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Abstract — Developing an accurate estimation of risk in the
early stage of breast cancer increases the prognosis of the
disease and awareness of the personal risk of having invasive
breast cancers in the lifetime. In this paper, we present the
breast cancer risk estimation method to compute the relative
total risk score using Tactile Sensing System and patient health
information. The main breast cancer risk is estimated by the
malignancy risk index from the mechanical properties of the
mass, which is obtained by tactile images. Then, the risk score
is computed by combining the personal breast cancer risk
based on the patient’s age and race information. The method
was applied to 7 human cases and resulted in 86.0% accuracy
in detecting malignant tumors.
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L INTRODUCTION

Global cancer statistics estimated 2.3 million new cases
of female breast cancer in 2019, and it is the fifth leading
cause of cancer deaths [1]. However, breast cancer patient
has a high chance of survival if detected early [2]. The risk
prediction alerts a woman to get a breast checkup and
monitor any abnormality in the breast. Over the years,
various prediction models for breast cancer risk have been
developed, improving breast cancer mortality rate [3], [4].
The models utilize the patient's health record, typically age,
race, family, medical history, and genetic information. The
prediction accuracy of the models increases proportionally
when more detailed information is available [3], [4].
Sometimes, we do not have all these medical health data.
Thus, a research group [5] developed a simpler breast cancer
risk model using age, race, and breast density information.
More recently, researchers have proposed race and
ethnicity-based risk assessment models. The Gail model is
one of the most popular and earlier developed models [5],
but it requires extensive family and medical health data,
including ethnicity [6]-[8]. Our proposed method utilizes
the study [5] to develop a simple risk prediction method.

The physical examination result provides an additional
factor in estimating breast cancer risk, particularly in women
who have a palpable lump in their breast tissue. Even if the
detected lump is benign, such as atypical ductal hyperplasia
(ADH), it requires monitoring [9] since the mass could
become breast cancer. Having a benign lump increases the
risk 10-fold. Thus, the risk estimation of the detected mass
will help manage the risk effectively. The tactile imaging
technique is an objective and non-invasive examining tool
for the breast mass [10] — [12] compared to the subjective
clinical breast examination [13], [14].

Our proposed Tactile Sensing System is designed to
perform the clinical breast examination in an objective and
quantifiable manner. In this paper, we will discuss the
methods and results of breast cancer risk estimation using
patient health records and physical examination using the
Tactile Sensing System (TSS).

II. BREAST CANCER RISK ESTIMATION

Breast cancer risk estimation (BCRE) is a method to
determine a woman's relative risk of having breast cancer.
We compute the personal breast cancer risk using the
patient's health record (age and race) and the lesion
malignancy risk index using the Tactile Sensing System, as
shown in Fig. 1.
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A. Tactile Sensing System

Tactile Sensing System (TSS) is a human palpation-
mimicking sensor designed for clinical breast examination.
The sensor is developed and used for lesion characterization
[18] and [19], which uses the basic principle of the light
reflection inside the transparent and soft optical waveguide
made of polydimethylsiloxane (PDMS). The probe reads the
light scattering pattern once the surface of the optical
waveguide is touched. The soft PDMS tip is deformed, and
the light pattern changes corresponding to the amount of
applied force and area of deformation.

The probe consists of a CCD camera (Guppy F-038, Allied
Vision Technologies, Exton, PA), a force sensor
(Compression load cell FC22, TE Connectivity), a controller
circuit, and the sensing tip. The sensing tip contacts and
examines the tissue directly. The tip is made of
Polydimethylsiloxane (PDMS) (20mm x 23mm x 14mm),
and the LED light source (four ultra-bright white light-
emitting diodes) injects the light into the tip.
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Tactile Sensing System schematic and sensing principle

Fig. 2 shows the TSS sensing principle and operation
concept. The probe applies a specific force range to the
target tissue, inducing the deformation of the tissue and the
sensing tip. In this process, the light rays distributed inside
the sensing tip create different amounts of pixel intensity
captured by the image sensor. The amount of intensity
change is directly proportional to the tissue’s stiffness
change due to the embedded mass hardness at the constant
applying force. Thus, the relationship is characterized by
estimating the tissue stiffness level.

B. Patient Health Record-based Risk Assessment

Breast cancer risk is assessed with many prediction
models of breast cancer risk. The prediction models are used
to define the individual’s probability of having breast cancer
in a certain period of a lifetime [15]. As mentioned, the
prediction value is computed based on the patient’s medical
and family history. In BCRE, we calculate the current
personal breast cancer risk, which uses only age and race to
generate a reasonable discriminator of the risk level. This
will enhance the user’s accessibility and reduce the
computational cost.

In [5], the simplified Gail model predicts individualized
risk prediction using limited information about patients. The
incidence model presented in the study uses only the age and
race of the patient. The incidence model, a 3" order
polynomial derived based on age and race from the cases in
the 1998 to 2002 SEER invasive breast cancer dataset [16],
[17] and the hazardous factor based on the breast density are
mainly used to get the probability in this study [5]. The
breast cancer incidence value (per 100,000) is estimated
from the following equation,

Ly = apx® + bex? + cox + d, (€]

The I, - value provides the risk distribution among the age,
x in the four race/ethnicity groups, r, r=w (White), » = b
(Black), » = a (Asian), r = h (Hispanic), which is a part of
the patient health record [5]. We calculate the personal
breast cancer risk of the patient based on the incident model

