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Abstract—We developed a method to characterize tumors by representing multiple tactile images obtained from Tactile 
Sensing System. We convert multiple tactile images into a single representative image called Tactile Profile Diagram 
(TPD). TPD is a pattern image with tactile information about a tumor. TPD is used to estimate the mechanical property 
of the tumors. We verified the TPD method by classifying tumor phantoms using a Convolutional Neural Network (CNN) 
with an accuracy of 83% for depth, 78% for stiffness, and 72% for size. We also applied machine learning algorithms for 
tumor mechanical property classification with the human dataset. CNN classification accuracy of depth, stiffness, and 
size was 77%, 69%, and 69%, respectively for the human data. Consequently, we conclude that the TPD method is 
useful for inclusion classification with Tactile Sensing System in breast cancer applications. 

 
Index Terms—breast tumor, convolutional neural network classification, data representation, pattern images, tactile profile diagram, 
tactile sensors, Tactile Sensing System. 

I.  INTRODUCTION 

Breast masses are the most common breast disease manifestation, 
where the majority of them are benign [1]. Breast masses can be 
detected by patients during self-breast examination (SBE), by medical 
practitioners during a clinical breast examination (CBE), or during a 
routine screening mammogram [2]. In modern practice, SBE and CBE 
are not the primary tools for a cancer diagnosis; however, they are 
very important supplemental screening techniques to mammography, 
ultrasound, or MRI imaging. CBE is used to identify the lesions and 
to find 15% of the malignant tumors undetected during 
mammography [3]. 
When a tumor is found, physicians complete a detailed assessment 

of the tumor and the affected breast, evaluate for the possibility of 
malignancy, and aim to give an accurate diagnosis [1]. To do so, most 
often, they use mammography and ultrasound imaging to visualize the 
breast tissues and suspicious masses. Other supplemental tests are 
available to support the diagnosis [2]. Research shows that cancerous 
masses tend to be stiffer than benign ones [4],[5], and in some studies, 
malignant tumors are found to be tenfold stiffer than normal breast 
tissue through compression experiments [6]. It is also shown that 
mechanical imaging can classify breast tumors as benign or malignant 
[7],[8]. Moreover, the size of the detected tumor defines its grade 
during diagnosis and defines the future treatment plan for the patient 
[6]. The recent advancement of tactile devices, such as tactile sensors, 
greatly assists in identifying objects, recognizing objects, and 
estimating poses in robotics and other applications [9]. We developed 
Tactile Sensing System and its algorithms to mimic human touch 
sensation and to non-invasively measure the size and stiffness of 
embedded tumors [10]-[13]. Our research group first developed 
Tactile Sensing System to determine the strain and elastic modulus of 
polymer samples [10]. Further, our research group improved this 
system [11]-[12]. Building on these works, we convert multiple tactile 
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images into one tactile profile diagram (TPD) that is computationally 
more efficient as the processing time decreases significantly. 
In paper [14], our research group used Tactile Sensing System 

algorithm to estimate the size and stiffness and then apply 
machine learning algorithms such as k-nearest neighbor, support 
vector machine, and Naïve Bayes to classify breast masses as benign 
or malignant based on the size and stiffness information. Some 
researchers used the Convolutional Neural Network algorithm to 
classify benign and malignant tumors based on raw digital 
mammogram medical images [15], [16] or ultrasound images [17]. 
Motivated by the fact that CNN is an effective tool for medical image 
classification, we employed CNN to characterize tumor mechanical 
properties. More specifically, in our work, we utilize the TPDs and 
employ CNN models to classify the tumor’s mechanical properties 
such as depth, stiffness, and size of inclusions. In this paper, we 
classify tumor’s mechanical properties and the classification results 
will be compared with true values for depth, size, and stiffness of 
human patient data. 

II. METHODS 

A. Tactile Sensing System and Imaging 

 
 
 
 
 
 
 
 
 
 
Fig. 1.  Tactile sensing system connected to acquisition software 
 

Digital Object Identifier: 10.1109/LSEN.XXXX.XXXXXXX (inserted by IEEE). 

