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Abstract—We developed a method to characterize tumors by representing multiple tactile images obtained from Tactile
Sensing System. We convert multiple tactile images into a single representative image called Tactile Profile Diagram
(TPD). TPD is a pattern image with tactile information about a tumor. TPD is used to estimate the mechanical property
of the tumors. We verified the TPD method by classifying tumor phantoms using a Convolutional Neural Network (CNN)
with an accuracy of 83% for depth, 78% for stiffness, and 72% for size. We also applied machine learning algorithms for
tumor mechanical property classification with the human dataset. CNN classification accuracy of depth, stiffness, and
size was 77%, 69%, and 69%, respectively for the human data. Consequently, we conclude that the TPD method is
useful for inclusion classification with Tactile Sensing System in breast cancer applications.

Index Terms—breast tumor, convolutional neural network classification, data representation, pattern images, tactile profile diagram,

tactile sensors, Tactile Sensing System.

.  INTRODUCTION

Breast masses are the most common breast disease manifestation,
where the majority of them are benign [1]. Breast masses can be
detected by patients during self-breast examination (SBE), by medical
practitioners during a clinical breast examination (CBE), or during a
routine screening mammogram [2]. In modern practice, SBE and CBE
are not the primary tools for a cancer diagnosis; however, they are
very important supplemental screening techniques to mammography,
ultrasound, or MRI imaging. CBE is used to identify the lesions and
to find 15% of the malignant tumors undetected during
mammography [3].

When a tumor is found, physicians complete a detailed assessment
of the tumor and the affected breast, evaluate for the possibility of
malignancy, and aim to give an accurate diagnosis [1]. To do so, most
often, they use mammography and ultrasound imaging to visualize the
breast tissues and suspicious masses. Other supplemental tests are
available to support the diagnosis [2]. Research shows that cancerous
masses tend to be stiffer than benign ones [4],[5], and in some studies,
malignant tumors are found to be tenfold stiffer than normal breast
tissue through compression experiments [6]. It is also shown that
mechanical imaging can classify breast tumors as benign or malignant
[71,[8]. Moreover, the size of the detected tumor defines its grade
during diagnosis and defines the future treatment plan for the patient
[6]. The recent advancement of tactile devices, such as tactile sensors,
greatly assists in identifying objects, recognizing objects, and
estimating poses in robotics and other applications [9]. We developed
Tactile Sensing System and its algorithms to mimic human touch
sensation and to non-invasively measure the size and stiffness of
embedded tumors [10]-[13]. Our research group first developed
Tactile Sensing System to determine the strain and elastic modulus of
polymer samples [10]. Further, our research group improved this
system [11]-[12]. Building on these works, we convert multiple tactile
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images into one tactile profile diagram (TPD) that is computationally
more efficient as the processing time decreases significantly.

In paper [14], our research group used Tactile Sensing System
algorithm to estimate the size and stiffness and then apply
machine learning algorithms such as k-nearest neighbor, support
vector machine, and Naive Bayes to classify breast masses as benign
or malignant based on the size and stiffness information. Some
researchers used the Convolutional Neural Network algorithm to
classify benign and malignant tumors based on raw digital
mammogram medical images [15], [16] or ultrasound images [17].
Motivated by the fact that CNN is an effective tool for medical image
classification, we employed CNN to characterize tumor mechanical
properties. More specifically, in our work, we utilize the TPDs and
employ CNN models to classify the tumor’s mechanical properties
such as depth, stiffness, and size of inclusions. In this paper, we
classify tumor’s mechanical properties and the classification results
will be compared with true values for depth, size, and stiffness of
human patient data.

II. METHODS

A. Tactile Sensing System and Imaging

Tactile acquisitio
software

Tactile Sensing
System

Fig. 1. Tactile sensing system connected to acquisition software
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The Tactile Sensing System exploits the total internal reflection of
principle inside the elastic and translucent Polydimethylsiloxane
(PDMS) probe as a sensing element to measure tactile properties of
tissue inclusions [12], [18], [19]. The built-in lens and CMOS camera
(IDS UI-3240CP) capture the reflected rays due to the contact
deformation of the probe against a test sample. The applied force
starts from ON and gradually increases to 45N. We acquire a set of
images for each compression against the tissue region with inclusion.
The size of an individual image is 1024 X 1280 pixels. The typical
number of images in a set for the experiment is 50. The speed of image
acquisition is 20 images per second. Finally, acquisition software is
used to transfer the data from the camera to the laptop. See. Fig. 1.

