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Abstract — Developing an accurate estimation of risk in the 

early stage of breast cancer increases the prognosis of the 

disease and awareness of the personal risk of having invasive 

breast cancers in the lifetime. In this paper, we present the 

breast cancer risk estimation method to compute the relative 

total risk score using Tactile Sensing System and patient health 

information. The main breast cancer risk is estimated by the 

malignancy risk index from the mechanical properties of the 

mass, which is obtained by tactile images. Then, the risk score 

is computed by combining the personal breast cancer risk 

based on the patient’s age and race information. The method 

was applied to 7 human cases and resulted in 86.0% accuracy 

in detecting malignant tumors. 
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I. INTRODUCTION  

Global cancer statistics estimated 2.3 million new cases 

of female breast cancer in 2019, and it is the fifth leading 

cause of cancer deaths [1]. However, breast cancer patient 

has a high chance of survival if detected early [2]. The risk 

prediction alerts a woman to get a breast checkup and 

monitor any abnormality in the breast. Over the years, 

various prediction models for breast cancer risk have been 

developed, improving breast cancer mortality rate [3], [4]. 

The models utilize the patient's health record, typically age, 

race, family, medical history, and genetic information. The 

prediction accuracy of the models increases proportionally 

when more detailed information is available [3], [4]. 

Sometimes, we do not have all these medical health data. 

Thus, a research group [5] developed a simpler breast cancer 

risk model using age, race, and breast density information.  

More recently, researchers have proposed race and 

ethnicity-based risk assessment models. The Gail model is 

one of the most popular and earlier developed models [5], 

but it requires extensive family and medical health data, 

including ethnicity [6]-[8]. Our proposed method utilizes 

the study [5] to develop a simple risk prediction method. 

The physical examination result provides an additional 

factor in estimating breast cancer risk, particularly in women 

who have a palpable lump in their breast tissue. Even if the 

detected lump is benign, such as atypical ductal hyperplasia 

(ADH), it requires monitoring [9] since the mass could 

become breast cancer. Having a benign lump increases the 

risk 10-fold. Thus, the risk estimation of the detected mass 

will help manage the risk effectively. The tactile imaging 

technique is an objective and non-invasive examining tool 

for the breast mass [10] – [12] compared to the subjective 

clinical breast examination [13], [14].  

Our proposed Tactile Sensing System is designed to 

perform the clinical breast examination in an objective and 

quantifiable manner. In this paper, we will discuss the 

methods and results of breast cancer risk estimation using 

patient health records and physical examination using the 

Tactile Sensing System (TSS).  

II. BREAST CANCER RISK ESTIMATION 

Breast cancer risk estimation (BCRE) is a method to 

determine a woman's relative risk of having breast cancer. 

We compute the personal breast cancer risk using the 

patient's health record (age and race) and the lesion 

malignancy risk index using the Tactile Sensing System, as 

shown in Fig. 1. 

 
Fig. 1. Overview of Breast Cancer Risk Estimation 

A. Tactile Sensing System 

Tactile Sensing System (TSS) is a human palpation-

mimicking sensor designed for clinical breast examination. 

The sensor is developed and used for lesion characterization 

[18] and [19], which uses the basic principle of the light 

reflection inside the transparent and soft optical waveguide 

made of polydimethylsiloxane (PDMS). The probe reads the 

light scattering pattern once the surface of the optical 

waveguide is touched. The soft PDMS tip is deformed, and 

the light pattern changes corresponding to the amount of 

applied force and area of deformation.  

The probe consists of a CCD camera (Guppy F-038, Allied 

Vision Technologies, Exton, PA), a force sensor 

(Compression load cell FC22, TE Connectivity), a controller 

circuit, and the sensing tip. The sensing tip contacts and 

examines the tissue directly. The tip is made of 

Polydimethylsiloxane (PDMS) (20mm x 23mm x 14mm), 

and the LED light source (four ultra-bright white light-

emitting diodes) injects the light into the tip.  



 

Fig. 2. Tactile Sensing System schematic and sensing principle 

Fig. 2 shows the TSS sensing principle and operation 

concept. The probe applies a specific force range to the 

target tissue, inducing the deformation of the tissue and the 

sensing tip. In this process, the light rays distributed inside 

the sensing tip create different amounts of pixel intensity 

captured by the image sensor. The amount of intensity 

change is directly proportional to the tissue’s stiffness 

change due to the embedded mass hardness at the constant 

applying force. Thus, the relationship is characterized by 

estimating the tissue stiffness level. 