().
III. METHODOLOGY

A. Lesion Malignancy Risk Index

The lesion malignancy risk index is calculated using the
TSS images and the corresponding applied forces. We
preprocess the obtained tactile images of the area of interest
(ROI). The images of the healthy breast tissue region and

the lesion should be taken on the same breast as the applying
force increases from 7 + 2.5N to 20 + 2.5N. Then we
obtain the sum of the pixel intensity in the region ROI and
the applying forces of the images. The intensity sum
gradually increases as the applied force increases. The
stiffness level of the breast tissue (S, for mass-embedded
tissue, Sy, for healthy tissue),

(M — M)(Fi = F)
71'1=1(Fi - F)z

(2)

Smorn =

is the slope of the linear regression among the data in the
specified force range, which indicates how much intensity
grows when force increases. In (2), M; is the pixel intensity
sum in the ROI of i™ image, and M is the average of M;
values. F; is the corresponding applied force of each image
taken, and F is the average of all forces in the range. Now
we calculate the lesion malignancy risk index,

Sm

R =
l Sh

(3)
which is the stiffness ratio between the lesion and the
healthy tissue. The ratio-based assessment is formulated
based on our previous work on the smartphone version’s
data processing method [21].
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Fig. 3. Example of stiffness level values from one of the human breast
tissue data— malignant case (Red: healthy breast tissue, Blue:
mass-embedded breast tissue)

We define the stiffness values of the healthy and mass-
embedded sites of the breast tissue using (2). The case in
Fig. 3 exhibits the expected relation of the hard tumor inside
the tissue to the healthy tissue. Each data point is computed
based on the TSS images of the healthy tissue and the mass-
embedded tissue, as shown in Fig. 3. For the malignant
case, we observed that the S,, value is almost twice larger
than Sy . It shows that the malignant tumor is stiffer than the
other tissues, as stated in [22] and [23]. Thus, we can define
that the malignancy risk of the lesion is high in this case
based on the physical assessment risk. This index is used to
compute the relative total risk.

B. Personal Breast Cancer Risk

Personal breast cancer risk indicates the patient’s risk of
developing breast cancer at a certain age compared to the



base risk value, f,, using the expected value in [20] as
follows.

Br= D Purler )

x=min

where I, is the incidence value from (1). Intuitively, £, is
the average of all I, ,. for the selected age range and for the
specific race over the entire age range for that race. S,
would serve as a basis to assess high or low personal breast
cancer risk. p, - is the probability mass function defined by

Pxr = I_ (5)
tot

where the count of each incidence value at age is always one
in our case because the incidence value is unique for each
age group. I, is the total number of incidence values in the
selected age range and for the specific race (I;or = Xmax —
Xmin T 1). Dy is always é, where the maximum age
(Xmax) 1s 100, and the minimum age (X,,;,,) 1s 35. The sum
of all p,, is one as in [20]. Now we define the personal
breast cancer risk as

ol (6)

where x,, is the patient’s age, and r is the race. If Ry is
greater than one, then this means that the woman at that age
has a higher risk of breast cancer than the base value, £3,, in
the same ethnicity group as shown in Fig. 4. B, is calculated
for four groups: B,, for White, 8, for Black, B, for Asian,
and ), for Hispanic group.
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Fig. 4. Personal breast cancer risk models of women ages (35-100) in
four different race groups

Fig. 4 demonstrates the personal risk models of four races.
The models show the R; values over age. In our method, we
consider the age below 35 as a zero value in the calculation
since young women have a very low possibility of breast
cancer [16]. A high-risk case is indicated if the patient has a
value over one. We incorporate this risk value with the
physical malignancy risk index to estimate the relative total
risk.

C. Relative Total Risk

Relative total risk is a numeric score value of the woman’s
breast cancer risk level (who has a lesion). To compute the

score, we incorporate the personal breast cancer risk of the
person at the age and the lesion’s malignancy risk index.
The patient’s relative total risk of breast cancer,

Riotar = (@1Rsn + @2Rp) @)

is the weighted sum of Ry, and R;,, the normalized R; from
(6) and R, from (3). We normalize each risk value based on
the maximum and minimum possible risk values to combine
them into one scale. Then, the normalized risk values are
weighted by ¢, and @,.

IV. RESULTS

To verify the proposed method, we applied the method to
seven female patients. We obtained biopsy results from the
Temple University Hospital Radiology Department. Table I
shows the risk estimation result of the human patients. To
estimate the relative total risk (7), we applied the weight of
0.5 for ¢, and ¢@,. The risk was considered if the value was
greater and equal to 0.5 (=50% of the normal state). The risk
estimation for the human data resulted in 86.0% accuracy in
discriminating malignant (high risk) and benign (low risk)
cases with 100.0% sensitivity and 80.0% specificity (** refers
to the false positive case from the estimation). Its sensitivity
is higher than the digital mammogram sensitivity 86.9% of
[24].

TABLE L RISK VALUES OF HUMAN DATA AND MALIGNANCY RISK
ASSESSMENT (HIGH RISK OF MALIGNANT BREAST TUMOR IF R>0.5)

1 0.45 0.34 0.40 low Benign

2 0.24 0.52 0.38 low Benign

3 0.93 0.60 0.77 high Malignant

4 0.00 0.05 0.03 low Benign

5 0.56 0.21 0.39 low Benign

6 0.64 1.00 | 082 *high Benign

7 0.96 0.69 0.83 high Malignant

V. CONCLUSION

In this paper, we presented the breast cancer risk
estimating method that uses the simple patient health record
and the TSS data of a breast mass. We obtained 86%
accuracy and 100% sensitivity. This sensitivity was higher
than the digital mammogram. We conclude that this BCRE
method has a high potential to estimate breast cancer risk
accurately. However, this study was for a small patient
sample, and we need a more extensive scale dataset in the
future to confirm the utility of the risk estimation method.
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