local alignment search tool (BLAST) (Altschul et al., 1990) to search
117 the published genome (GenBank assembly GCA_002319055.1) for homologs of the canonical
118 budding yeast septins. We identified five septin genes in the *K. petricola* genome, four of which
119 were orthologous to the four canonical mitotic septins of budding yeast (Figure 1A) These
120 septins (Cdc11, Cdc12, Cdc3, Cdc10) assemble to palindromic hetero-octamers in *S. cerevisiae*
121 (Khan et al., 2018; Weems & McMurray, 2017) (Figure 1B). We also identified a fifth *K.*
122 *petricola* septin that resembled the Group 5 septin AspE from model filamentous fungus
123 *Aspergillus nidulans* more closely than it did any budding yeast septin (Figure 1A). The
124 predicted *K. petricola* protein shared 55.93% sequence identity with *AnAspE*. Of the *S.*
125 *cerevisiae* septins, *ScCdc11* showed the greatest sequence identity with *KpAspE* (22.74%).

126 All septins share a conserved structure: a central GTPase domain flanked by a polybasic
127 domain (PBD) and the septin unique element (SUE). This conserved core is in turn flanked by
128 N- and C-terminal extensions whose lengths vary dramatically between septins (Shuman &
129 Momany, 2021). Thus, the start- and endpoints of the *K. petricola* septins genes could not be
130 deduced from simple alignment with orthologous gene sequences. We used the AUGUSTUS
131 software to predict initiation sites, stop codons, and splice sites for all five *K. petricola* septin
132 genes (Stanke & Morgenstern, 2005). In order to confirm these predictions experimentally, we
133 used rapid amplification of cDNA ends (RACE) (Frohman, 1993) (Supp. Table 1). Like most
134 Group 5 septins, *KpAspE* contains a relatively long NTE (Figure 1C). Every *K. petricola* septin
135 gene contained at least one intron (Supp. Table 2), and the positions of some introns were
136 conserved relative to the orthologous *A. nidulans* genes (Supp. Figure 1). Exon locations were
137 corroborated by comparison to an independently collected RNA-seq dataset (Julia Schumacher,
138 personal communication.)

139 In order to biochemically characterize the *KpAspE* protein, we codon-optimized the
140 coding sequence of the gene for *E. coli* and incorporated this sequence into an expression vector
141 with a cleavable N-terminal 6xHis-thioredoxin tag, for affinity purification and enhanced yield
142 and solubility, respectively (Savitsky et al., 2010). The recombinantly expressed protein was
143 predicted to have a molecular weight of 72.97 kDa prior to TEV cleavage of the N-terminal tag
144 and a molecular weight of 59.04 kDa after cleavage. *KpAspE* was purified by nickel affinity
145 chromatography followed by size exclusion chromatography, where it eluted from the column at
146 about the same volume as a 150-kDa protein standard, consistent with the un-cleaved protein
147 behaving primarily as a dimer in solution (Figure 1D).


148 We next examined the biochemical and biophysical properties of *KpAspE* protein to
149 evaluate its behavior compared to canonical septin hetero-octamers.

150

151 ***KpAspE* is an active, slow GTPase**

152 Septins bind and in some cases hydrolyze GTP. Of the canonical *S. cerevisiae* septins,
153 Cdc10 and Cdc12 are active GTPases *in vitro*, while Cdc3 and Cdc11 are not (Versele &
154 Thorner, 2004). Based on the presence of conserved residues involved in nucleotide binding
155 (D329) and hydrolysis (R275), we hypothesized that *KpAspE* has GTPase activity.

156 In order to test for GTPase activity of *KpAspE*, we first asked if this protein could bind
157 and exchange guanosine nucleotides. We used a fluorescent analog of GDP, BODIPY-GDP,
158 which emits light only when protein binding eliminates quenching between the adenine and

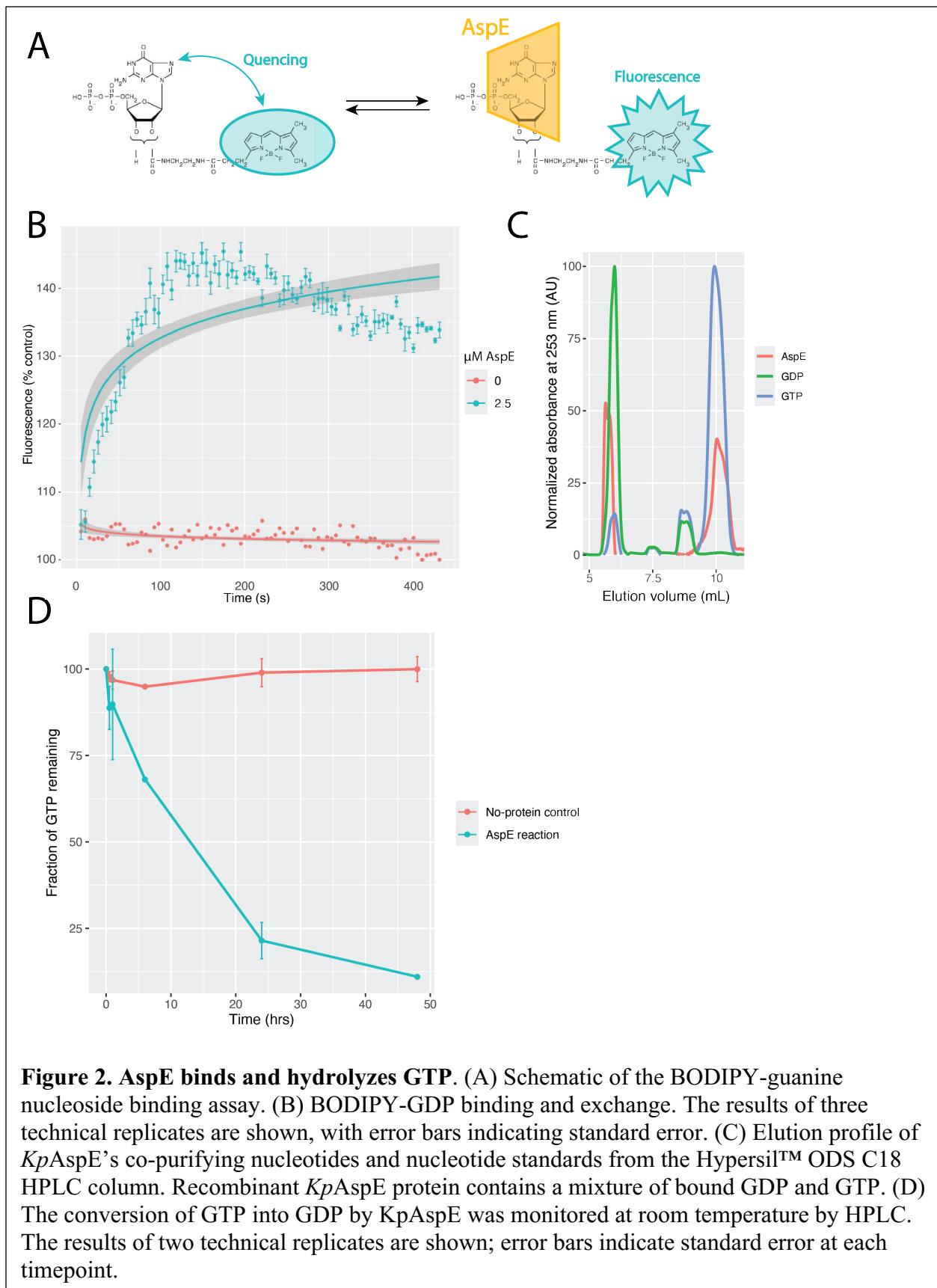
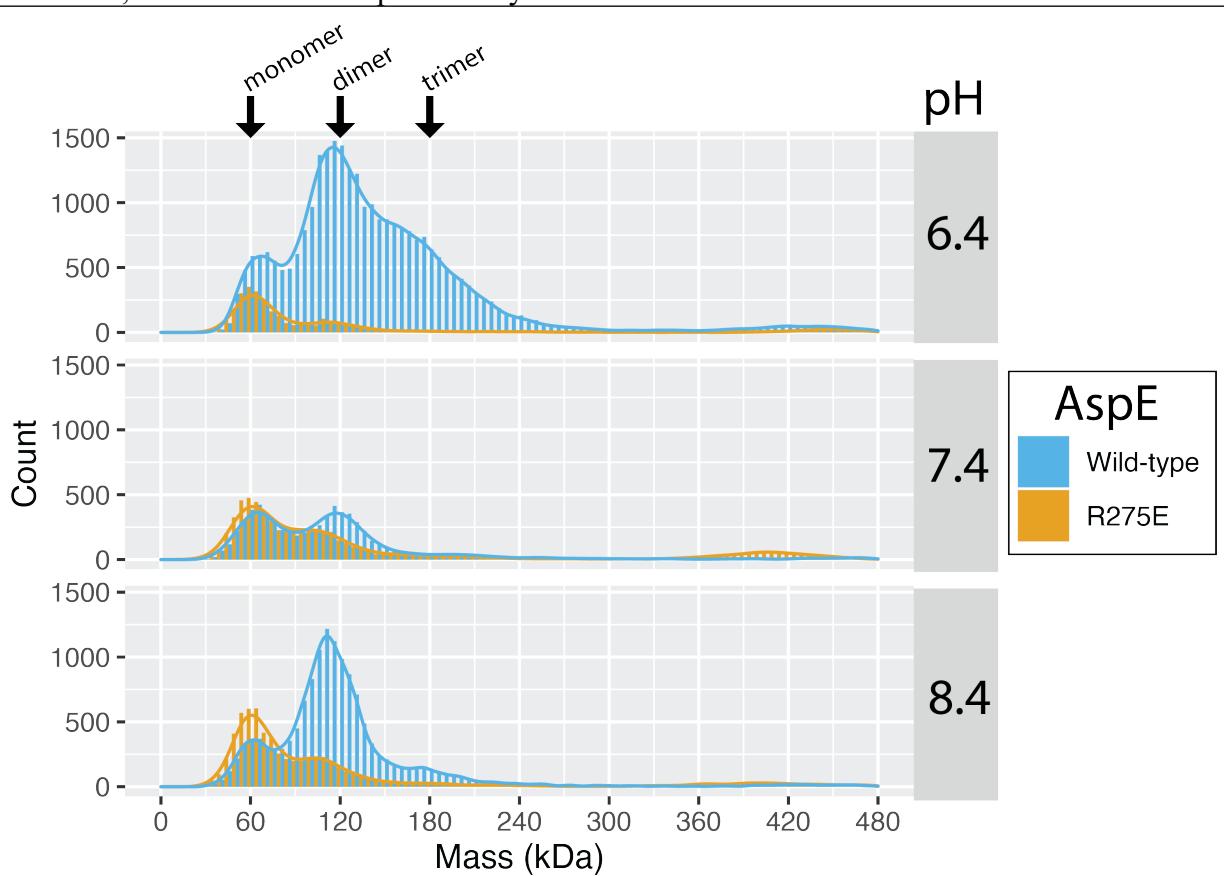


Figure 1. Identification and purification of a Group 5 septin from the emerging model fungus *K. petricola*. (A) Clustal Omega phylogenetic tree of representative fungal septins from *S. cerevisiae*, *A. nidulans*, and *K. petricola*. *S. cerevisiae* lacks an AspE homolog. (B) The palindromic structure of canonical septin hetero-octamers is made up alternating G- and NC-interfaces between septin subunits. (C) Predicted structural features of *KpAspE*. Conserved features of all septins, such as the N-terminal extension (NTE), polybasic domain (PBD), GTPase domain, septin unique element (SUE), and C-terminal extension (CTE) are indicated with boxes. A vertical line indicates an arginine finger that is conserved in many non-opisthokont septins and some Group 5 septins. (D) Chromatogram of recombinantly expressed *KpAspE* run on a Superdex 200 size exclusion chromatography (SEC) column and monitored at 260 nm as the final step of purification. Molecular weight standards analyzed on the same column are shown in gray. Below is a Coomassie-stained SDS-PAGE gel of the elution fractions. AspE has a predicted molecular weight of 73 kDa prior to cleavage of a C-terminal thioredoxin solubility tag, and the recombinant protein elutes from the Superdex column at a volume consistent with a dimer.

160 BODIPY moieties of the molecule (Figure 2A). The addition of *KpAspE* caused a rapid increase
161 in fluorescence, followed by a slow decrease, consistent with the rapid binding and exchange of
162 BODIPY-GDP by the protein (Figure 2B.)


163 Curious about the nucleotide-binding state of our recombinantly expressed and purified
164 *KpAspE*, we boiled samples to denature the protein and separate it from co-purifying
165 nucleotides, then analyzed those samples using high-performance liquid chromatography
166 (HPLC). We observed two elution peaks, which coincide with GDP and GTP standards (Figure
167 2C). We conclude that recombinant *KpAspE* protein contains a mixture of bound GDP and GTP.

168 We next asked if purified *KpAspE* could hydrolyze GTP *in vitro*. GTPase activity assays
169 were performed by incubating *KpAspE* with a ten-fold excess of GTP for different times and
170 evaluating the GTP and GDP content of the sample by HPLC. Over 48 hours, nearly all of the
171 GTP was hydrolyzed in the sample containing *KpAspE*, but not in a control reaction lacking
172 *KpAspE* (Figure 2D). We conclude that *KpAspE* is an active GTPase, albeit a very slow one
173 under the *in vitro* conditions of this assay. Based on the rapid nucleotide exchange observed with
174 BODIPY-GDP, we further conclude that the hydrolysis reaction itself—rather than nucleotide
175 exchange—is the rate-limiting factor in *KpAspE*'s slow hydrolysis of GTP.

