

1 Journal: Ecosphere

2 Manuscript type: Article

3

4 Title: Idiosyncrasy and predictability in intraspecific trait-climate relationships of grasses

5

6 **Author details:** Brody Sandel^{1*} and Robert J. Griffin-Nolan¹²

7 1. Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara CA

8 94703, USA

9 2. Department of Biological Sciences, California State University: Chico. 400 W. First St.

10 Chico, CA 95929, USA

11 * Corresponding author, bsandel@scu.edu

12 **Open Research statement:** Data and/or code are provided as private-for-peer review via the

13 following link: https://datadryad.org/stash/share/a3Rg30V_rKBGaFVH7JSPxv77-

14 wscN7ygdui260CSYfM

15 **Keywords:** Poaceae, Grasses, Functional traits, Specific leaf area, Precipitation, Intraspecific

16 trait variation

18 **Abstract**

19 Many plant species can exhibit remarkable variation in leaf characteristics, depending on their
20 abiotic and biotic environment. Environmental changes therefore have the potential to alter leaf
21 traits, which in turn scale up to influence ecosystem processes including net primary
22 productivity, susceptibility to fire and palatability to herbivores. It is not well understood how
23 consistent trait-environment relationships are among species, across sites and over time. This
24 presents a fundamental challenge for functional ecology, since no study can measure all relevant
25 species in all places at all times. Thus, understanding the limits of transferability is critical.

26

27 We collected leaf trait measurements on 13 species of grass (family: Poaceae) across 11 sites and
28 five years ($n = 3091$ individuals). Sites were arrayed along a spatial precipitation gradient in
29 coastal northern California (annual precipitation of 590 to 1350 mm) with substantial inter-
30 annual precipitation variability (from 60% below the 30-year average to 100% above average).
31 Temporal and spatial linear relationships between precipitation and specific leaf area (SLA)
32 appear at first idiosyncratic, with each species sometimes displaying positive and sometimes
33 negative responses. However, this variation arises from sampling different portions of an
34 underlying hump-shaped relationship, which was shared across most species. This hump-shaped
35 relationship was driven primarily by changes in leaf tissue density. These results suggest the
36 potential for transferability among species, as well as between space and time, as long as the
37 gradients are sufficiently long to capture the non-linear response. Future work could explore the
38 physiological basis of the non-linear SLA response, including the possibility that distinct
39 physiological mechanisms are operating at the two extremes of the gradient.

40

41 **Introduction**

42 Functional traits can shed light on plant ecological strategies and responses to environmental
43 change (Suding et al. 2008; Diaz et al. 2016). As Earth's climate changes, it is important to
44 understand how plant traits might respond, as shifts in the functional attributes of plant
45 communities can impact ecosystem processes (Lavorel and Garnier, 2002). Leaf traits are often a
46 focus of study, given their critical role in gas exchange and light capture (Wright et al. 2004,
47 Ordoñez et al. 2009), as well as interactions with several ecosystem processes including forage
48 palatability (Pontes et al. 2007) and fire intensity (Simpson et al. 2016). Specific leaf area (SLA),
49 the ratio of a leaf's surface area to dry mass can characterize the resource-use economics of a
50 leaf, particularly with regards to carbon and light capture (Westoby 1998, Wright et al. 2004,
51 Diaz et al. 2016). Plants with low SLA values are considered "conservative", displaying low
52 relative growth rates, greater longevity, and low leaf tissue nitrogen and phosphorous
53 concentrations (Wright and Westoby 1999, Wright et al. 2004, Shipley 2006, Diaz et al. 2016).
54 Accordingly, plants with low SLA are often associated with nutrient poor (Ordoñez et al. 2009)
55 and sometimes dry environments (Wright et al. 2005, Dwyer et al. 2014), though relationships
56 with precipitation are often weak (e.g. Maire et al. 2015, Bruelheide et al 2018). In grasslands,
57 ecosystem productivity often shows large inter-annual variation (Lauenroth and Sala 1992,
58 Zhang et al. 2014) associated with precipitation variation. Changes in community-level variation
59 in SLA is potentially an important driver of these responses (Griffin-Nolan et al. 2019). Thus,
60 understanding how SLA responds to climate variation could improve predictions of grassland
61 responses to climate change.

62

63 It is infeasible to directly quantify responses for all species in all regions to all potentially
64 important environmental drivers. An appeal of trait-based ecology is the premise that, by
65 focusing on functional characteristics of organs shared across many plant species, it will be
66 possible to make general predictions and transfer inferences across domains (McGill et al. 2006).
67 However, the constraints on this transferability are poorly delineated. For example, if wetter
68 regions tend to have tree communities with higher average SLA, do wetter years also tend to
69 have higher-SLA communities (Sandel 2019)? Do intraspecific shifts in traits along an
70 environmental gradient mirror among-species turnover, such that sites with taller species also
71 tend to have taller individuals of a species (Lepš et al. 2011)? Most evidence for the form of
72 trait-environment relationships is derived from interspecific trait variation along spatial
73 environmental gradients (Moles et al. 2009; Sandel et al. 2016, Bruelheide et al. 2018, Šimová et
74 al. 2018, Sandel and Low 2019), yet in a global change context the goal is often to predict a
75 change through time (e.g. Gaüzère et al. 2020, Pansini et al. 2021, Rubio-Rios et al. 2022). This
76 requires a space-for-time substitution, which may or may not be reliable (Pickett 1989, Johnson
77 and Myanishi 2008, De Lombaerde et al. 2018, Blois et al., 2013, Damgaard 2019). For example,
78 warming-induced shifts in community trait values in tundra ecosystems often lagged behind the
79 predictions made from spatial relationships between plant traits and temperature (Bjorkman et al.
80 2018).
81
82 Furthermore, many of the known trait-climate relationships are based on measurements across
83 species, ignoring significant intraspecific trait variability and potentially misrepresenting a
84 species' fitness in a particular environment (Siefert et al. 2015; Sandel et al. 2021; Westerband et
85 al. 2021). Thus, we currently lack an understanding of whether intraspecific trait-climate