B. Patient Health Record-based Risk Assessment 

Breast cancer risk is assessed with many prediction 

models of breast cancer risk. The prediction models are used 

to define the individual’s probability of having breast cancer 

in a certain period of a lifetime [15]. As mentioned, the 

prediction value is computed based on the patient’s medical 

and family history. In BCRE, we calculate the current 

personal breast cancer risk, which uses only age and race to 

generate a reasonable discriminator of the risk level. This 

will enhance the user’s accessibility and reduce the 

computational cost. 

In [5], the simplified Gail model predicts individualized 

risk prediction using limited information about patients. The 

incidence model presented in the study uses only the age and 

race of the patient. The incidence model, a 3rd order 

polynomial derived based on age and race from the cases in 

the 1998 to 2002 SEER invasive breast cancer dataset [16], 

[17] and the hazardous factor based on the breast density are 

mainly used to get the probability in this study [5]. The 

breast cancer incidence value (per 100,000) is estimated 

from the following equation, 
 

,                                 1 

The , value provides the risk distribution among the age, 

x in the four race/ethnicity groups, r, r=w (White), r = b 

(Black), r = a (Asian), r = h (Hispanic), which is a part of 

the patient health record [5]. We calculate the personal 

breast cancer risk of the patient based on the incident model 

(1). 

III. METHODOLOGY 

A. Lesion Malignancy Risk Index 

The lesion malignancy risk index is calculated using the 

TSS images and the corresponding applied forces. We 

preprocess the obtained tactile images of the area of interest 

(ROI). The images of the healthy breast tissue region and 

the lesion should be taken on the same breast as the applying 

force increases from 7  2.5  to 20  2.5 . Then we 

obtain the sum of the pixel intensity in the region ROI and 

the applying forces of the images. The intensity sum 

gradually increases as the applied force increases. The 

stiffness level of the breast tissue ( for mass-embedded 

tissue,  for healthy tissue), 

     ∑      
∑   

                 2 

is the slope of the linear regression among the data in the 

specified force range, which indicates how much intensity 

grows when force increases. In (2),  is the pixel intensity 

sum in the ROI of ith image, and   is the average of  
values. Fi is the corresponding applied force of each image 

taken, and  is the average of all forces in the range. Now 

we calculate the lesion malignancy risk index,  
 

   


                                       3 

which is the stiffness ratio between the lesion and the 

healthy tissue. The ratio-based assessment is formulated 

based on our previous work on the smartphone version’s 

data processing method [21].  

 
Fig. 3. Example of stiffness level values from one of the human breast 

tissue data– malignant case (Red: healthy breast tissue, Blue: 
mass-embedded breast tissue) 

We define the stiffness values of the healthy and mass-

embedded sites of the breast tissue using (2). The case in 

Fig. 3 exhibits the expected relation of the hard tumor inside 

the tissue to the healthy tissue. Each data point is computed 

based on the TSS images of the healthy tissue and the mass-

embedded tissue, as shown in Fig. 3.  For the malignant 

case, we observed that the   value is almost twice larger 

than . It shows that the malignant tumor is stiffer than the 

other tissues, as stated in [22] and [23]. Thus, we can define 

that the malignancy risk of the lesion is high in this case 

based on the physical assessment risk. This index is used to 

compute the relative total risk. 

B. Personal Breast Cancer Risk 

Personal breast cancer risk indicates the patient’s risk of 

developing breast cancer at a certain age compared to the 



base risk value,  , using the expected value in [20] as 

follows.  

   ,




,                                  4  

where , is the incidence value from (1). Intuitively,  is 

the average of all , for the selected age range and for the 

specific race over the entire age range for that race.  

would serve as a basis to assess high or low personal breast 

cancer risk. , is the probability mass function defined by  

,  1


                                          5 

where the count of each incidence value at age is always one 

in our case because the incidence value is unique for each 

age group.  is the total number of incidence values in the 

selected age range and for the specific race    
  1 ). ,  is always 


,  where the maximum age 

( is 100, and the minimum age ( is 35. The sum 

of all ,  is one as in [20]. Now we define the personal 

breast cancer risk as 

   ,


                                       6 
 

where   is the patient’s age, and r is the race. If   is 

greater than one, then this means that the woman at that age 

has a higher risk of breast cancer than the base value, , in 

the same ethnicity group as shown in Fig. 4.  is calculated 

for four groups:   for White, for Black,   for Asian, 

and  for Hispanic group.  

  
Fig. 4. Personal breast cancer risk models of women ages (35–100) in 

four different race groups 

Fig. 4 demonstrates the personal risk models of four races. 