 

Tactile acquisition
software

Tactile Sensing
System

Laptop

This article has been accepted for publication in IEEE Sensors Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2023.3310356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Temple University. Downloaded on September 21,2023 at 17:28:12 UTC from IEEE Xplore.  Restrictions apply. 



Article #                                                                                                                                                                               Volume 2(3) (2017)  

————————————————————————————————————– 

Page 2 of 4 

The Tactile Sensing System exploits the total internal reflection of 
principle inside the elastic and translucent Polydimethylsiloxane 
(PDMS) probe as a sensing element to measure tactile properties of 
tissue inclusions [12], [18], [19]. The built-in lens and CMOS camera 
(IDS UI-3240CP) capture the reflected rays due to the contact 
deformation of the probe against a test sample. The applied force 
starts from 0N and gradually increases to 45N. We acquire a set of 
images for each compression against the tissue region with inclusion. 
The size of an individual image is 1024 × 1280	pixels. The typical 
number of images in a set for the experiment is 50. The speed of image 
acquisition is 20 images per second. Finally, acquisition software is 
used to transfer the data from the camera to the laptop. See. Fig. 1. 

B. Tactile Profile Diagram 

Here we present a method to construct a Tactile Profile Diagram 
(TPD), as a representative pattern image of a tactile image set [20]. 
TPD is a pictorial representation of relative stiffness and size of the 
inclusion. The range of applied force should be kept the same between 
different TPDs. See. Fig. 2 for sample TPDs. The method of creating 
a TPD from multiple tactile images is as follows. 

Fig. 2.  Sample TPD images 
 
We acquire a set of images with Tactile Sensing System by 
compressing it on the region with an inclusion. The number of raw 
tactile images, 𝐼!(𝑥, 𝑦) , in a set is 𝑙 = 1, 2, . . . , 𝑁 . Variables 𝑥 
and 𝑦  are the horizontal and the vertical coordinates respectively 
of a pixel within an image 𝐼! . We apply an averaging filter with 
a non-overlapping sliding window of size 10	𝑝𝑖𝑥𝑒𝑙𝑠 × 10	𝑝𝑖𝑥𝑒𝑙𝑠	to 
each 𝐼!(𝑥, 𝑦), in order to reduce the level of white noise within the 
images and improve the speed of computation. The pixels values in 
the created reduced image, 𝑅!(𝑚, 𝑛),	corresponding to the average 
values of pixel intensities in the window at each step. The number 
of reduced images in the set is the same as the number of original 
images. The size of the reduced images is 103	𝑝𝑖𝑥𝑒𝑙𝑠(𝑚) ×
128	𝑝𝑖𝑥𝑒𝑙𝑠(𝑛). The reduced images are the more compact copies of 
tactile raw images. Each tactile image, 𝐼! , has a corresponding 
compression force value. The 𝑓!;;⃗  is the vector of forces of size	𝑁 × 1. 
Similar to the pre-load step during Instron tests [21], we select a 
reference force, 𝑓"#$, and its corresponding reduced reference image, 
𝑅"#$(𝑚, 𝑛), from the set to account for the imperfections at the test 
tissue surface. Empirically, we chose 5N as 𝑓"#$ and obtain the vector 
of the change in compression force, as ∆𝑓!;;;;;⃗  as, 
 ∆𝑓!;;;;;⃗ = 𝑓!;;⃗ − 𝑓"#$ . (1) 