86 relationships are consistent across space and time (Lang et al. 2019) and some early studies have
87 struggled to identify consistent patterns (e.g. Albert et al. 2010, Roybal and Butterfield 2019). In
88 at least some cases, intraspecific trait shifts are opposite to those associated with community
89 turnover. For example, in communities consisting of species with typically high stem dry matter
90 content (LDMC), individuals tended to have lower-than-average SDMC (Leps et al. 2011). Leaf
91 nitrogen and phosphorous concentrations have shown similar negative covariation between inter-
92 and intraspecific variation (Kichenin et al. 2013).

93

94 Our goal is to assess the transferability of intraspecific trait-climate relationships across space,
95 time and among species. We examine intraspecific shifts in SLA and associated leaf traits (e.g.,
96 leaf thickness and tissue density) for 13 grass species along a precipitation gradient across 11
97 grassland sites in the San Francisco Bay Area of California for 5 years. We focus on SLA as it
98 shows substantial intraspecific variation (Shipley and Almeida-Cortez, 2003; Sandel et al. 2021,
99 Griffin-Nolan and Sandel 2023) and is sensitive to precipitation variability (Wellstein et al.,
100 2017). While positive and negative intraspecific precipitation-SLA relationships are roughly
101 balanced globally (Griffin-Nolan and Sandel 2023), the first year of data from this project
102 revealed consistently negative intraspecific spatial precipitation-SLA relationships, opposite to
103 the interspecific pattern and possibly due to changing trait covariance with precipitation (Sandel
104 and Low 2019). Here, we ask whether these relationships remain consistent across years of
105 widely varying precipitation, whether wetter years within a site are also associated with lower
106 SLA values, and whether these relationships are consistent across species. If inconsistencies are
107 detected, we further hypothesize that they may be segments of one non-linear relationship
108 between traits and climate (Albert et al. 2010). Finally, we assess the relative importance of

109 changes in leaf thickness and leaf tissue density in driving changes in SLA, considering that
110 uncoordinated shifts in these traits could lead to opposite responses of SLA at the two ends of the
111 precipitation gradient.

112

113 **Materials and Methods**

114 *Site Characteristics*

115 Grasslands in the San Francisco Bay Area are characterized by a Mediterranean climate, with
116 warm, dry summers and cool, wet winters. Growth occurs during the wet season, with most grass
117 species reaching reproductive maturity in April or May. We selected 11 sites (Figure 1, Table
118 S1) to collect trait data across five years (2017-2021), although not all sites were sampled in all
119 years. Sampling was particularly limited during the 2020 field season because of COVID-19.
120 The sites include eight Marin County Parks, here divided into three “regions”: the Tiburon
121 Peninsula (Old Saint Hilary’s, Ring Mountain), Central Marin (Loma Alta, French Ranch, Terra
122 Linda/Sleepy Hollow Divide, Lucas Valley) and Northern Marin (Verissimo Hills and Mount
123 Burdell), one University of California Natural Reserve (Blue Oak Ranch Reserve), one National
124 Seashore (Point Reyes), and one site held by the Peninsula Open Space Trust (Wavecrest). The
125 San Francisco Bay Area has very strong gradients in annual precipitation, which are well
126 captured by these sites. Based on downscaled climate estimates from PRISM (see details below),
127 the driest site, Blue Oak Ranch Reserve, receives about 590 mm of precipitation per year. The
128 wettest, Lucas Valley, receives about 1350 mm per year. The wettest year in the study (2017)
129 received 60-100% more rainfall than average across the sites, while the driest year (2021)
130 received 60-70% less than average (Figure 2, Table S1). Precipitation is a strong positive
131 predictor of net primary productivity within California annual grasslands (Alexander et al. 2023).

132

133 *Trait Measurements*

134 We measured leaf traits of grasses in late April through early June, near the end of their growing
135 season. We established an average of 5 plots (5x5 m) in each site in each year. For every grass
136 species present in a plot, we collected trait measurements from an average of 4 individuals. New
137 plots were established each year to avoid resampling the same individuals. Plots within a
138 sampling site were separated by a median distance of 465 m, with an inter-quartile range of 152
139 to 1023 m.