B. Tactile Profile Diagram

Here we present a method to construct a Tactile Profile Diagram
(TPD), as a representative pattern image of a tactile image set [20].
TPD is a pictorial representation of relative stiffness and size of the
inclusion. The range of applied force should be kept the same between
different TPDs. See. Fig. 2 for sample TPDs. The method of creating

a TPD from multiple tactile images is as follows.
Stiff Inclusion (>250 MPa) Soft Inclusion (197 KPa)
Size: 11.90mm |  Size: 15.65mm |  Size: 1230mm |  Size: 16.34 mm
Tactile Profile Diagrams

Fig. 2. Sample TPD images

We acquire a set of images with Tactile Sensing System by
compressing it on the region with an inclusion. The number of raw
tactile images, I;(x,y), in a set is [ =1,2,...,N. Variables x
and y are the horizontal and the vertical coordinates respectively
of a pixel within an image I;. We apply an averaging filter with
a non-overlapping sliding window of size 10 pixels X 10 pixels to
each I;(x,y), in order to reduce the level of white noise within the
images and improve the speed of computation. The pixels values in
the created reduced image, R;(m, n), corresponding to the average
values of pixel intensities in the window at each step. The number
of reduced images in the set is the same as the number of original
images. The size of the reduced images is 103 pixels(m) x
128 pixels(n). The reduced images are the more compact copies of
tactile raw images. Each tactile image, I;, has a corresponding
compression force value. The ﬁ is the vector of forces of size N X 1.
Similar to the pre-load step during Instron tests [21], we select a
reference force, fr..f, and its corresponding reduced reference image,
Ry.er(m, n), from the set to account for the imperfections at the test
tissue surface. Empirically, we chose 5N as f;..r and obtain the vector

of the change in compression force, as Tﬁ as,
Bf; = fi = frep- Q)

Subsequently, we complete pixel-wise subtraction of the reduced
reference image, Ry.p(m,n), from all reduced images, R,(m,n),
in the set to create an image set AR;, which represents the change
in tissue deformation under compression. These images describe the
deformation of the silicone probe within Tactile Sensing System.

AR;(m,n) = R;(m,n) — Ry..p(m,n). )
Next, we find the maximum intensity value, AR, ,,, present in the
AR, image set. Then we subtract each pixel value in AR; images

from the AR,,,, to get the change of deformation images, AW;, of
the tissue with inclusion, and not of the sensing probe’s material.
AW (m,n) = ARy — AR (M, ). 3)

Tactile Profile Diagram
AF f T
[

o
/:%YMI(m,n) AW(m,n)

Fig. 3. Young’s Modulus Index calculation for a pixel (m,n) and a
reconstructed Tactile Profile Diagram

To construct a TPD, we calculate Young’s modulus index values,
YMI (m,n) which is the stiffness estimation parameter, for each
pixel location in AW, (Fig. 3). We mimic the definition of Young’s
modulus and calculate YMI in a pixel location (m, n) as a slope of

the compression force over an area (the compression change Af )

vs. the deformation change due to the compression (the change in
deformation AW, for the tissue with inclusion). To calculate the slope
in each pixel location (mm, n), N data points will be used from a tactile
image set. A Tactile Profile Diagram (TPD) is obtained by plotting

YMI (m,n) form = 1to 103 and n = 1 to 128 (Fig. 3). Ifrfl
is divided by the contact area and AW, is correlated with the strain,
then YMI is related to the young’s modulus of the tissue.

C. Tactile Profile Diagram Classification

We classified Tactile Profile Diagrams using CNN. See. Fig. 4.
Convolutional Neural Network (CNN) proved to work well with
image classification tasks [22],[23]. CNN includes a set of
convolutional layers with corresponding activation functions, max-
pooling layers, and fully connected layers with a Softmax function for
the final classification decision.

Input Output
Depth —( Shallow D)
> Classification CNN Model —
TPDModelDepth > Deep )
Size —> s Small 5 )

( TPD j—»|—> Classification CNN Model f—{ Medium
h i TPDModelSize —
—( Large ')

Stiffness [ Soft
— (lassification CNN Model —_—

TPDModelStiffness —{ stiff )

Fig. 4. TPD classification method

We employed three CNN models to classify tactile profile diagrams
and to characterize the depth, stiffness, and size of imaged tumors.
The depth classification model is shown in Fig. 5 where we classified
tumors as deep or shallow. Similarly, we classified small, medium, or
large tumors employing the size model, and stiff or soft tumors from
the stiffness model. We designed CNN sequential models without a
feedback loop, with three convolution layers, three Max pooling
layers, and activation functions for the feature learning part. We
employed Adamax optimizer, and accuracy as the metric for the
model performance evaluation during training. The model's training
and validation data is developed from tactile phantom imaging data
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combined into the Tactile Profile Diagrams dataset for classification.
With the sufficient training data and the modified final layer, the
model can output multiple classes if required by the application.