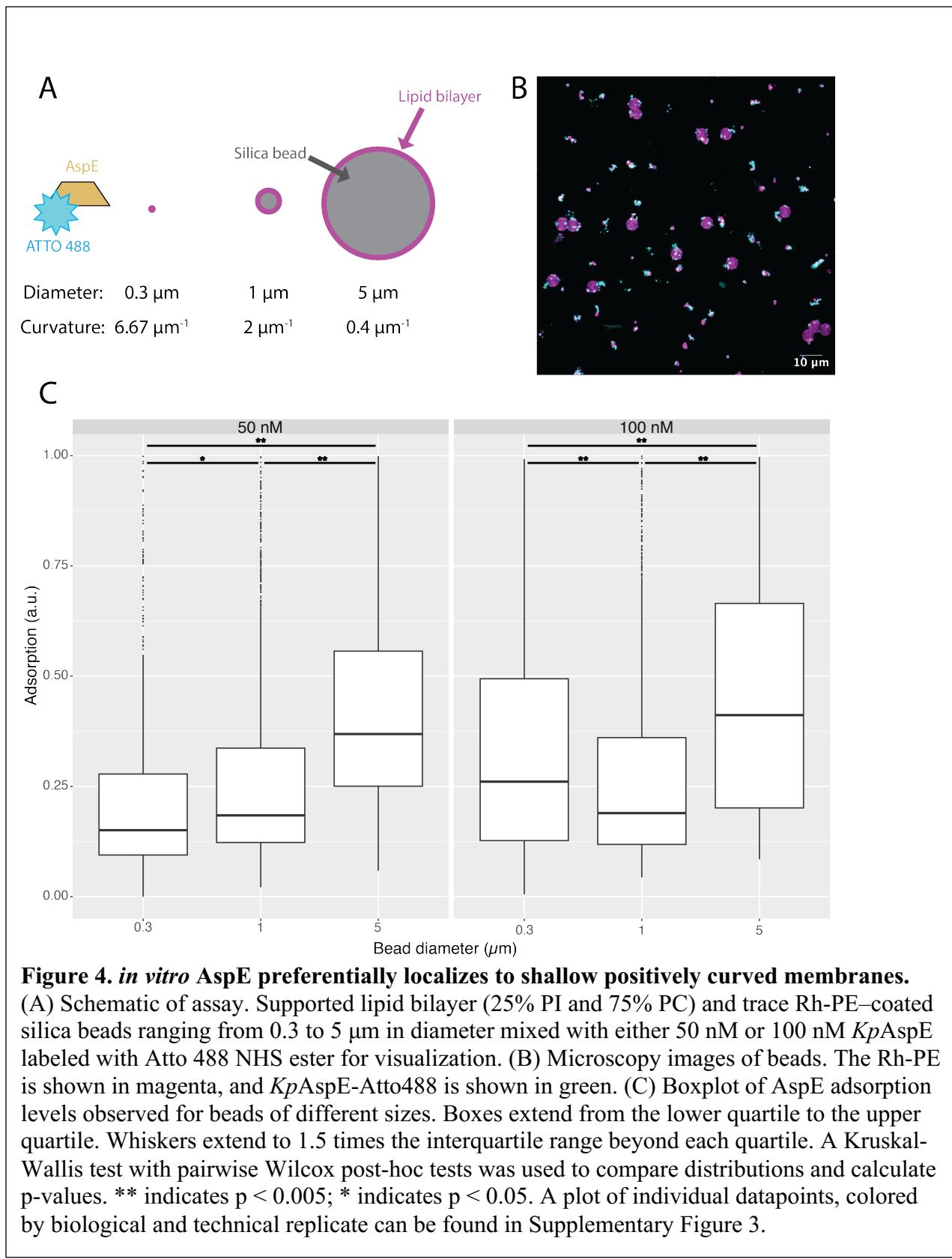
177 **KpAspE forms homo-oligomers through distinct NC- and G-interfaces**

178 Based on the size exclusion chromatography performed as the final step of protein
179 purification, *KpAspE* behaves primarily as a dimer at micromolar concentrations in purification
180 buffer (300 mM KCl). The concentration of soluble septins in the cytoplasm has been previously
181 measured at 100-200 nM for three different fungal species: *S. cerevisiae*, *S. pombe*, and *A.*
182 *gossypii* (Bridges et al., 2014). In *A. nidulans*, *AnAspE* is reported to be less abundant than
183 Groups 1-4 septins (Hernández-Rodríguez et al., 2014). In order to determine the oligomeric
184 state of purified *KpAspE* protein in a nanomolar concentration regime and under varying buffer
185 conditions, we turned to mass photometry.

Figure 3. AspE form diverse homo-oligomers in solution. Mass photometry at pH 6.4, 7.4, and 8.4. The predicted molecular weight of *KpAspE*, after cleavage of the N-terminal 6xHis-thioredoxin tag, is 59.045 kDa.

186
187 The predicted molecular weight of *KpAspE*, after cleavage of the N-terminal 6xHis-
188 thioredoxin tag, is 59.045 kDa. Analysis of *KpAspE* by mass photometry at pH 7.4, at low
189 nanomolar concentrations, yielded two major peaks: one at about 60 kDa and the other at 120
190 kDa (Figure 3). This suggests that under these conditions, *KpAspE* is found as both a monomer
191 and a dimer, in about equal abundance (Figure 3). The presence of a very small peak between 360
192 and 420 kDa may indicate the presence of larger oligomers, albeit in very low abundance.

193 We hypothesized that *KpAspE* was dimerizing across a G-interface made up primarily of
194 its GTPase domain, as has been previously reported for an algal Group 6 septin (Pinto et al.,
195 2017). Pinto and colleagues report a charge reversal mutation to the catalytic arginine finger at


196 the G-interface of *Chlamydomonas reinhardtii*'s Group 6 septin completely abrogates dimer
197 formation (Pinto et al., 2017). This arginine residue is conserved in some Group 5 septins,
198 including *KpAspE* (Delic et al., 2024), so we made the analogous mutation: R275E. This
199 mutation did not completely eliminate dimer formation by *KpAspE*, but it did shift the
200 distribution of the population to monomers as the more abundant species (Figure 3). This
201 suggests some contribution of the catalytic arginine in stabilizing the G-interface for
202 dimerization.

203 Previous work has shown that filament formation by canonical septin octamers is
204 sensitive to solution pH (Jiao et al., 2020). In order to determine if *KpAspE*-*KpAspE* interactions
205 are similarly sensitive, we varied the pH in our mass photometry experiments. At pH 6.4, we
206 observed a third species with a molecular weight of approximately 180 kDa, consistent with the
207 formation of a *KpAspE* trimer in solution, in addition to the previously observed dimer (~120
208 kDa) and monomer (~60 kDa) peaks (Figure 3). Because dimer formation appeared to occur
209 across a G-interface, trimer formation must occur across either a NC-interface or some other
210 interface that has not been previously described for septins. However, notably, the R275E
211 mutation still abrogated trimer formation at pH 6.4, causing the monomer to be the most
212 prevalent species. This suggests that dimer formation via the G-interface may be a requirement
213 for trimer formation. We then assessed the effects of increased pH and found that at pH 8.4, a
214 dimer peak predominated, although smaller monomer and trimer peaks were also present for WT
215 *KpAspE*. The R275E mutation eliminated trimers, and it rendered monomers more abundant than
216 dimers at pH 8.4. Thus, we see that the equilibria of AspE protein between monomers, dimers
217 and trimers is sensitive to pH and may involve an ordered assembly beginning with a G-interface
218 mediated dimer.

219 Recombinantly expressed and purified canonical septin octamers form filaments on
220 supported lipid bilayers *in vitro* (Bridges et al., 2014; Khan et al., 2018; Szuba et al., 2021).
221 Under the same conditions that promote filamentation of *S. cerevisiae* and human canonical
222 septins on synthetic bilayers (5-100 nM protein; pH 7.4; 25- 75 mM KCl), we did not observe
223 any filamentation of fluorescently labeled *KpAspE* (Supp. Figure 2). This could indicate that
224 polymerization into long filaments is not a function of this septin, or that conditions, cofactors,
225 and/or binding partners necessary for filamentation of *KpAspE* were not present in this assay.
226

227 ***KpAspE* exhibits a membrane curvature preference that is shallower than that of canonical 228 septins**

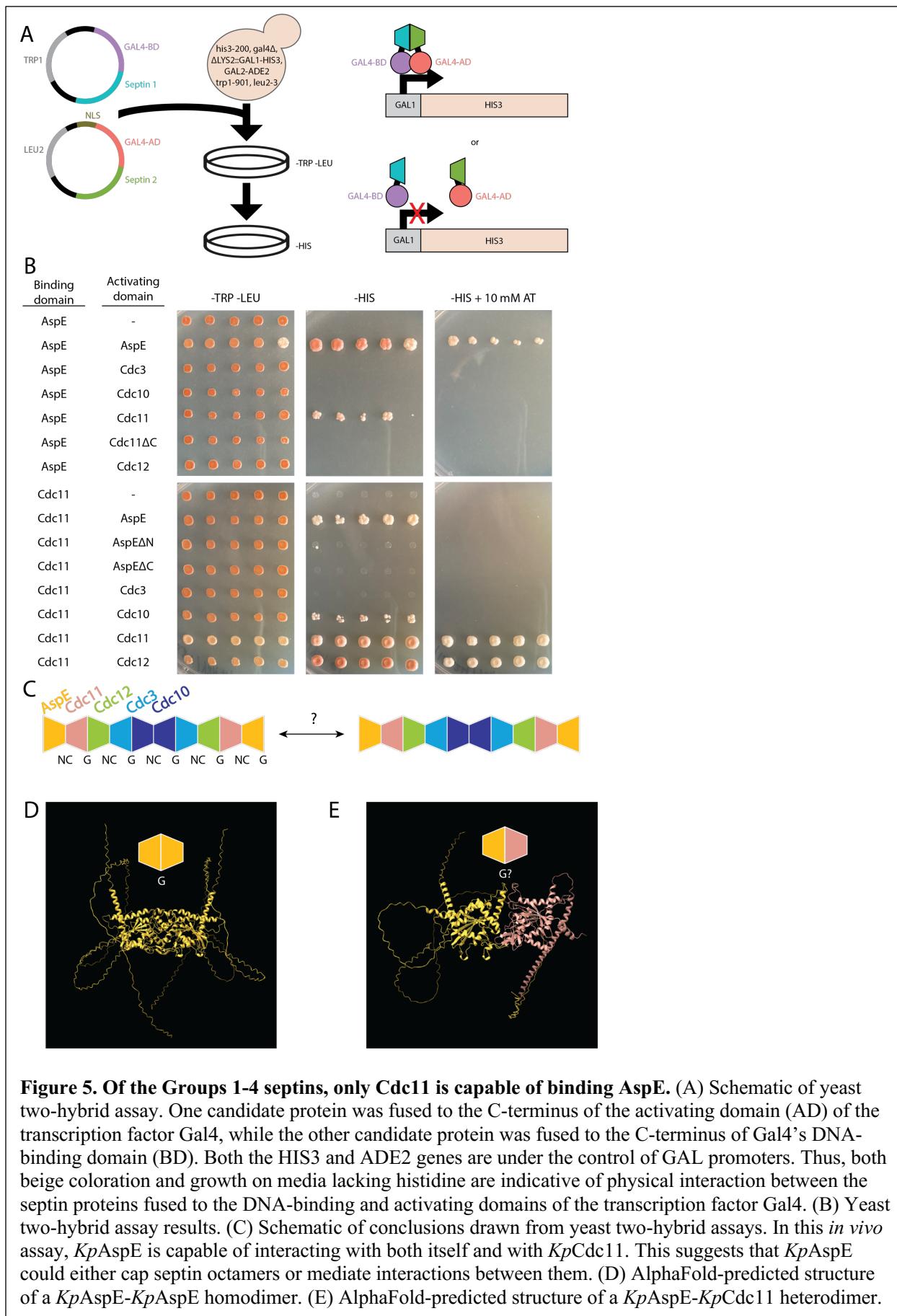
229 We next asked if *KpAspE* has the ability to sense micron-scale positive membrane
230 curvature, a feature of canonical septin oligomers. Presented with beads of different sizes coated
231 in supported lipid bilayers, both mammalian and budding yeast canonical septins preferentially
232 adsorb to 1-μm diameter beads reflecting a micron-scale curvature preference (Bridges et al.,
233 2016). Filament formation is not required for this curvature preference in some contexts (Bridges
234 et al., 2016), so we subjected purified *KpAspE* to the same curvature preference assay (Figure
235 4A-B). Presented in the same reaction with three beads of different sizes (0.3, 1, and 5 μm in
236 diameter), *KpAspE* preferentially adsorbed to the shallowest membrane curvature present in the
237 assay, i.e. to the largest beads (Figure 4). This is in contrast to *S. cerevisiae* hetero-oligomeric
238 septin complexes in a similar assay, where the highest absorption would be seen on the 1 μm
239 diameter beads (Shi et al., 2023). Because *KpAspE* preferentially adsorbed to the largest beads
240 present in the assay, it is possible that *KpAspE* actually prefers membrane curvature that is
241 shallower than any present in this experiment.