140

141 From each individual, we collected the highest fully expanded, undamaged, green leaf along the
142 stem and measured its thickness using a caliper. We immediately photographed the leaf against a
143 white background with a scale bar, using a sheet of plexiglass if necessary to hold the leaf flat.
144 The leaves were placed in individually labeled coin envelopes and returned to the lab, where we
145 dried them at 55-60 °C for at least 48 hours and then weighed them. We determined leaf area (in
146 cm²) from each image using ImageJ software (<https://imagej.nih.gov/ij/>). We calculated SLA as
147 the ratio of leaf area to dry mass (cm²/g). Finally, we estimated leaf volume as leaf surface area x
148 leaf thickness (cm³), and calculated leaf tissue density as leaf dry mass/leaf volume (g/cm³).

149

150 In total, we collected trait measurements for 3517 individuals of 33 species across 136 sampling
151 plots. For our analysis, we focus on those species that were sampled from at least 20 plots,
152 leading to a sample size of 13 species and 3091 total individuals. Each of these species occurred
153 at a minimum of 7 of our sites.

154

155 To describe recent and long-term precipitation patterns at each sampling plot, we used PRISM
156 monthly climate data (PRISM Climate Group, 2021). Most plots were not located near weather
157 stations, but the resolution of the PRISM dataset (800 m for 30-year normals) allowed us to
158 capture the fine-scale variation in climate among plots. For each sampling plot, we extracted the
159 long-term (30-year) mean annual precipitation (P) as well as the total precipitation during the 12
160 months preceding sampling (P_1). We used this 12-month window to capture the short California
161 growing season as well as any rare precipitation events that may have affected plant trait
162 expression.

163

164 *Analysis*

165 We fit Bayesian hierarchical models to relate SLA to P_1 . To improve the convergence of the
166 Markov chain Monte Carlo (MCMC) sampler, we performed two initial processing steps. First,
167 we standardized each SLA measurement against its species mean by subtracting the species
168 mean value (all on a log scale), calling these values deltaSLA. Second, we scaled these deltaSLA
169 values and P_1 to a mean of 0 and variance of 1.

170

171 One model was fit to describe spatial relationships, in which a different slope and intercept was
172 estimated for each species in each year. Another model described temporal relationships, with
173 different slopes and intercepts for each species in each sampling region. We used five regions
174 (Blue Oak Ranch, Tiburon Peninsula, Central Marin, Northern Marin and Point Reyes) for the
175 temporal model and four years for the spatial model. One region, Wavecrest, was sampled in
176 only one year, and therefore not usable to establish relationships through time. Similarly,
177 sampling in 2020 was limited to just two sites, so we did not consider spatial relationships in that

178 year. These models describe, for each species, whether 1) wet sites within a year produce
179 different trait values than dry sites (spatial relationships), and 2) wet years within a region
180 produce different trait values than dry years (temporal relationships). We were interested in the
181 consistency of temporal relationships across space, spatial relationships through time, and
182 temporal vs spatial relationships.

183

184 The above approach allows us to compare model coefficients to assess consistency, but we also
185 wanted to assess the transferability of model predictions across regions, years and species. We
186 randomly selected two combinations of region, year and species that differed in only one respect
187 (e.g. *Bromus hordeaceus* in Blue Oak Ranch in 2021 and *Bromus hordeaceus* in Blue Oak Ranch
188 in 2017). We then used the estimated model coefficients for the first combination to predict trait
189 values for both combinations. We computed the predicted-observed Pearson correlations in both
190 cases, with the ratio of these correlations serving as an indication of the extent to which
191 predictions can be transferred. We repeated this process 1000 times changing only year, 1000
192 times changing only the region, and 1000 times changing only the species. Finally, we used the
193 same procedure to assess a space-for-time substitution – using the estimated model coefficients
194 for one species in one year across sites to predict its dynamics at one site through time (e.g.
195 *Bromus hordeaceus* in 2018 to predict *Bromus hordeaceus* through time at Blue Oak Ranch).

196

197 The model fitting and assessment of transferability were then repeated for models that included
198 both P_1 and its quadratic term P_1^2 . To simulate a common application of a space-for-time
199 substitution, we also examined quadratic terms in models fit only with data from 2017, 2018,

200 2019 and 2021. The idea was to examine whether data from one year could be enough to
201 accurately estimate a non-linear relationship that might be apparent in a longer time-series.

202

203 Finally, we explored precipitation-trait relationships for other traits related to SLA: leaf surface
204 area, thickness, tissue density and dry mass. In each case, we fit one overall spatial-temporal
205 hierarchical model including both species-by-region and species-by-year interactions.

206

207 We fit all models using the *brms* package (Bürkner 2017,2018, 2021) in R v4.1.2 (R Core Team
208 2021). For each model, we ran 2 chains for the MCMC sampler, each with 5000 iterations after a
209 2500 iteration burn-in. Convergence metrics were adequate, including R-hat values very close to
210 1 (maximum 1.01) and bulk effective sample sizes larger than 1000 for all estimated parameters.
211 In the following text and figures, we present the mean value of the posterior distribution for these
212 parameters.