Depth, Size, and Stiffness Classification

The depth and stiffness TPD models are designed as 2 class and
size TPD model is designed as 3 class classifiers to distinguish the
classes. Fig. 5 shows the structure of the depth classification model.
The classification part of all the models includes four dense layers
with ReLU and ELU activation functions and Dropout layers of 0.3
and 0.2. The final fully connected layer has a Softmax activation
function. In depth, size, and stiffness model there are two, three, and
two nodes, corresponding to the shallow or deep classes, small or
medium or large classes, and soft or stiffness classes respectively.

128x46x59

103x128

128x93x118 256x15x21

128x38x51
Convolution
Kernel=11x11
+ + +
ELU Softmax ELU

Max pooling
Kernel=2x2

Convolution  Max pooling  Convolution
Kernel=9x9  Kernel=2x2 Kernel=5x5

Max pooling
Kernel =2x2

128x2

Softmax

0
128x17920
Flatten

Fig. 5. CNN model for tumor depth classification

1. EXPERIMENTS AND RESULTS

A. Phantom and setup

The tactile breast tissue phantom is composed of multiple layers.
The base material of the tissue layers is PDMS due to its safety and
easiness to use, adjustable stiffness, and high tolerance to heat and
mechanical compressions. PDMS is commercially available silicone
rubber and composed of two materials: Base agent (A) and Curing
Agent (B). Two components A and B were mixed in different ratio by
weight. These ratios are given in Fig. 6. We developed four types of
tissue layers using PDMS: base, intermediate, depth, and skin layers.
Fig. 6 shows the schematics of the phantom and its layers. The
description of each layer is also provided in the figure. The spherical
tumors are manually cut out of cured PDMS with a range of stiffhess
to mimic different tumor sizes and stiffness characteristics.

B. Classification: Depth, Size, and Stiffness

Depth Model: To train the Depth model we used samples of varying
sizes (10 mm, 12 mm, 14 mm, 16 mm, 18 mm) and stiffness (from
130 kPa to > 250 MPa). We included a shallow tumor subset: depths
of 0 mm, 2 mm, and 4 mm, and a deep tumor subset: depths of 6 mm,
8 mm, and 10 mm. During the model development, the data division
was 80% for training and 20% for validation. The model was trained
on 6768 TPDs and validated on 1692 TPDs. The validation accuracy
was 96%.

Size Model: During training the Size model we included varying
depths (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm) and stiffness
(130 kPa — 250 MPa). The sizes were 10 mm, 12 mm, 14 mm, 16
mm, 18 mm, and 23 mm. We divided the dataset into three classes
depending on the size of the tumor: small (10 mm and 12 mm),

medium (14 mm and 16 mm), and large (18 mm and 23 mm). The
model was trained on 6789 TPDs and validated on 1696 TPDs. The
validation accuracy was 96%.

|PDMS 1:2 Ratio + | 94 kPa
| absorption and scattering agents|

2. Depth layer | PDMS 1:2 Ratio |

3. Intermediate layer | PDMS 1:2 Ratio

4. Base layer | PDMS 1:20 Ratio

5. Tumor Phantom | PDMS Ratios (from 1:2.5 to 1:20)

6. Pyrex glass container

1. Multispectral layer

94 kPa
94 kPa
629 kPa
130 kPa ... 629 kPa

Fig. 6. Schematics diagram of phantom and its layers

Table 1. CNN classification results for the phantom data

Sample | Depth Stiffness Size
CNN CNN Class|CNN [CNN Class| CNN | CNN Class
Class (Prob+ |Class (Probt+ | Class (Probt

STD) STD) STD)

1 Shallow |0.734+0.00 | Stiff |0.7340.00 | Medium|0.32+0.13
2 Shallow |0.57+0.19 | Stiff |0.584+0.27 |Small |0.4610.21
3 Shallow |0.72+0.01 | Soft |0.73+0.01 |Small |0.574+0.01
4 Shallow |0.70+0.06 | Stiff |0.5940.25 |Medium |0.58+0.01
5 Shallow |0.624+0.2 | Stiff |0.64+0.16 | Medium|0.57+0.01
6 Deep 0.35+0.12 | Stiff |0.4740.21 |Small |0.284+0.06
7 Shallow |0.731+0.00 | Stiff |0.7340.00 [Large |0.58+0.00
8 Deep 0.3740.15 | Stiff |0.73+0.00 |Large |0.58+0.01
9 Shallow |0.59+0.10 | Soft |0.5440.24 |Medium |0.30+0.14
1 Deep 0.731£0.00 | Soft |0.44+0.25 [Small |0.3710.16
2 Deep 0.7240.00 | Soft [0.27+0.01 [Small |0.53+0.02
3 Deep 0.70£0.02 | Soft |0.68+0.08 |Small |0.48+0.08
4 Deep 0.65+0.11 | Stiff [0.73+£0.00 | Medium | 0.56+0.02
5 Deep 0.624+0.19 | Soft [0.49+0.23 |Medium |0.54+0.03
6 Deep 0.68+0.08 | Soft [0.73+£0.00 |Small [0.31+0.09
7 Shallow |0.2740.01 | Stiff |0.7340.00 |Large |0.58+0.00
8 Deep 0.6940.06 | Stiff |0.73+0.00 |Large |0.58+0.01
9 Deep 0.731£0.00 | Soft |0.554+0.25 [Small [0.22+0.01
|Accuracy| 0.83 0.78 0.72