Subsequently, we complete pixel-wise subtraction of the reduced 
reference image, 𝑅"#$(𝑚, 𝑛) , from all reduced images, 𝑅!(𝑚, 𝑛), 
in the set to create an image set ∆𝑅! , which represents the change 
in tissue deformation under compression. These images describe the 
deformation of the silicone probe within Tactile Sensing System. 
 ∆𝑅!(𝑚, 𝑛) = 𝑅!(𝑚, 𝑛) − 𝑅"#$(𝑚, 𝑛). (2) 
Next, we find the maximum intensity value, ∆𝑅%&', present in the 
∆𝑅!  image set. Then we subtract each pixel value in ∆𝑅!  images 

from the ∆𝑅%&'  to get the change of deformation images, ∆𝑊! , of 
the tissue with inclusion, and not of the sensing probe’s material. 
 ∆𝑊!(𝑚, 𝑛) = ∆𝑅%&' − ∆𝑅!(𝑚, 𝑛). (3) 

 
Fig. 3.  Young’s Modulus Index calculation for a pixel (𝑚, 𝑛) and a 
reconstructed Tactile Profile Diagram 
 
To construct a TPD, we calculate Young’s modulus index values, 
𝑌𝑀𝐼	(𝑚, 𝑛)  which is the stiffness estimation parameter, for each 
pixel location in ∆𝑊! (Fig. 3). We mimic the definition of Young’s 
modulus and calculate 𝑌𝑀𝐼 in a pixel location (𝑚, 𝑛) as a slope of 
the compression force over an area (the compression change ∆𝑓𝑙;;;;;;;⃗ ) 
vs. the deformation change due to the compression (the change in 
deformation ∆𝑊! for the tissue with inclusion). To calculate the slope 
in each pixel location (𝑚, 𝑛), 𝑁 data points will be used from a tactile 
image set. A Tactile Profile Diagram (TPD) is obtained by plotting 
𝑌𝑀𝐼	(𝑚, 𝑛) for 𝑚	 = 	1 to 103 and 𝑛	 = 	1 to 128 (Fig. 3). If ∆𝑓𝑙;;;;;;;⃗  
is divided by the contact area and ∆𝑊! is correlated with the strain, 
then 𝑌𝑀𝐼 is related to the young’s modulus of the tissue. 

 

C. Tactile Profile Diagram Classification 

We classified Tactile Profile Diagrams using CNN. See. Fig. 4. 
Convolutional Neural Network (CNN) proved to work well with 
image classification tasks [22],[23]. CNN includes a set of 
convolutional layers with corresponding activation functions, max-
pooling layers, and fully connected layers with a Softmax function for 
the final classification decision.  

 
Fig. 4.  TPD classification method 
 
We employed three CNN models to classify tactile profile diagrams 
and to characterize the depth, stiffness, and size of imaged tumors. 
The depth classification model is shown in Fig. 5 where we classified 
tumors as deep or shallow. Similarly, we classified small, medium, or 
large tumors employing the size model, and stiff or soft tumors from 
the stiffness model. We designed CNN sequential models without a 
feedback loop, with three convolution layers, three Max pooling 
layers, and activation functions for the feature learning part. We 
employed Adamax optimizer, and accuracy as the metric for the 
model performance evaluation during training. The model's training 
and validation data is developed from tactile phantom imaging data 
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combined into the Tactile Profile Diagrams dataset for classification. 
With the sufficient training data and the modified final layer, the 
model can output multiple classes if required by the application. 
 
Depth, Size, and Stiffness Classification 

 The depth and stiffness TPD models are designed as 2 class and 
size TPD model is designed as 3 class classifiers to distinguish the 
classes. Fig. 5 shows the structure of the depth classification model. 
The classification part of all the models includes four dense layers 
with ReLU and ELU activation functions and Dropout layers of 0.3 
and 0.2. The final fully connected layer has a Softmax activation 
function. In depth, size, and stiffness model there are two, three, and 
two nodes, corresponding to the shallow or deep classes, small or 
medium or large classes, and soft or stiffness classes respectively. 