213

214 **Results**

215 The overall main effects of P_1 on deltaSLA were similar in the spatial and temporal models
216 (mean estimate and 95% credible interval were 0.16 (-0.01,0.33) and 0.22 (0.06,0.40),
217 respectively). However, the linear slopes of trait-precipitation relationships were not consistent
218 within or among species, regions or years. For example, SLA of *Bromus hordeaceus* responded
219 positively, negatively, or weakly to precipitation depending on the year (Figure 3A) or region
220 (Figure 3B). Spatial relationships were highly variable among years. For example, in 2017, all
221 species showed negative spatial precipitation-SLA relationships, while in 2019 most (11/13)
222 were positive (Figure 3C). Considering temporal relationships, wetter years were associated with

223 higher SLA values for nearly all species in Point Reyes and the Tiburon Peninsula, while in
224 Central Marin, all but one species had lower SLA in wetter years (Figure 3D). Every species
225 showed both negative and positive P_1 slope estimates among years in the spatial model. The
226 same was true among regions for temporal P_1 slope estimates, with one exception (*Briza minor*,
227 with only positive slope estimates).

228

229 Accordingly, transferability was low for these models, particularly across space and time. The
230 median correlation between predicted and observed deltaSLA values for a particular species,
231 region and year was about 0.24. Transferring a prediction to another region (for the same species
232 and year) reduced the median correlation to -0.06, while transferring to another year (for the
233 same species and region) reduced it to -0.07. Thus, these transfers are slightly worse than a
234 random guess. Transferring to another species (in the same region and year) produced a less
235 pronounced reduction in predictive performance, reducing the correlation to 0.16. The space-for-
236 time substitution was poor, with a median correlation of 0.06. Thus, a linear relationship fit in
237 one region was essentially useless to predict patterns in another region, and the same was true for
238 years.

239

240 Across the complete dataset, the quadratic effect of P_1 on SLA was strongly supported in the
241 models, and reliably negative (spatial model coefficient: -0.36, CI: (-0.51, -0.20), temporal
242 model coefficient -0.43, CI: (-0.58, -0.27)). The overall estimated equation from spatial models
243 was $\text{deltaSLA} = 0.37 + 0.28 P_1 - 0.36 P_1^2$. For the temporal model it was $\text{deltaSLA} = 0.38 + 0.14$
244 $P_1 - 0.43 P_1^2$. Back-transforming to original precipitation values, the spatial model estimates
245 maximum SLA values at 1.4 m of rainfall, while the temporal model estimates the maximum

246 slightly lower, at 1.25 m. Across species, years and regions, the quadratic terms were nearly
247 uniformly negative, and their 95% credible intervals often did not include 0 (Figure 4). In any of
248 the four individual years, however, there was weak support for a quadratic term in the model. Of
249 the four years, only the wettest year (2017) showed clear evidence for a negative quadratic
250 relationship (estimated quadratic term -1.01, 95% credible interval: (-1.51, -0.53)). In one of the
251 dry years (2018) it was positive (7.77, CI from (2.72 to 12.90)), and in both 2021 (very dry) and
252 2019 (wet) the estimates were close to zero, with credible intervals including zero. Therefore, in
253 the complete data set a clear and consistent hump-shaped relationship appeared across many
254 species, but this was not readily detectable in most single years.

255

256 The quadratic term also substantially improved transferability, particularly among regions and
257 years. The median correlation between predicted and observed deltaSLA values for a given
258 species, region and year was 0.30. Transferring predictions to another region (maintaining the
259 species and year) reduced this correlation by 23%, transferring to another year (maintaining
260 species and region) reduced it by 57% and transferring to another species (maintaining region
261 and year) reduced it by 20%. A space-for-time transfer reduced the correlation by 23%. Thus,
262 there was always some loss of predictive power when transferring across domains, but this loss
263 was fairly small across space, across taxa and from space to time. However, transferring across
264 years produced a much weaker prediction.

265

266 The pattern in leaf area largely mirrored that for SLA, while leaf dry mass is essentially invariant
267 with respect to P_1 (Table 1, Figure 5). Thus, the same mass produces variable leaf areas
268 depending on precipitation. This difference in area return per mass invested appears to be driven

269 primarily by changes in leaf tissue density rather than thickness, as density showed responses
270 very much the opposite of the SLA response (Figure 5). Consistent with an important role for
271 density, variation in density was overall much more strongly related to SLA than was thickness
272 (median within-species $r = -0.80$ for density, $r = -0.08$ for thickness).

273

274 **Discussion**

275 *Consistency of trait-climate relationships*

276 We explored the spatial and temporal relationships between SLA and precipitation within grass
277 species to determine the consistency and transferability of trait-climate relationships. Overall, we
278 make the following three conclusions: (1) linear precipitation-SLA relationships are inconsistent
279 among species, regions and years, (2) this idiosyncrasy could be resolved by postulating an
280 underlying non-linear relationship (approximated piece-wise by subsets of the data) which is
281 undetectable from single years of data, and (3) when the range of precipitation values is
282 sufficient to detect the unifying nonlinear relationship, a fairly consistent negative hump-shaped
283 relationship does appear. This closely matches the expectation presented by Albert et al. (2010)
284 in their attempt to explain idiosyncratic intraspecific trait patterns among species.