Stiffness Model: The Stiffness model was trained on varying
sizes and depths samples same as the depth model. The stiffness
of embedded tumors ranged from 130 kPa to more than 250 MPa.
The soft tumors subset included 130 kPa to 316 kPa samples and the
stiff tumors subset included tumors from 376 kPa to more than 250
MPa samples. The model was trained on 6788 TPDs and validated
on 1697 TPDs. The validation accuracy was 91%.

C. Classification: Human and Phantom Data

Phantom Data: Results from TPD classification are presented in
Table 1. In the table, the green shaded rows indicate deep tumors,
the light brown rows indicate stiff tumors, and light and darker blue
rows correspond to medium and large size tumors, respectively.
classification accuracy for depth, stiffness, and size for the test set are
83% 78%, and 72%, respectively. See Table 1. The misclassified
cases are shown in red. The size accuracy is low because the time
difference between the calibration and measurement times of the
samples for the TPD size model was relatively large and the PDMS
sensing element slightly changed its properties.
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Table 2. CNN classification results for the human data

Patient Depth Stiffness Size
US Est. CNN Doctor | CNN | US Est. CNN
Class Class _ |Est. Clasy Class Class Class
1 Shallow | Deep Stiff Stiff | Small Large
2 Shallow | Deep Stiff Soft | Large Small
3 Shallow | Shallow | Stiff Stiff | Large Large
4 Shallow | Shallow | Soft Soft | Medium | Medium
5 Shallow | Shallow | Soft Stiff | Large Small
6 Shallow | Shallow | Stiff Stiff | Large Large
7 Shallow | Deep Soft Soft | Large Large
8 Shallow | Shallow | Stiff Stiff | Medium | Medium
9 Shallow | Shallow | Soft Stiff | Medium | Large
10 Deep Deep Soft Soft | Large Large
11 Deep Deep Soft Stiff | Small Small
12 Deep Deep Soft Soft | Large Large
13 Shallow | Shallow | Stiff Stiff | Small Small
Accuracy 0.77 0.69 0.69

Human Data: We used 13 human datasets to test the developed
methods. CNN classification accuracy for depth, stiffness, and size
were 77%, 69%, and 69%, respectively. Results are presented in
Table 2. The low size estimation error can be again attributed
to the differences in PDMS probe condition between the imaging
experiments for the model development and the time of human data
acquisition.

1 T ,

Phantom data
0.83 Human data

L 0.78 1
508 i 0.72
© 0.69 — 0.69
3
]
G061 1
c
S
©
8041 1
i
]
(2]
©
Oo2t ]

0

Depth Stiffness Size
Mechanical property
Fig. 7. Visualization of phantom and human data

Fig. 7 represents the classification accuracy of the phantom and
human data. It seems that phantom data has slightly better
classification results compared to human data as the calibration of our
Tactile Sensing System is based on phantom. But still, human data
has given consistent and satisfactory classification results with our
developed model.

V. CONCLUSION

We utilized Tactile Profile Diagram (TPD) to obtain the mechanical
properties of tumors. There are many advantages of using
TPDs over the use of raw tactile image sets. The tactile property
information in TPD is visual, condensed, and easier to interpret.
Each pixel in a TPD carries dynamic tactile information of the tested
region under the range of compression forces. While creating a TPD
decreases the spatial resolution of tactile images, most of the spatial
information is preserved, and less storage is required for TPDs than
for sets of multiple tactile images. The spatial resolution of TPDs can
be increased to match the resolution of raw tactile images; however,
that will come at the expense of storage and computation speed.
Finally, the TPD method opens the possibility of applying deep
learning techniques, such as Convolutional Neural Networks (CNN),
for malignant/benign classification in clinical breast cancer

applications. We used 13 human datasets to test the developed
classification methods. For the human data set, CNN classification
accuracy for depth, stiffness, and size were 77%, 69%, and 69%
respectively. So, we conclude that tumor’s mechanical properties are
accurately classified using Tactile Sensing System. This system can
be used in breast tumor characterization application.
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