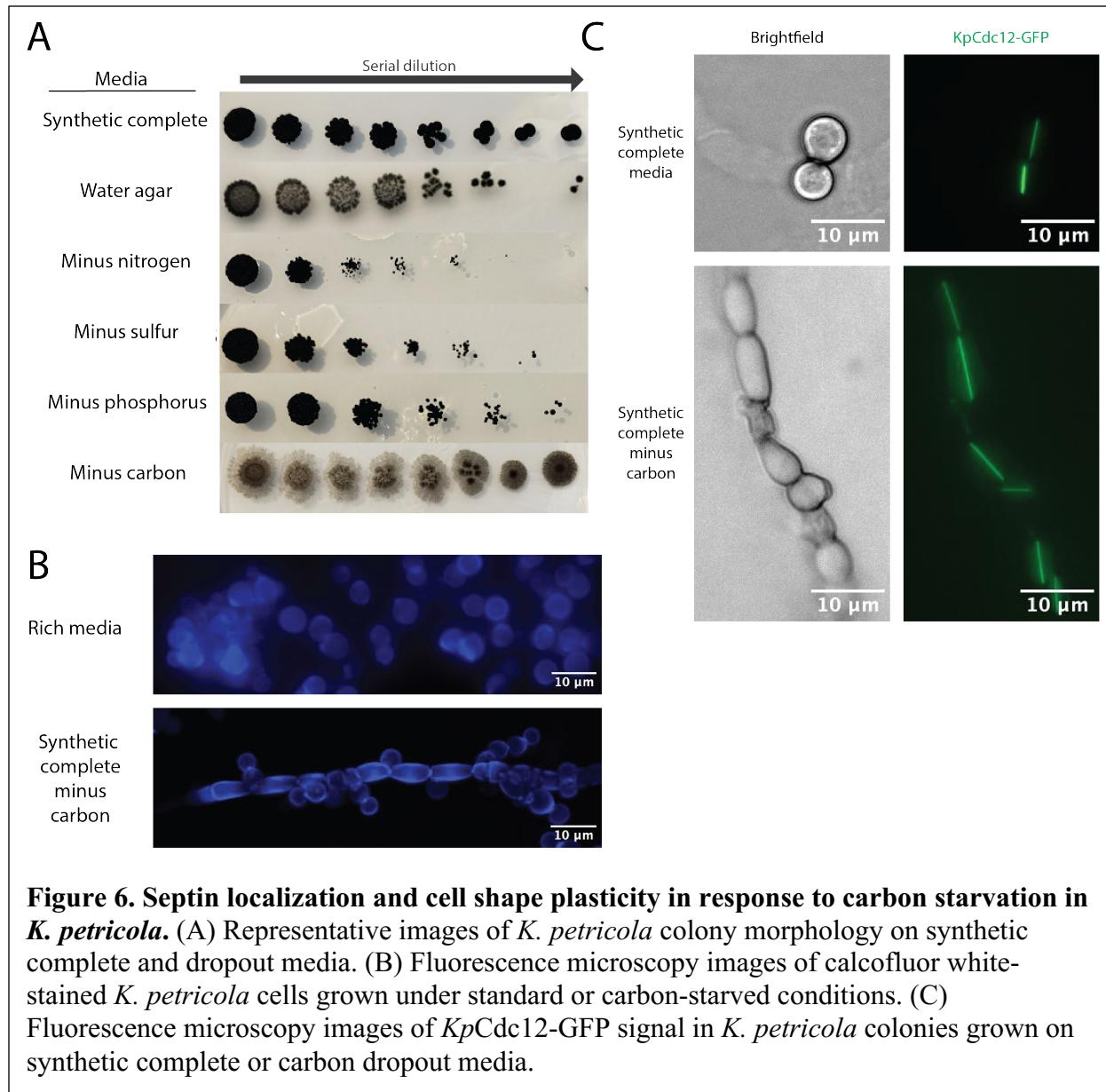
244 **KpAspE interacts with only the Cdc11 canonical septin**

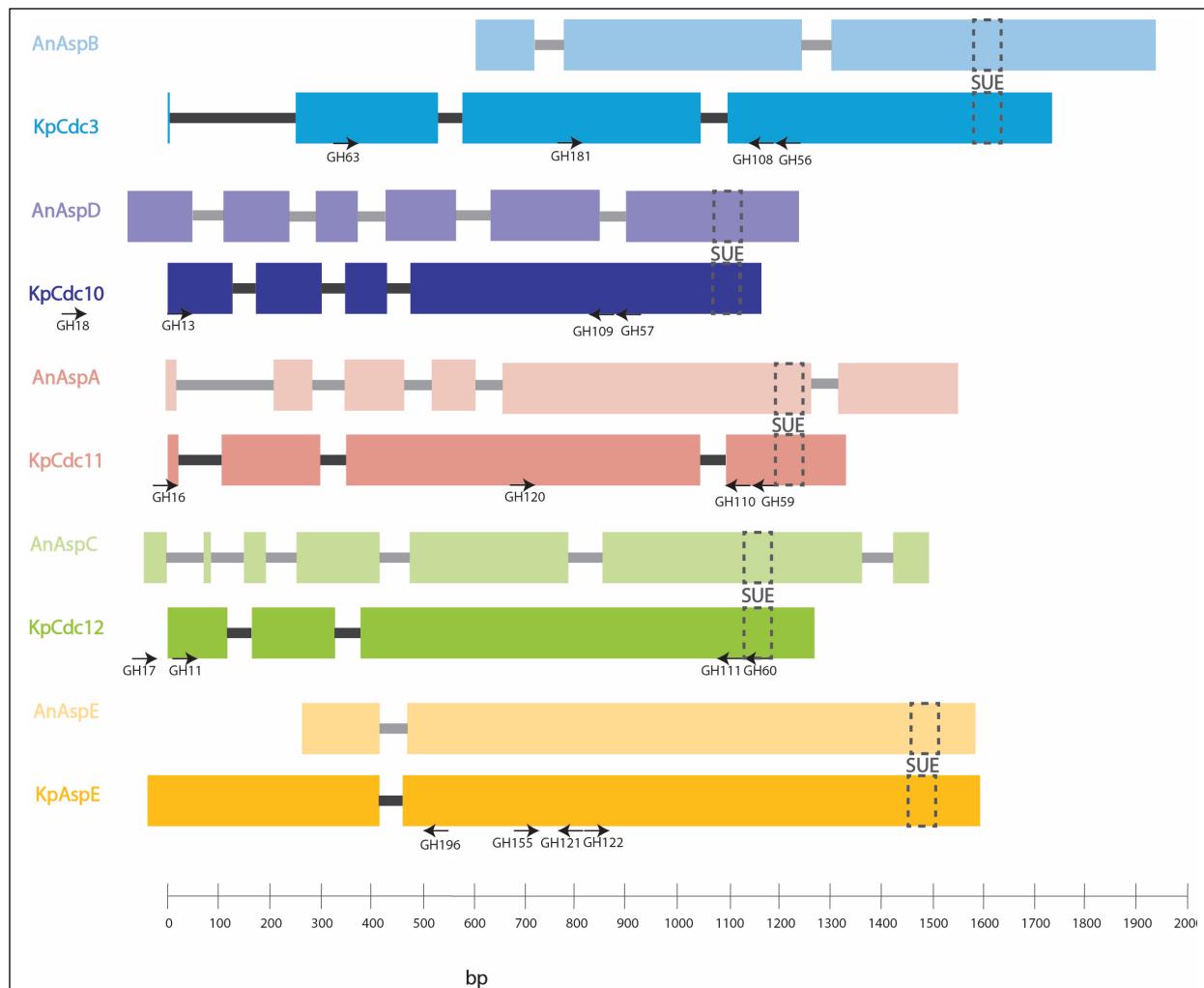
245 We next asked whether or not *KpAspE* could directly interact with any of the canonical
246 septins also present in *K. petricola*. The lack of a septin antibody that cross-reacts with *K.*
247 *petricola* septins prompted us to turn to a yeast two-hybrid assay to assess interactions. In a
248 yeast two-hybrid assay, *KpAspE* showed interaction with only one other *Knufia* septin: *KpCdc11*
249 (Figure 5). This interaction could be abrogated by either deleting the C-terminal extension
250 (amino acids 299-380) of *KpCdc11* or by deleting the N- or C-terminal extensions of *KpAspE*
251 (amino acids 1-100 and 502-528, respectively) (Figure 5B). These results were consistent
252 regardless of which septin was fused to the activating domain and which was fused to the DNA
253 binding domain of the Gal4 transcription factor (Supp. Figure 3). Removing the N- or C-
254 terminus of *KpAspE* did not prevent it from interacting with itself in the yeast two-hybrid assay
255 (Supp. Figure 3), consistent with our hypothesis that *KpAspE* dimerizes across a G-interface but
256 interacts with *KpCdc11* across a NC-interface. In order to assess the plausibility of this
257 hypothesis, AlphaFold Multimer was used to predict the structure of a *KpAspE* homodimer
258 (Evans et al., 2022). Consistent the data from our yeast two-hybrid assays, AlphaFold predicted
259 that *KpAspE* dimerizes across a G-interface (Figure 5D). We next used AlphaFold to predict the
260 structure of a *KpAspE*-*KpCdc11* heterodimer. AlphaFold also predicted that these two septins
261 would dimerize across a G-interface (Figure 5E). This seems unlikely given our finding that the
262 N- and C-termini of *KpAspE* are necessary for its interaction with *KpCdc11*. Taken together,
263 these results raise the possibility that in some circumstances *KpAspE* may engage in hetero-
264 oligomers.

265

266 ***K. petricola* transitions pseudohyphal growth in response to carbon starvation**


267 We next asked if *K. petricola* exhibited cell shape plasticity, which is a hallmark of
268 polyextremotolerant fungi and is likely related to septin function. Culturing wild-type *K.*
269 *petricola* under a variety of conditions, we noted that colonies grown on solid synthetic complete
270 media exhibited smooth edges, while those grown on water agar had fuzzy, ragged colony
271 borders (Figure 6A). Hypothesizing that the lack of a specific nutrient might trigger this change
272 in colony morphology, we then cultured wild-type *K. petricola* on solid synthetic complete
273 media lacking either nitrogen, phosphorus, sulfur, or carbon. Only under carbon starvation
274 conditions did *K. petricola* colonies recapitulate the fuzzy morphology seen on water agar
275 (Figure 6A). Examining these cells under a microscope, we noted that *K. petricola* cells grown
276 on rich or synthetic complete media are nearly spherical, while those grown under carbon
277 starvation conditions form extended end-to-end chains of more elongated cells (Figure 6B).
278 Based on the presence of calcofluor stain between the cells, indicative of septa, they do not share
279 a continuous cytoplasm, making this pseudo-hyphal growth, rather than the formation of true
280 hyphae.


281


282 **Cdc12 localizes to filaments that span the length of *K. petricola* cells**

283 Given the established role of septin proteins in controlling cell shape, we next asked
284 whether the localization patterns of *K. petricola* septins differed between round and
285 pseudohyphal cells. In order to determine the localization patterns of canonical septins, we
286 tagged the *K. petricola* Group 4 septin, *KpCdc12*, with an N-terminal GFP tag at its endogenous
287 locus. We then used fluorescence microscopy to examine the localization pattern of this septin in
288 cells grown under nutrient-rich and carbon starvation conditions. In both cases, *KpCdc12*
289 localizes exclusively to thick filaments that span the entire length of the cell (Figure 6C). It is

290 unclear if this assembly is the native organization or potentially tag-induced, but the cells
291 showed growth and shapes comparable to wild-type indicating that the tagged protein is likely
292 functional. In the case of elongated, pseudohyphal cells, the *KpCdc12* filaments align with the
293 long axis of the cell. We also labeled *KpAspE* with GFP at its endogenous locus, but no clear
294 localization pattern was observed (data not shown), perhaps because this septin is expressed at
295 lower levels than the canonical four septins (Hernández-Rodríguez et al., 2014).
296
297
298

Supplementary figure 1. Structure and products of the five *Knufia petricola* septin genes.

Intron-exon structure of the five *K. petricola* and *A. nidulans* septin genes. The locations of gene-specific primers used for rapid amplification of cDNA ends are indicated by black arrows.

302

303

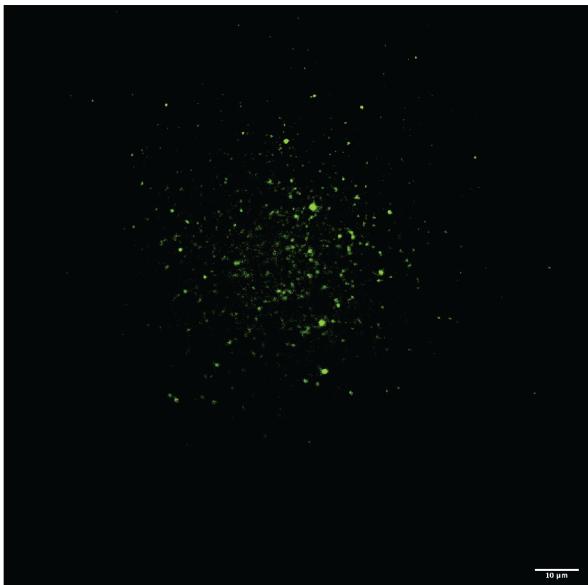
304

305 **Supplementary table 1. Gene-specific primers used for rapid amplification of cDNA ends**
306 **(RACE).**

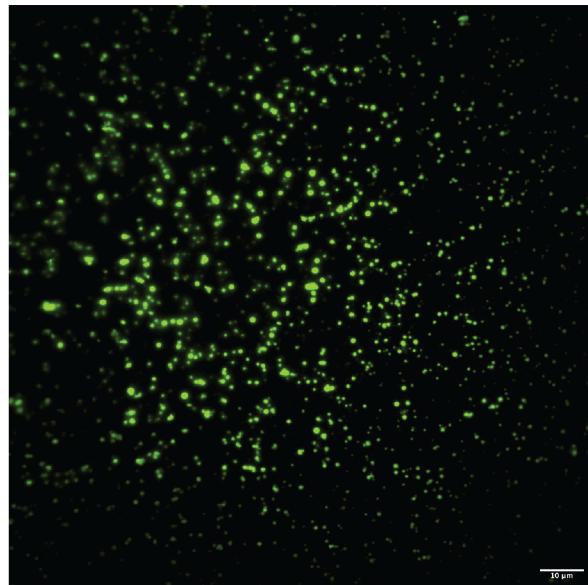
Gene	Primers used for N-terminus (5')	Primers used for C-terminus (3')
KpCdc3	GH56: TCTTCCATGTGAGTTGG GH108: TGTCGAAGCTTGACAAAGTCGCAGTGGTCC	GH63: CCATACGTCAGAGAGAGC GH181: CGGTGACTTCGTCAACAACG
KpCdc10	GH57: TTCCACGTTGATCACACC GH109: GCCGTTCACGATGATGCTCTCTCGCTG	GH18: GGGATCAGGAACGCCAATTATCCG GH13: ATGACCATGGCAATGCCGC
KpCdc11	GH59: TCTCTTTGTACCTTGACC GH110: CTCAGCTTCTCCTCTCCCGTCGAAGC	GH16: CCACGCCATGTCTTCACC GH120: ACTGGCTGAATCTAAGAACATAGAATCTAGTGGTC
KpCdc12	GH60: AGATCCTTGTGAGTCTATCC GH111: CCGATGAGTTCTGCTCCAGGCACCG	GH17: CCGAACTTCACCAACATAGAACATAGTGGTC GH11: ATGGCCCACCTCCGCGACCG
KpAspE	GH121: GATCTCACAAACCTTGCTCTCCT	GH155: ACTTGGCTTGACCCGTG