285

286 Like previous studies on grasses that assessed linear relationships between climate and traits
287 within species, we found very inconsistent relationships (Roybal and Butterfield 2019, Sandel et
288 al. 2021, Weemstra et al. 2021). This has led to some skepticism that these relationships could be
289 understood in a general way. Albert et al. (2010) recognized this problem, and proposed a
290 conceptual model unifying divergent responses according to the position along a species' niche
291 axis. Because one region or year often did not encompass enough precipitation variability to

292 reveal the nonlinearity, individual spatial and temporal relationships between precipitation and
293 SLA often appeared approximately linear. And, because these linear approximations are pieces
294 of a hump-shaped function, their slopes often differed not just in magnitude but in sign. Thus, the
295 patterns among years or regions can appear idiosyncratic, despite being pieces of one nonlinear
296 function.

297

298 Given the inadequacies of the linear models, it might seem that it would be easy to detect a
299 unifying non-linear relationship. However, among the four years we modeled, the hump-shaped
300 relationship between P_1 and SLA was only detectable in 2017. In other years, the estimated
301 curvature was either weak or in the opposite direction. Were we to have conducted the study in
302 just one of those years, any resulting space-for-time substitution would be weak. Furthermore,
303 our own previous analysis of the 2017 data (Sandel and Low 2019) was solely based on linear
304 relationships between precipitation and SLA, which seemed at the time to fit the data adequately.
305 The lesson we take from this is that a unifying non-linear relationship may be very difficult to
306 detect in just one year of study.

307

308 However, with our multi-year data, predictions from the quadratic model were transferable
309 among regions, years and species, with less loss in explanatory power. By virtue of the similar
310 estimated equations for temporal and spatial patterns, spatial predictions were also transferable to
311 temporal dynamics. Thus, our results emphasize the importance of carefully considering the
312 extent of the spatial gradient, and whether it is sufficient to encompass the expected climatic
313 changes through time. In this case, despite large spatial variability in precipitation, the
314 interannual variation was even larger (Figure 2). Thus, several years of spatial data with varying

315 climate conditions is likely needed to establish a robust space-for-time substitution, at least when
316 the underlying function is nonlinear.

317

318 It is common to detect evidence of some degree of non-equilibrium in evaluations of space-for-
319 time substitutions (Sandel et al. 2010, Blois et al. 2013, Svenning and Sandel 2013, Sandel 2019,
320 Gaüzère et al. 2020). Perfect spatial-temporal equilibrium in trait-climate relationships implies
321 that the function linking the two is equivalent regardless of whether the relationship is computed
322 across space or through time. However, a large number of processes can disturb this equilibrium,
323 including lagged responses to environmental change and non-climatic influences on trait values
324 (Svenning and Sandel 2013). Here, we found largely congruent spatial and temporal responses,
325 suggesting strong trait-climate equilibrium. This may be because, unlike most previous studies,
326 we are focused on intraspecific trait variation rather than aggregate community metrics such as
327 the community-weighted mean. Individual-level shifts in trait expression may be fairly rapid in
328 response to variation in precipitation over the previous growing season, leading to weak lags and
329 therefore strong equilibrium. Our focus on recent (12-month antecedent) precipitation, rather
330 than long term averages as is most typical (e.g. Wright et al. 2005), also likely contributed to the
331 stronger equilibrium we observed. Further, many of the species considered here are annuals,
332 increasing the potential for rapid responses. Individual plants often respond to climate on short
333 timescales (e.g., months to years). Legacies of antecedent precipitation can have a strong
334 influence on both plant traits and ecosystem functioning (Sala et al. 2012). Understanding plant
335 responses to recent climate may explain potential inconsistencies in space-for-time substitutions
336 as plant responses to extreme wet or dry years are likely to differ from expectations based on
337 spatial variation in mean climate.

338

339 *Implications for plant functional ecology*

340 Our finding of a hump-shaped relationship between precipitation and SLA within species was
341 somewhat surprising. Most previous research has found that SLA is generally lower in drier
342 areas and years as plants reduce their potential area for evapotranspiration, produce harder
343 drought tolerant leaves, or both. Given that drought negatively influences SLA of grasses
344 (Wellstein et al. 2017) and that increased competition and shading (as expected in wetter years
345 with higher NPP) tend to increase SLA (Poorter et al. 2009, Bennett et al. 2016) the decline in
346 SLA we observed at higher precipitation was puzzling. We investigated this further by exploring
347 mechanisms of SLA variation and found that it was primarily driven by changes in leaf tissue
348 density. In other words, as precipitation increased in wet sites/years, SLA decreased as leaves
349 became denser. Increased leaf tissue density could result from greater cell wall fraction (vs.
350 cytoplasm) (Poorter et al. 2009) or increased vein density (Alanso-Forn et al. 2020, reviewed in
351 Sancho-Knapik et al. 2020). Additionally, reduced tissue density with little change to thickness
352 may indicate that plants are producing leaves with more densely packed cells and/or smaller air
353 spaces (Castro-Díez et al. 2000), which are already reduced in grasses compared to dicots (Byott
354 1976). In turn, the percent airspace in leaf tissue is negatively correlated with area-based
355 photosynthetic rates for some species (Chazdon and Kaufmann 1993). While we did not
356 investigate microanatomy of leaves, it is possible that such mechanisms may be driving the
357 nonlinear effect of precipitation on SLA. For example, enhanced ecosystem productivity on the
358 wet end of a species' range could increase herbivory activity, prompting greater resource
359 investment in cell wall material and thus increased tissue density (Xing et al. 2021). In drier
360 regions, however, species may increase tissue density via increased vein density as an adaptation

361 to drought (Sack and Scoffoni, 2013). Further investigations into the microanatomy of these
362 species is required to determine the exact physiological mechanisms.