 
Fig. 5.  CNN model for tumor depth classification 

III. EXPERIMENTS AND RESULTS 

A. Phantom and setup 

 The tactile breast tissue phantom is composed of multiple layers. 
The base material of the tissue layers is PDMS due to its safety and 
easiness to use, adjustable stiffness, and high tolerance to heat and 
mechanical compressions. PDMS is commercially available silicone 
rubber and composed of two materials: Base agent (A) and Curing 
Agent (B). Two components A and B were mixed in different ratio by 
weight. These ratios are given in Fig. 6. We developed four types of 
tissue layers using PDMS: base, intermediate, depth, and skin layers. 
Fig. 6 shows the schematics of the phantom and its layers. The 
description of each layer is also provided in the figure. The spherical 
tumors are manually cut out of cured PDMS with a range of stiffness 
to mimic different tumor sizes and stiffness characteristics. 

B. Classification: Depth, Size, and Stiffness 

    Depth Model: To train the Depth model we used samples of varying 
sizes (10 mm, 12 mm, 14 mm, 16 mm, 18 mm) and stiffness (from 
130 kPa to > 250 MPa). We included a shallow tumor subset: depths 
of 0 mm, 2 mm, and 4 mm, and a deep tumor subset: depths of 6 mm, 
8 mm, and 10 mm. During the model development, the data division 
was 80% for training and 20% for validation. The model was trained 
on 6768 TPDs and validated on 1692 TPDs. The validation accuracy 
was 96%. 
     Size Model: During training the Size model we included varying 
depths (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm) and stiffness 
(130 kPa − 250 MPa). The sizes were 10 mm, 12 mm, 14 mm, 16 
mm, 18 mm, and 23 mm. We divided the dataset into three classes 
depending on the size of the tumor: small (10 mm and 12 mm), 

medium (14 mm and 16 mm), and large (18 mm and 23 mm). The 
model was trained on 6789 TPDs and validated on 1696 TPDs. The 
validation accuracy was 96%. 

 
Fig. 6.  Schematics diagram of phantom and its layers 

Table 1.  CNN classification results for the phantom data 
Sample Depth Stiffness Size 

CNN 
Class 

CNN Class 
(Prob± 
STD) 

CNN 
Class 

CNN Class 
(Prob± 
STD) 

CNN 
Class 

CNN Class 
(Prob± 
STD) 

1 Shallow 0.73±0.00 Stiff 0.73±0.00 Medium 0.32±0.13 
2 Shallow 0.57±0.19 Stiff 0.58±0.27 Small 0.46±0.21 
3 Shallow 0.72±0.01 Soft 0.73±0.01 Small 0.57±0.01 
4 Shallow 0.70±0.06 Stiff 0.59±0.25 Medium 0.58±0.01 
5 Shallow 0.62±0.2 Stiff 0.64±0.16 Medium 0.57±0.01 
6 Deep 0.35±0.12 Stiff 0.47±0.21 Small 0.28±0.06 
7 Shallow 0.73±0.00 Stiff 0.73±0.00 Large 0.58±0.00 
8 Deep 0.37±0.15 Stiff 0.73±0.00 Large 0.58±0.01 
9 Shallow 0.59±0.10 Soft 0.54±0.24 Medium 0.30±0.14 
1 Deep 0.73±0.00 Soft 0.44±0.25 Small 0.37±0.16 
2 Deep 0.72±0.00 Soft 0.27±0.01 Small 0.53±0.02 
3 Deep 0.70±0.02 Soft 0.68±0.08 Small 0.48±0.08 
4 Deep 0.65±0.11 Stiff 0.73±0.00 Medium 0.56±0.02 
5 Deep 0.62±0.19 Soft 0.49±0.23 Medium 0.54±0.03 
6 Deep 0.68±0.08 Soft 0.73±0.00 Small 0.31±0.09 
7 Shallow 0.27±0.01 Stiff 0.73±0.00 Large 0.58±0.00 
8 Deep 0.69±0.06 Stiff 0.73±0.00 Large 0.58±0.01 
9 Deep 0.73±0.00 Soft 0.55±0.25 Small 0.22±0.01 
Accuracy 0.83 0.78 0.72 
 Stiffness Model: The Stiffness model was trained on varying 
sizes and depths samples same as the depth model. The stiffness 
of embedded tumors ranged from 130 kPa to more than 250 MPa. 
The soft tumors subset included 130 kPa to 316 kPa samples and the 
stiff tumors subset included tumors from 376 kPa to more than 250 
MPa samples. The model was trained on 6788 TPDs and validated 
on 1697 TPDs. The validation accuracy was 91%. 