GH196: TTCTTGGCACCAATGACC

GH122: GGAGAGCAAGGTTGTGAGATC

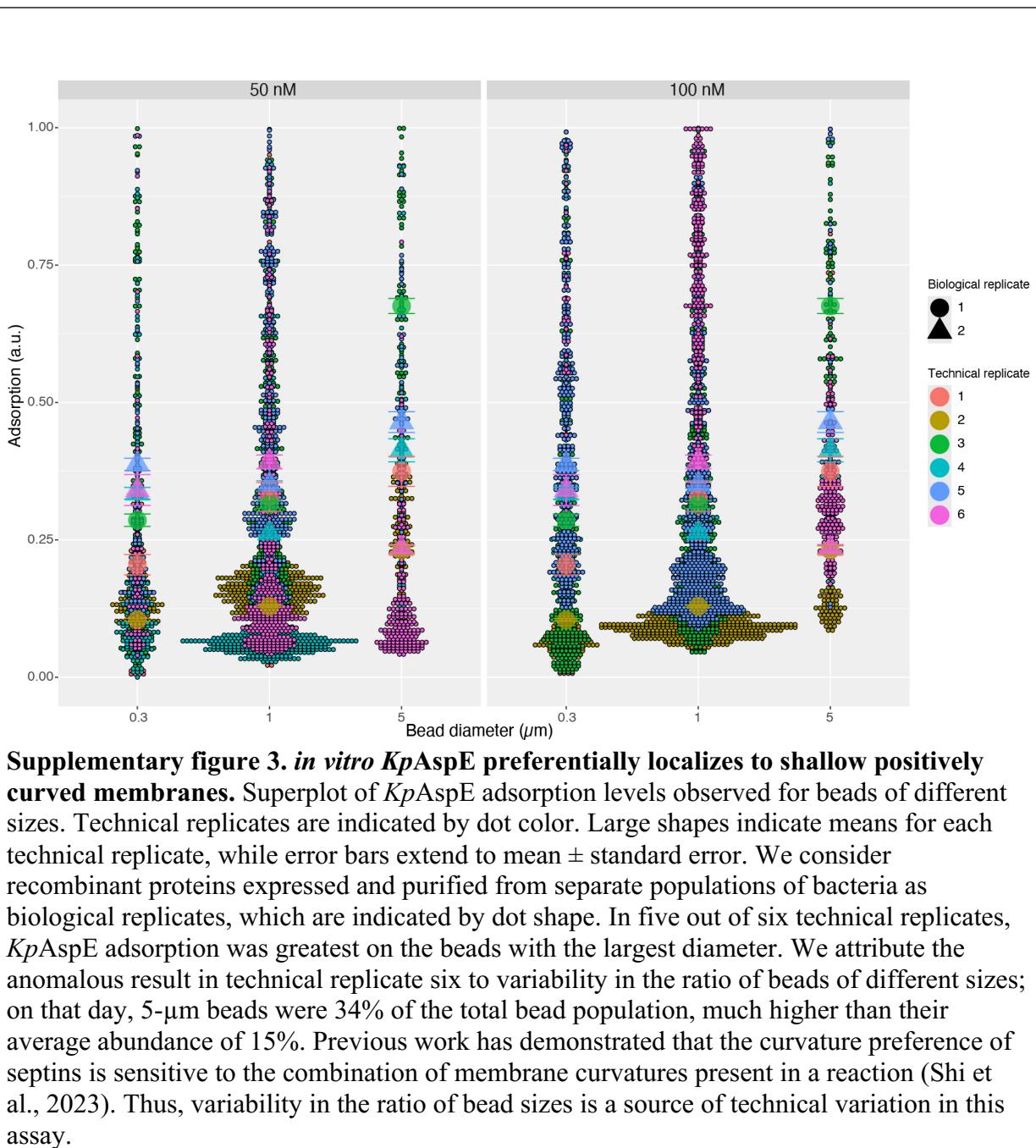

307

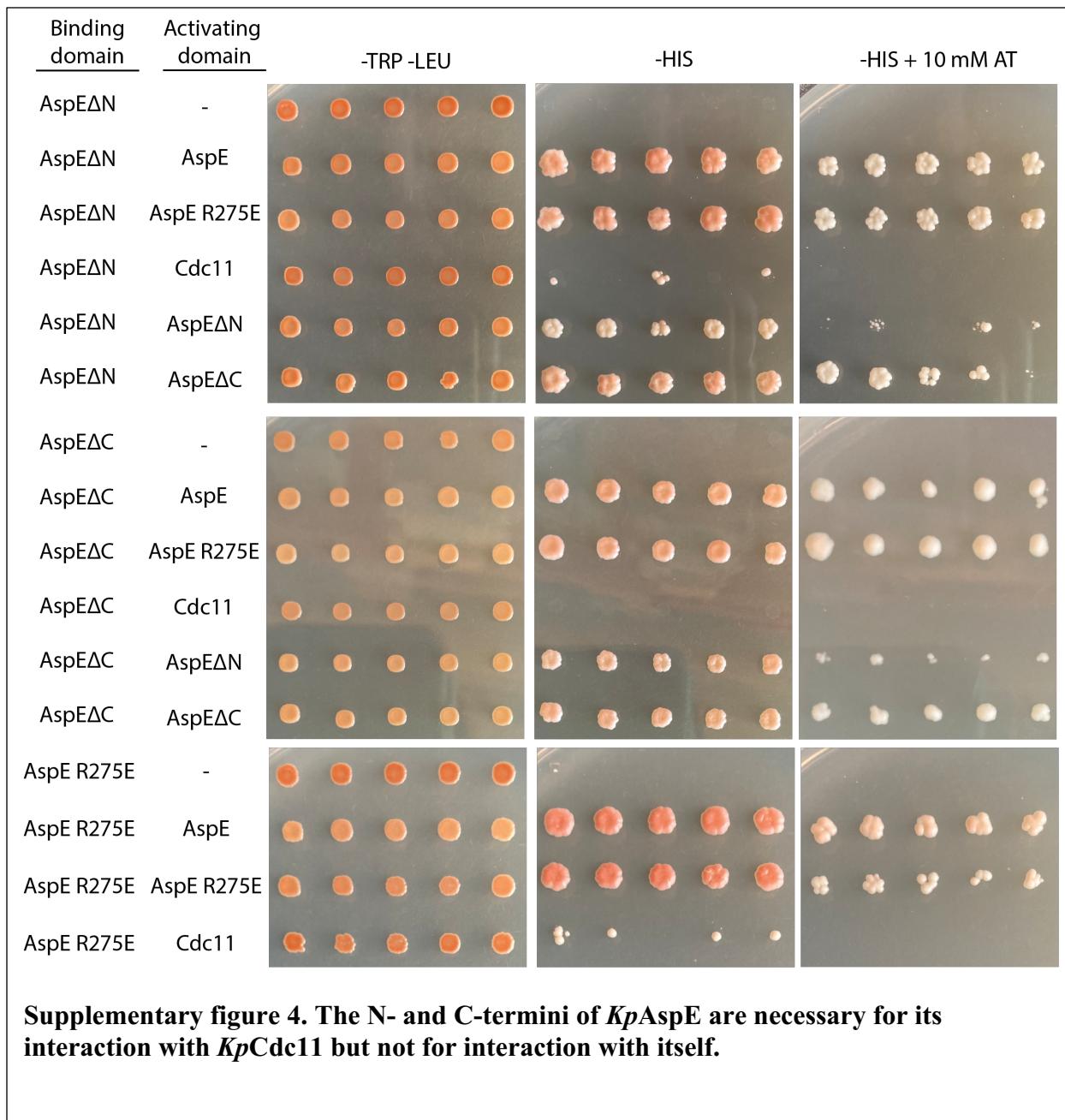
308 **Supplementary table 2. Sequences of *K. petricola* septin genes.** Introns are shown in gray;
 309 exons are shown in black and underlined. Start codons are shown in green; stop codons are
 310 shown in red.