363

364 Two previous studies of regional or global trait-climate relationships in grasses have found weak
365 effects of precipitation on interspecific SLA patterns (Forrestel et al. 2017, Jardine et al. 2020).
366 However, one study (Sandel et al. 2016, the largest of these in terms of species coverage) did
367 reveal hump-shaped relationships between annual precipitation and community mean SLA at
368 continental to global scales, with maximum SLA values expected around 1.0 to 1.5 m of annual
369 precipitation. This may suggest some shared mechanism promoting maximal SLA in grasses
370 around 1.0 m of annual rainfall at both inter- and intraspecific levels, but more work is needed to
371 determine if this is robust. In particular, our study examined only C3 species, and it might be
372 expected that C4 grasses (by virtue of their higher water use efficiencies) might experience a
373 maximum SLA at a lower precipitation value; however, SLA of grass species do not generally
374 vary by photosynthetic pathway, nor do intraspecific precipitation-SLA relationships (Griffin-
375 Nolan et al. 2023). It will also be valuable to extend these results beyond grasses, to other
376 herbaceous plants and trees, which can exhibit different trait-climate relationships (e.g. Reich
377 and Oleksyn 2004, Šímová et al. 2018). In particular, the traits of species with long-lived leaves
378 may not track recent precipitation as strongly as annual grasses, which would likely cause greater
379 mismatch between spatial and temporal trait-environment relationships.

380

381 The strength and direction of trait-climate relationships shown here should be viewed cautiously
382 considering we did not assess additional traits which may influence the response of SLA to
383 precipitation. For example, rooting depth and associated root traits (e.g., root diameter, specific

384 root length) are known to influence plant responses to precipitation (Garbowski et al. 2020).
385 Hypotheses on how SLA will respond to precipitation assume the plants are experiencing lower
386 soil moisture and greater water stress in more arid sites. Deep-rooted species with large root
387 diameters are an exception to this assumption as they can access groundwater stores (Ding et al.
388 2021); however, grasses are generally shallow rooted and access water in upper soil layers
389 (Nippert and Knapp 2007). Additionally, our predictions about how precipitation may impact
390 SLA depends on a species biomass allocation to total leaf biomass production (Poorter and
391 Remkes 1990). While we would expect plants to reduce SLA in drier conditions to limit
392 evaporative leaf surface area, some plants may accomplish this through reduced allocation to leaf
393 biomass in general (Eziz et al. 2017), and this can be independent of changes to SLA.
394 Interestingly, low SLA species can sometimes have denser canopies as their leaves have longer
395 lifespans and thus accumulate over time (Wright et al. 2019); thus, our predictions also depend
396 on a plant's lifespan. Finally, our sampling covers a limited geographical scope; therefore, we
397 call for more expansive temporal and spatial trait datasets to make general conclusions about
398 spatiotemporal trait-climate relationships for grasses.

399
400 It is particularly important to understand the drivers of SLA variation for grasses as the traits of
401 these species contribute to net primary production, grazing dynamics, fire regimes, and carbon
402 sequestration. Relative growth rate of herbaceous plants is strongly determined by SLA (~64%
403 interspecific variation in RGR is attributed to SLA; Poorter and Van der Werf 1998) which
404 suggests shifts in SLA with climate will also impact productivity. This is important for
405 understanding fire regimes in California grasslands as grass flammability is linked to biomass
406 production in addition to vegetation moisture content (Simpson et al. 2016). Additionally,

407 species with higher SLA are often more flammable, particularly exotic grasses which are
408 common to California (Murray et al. 2013).

409

410 **Acknowledgments**

411 We thank Marin County Parks, Point Reyes National Seashore, Blue Oak Ranch Reserve, and
412 the Peninsula Open Space Trust for supporting this project. We also thank R. Low, T. Hayashi,
413 C. Pavelka, K. Limbach, S. Acevedo, L. Seeley, L. Rios-Camacho and A. Capstick for assistance
414 with field and lab work. This work was supported by in part by a grant from Marin County Parks
415 (“Functional Trait Variation of Native and Exotic Grasses Across Marin County”). This material
416 is based upon work supported by the National Science Foundation under Grant No. 2046733.

417

418 **Author contributions**

419 BS conceived the study and led the data collection. BS and RJG-N designed the analysis, BS
420 conducted the analysis, and both authors wrote the manuscript.

421

422 **Conflict of Interest Statement**

423 The authors declare no conflicts of interest.

424

425 **References**

426 Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., & Lavorel, S.
427 (2010). Intraspecific functional variability: extent, structure and sources of
428 variation. *Journal of Ecology*, 98(3), 604-613.