The models show the  values over age. In our method, we 

consider the age below 35 as a zero value in the calculation 

since young women have a very low possibility of breast 

cancer [16]. A high-risk case is indicated if the patient has a 

value over one. We incorporate this risk value with the 

physical malignancy risk index to estimate the relative total 

risk. 

C. Relative Total Risk  

Relative total risk is a numeric score value of the woman’s 

breast cancer risk level (who has a lesion). To compute the 

score, we incorporate the personal breast cancer risk of the 

person at the age and the lesion’s malignancy risk index. 

The patient’s relative total risk of breast cancer, 

                            7 

is the weighted sum of  and , the normalized  from 

(6) and  from (3). We normalize each risk value based on 

the maximum and minimum possible risk values to combine 

them into one scale. Then, the normalized risk values are 

weighted by  and .  

IV. RESULTS 

To verify the proposed method, we applied the method to 

seven female patients. We obtained biopsy results from the 

Temple University Hospital Radiology Department.  Table I 

shows the risk estimation result of the human patients. To 

estimate the relative total risk (7), we applied the weight of 

0.5 for  and . The risk was considered if the value was 

greater and equal to 0.5 (50% of the normal state). The risk 

estimation for the human data resulted in 86.0% accuracy in 

discriminating malignant (high risk) and benign (low risk) 

cases with 100.0% sensitivity and 80.0% specificity (** refers 

to the false positive case from the estimation). Its sensitivity 

is higher than the digital mammogram sensitivity 86.9% of 

[24]. 

TABLE I.  RISK VALUES OF HUMAN DATA AND MALIGNANCY RISK 

ASSESSMENT (HIGH RISK OF MALIGNANT BREAST TUMOR IF R0.5)  

Patient    
Estimated 

Risk Level 

Biopsy 

Result 

1 0.45 0.34 0.40 low Benign 

2 0.24 0.52 0.38 low Benign 

3 0.93 0.60 0.77 high Malignant 

4 0.00 0.05 0.03 low Benign 

5 0.56 0.21 0.39 low Benign 

6 0.64 1.00 0.82       **high Benign 

7 0.96 0.69 0.83 high Malignant 

V. CONCLUSION 

In this paper, we presented the breast cancer risk 

estimating method that uses the simple patient health record 

and the TSS data of a breast mass. We obtained 86% 

accuracy and 100% sensitivity. This sensitivity was higher 

than the digital mammogram. We conclude that this BCRE 

method has a high potential to estimate breast cancer risk 

accurately. However, this study was for a small patient 

sample, and we need a more extensive scale dataset in the 

future to confirm the utility of the risk estimation method. 

ACKNOWLEDGMENT 

The authors thank Vira Oleksyuk and Suzanne Pascarella 

for their help in Tactile Sensing System development and 

human data collection. The authors thank Arpita Das for 

editing the draft. This work was supported in part by the 

National Science Foundation’s ECCS-2114675. 

 

 



REFERENCES 

[1] H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates 

of incidence and mortality worldwide for 36 cancers in 185 
countries,” in CA Cancer J Clin. vol. 71, pp. 209-249, May/Jun 2021. 

[Online]. Available: https://doi.org/10.3322/caac.21660 
[2] A. B. Nover et al., “Modern Breast Cancer Detection: A 

Technological Review,” International Journal of Biomedical 

Imaging, vol. 2009, article 902326, pp. 1-4, Jan. 2009. 

[3] D. G. R. Evans and A. Howell, “Breast cancer risk-assessment 

models,” Breast Cancer Res., vol. 9, no. 5, pp. 1–8, 2007. 

[4] E. Amir, O. C. Freedman, B. Seruga, and D. G. Evans, “Assessing 

Women at High Risk of Breast Cancer: A Review of Risk Assessment 

Models,” JNCI: Journal of the National Cancer Institute, vol. 102, 
no. 10, pp. 680-691, 2010.  

[5] J. A. Tice, S. R. Cummings, R. Smith-Bindman, L. Ichikawa, W. E.  
Barlow, and K. Kerlikowske, “Using clinical factors and 

mammographic breast density to estimate breast cancer risk: 

development and validation of a new predictive model,” Annals of 
internal medicine, vol.148, no. 5, pp.337–347, 2008. 