Gene	Sequence
KpCdc3	<u>ATG</u> GGTGAGCAGCCATCTCCAATACCACAAACATCTTGTCTTCCACCTGTATCGCTTCCGATTGTATTGCTTCCGTTGTGCA ACACAACGGTGTTCGAGATGTTGTCGGCGAAACACTCGACCGTGGCAAGGGCGAAAACGCTCGATCAGTCCTATGCA CGCGGAGAAGCCACCGATGCTGAAATACCCCTCCAAGTCGGAAGAAATCTTGGAAAGATCAGCTAATATAATGTCGGTG TAG <u>CAAGT</u> GCACAATCACCACCCACCGCAGCAGGCACGGGCTTCCCTGCGCTGTGCCAATGGCAAACCATCGTCCCATA <u>CGTC</u> CAGAGAGAGCAGTCCAATGGGACCTGGTGCACAGACGATAAGCTGAAAGATCCAAGGCTGCTGCTGCCGCTGCCAT <u>GGACAT</u> GAGGAATGTCGTCAAGGCAGTTGACCGGCTACGTTGGCTTGCCAATCTGCTTAATCAGTGGCACAGAAAGAGT <u>GTACGAAAAG</u> GCTTCAGCTTAATGTCATGGTTGTG <u>GTACGT</u> CAAGATCAAGCGACAGCGTCACTTAAACATGCC <u>AG</u> GTGAGTCCGGTCTCGGAAGTCTACCTTGTATCAACACCCCTTTCAACACTTCCCTTACCCCTCCGAGAGCGCAAAGGC CCCAGCCTTGATATCACCCCAAAGACTGTGTCCATACAATCGATCAGCGCAGACATCGAAGAAAATGGCGTCCGACTCAGAC <u>TGACC</u> GTGGTCGACACGCCGGCTCGGTGACTTCGTCAACAAACGACGACTCCTGGAGACCGATTGTTGAGAACATCGAGC <u>AGCGATT</u> TGACGCATACCTCGAGGCCAGAACAGGTCAACCGCATGAACATCGTGGATAACCGTGTCCATGCCCTGCGTCTA <u>CTTCATCGAGC</u> CTACGGGCCACTCGTTGAAGCGCTCGACATCGAGGTATGAGAACATACCAAGGTTAACCTCATTG <u>CGGT</u> CATTGCCAAGCAGATACTTGACCGACGATGAGGTAGCCATGTCAAGCAAG <u>GA</u> TAAGACCCGAGATGATGCTCC <u>TGTTATG</u> AAAGGGTGTACTGACAC <u>GA</u> TA <u>AG</u> ATTCTGGCAGACATTCA <u>CG</u> AC <u>CC</u> ACTCCATCAAATATTGAGGGTCCCTCGGTG <u>CGAGCT</u> AGACGACGAAGAGACCATCGCAGAGAACCGAGGATCATGTCAGAGTCCGATTCCCGTGTGGGTGCAAATTAC <u>GAAGTC</u> ACAAACTCTGAAGGGCGCAAGGTCCGAGGCCGACGTTACCCATGGGTATCATCGAAGTAGAACATGAGGACAC <u>TGCGACT</u> TTGTCAGCTCGACAGATGCTAATCGAACACTCACATGGAAAGAATTGAAGGAGAACACCAACACTGCTCTACG <u>AGAACTACAG</u> ATCAGATAAGCTCATCCAGATGGCGTCTCAACAGATCCTAGCGTGTCAAGGAGGTAAACCCGAGTCAA <u>GCAAGAGGA</u> AGAACGAACATTGACAGCAGAACGCTGCCAACAGGAGACCGAAATGAAGATGGTCTCCAGCAGAACGG <u>TGGCAGAAAAGGAGT</u> CCAAGCTACAACAAAGCGAGGAGGAACCTTCGCGCAGACCCGAGAGATGAAGGACCAACTAGAA <u>CGCCAAACGAGCAGAACT</u> TGGAAGAGAACGACGGTATCGAACAGGACACCTATCGAAAAAGAGGGCAAGAGGAAGG <u>GCTTTCTCTCAGATAA</u>
KpCdc10	<u>ATG</u> ACCATGGCAATGCCAAGGGAACGCCGTGTTCCAAGAACGCCACGTTGGTTGATTCGATCACCGCAGCAGATCGAG <u>AAAAAGCT</u> GTGAAACGAGGCTTCAATTCAACGGTATCTGCGTCG <u>GTACGT</u> GGAA <u>CG</u> CAAA <u>GG</u> AT <u>AG</u> AC <u>GT</u> TCT <u>GATTG</u> AA <u>GT</u> <u>AG</u> <u>TA</u> <u>G</u> <u>AC</u> <u>AA</u> <u>CC</u> <u>GG</u> <u>T</u> <u>CT</u> <u>GG</u> <u>GG</u> <u>AA</u> <u>AT</u> <u>CC</u> <u>AC</u> <u>GG</u> <u>T</u> <u>CT</u> <u>TC</u> <u>CA</u> <u>AC</u> <u>CC</u> <u>AT</u> <u>CT</u> <u>TC</u> <u>CA</u> <u>AC</u> <u>CC</u> <u>CT</u> <u>CA</u> <u>AG</u> <u>GG</u> <u>GCGACT</u> CGGGCCAGATGAGCCAGTGGTGCAGGCCGAGATCCAGACAGTATCAC <u>CA</u> <u>GTACGT</u> CGAGAG <u>TT</u> <u>CG</u> <u>TG</u> <u>AC</u> <u>CGCGT</u> G <u>TT</u> <u>GG</u> <u>T</u> <u>CA</u> <u>T</u> <u>A</u> <u>C</u> <u>AG</u> <u>GG</u> <u>CC</u> <u>A</u> <u>G</u> <u>T</u> <u>AT</u> <u>GG</u> <u>GT</u> <u>AC</u> <u>GG</u> <u>CT</u> <u>G</u> <u>A</u> <u>G</u> <u>ACT</u> <u>GA</u> <u>AC</u> <u>AT</u> <u>TT</u> <u>GT</u> <u>GA</u> <u>C</u> <u>AC</u> <u>CC</u> <u>CC</u> <u>GG</u> <u>GTACGGAGACCAGGT</u> CAACACGATAG <u>ATG</u> GTGAGGCTGAATTGTGACAGTC <u>GA</u> <u>AG</u> <u>GT</u> <u>TT</u> <u>GT</u> <u>CA</u> <u>AT</u> <u>TC</u> <u>G</u> <u>G</u> <u>AC</u> <u>TT</u> <u>GG</u> <u>GACCC</u> CAT <u>CGT</u> CA <u>AGT</u> TAT <u>CA</u> <u>AGG</u> <u>AC</u> <u>AG</u> <u>CA</u> <u>CT</u> <u>TC</u> <u>CC</u> <u>GA</u> <u>AA</u> <u>AG</u> <u>GA</u> <u>GT</u> <u>CT</u> <u>CC</u> <u>AC</u> <u>CC</u> <u>GT</u> <u>CA</u> <u>GC</u> <u>GA</u> <u>AG</u> <u>CG</u> <u>CT</u> <u>AC</u> <u>ATC</u> <u>CAAGACACCCG</u> AA <u>CT</u> <u>CGT</u> GT <u>TT</u> <u>CT</u> <u>CA</u> <u>CC</u> <u>AG</u> <u>CC</u> <u>GT</u> <u>CC</u> <u>GG</u> <u>CC</u> <u>AC</u> <u>CG</u> <u>CT</u> <u>CA</u> <u>GC</u> <u>CT</u> <u>AT</u> <u>CG</u> <u>TC</u> <u>GT</u> <u>CC</u> <u>TC</u> <u>AGAAA</u> CT <u>GT</u> <u>CG</u> <u>AC</u> <u>GT</u> <u>GG</u> <u>T</u> <u>CA</u> <u>AC</u> <u>GT</u> <u>CG</u> <u>CC</u> <u>GT</u> <u>CA</u> <u>TT</u> <u>CC</u> <u>AA</u> <u>AT</u> <u>CC</u> <u>G</u> <u>ATT</u> <u>CA</u> <u>CT</u> <u>AC</u> <u>ACT</u> <u>GG</u> <u>AG</u> <u>GA</u> <u>AA</u> <u>AC</u> <u>GG</u> <u>GT</u> <u>TT</u> <u>CA</u> <u>AGGAAA</u> AA <u>AT</u> <u>CA</u> <u>AGG</u> <u>AGG</u> <u>AA</u> <u>TC</u> <u>CG</u> <u>CC</u> <u>TC</u> <u>CA</u> <u>AC</u> <u>CT</u> <u>CA</u> <u>AG</u> <u>AT</u> <u>GT</u> <u>AC</u> <u>CC</u> <u>AT</u> <u>AT</u> <u>GA</u> <u>CA</u> <u>AC</u> <u>GT</u> <u>AG</u> <u>CT</u> <u>GG</u> <u>AC</u> <u>GT</u> <u>AG</u> <u>GG</u> <u>CGAGCCACG</u> AA <u>AC</u> <u>AC</u> <u>CA</u> <u>CC</u> <u>AT</u> <u>CA</u> <u>AG</u> <u>GA</u> <u>GA</u> <u>TT</u> <u>AT</u> <u>CC</u> <u>GT</u> <u>TT</u> <u>GG</u> <u>CC</u> <u>GT</u> <u>GG</u> <u>CA</u> <u>GG</u> <u>AC</u> <u>CC</u> <u>GT</u> <u>AA</u> <u>AG</u> <u>GG</u> <u>CA</u> <u>GCAAGT</u> GT <u>CG</u> <u>AG</u> <u>GT</u> <u>CG</u> <u>AC</u> <u>GA</u> <u>CA</u> <u>AG</u> <u>AT</u> <u>GG</u> <u>GT</u> <u>GT</u> <u>AT</u> <u>CA</u> <u>AC</u> <u>GT</u> <u>GG</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GT</u> <u>AA</u> <u>TT</u> <u>GT</u> <u>GA</u> <u>AT</u> <u>TT</u> <u>AC</u> <u>CT</u> <u>CC</u> <u>AA</u> <u>CTTC</u> CT <u>AC</u> <u>CC</u> <u>AG</u> <u>GG</u> <u>AC</u> <u>TC</u> <u>AC</u> <u>CC</u> <u>TT</u> <u>CA</u> <u>AG</u> <u>AT</u> <u>CT</u> <u>GT</u> <u>AT</u> <u>CG</u> <u>AG</u> <u>AC</u> <u>TA</u> <u>CT</u> <u>AC</u> <u>CG</u> <u>AG</u> <u>CT</u> <u>CC</u> <u>GA</u> <u>AG</u> <u>CT</u> <u>AA</u> <u>GC</u> <u>TT</u> <u>GCTGGC</u> CT <u>GT</u> <u>AA</u> <u>GA</u> <u>AT</u> <u>CC</u> <u>AG</u> <u>CG</u> <u>CG</u> <u>GT</u> <u>GG</u> <u>AT</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>AA</u> <u>GC</u> <u>AT</u> <u>CT</u> <u>CC</u> <u>AG</u> <u>CT</u> <u>GC</u> <u>AG</u> <u>AT</u> <u>CG</u> <u>GG</u> <u>AC</u> <u>GT</u> <u>GA</u> <u>CAGGAG</u> CT <u>CG</u> <u>CA</u> <u>GA</u> <u>GA</u> <u>AT</u> <u>GA</u> <u>CC</u> <u>AT</u> <u>GA</u> <u>TAA</u>
KpCdc11	<u>ATG</u> TCTTAC <u>CC</u> <u>CT</u> <u>CT</u> <u>GA</u> <u>AT</u> <u>CG</u> <u>GT</u> <u>AT</u> <u>CG</u> <u>CT</u> <u>CC</u> <u>AA</u> <u>AT</u> <u>AC</u> <u>G</u> <u>CT</u> <u>CT</u> <u>GT</u> <u>CC</u> <u>CA</u> <u>AG</u> <u>T</u> <u>CT</u> <u>AC</u> <u>GT</u> <u>TT</u> <u>AT</u> <u>GT</u> <u>GA</u> <u>AT</u> <u>AA</u> <u>AC</u> <u>TG</u> <u>ACTCGG</u> AT <u>GT</u> <u>TT</u> <u>GG</u> <u>GT</u> <u>AC</u> <u>AG</u> <u>GG</u> <u>CC</u> <u>AA</u> <u>AT</u> <u>CG</u> <u>AA</u> <u>GA</u> <u>GA</u> <u>AA</u> <u>GA</u> <u>GA</u> <u>AT</u> <u>GT</u> <u>CA</u> <u>AG</u> <u>AA</u> <u>GG</u> <u>GT</u> <u>AT</u> <u>CC</u> <u>AT</u> <u>GT</u> <u>GG</u> <u>GT</u> <u>GT</u> <u>GGT</u> <u>GCT</u> <u>AG</u> <u>T</u> <u>GG</u> <u>GT</u> <u>AC</u> <u>GG</u> <u>AA</u> <u>GA</u> <u>AC</u> <u>GA</u> <u>CA</u> <u>CT</u> <u>CG</u> <u>TA</u> <u>GT</u> <u>CC</u> <u>GG</u> <u>AA</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AA</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GC</u> <u>CC</u> <u>GT</u> <u>AT</u> <u>GCTG</u> <u>CAA</u> <u>AC</u> <u>CG</u> <u>CG</u> <u>CA</u> <u>TC</u> <u>CG</u> <u>AA</u> <u>GA</u> <u>GA</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>GA</u> <u>AC</u> <u>CC</u> <u>AT</u> <u>CT</u> <u>GT</u> <u>CG</u> <u>GT</u> <u>AC</u> <u>GT</u> <u>GG</u> <u>AC</u> <u>TT</u> <u>CG</u> <u>GG</u> <u>GC</u> <u>TC</u> <u>AGC</u> <u>AT</u> <u>TT</u> <u>CT</u> <u>AA</u> <u>AC</u> <u>CC</u> <u>CT</u> <u>AG</u> <u>GT</u> <u>TT</u> <u>GA</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>AC</u> <u>GG</u> <u>CC</u> <u>GT</u> <u>CA</u> <u>TT</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AA</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AA</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GC</u> <u>CC</u> <u>GT</u> <u>AT</u> <u>CGGAG</u> AT <u>CG</u> <u>AC</u> <u>AT</u> <u>CG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>TT</u> <u>GG</u> <u>GA</u> <u>AA</u> <u>TC</u> <u>GT</u> <u>GG</u> <u>CT</u> <u>AT</u> <u>CT</u> <u>CG</u> <u>GT</u> <u>CA</u> <u>AC</u> <u>CC</u> <u>GT</u> <u>CA</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AA</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GC</u> <u>CC</u> <u>GT</u> <u>AT</u> <u>GAATC</u> G <u>AG</u> <u>AA</u> <u>AT</u> <u>CA</u> <u>AG</u> <u>GT</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>TT</u> <u>GG</u> <u>GA</u> <u>AA</u> <u>TC</u> <u>GT</u> <u>GG</u> <u>CT</u> <u>AT</u> <u>CT</u> <u>CG</u> <u>GT</u> <u>CA</u> <u>AC</u> <u>CC</u> <u>GT</u> <u>CA</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AA</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GC</u> <u>CC</u> <u>GT</u> <u>AT</u> <u>GAATC</u> G <u>AG</u> <u>AA</u> <u>AT</u> <u>CA</u> <u>AG</u> <u>GT</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>TT</u> <u>GG</u> <u>GA</u> <u>AA</u> <u>TC</u> <u>GT</u> <u>GG</u> <u>CT</u> <u>AT</u> <u>CT</u> <u>CG</u> <u>GT</u> <u>CA</u> <u>AC</u> <u>CC</u> <u>GT</u> <u>CA</u> <u>AG</u> <u>GG</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>GT</u> <u>CA</u> <u>AA</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GC</u> <u>CC</u> <u>GT</u> <u>AT</u> <u>GGCTG</u> <u>GG</u> <u>AG</u> <u>GT</u> <u>GT</u> <u>AT</u> <u>CG</u> <u>AC</u> <u>TT</u> <u>GG</u> <u>GT</u> <u>GT</u> <u>AT</u> <u>CA</u> <u>AC</u> <u>GT</u> <u>GG</u> <u>AA</u> <u>AG</u> <u>AC</u> <u>GT</u> <u>AA</u> <u>TT</u> <u>GT</u> <u>GA</u> <u>AT</u> <u>TT</u> <u>AC</u> <u>CT</u> <u>CC</u> <u>AA</u> <u>CTTC</u> CT <u>AC</u> <u>CC</u> <u>AG</u> <u>GG</u> <u>AC</u> <u>TC</u> <u>AC</u> <u>CC</u> <u>TT</u> <u>CA</u> <u>AG</u> <u>AT</u> <u>CT</u> <u>GT</u> <u>AT</u> <u>CG</u> <u>AG</u> <u>AC</u> <u>TA</u> <u>CT</u> <u>AC</u> <u>CG</u> <u>AG</u> <u>CT</u> <u>CC</u> <u>GA</u> <u>AG</u> <u>CT</u> <u>AA</u> <u>GC</u> <u>TT</u> <u>GCTGGC</u> CT <u>GT</u> <u>AA</u> <u>GA</u> <u>AT</u> <u>CC</u> <u>AG</u> <u>CG</u> <u>CG</u> <u>GT</u> <u>GG</u> <u>AT</u> <u>GT</u> <u>CT</u> <u>GG</u> <u>AA</u> <u>GC</u> <u>AT</u> <u>CT</u> <u>CC</u> <u>AG</u> <u>CT</u> <u>GC</u> <u>AG</u> <u>AT</u> <u>CG</u> <u>GG</u> <u>AC</u> <u>GT</u> <u>GA</u> <u>CAGGAG</u> CT <u>CG</u> <u>CA</u> <u>GA</u> <u>GA</u> <u>AT</u> <u>GA</u> <u>CC</u> <u>AT</u> <u>GA</u> <u>TAA</u>

	AGACAAGAACTTGGCACGTGAGAGCCAGTTGCGAGAGATTGAGGCTGCATGCAGAGAGAGCAGTCTCATACCGAGGAT CTCAACGGTGACCCCCAT TAA
KpCdc12	<u>ATG</u> TCTACCAACATGGCCCACCCGCGACCGAGTCGGCATGCCGATAGGTATGCCAACCTGCCAACCAACGACACAAGA TCGCGCCAAGAGAGGGTCTGCCTCACCATCATG <u>GTCAGCACGAGCAC</u> TTGACTGCCCTACCCATACTGACCGTGTCA <u>G</u> TTGCTGGCGAGTCTGGACTTGGAAAGACTACCTTCATCAACACCCGTTCTCCACTACAATCAAGAAACTACGCCGACCAC AAGCGGAGACACGCAAAGCAGGTGGACAAGACGCGAGATCGAGATCACCAAGGCCAGCTGGAAAGAGAAGTTCTCAA <u>AGG</u> TACGCCAATCATCATCGTGTGGATGTCCTGATGCTGACCTGGT <u>GCAG</u> TACGGCTGACAGTGATTGACACCCCTGGCT TCGGCGACTACGTGAACAACCGCGACTCGTGGCAGCCATCATCGAATTCTCGACGACCAGCATGAGTCGTATATGTTGCAG GAACAGCAGCCACGCCAACGACAAGATCGACCTCCGAGTCCACACTTGCCTACTTCATCCGCCACTAGGCCACACCC TGAAGCCCTCGACATCGAACGACTCATGAGGGAGACTTGCACCGTGTCAACCTCATCCAGTCGCAAAAGCTGACACTCT CTCCCAACAAGATCTCTCATCTCAAGCAAAGAACATCAGGAATGTCATCGAACGACAAGACATCCAGATTTACAGCCACCC ATCGAGAGGATGACGAGGTGCCGCCAGCACCCAAGAGGCCCTCATGTCGCCATGCCATGTCAGTCATCGGTTCCGAGA AGATGTCAGACGACCAGCGACGGCGCATCGTAAGGGTAGACAGTACCCATGGGTTGCGCCAGGGTCAAGGAGACACC ACTGCGACTTCAAGAACGCTAGATCAATTCTGATCAGAACGCATATGTCGACCTGATCCACACCACCGAACAGGGCTCACTA CGAGGCTTACCGTCTCAACAGATGGAGACTCGCAAATTCGCGAGGGCAGACCCAGGAAGCTGACAAACCCAAAGTTCAA GGAAGAAGAGGGAGGCTCAGGAAGAGATTACCGAGCAAGTCAAGGTGGAAGAGAACAGATTCCGTGCCTGGAGCAGA AACTCATCGGTGAGGGAGGATAGACTCAAAAGGATCTGAGGCTACCCACGCTGCCATCAAGCAGTGGAGCAGGAGTGG AACAGATCGAGGGCTCTGCTCAGATCTCACGGCAGACGT TAA
KpAspE	<u>ATG</u> TCAACGAACGCCAGCCTGCACGGTCCGACTCTACACGACGTACCCACTTCTGGATCTCATCAAACGAACAAAGT CGAACGACATTCTAAGTGAACGCAAGTCTCTGGACTCGCTCGTAAGAACGAGCTTGGAAAGCGATGCCGCCGTCGAT CAAGGACTCACCACCGCCTGGCAGCTTACCCCCAGCAAGGCCCTCGAGTCGTTGGAGGGGAGAATTACTTCTAGC CCAGTCATGTCAGGCCAGGACAGCTAAAGCCTGCAAGGGCACCCTCAATTCCGCCAATTCCAGCAATCTGCAAGGACAGAC CTGTCGATCTCAATGGCAGGACCGAGAGCATGACTCATGTCGCTATAGCTATGCCAAAGCAGTCAACGACCGTCAC AGGCCAAGGGAGGTGCGCAGAAGGAAGGATCCAACGCCATACAA <u>GTAAGGTCGCTGGT</u> CTACAGAGGTGAATGCTCACTGAC ATATGCT <u>AT</u> TATCCTGGTCATTGGTGC <u>CAAGAAC</u> ACTCTGGCAAGACATCCTCATCAACTCCTCAAGACCTCCCTAGCCTTG CTCCCAGGAAACAAACCCAGCCGTTGAGACTGACCCCTCCCCCTCAAGCAAGGCATACCAACTTACCTCCACTACCA GGAAATCGAGGTTGATGAAAGACTTGGCTTGAACCTGTTGGACTCGCAGGGGTTGGAGAACAGGTGTCGTTGACCTGCA GTTGCGGGAGCTGACAGCTTCGTGGAGAGCAAATTGAAGAGACTTCGCGAGGAGAGCAAGGTTGAGATGCCCTGG TGTCAAGGGACACTGAGATACTGTGTTTATGATTCTGACCCCTCCGTCTAGACACCAACATACGCCCTGCCAAAGAAA GCACAACAGCCAACAGCGCATGCCAGGGCCGCCGATACTTGGTCTAGACGAGGATTGATCTACAGTCTGAG GAGCTTCAAGGCAAAACGACCGTCGATCATCAGAACAGCGACACTGTCACTTCTGCTCATATGAAACACTGAAA CAGATGGTATGGCAAAGCTGAAACAAGCTGGTCTGACCCCTCGAGGCTCTCAATGTCGGAGAACAGTACCGAC TAGACGAAGAAGACGAAGAGGACCAACAGCGAAGACGCGAGCGCTTCTGGAACCCGGGCTCAGATTATTACAGAC TTGAACGATCCGAAGAACGAGAAGGGCAAGCGTCAACACACAGAACGTTCTCAAATCCTCATCTCAAGTCTCATGACG GATAGCAAGCTATGTGCCCATGCCATCTAACAGTCCGATATGACTCGCTGACCCGAAGAACGGTCCAGTCGGCAGAAAGTT TGCATGGGGCTTCCGCAAGACCCATACAATCCAGAACATTGCGATTGCAAGCTCAGGGATGCCGTCTCGGTGAATGGCGA AACGAGGTTGAGAAGGCCAGCCGTGAAATATTCTATGAGCGGTGGCGGACAAACCGCCTCAATCGCAAGCTGCTGCCAAG GTCAGTAATACCGCAGCGCCAGGAAGTCGTCTGTCAGATCCACGCTCAAGAACGGACAGAACCGGTT TGA