429 Alexander, J.D., McCafferty, M.K., Fricker, G.A. and James, J.J., 2023. Climate seasonality and
430 extremes influence net primary productivity across California's grasslands, shrublands,
431 and woodlands. *Environmental Research Letters*, 18(6), p.064021.

432 Alonso-Forn, D., Sancho-Knapik, D., Ferrio, J. P., Peguero-Pina, J. J., Bueno, A., Onoda, Y., ...
433 & Gil-Pelegrín, E. (2020). Revisiting the functional basis of sclerophyllly within the leaf
434 economics spectrum of oaks: Different roads to Rome. *Current Forestry Reports*, 6(4),
435 260-281.

436 Bennett, J.A., Riibak, K., Tamme, R., Lewis, R.J. and Pärtel, M., 2016. The reciprocal relationship
437 between competition and intraspecific trait variation. *Journal of Ecology*, 104(5), pp.1410-1420.

438 Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Rüger, N., Beck, P.S.,
439 Blach-Overgaard, A., Blok, D., Cornelissen, J.H.C., Forbes, B.C. and Georges, D., 2018.
440 Plant functional trait change across a warming tundra biome. *Nature*, 562(7725), pp.57-
441 62.

442 Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., & Ferrier, S. (2013). Space can
443 substitute for time in predicting climate-change effects on biodiversity. *Proceedings of*
444 *the National Academy of Sciences*, 110(23), 9374-9379.

445 Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M.,
446 Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F. and Kattge, J., (2018). Global trait–
447 environment relationships of plant communities. *Nature Ecology & Evolution*, 2(12),
448 pp.1906-1917.

449 Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using STAN.
450 Journal of Statistical Software, 80(1) 1-28.

451 Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. The R
452 Journal, 10(1), 395-411.

453 Bürkner, P.-C. (2021). Bayesian Item Response Modeling in R with brms and Stan. Journal of
454 Statistical Software, 100(5), 1-54.

455 Byott, G.S., (1976). Leaf air space systems in C3 and C4 species. *New Phytologist*, 76(2),
456 pp.295-299.

457 Castro-Díez, P., Puyravaud, J. P., & Cornelissen, J. (2000). Leaf structure and anatomy as related
458 to leaf mass per area variation in seedlings of a wide range of woody plant species and
459 types. *Oecologia*, 124(4), 476-486.

460 Chazdon, R. L., & Kaufmann, S. (1993). Plasticity of leaf anatomy of two rain forest shrubs in
461 relation to photosynthetic light acclimation. *Functional Ecology*, 385-394.

462 Damgaard, C. (2019). A critique of the space-for-time substitution practice in community
463 ecology. *Trends in ecology & evolution*, 34(5), 416-421.

464 De Lombaerde, E., Verheyen, K., Perring, M.P., Bernhardt-Römermann, M., Van Calster, H.,
465 Brunet, J., Chudomelová, M., Decocq, G., Diekmann, M., Durak, T. and Hédl, R., 2018.
466 Responses of competitive understorey species to spatial environmental gradients
467 inaccurately explain temporal changes. *Basic and Applied Ecology*, 30, pp.52-64.

468 Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., ... & Gorné, L. D.
469 (2016). The global spectrum of plant form and function. *Nature*, 529(7585), 167-171.

470 Ding, Y., Nie, Y., Chen, H., Wang, K., & Querejeta, J. I. (2021). Water uptake depth is
471 coordinated with leaf water potential, water-use efficiency and drought vulnerability in
472 karst vegetation. *New Phytologist*, 229(3), 1339-1353.

473 Dwyer, J.M., Hobbs, R.J. and Mayfield, M.M., 2014. Specific leaf area responses to
474 environmental gradients through space and time. *Ecology*, 95(2), pp.399-410.

475 Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. (2017). Drought effect on plant
476 biomass allocation: A meta-analysis. *Ecology and evolution*, 7(24), 11002-11010.

477 Forrestel, E.J., Donoghue, M.J., Edwards, E.J., Jetz, W., du Toit, J.C. and Smith, M.D., (2017).
478 Different clades and traits yield similar grassland functional responses. *Proceedings of
479 the National Academy of Sciences*, 114(4), pp.705-710.

480 Garbowski, M., Avera, B., Bertram, J. H., Courkamp, J. S., Gray, J., Hein, K. M., ... & Brown,
481 C. S. (2020). Getting to the root of restoration: Considering root traits for improved
482 restoration outcomes under drought and competition. *Restoration Ecology*, 28(6), 1384-
483 1395.

484 Gaüzère, P., Iversen, L.L., Seddon, A.W., Violle, C. and Blonder, B., 2020. Equilibrium in plant
485 functional trait responses to warming is stronger under higher climate variability during
486 the Holocene. *Global Ecology and Biogeography*, 29(11), pp.2052-2066.

487 Griffin-Nolan, R. J., Blumenthal, D. M., Collins, S. L., Farkas, T. E., Hoffman, A. M., Mueller,
488 K. E., ... & Knapp, A. K. (2019). Shifts in plant functional composition following long-
489 term drought in grasslands. *Journal of Ecology*, 107(5), 2133-2148.

490 Griffin-Nolan, R.J. and Sandel, B. (2023), Grass trait-abundance relationships and the role of the
491 functional composition of the neighboring community. J Veg Sci. Accepted Author
492 Manuscript e13181.