C. Classification: Human and Phantom Data 

Phantom Data: Results from TPD classification are presented in 
Table 1. In the table, the green shaded rows indicate deep tumors, 
the light brown rows indicate stiff tumors, and light and darker blue 
rows correspond to medium and large size tumors, respectively. 
classification accuracy for depth, stiffness, and size for the test set are 
83% 78%, and 72%, respectively. See Table 1. The misclassified 
cases are shown in red. The size accuracy is low because the time 
difference between the calibration and measurement times of the 
samples for the TPD size model was relatively large and the PDMS 
sensing element slightly changed its properties. 
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Table 2.  CNN classification results for the human data 
Patient Depth Stiffness Size 

US Est. 
Class 

CNN 
Class 

Doctor 
Est. Class 

CNN 
Class 

US Est. 
Class 

CNN 
Class 

1 Shallow Deep Stiff Stiff Small Large 
2 Shallow Deep Stiff Soft Large Small 
3 Shallow Shallow Stiff Stiff Large Large 
4 Shallow Shallow Soft Soft Medium Medium 
5 Shallow Shallow Soft Stiff Large Small 
6 Shallow Shallow Stiff Stiff Large Large 
7 Shallow Deep Soft Soft Large Large 
8 Shallow Shallow Stiff Stiff Medium Medium 
9 Shallow Shallow Soft Stiff Medium Large 
10 Deep Deep Soft Soft Large Large 
11 Deep Deep Soft Stiff Small Small 
12 Deep Deep Soft Soft Large Large 
13 Shallow Shallow Stiff Stiff Small Small 
Accuracy 0.77 0.69 0.69 

    Human Data: We used 13 human datasets to test the developed 
methods. CNN classification accuracy for depth, stiffness, and size 
were 77%, 69%, and 69%, respectively. Results are presented in 
Table 2. The low size estimation error can be again attributed 
to the differences in PDMS probe condition between the imaging 
experiments for the model development and the time of human data 
acquisition. 

 
Fig. 7.  Visualization of phantom and human data 

Fig. 7 represents the classification accuracy of the phantom and 
human data. It seems that phantom data has slightly better 
classification results compared to human data as the calibration of our 
Tactile Sensing System is based on phantom. But still, human data 
has given consistent and satisfactory classification results with our 
developed model. 

IV. CONCLUSION 

We utilized Tactile Profile Diagram (TPD) to obtain the mechanical 
properties of tumors. There are many advantages of using 
TPDs over the use of raw tactile image sets. The tactile property 
information in TPD is visual, condensed, and easier to interpret. 
Each pixel in a TPD carries dynamic tactile information of the tested 
region under the range of compression forces. While creating a TPD 
decreases the spatial resolution of tactile images, most of the spatial 
information is preserved, and less storage is required for TPDs than 
for sets of multiple tactile images. The spatial resolution of TPDs can 
be increased to match the resolution of raw tactile images; however, 
that will come at the expense of storage and computation speed. 
Finally, the TPD method opens the possibility of applying deep 
learning techniques, such as Convolutional Neural Networks (CNN), 
for malignant/benign classification in clinical breast cancer 

applications. We used 13 human datasets to test the developed 
classification methods. For the human data set, CNN classification 
accuracy for depth, stiffness, and size were 77%, 69%, and 69% 
respectively. So, we conclude that tumor’s mechanical properties are 
accurately classified using Tactile Sensing System. This system can 
be used in breast tumor characterization application.  
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