Supported lipid bilayer (SLB)




PEGylated coverslip

Supplementary figure 2. *Knufia petricola* AspE homo-oligomers do not spontaneously assemble into filaments under conditions that cause filamentation of *S. cerevisiae* canonical septin octamers. Purified, Atto488-labeled *KpAspE* was incubated on either (A) supported lipid bilayers or (B) PEGylated coverslips at concentrations ranging from 5 to 100 nm, as previously described (Khan et al., 2018). No filamentation was ever observed on either substrate.

311
312
313

Supplementary figure 4. The N- and C-termini of *KpAspE* are necessary for its interaction with *KpCdc11* but not for interaction with itself.

315
316
317

318

319 **Discussion**

320

321 We have recombinantly expressed and biochemically characterized AspE, a Group 5
322 septin from the emerging model black yeast *Knufia petricola*, demonstrating that this septin—by
323 itself *in vitro*—recapitulates many of the properties of canonical septin hetero-octamers.
324 *KpAspE* is an active GTPase capable of forming diverse homo-oligomers, sensing membrane
325 curvature, and interacting with the terminal subunit of canonical septin hetero-octamers. To our
326 knowledge, this is the first biochemical characterization of a Group 5 septin.

327 While septins are well-established as GTP-binding proteins, the functional role of GTP-
328 binding and hydrolysis has been a challenge to decipher. Nucleotide binding state has been
329 shown to regulate the assembly of septin homo-oligomers and hetero-oligomers (Weems &
330 McMurray, 2017; Weems et al., 2014; Zent & Wittinghofer, 2014), however across a yeast cell
331 cycle, GTP hydrolysis was not detectable, suggesting that there may not be further roles in
332 higher-order assemblies (Vrabioiu et al., 2004). Taken together, our mass photometry and yeast
333 two-hybrid assays support the idea that *KpAspE* forms homodimers across its nucleotide-binding
334 G-interface and interacts with *KpCdc11* across a NC-interface (Figures 2 and 5). Our finding that
335 *KpAspE* is an active, slow GTPase therefore has profound implications for how this septin
336 interacts with both itself and with canonical septins. Recombinantly expressed *KpAspE*
337 copurifies with a mixture of GTP and GDP, in contrast to the Group 6 septin *CrSEPT*, which was
338 found to be free of any bound nucleotide when expressed recombinantly in *E.coli* (Pinto et al.,
339 2017). *KpAspE* also hydrolyzes GTP to GDP at a rate much slower than that of *CrSEPT*, despite
340 conservation of the arginine finger motif (Pinto et al., 2017). In budding yeast, slow GTP
341 hydrolysis by *ScCdc12* allows stable subpopulations of GDP- and GTP-bound monomers, which
342 are preferentially recruited to form hetero-oligomers with alternate binding partners (*ScCdc11* or
343 *ScCdc3*) (Weems & McMurray, 2017). It is tempting to speculate that *KpAspE* interactions with
344 itself and *KpCdc11* might be regulated in a similar manner. Another possibility is that
345 interactions at the NC-interface regulate nucleotide hydrolysis at the G-interface, as has been
346 observed for *ScCdc3*, a budding yeast septin that—like *KpAspE*—has a notably long N-
347 terminal extension that is predicted to be largely disordered (Weems & McMurray, 2017). Thus,
348 it seems likely that either the nucleotide-binding state of *KpAspE* regulates its oligomeric state or
349 the opposite. Further study will be needed to distinguish between these two possibilities.

350 Another factor that can govern the oligomeric state of *KpAspE* is pH. Lowering the pH to
351 6.4 greatly increased the prevalence of trimers in mass photometry experiments (Figure 3),
352 suggesting a protein-protein interface containing critical protonated histidine residues. We
353 postulate that this pH-sensitive second interaction surface is a NC-interface. Indeed, we see
354 several histidine residues at the predicted NC-interface: H122, H210, and H407. However,
355 repeated attempts to purify a triple histidine-to-alanine mutant were unsuccessful, apparently due
356 to the formation of large aggregates or homo-oligomers that eluted in the void volume during
357 size exclusion chromatography (data not shown). This suggests that disruption of the NC-
358 interface either destabilizes the protein or allows uncontrolled self-association. Moreover, the
359 exceptionally long N-terminal extensions of Group 5 septins like *KpAspE* raise the possibility
360 that this region may be used for more than just homomeric interactions. Intriguingly, the same
361 R275E mutant that favors monomers over dimers also completely abrogates trimer formation at
362 pH 6.4 (Figure 3). This suggests that perturbation of the G-interface disrupts both dimer and
363 trimer formation. Canonical septin hetero-octamers form through a step-wise assembly pathway

364 (Weems & McMurray, 2017); if a similar step-wise assembly pathway governs the formation of
365 septin homo-oligomers, it is possible that dimer formation must precede trimer formation.

366 The family of septin proteins arose through repeated gene duplication and divergence,
367 meaning that although all opisthokonts have multiple septin genes (Delic et al., 2024; Shuman &
368 Momany, 2021) a single septin gene is the ancestral state of the septin cytoskeleton. As is the
369 case with many heteromeric proteins (Mallik & Tawfik, 2020), heteromeric protein-protein
370 interactions arose from ancestral homomeric interactions. Thus homomeric septin-septin
371 interactions that persist in modern septins offer us a window into the evolutionary history of
372 these cytoskeletal proteins. Such interactions include *ScCdc10* dimers within septin octamers and
373 *ScCdc11* dimers between octamers. Of the canonical septins, *Cdc11* is both most closely related
374 to *AspE* (Figure 1) and the sole septin that interacts with it in yeast two-hybrid assays (Figure 5).
375 But whereas *Cdc10* and *Cdc11* both form homodimers across NC-interfaces, *AspE*—like the
376 non-opisthokont septin *CrSEPT* (Pinto et al., 2017)—dimerizes across a G-interface that
377 includes an arginine finger (Figures 1 & 3). The R-finger motif is widespread in non-opisthokont
378 septins, present in only a small minority of Group 5 septins, and absent from septins in Groups 1-
379 4, many of which have evolved into “pseudoGTPases” lacking the ability to either bind or
380 hydrolyze GTP (Delic et al., 2024; Hussain et al., 2023). It is intriguing to note that Group 5
381 septins—like non-opisthokont septins (Delic et al., 2024)—appear to utilize G-interface
382 residues for homodimer formation, while still retaining GTPase activity (Figure 2). But *KpAspE*
383 is also capable of interacting with other septins through an NC-interface that includes a α helix,
384 an ability and structural feature much more characteristic of opisthokont septins (Delic et al.,
385 2024). Taken together, our findings suggest *KpAspE* retains ancestral traits that are now
386 characteristic of both opisthokont and non-opisthokont septins, consistent with the recent
387 taxonomic assignment of Group 5 septins as the earliest-diverging clade of opisthokont septins
388 (Delic et al., 2024).

389 It remains to be seen if filamentation is an ancestral septin trait. No filaments or higher-
390 order structures were observed with recombinant *KpAspE* *in vitro* (Supp. Figure 2). We conclude
391 that either *KpAspE* does not form filaments or additional factors—perhaps proteins, small
392 molecules, or post-translational modifications—are necessary for their formation. In contrast to
393 the lack of filamentation observed for *KpAspE*, *KpCdc12* definitively localizes to thick filaments
394 *in vivo*, in both round and pseudohyphal cells (Figure 6). The *A. nidulans* homolog of *Cdc12*,
395 *AspC*, also localizes as elongated filaments in hyphae (Lindsey et al., 2010). It remains to be
396 seen if the other *K. petricola* septins will co-localize with *KpCdc12*, or if they will exhibit
397 disparate localizations patterns, as was observed for the septin proteins of *A. fumigatus* (Juvvadi
398 et al., 2013). Disruption of *A. fumigatus* microtubules with either nocodazole or benomyl
399 eliminated formation of apparent *AfAspE* filaments (Juvvadi et al., 2013), suggesting that
400 filamentation may not be an inherent property of Group 5 septins, but rather an apparent
401 consequence of their interaction with other components of the cytoskeleton.

402 Because filamentation is not necessary for curvature sensing by septins (Cannon et al.,
403 2019), we did not take the lack of filamentation *in vitro* to preclude curvature-sensing by
404 *KpAspE*. In an *in vitro* bead-binding assay, *KpAspE* preferentially bound to the shallowest
405 positive membrane curvature with which it was presented (Figure 4). This stands in contrast to
406 canonical septin hetero-octamers, which prefer a somewhat higher micron-scale membrane
407 curvature (Bridges et al., 2016). A C-terminal amphipathic helix in *ScCdc12* is required for
408 canonical septins to distinguish between different membrane curvatures (Cannon et al., 2019).
409 HeliQuest predicts no similar amphipathic helix anywhere in *KpAspE* (Gautier et al., 2008).

410 Given that *K. petricola* cells grown on rich media are nearly spherical, presenting a uniform
411 negative curvature to cytoplasmic proteins like septins, future studies should explore *KpAspE*'s
412 *in vitro* preference for negative membrane curvatures and *in vivo* localization patterns.

413 The biochemistry Group 5 septins such as *KpAspE* has potential practical significance
414 beyond deepening our understanding of the evolution of the cytoskeleton. A major challenge in
415 the development of antifungal drugs is the relative similarity of animal and fungal cells. Septins
416 have been implicated in the pathogenesis of multiple fungal pathogens of both plants and animals
417 (Momany & Talbot, 2017). And drugs that disrupt septin assembly (by inhibiting the biosynthesis
418 of very long chain fatty acids) have been successfully deployed to protect plants from fungal
419 pathogens such as *Magnaporthe oryzae* (He et al., 2020). We argue that Group 5 septins, which
420 are found exclusively in filamentous fungi (Delic et al., 2024), are of interest not only as
421 windows into the evolutionary history of the septin cytoskeleton, but as potential targets for
422 antifungal drugs.

423 The recombinant expression and biochemical characterization of a Group 5 septin lays
424 the groundwork for future studies exploring the biology of this unique class of septins. Future
425 work will explore interactions between Group 5 and canonical septins both *in vivo* and *in vitro*,
426 as well as the regulation of *KpAspE* by post-translational modifications and nucleotide binding
427 state.

428

429 Materials and Methods

430

431 ***Culture of K. petricola***

432 All *K. petricola* strains used in this study are derived from the sequenced A95 strain (CBS
433 123872). Unless otherwise stated, *K. petricola* cells were grown at 25°C on either rich media
434 (YPD) or a synthetic complete media (ASM) that had been previously developed for *K. petricola*
435 (Nai et al., 2013).

436

437 ***Transformation of K. petricola***

438 CRISPR-mediated transformation of *K. petricola* was performed as described by Voigt and
439 colleagues (Voigt et al., 2020). Briefly, protoplasts were produced by overnight incubation of
440 cells with a cocktail of lysing enzymes from *T. harzianum*, Yatalase™ Enzyme (Takara Bio), and
441 lyticase from *Arthrobacter luteus* (Sigma Aldrich). PEG-mediated transformation was used to
442 introduce AMA1-containing vectors encoding guide RNAs and Cas9 (Nødvig et al., 2015;
443 Wenderoth et al., 2017) and gene-replacement cassettes containing selectable markers (either
444 hygromycin or nourseothricin).