[6] S. Rostami, A. Rafei, M. Damghanian, Z. Khakbazan, F. Maleki, and 
K. Zendehdel, “Discriminatory Accuracy of the Gail Model for 

Breast Cancer Risk Assessment among Iranian Women.” Iranian J 

Public Health, vol. 49, no. 11, pp. 2205–2213, 2020. 
https://doi.org/10.18502/ijph.v49i11.4739 

[7] B. Park et al., “Korean risk assessment model for breast cancer risk 
prediction.” PloS one, vol. 8, no.10, e76736, 2013.  

[8] C. E. Jacobi, G. H. de Bock, B. Siegerink, and C. J. van Asperen, 

“Differences and similarities in breast cancer risk assessment models 
in clinical practice: which model to choose?” Breast Cancer Res. 

Treat., vol. 115, no. 2, pp. 381–390, 2009. 

[9] L. C. Hartman et al., “Atypical Hyperplasia of the Breast — Risk 
Assessment and Management Options,” N Engl J Med., vol.3 72, no. 

1, pp. 78–89, 2015.  

[10] C.-H. Won, J.-H. Lee, and F. Saleheen, “Tactile Sensing Systems for 

Tumor Characterization: A Review,” IEEE Sens. J., vol. 21, no. 11, 
pp.12578–12588, May 2021. 

[11] P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, R. D, Howe. 

“Tactile Imaging of Breast Masses: First Clinical Report,” Arch Surg. 
vol.136, no.2, pp. 204–208, 2001. 

[12] C. Van Nguyen, & R. F. Saraf, “Tactile imaging of an imbedded 
palpable structure for breast cancer screening,” ACS applied 

materials & interfaces, vol.6, no.18, pp. 16368–16374, 2014.  

[13] T. Ratanachaikanont, “Clinical breast examination and its relevance 
to diagnosis of palpable breast lesion,” J. of the Medical Association 

of Thailand, vol.88, no.4, pp.505-507, 2005. 

[14] F. Demirkiran, N. A. Balkaya, S. Memis, G. Turk, S. Ozvurmaz, and 
P. Tuncyurek, “How do nurses and teachers perform breast self-

examination: are they reliable sources of information?” BMC Public 

Health, vol.7, article 96, 2007. 

[15] A. R. Brentnall, & J. Cuzick, “Risk Models for Breast Cancer and 

Their Validation,” Statistical science: a review journal of the Institute 

of Mathematical Statistics, vol. 35, no. 1, pp. 14–30, 2020.  

[16] M. Kamińska, T. Ciszewski, K. Łopacka-Szatan, P. Miotła, and E. 

Starosławska, “Breast cancer risk factors. Przeglad menopauzalny = 
Menopause review,” vol. 14, no. 3, pp. 196–202, 2015.  

[17] N. Howlader et al.(eds), “SEER Cancer Statistics Review, 1975-
2016,” National Cancer Institute. Bethesda, MD, April 9, 2020, 

[Online]. Available: https://seer.cancer.gov/csr/1975_2016/. 

[18] J.-H. Lee and C.-H. Won, “High-resolution tactile imaging sensor 
using total internal reflection and nonrigid pattern matching 

algorithm,” IEEE Sensors J., vol. 11, no. 9, pp. 2084–2093, Sep. 2011 

[19] J.-H. Lee and C.-H. Won, “The Tactile Sensation Imaging System for 

Embedded Lesion Characterization,” IEEE J. of Biomedical and 

Health Informatics, vol. 17, no. 2, pp. 2168–2194, Mar. 2013. 

[20] R. D. Yates and D. J. Goodman, “Discrete random variable,” in 

Probability and Stochastic Processes: A Friendly Introduction for 
Electrical and Computer Engineers. United Kingdom: Wiley, 2014, 

pp. 62-99. 

[21] S. Choi, V. Oleksyuk, D. Caroline, S. Pascarella, R. Kendzierski, and 
C.-H. Won, “Breast Tumor Malignancy Classification using 

Smartphone Compression-induced Sensing System and Deformation 
Index Ratio,” 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 

(EMBC), Montr. QC, Canada, 2021, pp. 6082–6085. 

[22] T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, 
“Elastic Moduli of Breast and Prostate Tissues under Compression,” 

Ultrasonic Imaging, vol.20, no.4, pp.260-274, Oct. 1998. 

[23] M. J. Paszek et al., “Tensional homeostatsis and the malignant 

phenotype,” Cancer Cell, vol.8, no.3, pp.241-254, Sep. 2005. 

[24] C. D. Lehman et al. “National performance benchmarks for modern 
screening digital mammography: update from the Breast Cancer 

Surveillance Consortium,” Radiology. vol.283, no.1, pp. 49–58, Apr. 
2017. 

 

 

 
 

 

 

 

 