445 ***Rapid amplification of cDNA ends (RACE)***

446 Total RNA was isolated from liquid cultures of *K. petricola* using the RNeasy Mini Kit (Qiagen,
447 Catalog no. 74104). cDNA was synthesized and specific target amplified using the 3' RACE
448 System for Rapid Amplification of cDNA Ends (Invitrogen, Catalog no. 18373-019) and 5'
449 RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (Invitrogen, Catalog no.
450 18374-058). The gene-specific primers used are listed in Supplementary Table 1. The complete
451 sequences of the *K. petricola* septin genes are listed in Supplementary Table 2.

452

453 ***Recombinant expression and purification of KpAspE***

454 *Cloning*

455 After RACE confirmed the locations of the N- and C-termini of the *KpAspE* gene, a codon-
456 optimized synthetic gene product was synthesized in two overlapping halves by Twist
457 Biosciences and integrated into a vector using the NEBuilder HiFi DNA Assembly Cloning Kit
458 (NEB). pNH-TrxT was a gift from Opher Gileadi (Addgene plasmid # 26106) (Savitsky et al.,
459 2010). This vector introduces cleavable N-terminal six-histidine and *E.coli* thioredoxin tags, for
460 affinity purification and improved expression, respectively.

461 *Expression*

462 BL21 (DE3) *Escherichia coli* cells were transformed with the expression plasmid and selected
463 for with kanamycin. Cells were grown in Terrific Broth (TB) at 37°C, 220 rpm, to an OD₆₀₀ of
464 0.6–0.7. Expression was induced with 1 mM IPTG, and cells were grown at 18°C for 22 h. Cells
465 were harvested by centrifugation at 13,689 x g for 15 min at 4°C. Pellets were resuspended in
466 cold lysis buffer (50 mM HEPES, pH 7.4, 300 mM KCl, 1 mM MgCl₂, 10% glycerol, 1% Tween
467 20 mM imidazole, 1 mM PMSF, 1 mg/mL lysozyme, and c0mpleteTM Protease Inhibitor Cocktail
468 (Roche)) and either lysed immediately or stored at -80°C until lysis.

469 *Cell lysis*

470 Cells were thawed and sonicated on ice for a total of 10 min, in 1-min pulses separated by 2-min
471 rests. The resulting whole-cell extract was clarified by centrifugation at 4°C for 30 min at 30,597
472 x g.

473 *Ni²⁺ Affinity Purification*

474 Clarified supernatant was loaded onto two sequential 5-mL HisTrap Crude FF columns (Cytiva),
475 washed with 10 column volumes (CV) of Wash Buffer (50 mM HEPES, pH 7.4, 1 M KCl, 40
476 mM imidazole), and eluted in 25 mL of Elution Buffer (50 mM HEPES, pH 7.4, 300 mM KCl,
477 500 mM imidazole).

478 *Size exclusion chromatography (SEC)*

479 The HisTrap column elution was concentrated to a final volume of 1 mL using 30-kDa MW
480 cutoff Amicon Ultra centrifugal filters (Millipore). The entire 1 mL was injected onto a Superdex
481 200 Increase 10/300 GL column (Cytiva) equilibrated SEC Buffer (50 mM HEPES, pH 7.4, 300
482 mM KCl, 1 mM BME). 6xHis-TrxT-*KpAspE* typically eluted at about 12 mL, consistent with
483 the predicted molecular weight of a dimer (146 kDa) (Figure 1).

484 *Tag removal, dialysis, and storage*

485 The SEC peak elution fractions were pooled in a 20-kDa MW cutoff cassettes (Thermo Fisher
486 Scientific), incubated with ProTEV Plus protease (Promega), and dialyzed into Septin Storage
487 Buffer (50 mM HEPES, pH 7.4, 300 mM KCl, 1 mM BME, 5% glycerol) overnight at 4°C via
488 two 500-ml steps.

489 Protein was then run over 2-mL Ni²⁺-NTA resin bed to remove cleaved 6xHIS-TrxT tag, and
490 TEV protease. Purity was assessed by SDS-PAGE using pre-cast Any kDTM Mini-PROTEAN[®]
491 TGXTM polyacrylamide gels (Biorad). Aliquots were flash-frozen and immediately stored at -
492 80°C.

493 Protein concentration was determined by Bradford or bicinchoninic acid (BCA) assay.

494 *Atto NHS Ester Labeling*

495 Atto 488 (Sigma Aldrich) was incubated with purified KpAspE at a 3-fold excess molar ratio and
496 nutated at room temperature for 45-60 min. Excess dye was removed using ZebaTM 40-kDa MW
497 cutoff desalting columns (Thermo Scientific).

498 *Mass photometry*

499 A ReFeyn One^{MP} instrument was used to measure the distribution of molecular masses of
500 purified *KpAspE* protein at 1-10 nM concentrations in SEC Buffer of varying pH. Refeyn
501 DiscoverMP software was used for preliminary data analysis.

502

503 *Nucleotide binding assay*

504 Purified *KpAspE* protein was combined with a BODIPY- labeled guanosine nucleotide
505 (Thermo Fischer). A CLARIOstar^{PLUS} plate reader was used to monitor fluorescence emission at
506 515 nm.

507

508 *Nucleotide hydrolysis assay*

509 Purified *KpAspE* incubated with a 10-fold molar excess of guanosine nucleotide. The
510 mixture was nutated at room temperature. Hydrolysis reactions were halted by flash-freezing in
511 liquid N₂, followed by boiling at 100°C for 10 minutes to denature all proteins and centrifugation
512 to pellet the denatured protein. The relative abundance of different guanosine nucleotide species
513 in each supernatant was analyzed using reverse-phase high-pressure liquid chromatography
514 (HPLC) on a HypersilTM ODS C18 column (Thermo Fischer; Catalog number 30105-052130)
515 under isocratic conditions in running buffer (10 mM tetrabutyl ammonium bromide (TBAB), 100
516 mM Na₃PO₄, 5% acetonitrile, pH 6.5).

517

518 *Curvature sensing assay*

519 *KpAspE* protein adsorption onto silica microspheres of varying diameters coated in
520 supported lipid bilayers was measured as previously described (Cannon et al., 2019; Woods et
521 al., 2021).

522 *Yeast two-hybrid assay*

523 Yeast two-hybrid assays were performed as previously described (Fields & Song, 1989).
524 Briefly, the *Saccharomyces cerevisiae* reporter strain PJ69-4 α was co-transformed with a plasmid
525 containing GAL4 activation domain fused to a *Knufia petricola* septin (LEU2 selection) and a
526 second plasmid containing GAL4 DNA-binding domain fused to a second *K. petricola* septin
527 (TRP selection). In order to test the GAL4-driven transcription of the HIS3 reporter,
528 transformants were plated on synthetic complete media minus histidine and containing various
529 concentrations of 3-amino-1,2,4-triazole (3-AT), a competitive inhibitor of the HIS3 gene
530 product.

531

532 ***Cell microscopy***

533 *K. petricola* cells were grown in liquid ASM at 25°C and either fixed using 3.7% formaldehyde
534 or imaged live. For staining with calcofluor white, cells were incubated at room temperature with
535 0.01% calcofluor white in 1X PBS for 10 minutes and then washed twice with 1X PBS before
536 mounting and imaging. Cells were imaged at 405 nm on a spinning disc confocal microscope
537 Nikon CSU-W1 with a VC Plan Apo 100X/1.49 NA oil (Cargille Lab 16241) immersion
538 objective and an sCMOS 85% QE 95B camera (Photometrics).

539 Whole colonies were grown on solid media at 25°C. Chunks of agar containing colonies were
540 excised from the petri dish using a scalpel, then inverted in chambered coverslips (Ibidi)
541 containing 50 µL of synthetic complete media. Strains containing GFP-labeled proteins were
542 imaged at 510 nm on a confocal microscope Zeiss LSM 980 with Airyscan 2.

543 ***AlphaFold Predictions***

544 AlphaFold predictions were executed using the Colabfold Google notebook v1.5.5. Predictions
545 primarily used an MMseqs2 MSA. Five models with three recycles each were generated and the
546 highest ranking model was selected. The resulting 3D structures were visualized using
547 ChimeraX(Meng et al., 2023) and colored according to protein identity.

548

549 ***Data analysis and visualization***

550 For analysis of septin binding, raw images were exported into Imaris 8.1.2 (Bitplane AG). All
551 other data were analyzed in R (R Core Team, 2013). Figures were produced using Adobe
552 Illustrator and the ggplot2 package in R (Wickham, 2009).

553

554 ***Acknowledgements***

555 We thank Leah Marie Carey (Campbell Lab, UNC) for her instruction and support in the use of
556 HPLC. We thank Nathan Nicely (Protein Expression and Purification Core Facility, UNC) for
557 instruction and support in the use of mass photometry, as well as the use of a FPLC.

558

559 We thank Ellysa Vogt and Brandy Curtis for instruction and support in biophysical assays of
560 septin behavior.

561

562 We are grateful to the entire Gorbushina Lab (BAM), especially Julia Schumacher, for sharing
563 their *Knufia petricola* genetic toolkit, including a draft genome of the A95 lab strain.

564

565 G.E.H is funded by a NIGMS IRACDA fellowship through the SPIRE program at UNC.
566 This work is supported by NSF Grant 2016022 to A.S.G.

567

568

569 References

570 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
571 search tool. *J Mol Biol*, 215(3), 403-410. [https://doi.org/10.1016/s0022-2836\(05\)80360-2](https://doi.org/10.1016/s0022-2836(05)80360-2)

572 Auxier, B., Dee, J., Berbee, M. L., & Momany, M. (2019). Diversity of opisthokont septin proteins
573 reveals structural constraints and conserved motifs. *BMC Evol Biol*, 19(1), 4.
575 <https://doi.org/10.1186/s12862-018-1297-8>

576 Boyce, K. J., Chang, H., D'Souza, C. A., & Kronstad, J. W. (2005). An *Ustilago maydis* septin is
577 required for filamentous growth in culture and for full symptom development on maize.
578 *Eukaryot Cell*, 4(12), 2044-2056. <https://doi.org/10.1128/ec.4.12.2044-2056.2005>

579 Bridges, A. A., Jentzsch, M. S., Oakes, P. W., Occhipinti, P., & Gladfelter, A. S. (2016). Micron-
580 scale plasma membrane curvature is recognized by the septin cytoskeleton. *J Cell Biol*,
581 213(1), 23-32. <https://doi.org/10.1083/jcb.201512029>

582 Bridges, A. A., Zhang, H., Mehta, S. B., Occhipinti, P., Tani, T., & Gladfelter, A. S. (2014). Septin
583 assemblies form by diffusion-driven annealing on membranes. *Proc Natl Acad Sci U S A*,
584 111(6), 2146-2151. <https://doi.org/10.1073/pnas.1314138111>

585 Cannon, K. S., Vargas-Muniz, J. M., Billington, N., Seim, I., Ekena, J., Sellers, J. R., & Gladfelter, A.
586 S. (2023). A gene duplication of a septin reveals a developmentally regulated filament
587 length control mechanism. *J Cell Biol*, 222(3). <https://doi.org/10.1083/jcb.202204063>

588 Cannon, K. S., Woods, B. L., Crutchley, J. M., & Gladfelter, A. S. (2019). An amphipathic helix
589 enables septins to sense micrometer-scale membrane curvature. *J Cell Biol*, 218(4),
590 1128-1137. <https://doi.org/10.1083/jcb.201807211>

591 Chen, A., Xie, Q., Lin, Y., Xu, H., Shang, W., Zhang, J., . . . Wang, Z. (2016). Septins are involved in
592 nuclear division, morphogenesis and pathogenicity in *Fusarium graminearum*. *Fungal*
593 *Genet Biol*, 94, 79-87. <https://doi.org/10.1016/j.fgb.2016.07.005>

594 Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G., & Talbot, N. J.
595 (2012). Septin-mediated plant cell invasion by the rice blast fungus, *Magnaporthe*
596 *oryzae*. *Science*, 336(6088), 1590-1595. <https://doi.org/10.1126/science.1222934>

597 Delic, S., Shuman, B., Lee, S., Bahmanyar, S., Momany, M., & Onishi, M. (2024). The
598 Evolutionary Origins and Ancestral Features of Septins. *bioRxiv*, 2024.2003.2025.586683.
599 <https://doi.org/10.1101/2024.03.25.586683>

600 DeMay, B. S., Bai, X., Howard, L., Occhipinti, P., Meseroll, R. A., Spiliotis, E. T., . . . Gladfelter, A.
601 S. (2011). Septin filaments exhibit a dynamic, paired organization that is conserved from
602 yeast to mammals. *J Cell Biol*, 193(6), 1065-1081.
603 <https://doi.org/10.1083/jcb.201012143>

604 Dolat, L., Hu, Q., & Spiliotis, E. T. (2014). Septin functions in organ system physiology and
605 pathology. *Biol Chem*, 395(2), 123-141. <https://doi.org/10.1515/hsz-2013-0233>

606 Erdmann, E. A., Nitsche, S., Gorbushina, A. A., & Schumacher, J. (2022). Genetic Engineering of
607 the Rock Inhabitant *Knufia petricola* Provides Insight Into the Biology of Extremotolerant
608 Black Fungi [Original Research]. *Frontiers in Fungal Biology*, 3.
609 <https://doi.org/10.3389/ffunb.2022.862429>

610 Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., . . . Hassabis, D. (2022).
611 Protein complex prediction with AlphaFold-Multimer. *bioRxiv*, 2021.2010.2004.463034.
612 <https://doi.org/10.1101/2021.10.04.463034>

613 Field, C. M., al-Awar, O., Rosenblatt, J., Wong, M. L., Alberts, B., & Mitchison, T. J. (1996). A
614 purified *Drosophila* septin complex forms filaments and exhibits GTPase activity. *J Cell
615 Biol*, 133(3), 605-616. <https://doi.org/10.1083/jcb.133.3.605>

616 Fields, S., & Song, O. (1989). A novel genetic system to detect protein-protein interactions.
617 *Nature*, 340(6230), 245-246. <https://doi.org/10.1038/340245a0>

618 Frohman, M. A. (1993). Rapid amplification of complementary DNA ends for generation of full-
619 length complementary DNAs: thermal RACE. *Methods Enzymol*, 218, 340-356.
620 [https://doi.org/10.1016/0076-6879\(93\)18026-9](https://doi.org/10.1016/0076-6879(93)18026-9)

621 Gautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: a web server to screen
622 sequences with specific alpha-helical properties. *Bioinformatics*, 24(18), 2101-2102.
623 <https://doi.org/10.1093/bioinformatics/btn392>

624 Gladfelter, A. S., Kozubowski, L., Zyla, T. R., & Lew, D. J. (2005). Interplay between septin
625 organization, cell cycle and cell shape in yeast. *J Cell Sci*, 118(Pt 8), 1617-1628.
626 <https://doi.org/10.1242/jcs.02286>

627 Goshima, G. (2022). Growth and division mode plasticity is dependent on cell density in marine-
628 derived black yeasts. *Genes Cells*, 27(2), 124-137. <https://doi.org/10.1111/gtc.12916>

629 Hartwell, L. H. (1971). Genetic control of the cell division cycle in yeast. IV. Genes controlling
630 bud emergence and cytokinesis. *Exp Cell Res*, 69(2), 265-276.
631 [https://doi.org/10.1016/0014-4827\(71\)90223-0](https://doi.org/10.1016/0014-4827(71)90223-0)

632 He, M., Su, J., Xu, Y., Chen, J., Chern, M., Lei, M., . . . Chen, X. (2020). Discovery of broad-
633 spectrum fungicides that block septin-dependent infection processes of pathogenic
634 fungi. *Nat Microbiol*, 5(12), 1565-1575. <https://doi.org/10.1038/s41564-020-00790-y>

635 Hernández-Rodríguez, Y., Hastings, S., & Momany, M. (2012). The septin AspB in *Aspergillus
636 nidulans* forms bars and filaments and plays roles in growth emergence and conidiation.
637 *Eukaryot Cell*, 11(3), 311-323. <https://doi.org/10.1128/ec.05164-11>

638 Hernández-Rodríguez, Y., Masuo, S., Johnson, D., Orlando, R., Smith, A., Couto-Rodriguez, M., &
639 Momany, M. (2014). Distinct septin heteropolymers co-exist during multicellular
640 development in the filamentous fungus *Aspergillus nidulans*. *PLoS One*, 9(3), e92819.
641 <https://doi.org/10.1371/journal.pone.0092819>

642 Hussain, A., Nguyen, V. T., Reigan, P., & McMurray, M. (2023). Evolutionary degeneration of
643 septins into pseudoGTPases: impacts on a hetero-oligomeric assembly interface. *Front
644 Cell Dev Biol*, 11, 1296657. <https://doi.org/10.3389/fcell.2023.1296657>

645 Jiao, F., Cannon, K. S., Lin, Y. C., Gladfelter, A. S., & Scheuring, S. (2020). The hierarchical
646 assembly of septins revealed by high-speed AFM. *Nat Commun*, 11(1), 5062.
647 <https://doi.org/10.1038/s41467-020-18778-x>

648 Juvvadi, P. R., Belina, D., Soderblom, E. J., Moseley, M. A., & Steinbach, W. J. (2013).
649 Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with
650 actin, tubulin and other septins in the human pathogen *Aspergillus fumigatus*. *Biochem
651 Biophys Res Commun*, 431(3), 547-553. <https://doi.org/10.1016/j.bbrc.2013.01.020>

652 Khan, A., Newby, J., & Gladfelter, A. S. (2018). Control of septin filament flexibility and bundling
653 by subunit composition and nucleotide interactions. *Mol Biol Cell*, 29(6), 702-712.
654 <https://doi.org/10.1091/mbc.E17-10-0608>

655 Kim, M. S., Froese, C. D., Xie, H., & Trimble, W. S. (2012). Uncovering principles that control
656 septin-septin interactions. *J Biol Chem*, 287(36), 30406-30413.
657 <https://doi.org/10.1074/jbc.M112.387464>

658 Kinoshita, M. (2003). Assembly of mammalian septins. *J Biochem*, 134(4), 491-496.
659 <https://doi.org/10.1093/jb/mvg182>

660 Kozubowski, L., & Heitman, J. (2010). Septins enforce morphogenetic events during sexual
661 reproduction and contribute to virulence of *Cryptococcus neoformans*. *Mol Microbiol*,
662 75(3), 658-675. <https://doi.org/10.1111/j.1365-2958.2009.06983.x>

663 Lindsey, R., Cowden, S., Hernández-Rodríguez, Y., & Momany, M. (2010). Septins AspA and AspC
664 are important for normal development and limit the emergence of new growth foci in
665 the multicellular fungus *Aspergillus nidulans*. *Eukaryot Cell*, 9(1), 155-163.
666 <https://doi.org/10.1128/ec.00269-09>

667 Longtine, M. S., Theesfeld, C. L., McMillan, J. N., Weaver, E., Pringle, J. R., & Lew, D. J. (2000).
668 Septin-dependent assembly of a cell cycle-regulatory module in *Saccharomyces*
669 *cerevisiae*. *Mol Cell Biol*, 20(11), 4049-4061. <https://doi.org/10.1128/mcb.20.11.4049-4061.2000>

671 Mallik, S., & Tawfik, D. S. (2020). Determining the interaction status and evolutionary fate of
672 duplicated homomeric proteins. *PLoS Comput Biol*, 16(8), e1008145.
673 <https://doi.org/10.1371/journal.pcbi.1008145>

674 McMurray, M. A., & Thorner, J. (2009). Septins: molecular partitioning and the generation of
675 cellular asymmetry. *Cell Div*, 4, 18. <https://doi.org/10.1186/1747-1028-4-18>

676 Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T.
677 E. (2023). UCSF ChimeraX: Tools for structure building and analysis. *Protein Sci*, 32(11),
678 e4792. <https://doi.org/10.1002/pro.4792>

679 Mitchison-Field, L. M. Y., Vargas-Muñiz, J. M., Storno, B. M., Vogt, E. J. D., Van Dierdonck, S.,
680 Pelletier, J. F., . . . Gladfelter, A. S. (2019). Unconventional Cell Division Cycles from
681 Marine-Derived Yeasts. *Curr Biol*, 29(20), 3439-3456.e3435.
682 <https://doi.org/10.1016/j.cub.2019.08.050>

683 Momany, M., & Talbot, N. J. (2017). Septins Focus Cellular Growth for Host Infection by
684 Pathogenic Fungi. *Front Cell Dev Biol*, 5, 33. <https://doi.org/10.3389/fcell.2017.00033>

685 Momany, M., Zhao, J., Lindsey, R., & Westfall, P. J. (2001). Characterization of the *Aspergillus*
686 *nidulans* septin (asp) gene family. *Genetics*, 157(3), 969-977.
687 <https://doi.org/10.1093/genetics/157.3.969>

688 Nai, C., Wong, H. Y., Pannenbecker, A., Broughton, W. J., Benoit, I., de Vries, R. P., . . .
689 Gorbushina, A. A. (2013). Nutritional physiology of a rock-inhabiting, model
690 microcolonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes).
691 *Fungal Genet Biol*, 56, 54-66. <https://doi.org/10.1016/j.fgb.2013.04.001>

692 Nakazawa, K., Kumar, G., Chauvin, B., Di Cicco, A., Pellegrino, L., Trichet, M., . . . Bertin, A.
693 (2023). A human septin octamer complex sensitive to membrane curvature drives
694 membrane deformation with a specific mesh-like organization. *J Cell Sci*, 136(11).
695 <https://doi.org/10.1242/jcs.260813>

696 Nishihama, R., Onishi, M., & Pringle, J. R. (2011). New insights into the phylogenetic distribution
697 and evolutionary origins of the septins. *Biol Chem*, 392(8-9), 681-687.
698 <https://doi.org/10.1515/bc.2011.086>

699 Nødvig, C. S., Nielsen, J. B., Kogle, M. E., & Mortensen, U. H. (2015). A CRISPR-Cas9 System for
700 Genetic Engineering of Filamentous Fungi. *PLoS One*, 10(7), e0133085.
701 <https://doi.org/10.1371/journal.pone.0133085>

702 Pinto, A. P. A., Pereira, H. M., Zeraik, A. E., Ciol, H., Ferreira, F. M., Brandão-Neto, J., . . . Araujo,
703 A. P. U. (2017). Filaments and fingers: Novel structural aspects of the single septin from
704 Chlamydomonas reinhardtii. *J Biol Chem*, 292(26), 10899-10911.
705 <https://doi.org/10.1074/jbc.M116.762229>

706 R Core Team. (2013). *R: A Language and Environment for Statistical Computing*. In
707 <http://www.R-project.org/>

708 Ruibal, C., Gueidan, C., Selbmann, L., Gorbushina, A. A., Crous, P. W., Groenewald, J. Z., . . . de
709 Hoog, G. S. (2009). Phylogeny of rock-inhabiting fungi related to Dothideomycetes. *Stud
710 Mycol*, 64, 123-133s127. <https://doi.org/10.3114/sim.2009.64.06>

711 Réblová, M., Untereiner, W. A., & Réblová, K. (2013). Novel evolutionary lineages revealed in
712 the Chaetothyriales (fungi) based on multigene phylogenetic analyses and comparison
713 of its secondary structure. *PLoS One*, 8(5), e63547.
714 <https://doi.org/10.1371/journal.pone.0063547>

715 Savitsky, P., Bray, J., Cooper, C. D., Marsden, B. D., Mahajan, P., Burgess-Brown, N. A., & Gileadi,
716 O. (2010). High-throughput production of human proteins for crystallization: the SGC
717 experience. *J Struct Biol*, 172(1), 3-13. <https://doi.org/10.1016/j.jsb.2010.06.008>

718 Shi, W., Cannon, K. S., Curtis, B. N., Edelmaier, C., Gladfelter, A. S., & Nazockdast, E. (2023).
719 Curvature sensing as an emergent property of multiscale assembly of septins. *Proc Natl
720 Acad Sci U S A*, 120(6), e2208253120. <https://doi.org/10.1073/pnas.2208253120>

721 Shuman, B., & Momany, M. (2021). Septins From Protists to People. *Front Cell Dev Biol*, 9,
722 824850. <https://doi.org/10.3389/fcell.2021.824850>

723 Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in
724 eukaryotes that allows user-defined constraints. *Nucleic Acids Res*, 33(Web Server
725 issue), W465-467. <https://doi.org/10.1093/nar/gki458>

726 Szuba, A., Bano, F., Castro-Linares, G., Iv, F., Mavrakis, M., Richter, R. P., . . . Koenderink, G. H.
727 (2021). Membrane binding controls ordered self-assembly of animal septins. *Elife*, 10.
728 <https://doi.org/10.7554/elife.63349>

729 Vargas-Muñiz, J. M., Juvvadi, P. R., & Steinbach, W. J. (2016). Forging the ring: from fungal
730 septins' divergent roles in morphology, septation and virulence to factors contributing
731 to their assembly into higher order structures. *Microbiology (Reading)*, 162(9), 1527-
732 1534. <https://doi.org/10.1099/mic.0.000359>

733 Versele, M., & Thorner, J. (2004). Septin collar formation in budding yeast requires GTP binding
734 and direct phosphorylation by the PAK, Cla4. *J Cell Biol*, 164(5), 701-715.
735 <https://doi.org/10.1083/jcb.200312070>

736 Voigt, O., Knabe, N., Nitsche, S., Erdmann, E. A., Schumacher, J., & Gorbushina, A. A. (2020). An
737 advanced genetic toolkit for exploring the biology of the rock-inhabiting black fungus
738 Knufia petricola. *Sci Rep*, 10(1), 22021. <https://doi.org/10.1038/s41598-020-79120-5>

739 Vrabloiu, A. M., Gerber, S. A., Gygi, S. P., Field, C. M., & Mitchison, T. J. (2004). The majority of
740 the *Saccharomyces cerevisiae* septin complexes do not exchange guanine nucleotides. *J
741 Biol Chem*, 279(4), 3111-3118. <https://doi.org/10.1074/jbc.M310941200>

742 Warena, A. J., Kauffman, S., Sherrill, T. P., Becker, J. M., & Konopka, J. B. (2003). *Candida
743 albicans* septin mutants are defective for invasive growth and virulence. *Infect Immun*,
744 71(7), 4045-4051. <https://doi.org/10.1128/iai.71.7.4045-4051.2003>

745 Weems, A., & McMurray, M. (2017). The step-wise pathway of septin hetero-octamer assembly
746 in budding yeast. *eLife*, 6. <https://doi.org/10.7554/eLife.23689>

747 Weems, A. D., Johnson, C. R., Argueso, J. L., & McMurray, M. A. (2014). Higher-order septin
748 assembly is driven by GTP-promoted conformational changes: evidence from unbiased
749 mutational analysis in *Saccharomyces cerevisiae*. *Genetics*, 196(3), 711-727.
750 <https://doi.org/10.1534/genetics.114.161182>

751 Wenderoth, M., Pinecker, C., Voß, B., & Fischer, R. (2017). Establishment of CRISPR/Cas9 in
752 *Alternaria alternata*. *Fungal Genet Biol*, 101, 55-60.
753 <https://doi.org/10.1016/j.fgb.2017.03.001>

754 Wickham, H. (2009). *ggplot2: Elegant Graphics for Data Analysis*. In Springer-Verlag New York.
755 <http://ggplot2.org>

756 Włoga, D., Strzyzewska-Jówko, I., Gaertig, J., & Jerka-Dziadosz, M. (2008). Septins stabilize
757 mitochondria in *Tetrahymena thermophila*. *Eukaryot Cell*, 7(8), 1373-1386.
758 <https://doi.org/10.1128/ec.00085-08>

759 Woods, B. L., Cannon, K. S., Vogt, E. J. D., Crutchley, J. M., & Gladfelter, A. S. (2021). Interplay of
760 septin amphipathic helices in sensing membrane-curvature and filament bundling. *Mol
761 Biol Cell*, 32(20), br5. <https://doi.org/10.1091/mbc.E20-05-0303>

762 Yamazaki, T., Owari, S., Ota, S., Sumiya, N., Yamamoto, M., Watanabe, K., . . . Kawano, S. (2013).
763 Localization and evolution of septins in algae. *Plant J*, 74(4), 605-614.
764 <https://doi.org/10.1111/tpj.12147>

765 Zent, E., & Wittinghofer, A. (2014). Human septin isoforms and the GDP-GTP cycle. *Biol Chem*,
766 395(2), 169-180. <https://doi.org/10.1515/hsz-2013-0268>

767

768