493 Jardine, E.C., Thomas, G.H., Forrestel, E.J., Lehmann, C.E. and Osborne, C.P., (2020). The
494 global distribution of grass functional traits within grassy biomes. *Journal of
495 Biogeography*, 47(3), pp.553-565.

496 Johnson, E. A., & Miyanishi, K. (2008). Testing the assumptions of chronosequences in
497 succession. *Ecology letters*, 11(5), 419-431.

498 Kichenin, E., Wardle, D.A., Peltzer, D.A., Morse, C.W. and Freschet, G.T., 2013. Contrasting
499 effects of plant inter-and intraspecific variation on community-level trait measures along
500 an environmental gradient. *Functional Ecology*, 27(5), pp.1254-1261.

501 Lang, B., Geiger, A., Oyunbileg, M., Ahlborn, J., von Wehrden, H., Wesche, K., Oyunsetseg, B.
502 and Römermann, C., 2019. Intraspecific trait variation patterns along a precipitation
503 gradient in Mongolian rangelands. *Flora*, 254, pp.135-146.

504 Lauenroth, W.K. and Sala, O.E., 1992. Long-term forage production of North American
505 shortgrass steppe. *Ecological Applications*, 2(4), pp.397-403.

506 Lavorel, S., & Garnier, É. (2002). Predicting changes in community composition and ecosystem
507 functioning from plant traits: revisiting the Holy Grail. *Functional ecology*, 16(5), 545-
508 556.

509 Lepš, J., de Bello, F., Šmilauer, P. and Doležal, J., 2011. Community trait response to
510 environment: disentangling species turnover vs intraspecific trait variability
511 effects. *Ecography*, 34(5), pp.856-863.

512 Maire, V., Wright, I.J., Prentice, I.C., Batjes, N.H., Bhaskar, R., van Bodegom, P.M., Cornwell,
513 W.K., Ellsworth, D., Niinemets, Ü., Ordonez, A. and Reich, P.B., 2015. Global effects of
514 soil and climate on leaf photosynthetic traits and rates. *Global Ecology and*
515 *Biogeography*, 24(6), pp.706-717.

516 McGill, B.J., Enquist, B.J., Weiher, E. and Westoby, M., 2006. Rebuilding community ecology
517 from functional traits. *Trends in ecology & evolution*, 21(4), pp.178-185.

518 Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., ... &
519 Leishman, M. R. (2009). Global patterns in plant height. *Journal of ecology*, 97(5), 923-
520 932.

521 Murray, B. R., Hardstaff, L. K., & Phillips, M. L. (2013). Differences in leaf flammability, leaf
522 traits and flammability-trait relationships between native and exotic plant species of dry
523 sclerophyll forest. *PloS one*, 8(11), e79205.

524 Nippert, J. B., & Knapp, A. K. (2007). Soil water partitioning contributes to species coexistence
525 in tallgrass prairie. *Oikos*, 116(6), 1017-1029.

526 Ordoñez, J.C., Van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B. and Aerts, R., 2009.

527 A global study of relationships between leaf traits, climate and soil measures of nutrient

528 fertility. *Global Ecology and Biogeography*, 18(2), pp.137-149.

529 Pansini, A., La Manna, G., Pinna, F., Stipcich, P. and Ceccherelli, G., 2021. Trait gradients

530 inform predictions of seagrass meadows changes to future warming. *Scientific Reports*,

531 11(1), pp.1-12.

532 Pickett, S. T. (1989). Space-for-time substitution as an alternative to long-term studies. In Long-

533 term studies in ecology (pp. 110-135). Springer, New York, NY.

534 Pontes, L. D. S., Soussana, J. F., Louault, F., Andueza, D., & Carrère, P. (2007). Leaf traits

535 affect the above-ground productivity and quality of pasture grasses. *Functional*

536 *Ecology*, 21(5), 844-853.

537 Poorter, H., & Remkes, C. (1990). Leaf area ratio and net assimilation rate of 24 wild species

538 differing in relative growth rate. *Oecologia*, 83(4), 553-559.

539 Poorter, H., & Van der Werf, A. D. R. I. E. (1998). Is inherent variation in RGR determined by

540 LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species.

541 Inherent variation in plant growth. Physiological mechanisms and ecological

542 consequences, 309-336.

543 Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and

544 consequences of variation in leaf mass per area (LMA): a meta-analysis. *New*

545 *phytologist*, 182(3), 565-588.

546 PRISM Climate Group, Oregon State Univirsity. <https://prism.oregonstate.edu> data created
547 August 2021, accessed August 17, 2021.

548 Reich, P.B. and Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to
549 temperature and latitude. *Proceedings of the National Academy of Sciences*, 101(30),
550 pp.11001-11006.

551 R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
552 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

553 Roybal, C.M. and Butterfield, B.J., (2019). Species-specific trait–environment relationships
554 among populations of widespread grass species. *Oecologia*, 189, pp.1017-1026.

555 Rubio-Ríos, J., Pérez, J., Salinas, M.J., Fenoy, E., Boyero, L. and Casas, J.J., 2022. Climate-
556 induced plasticity in leaf traits of riparian plants. *Diversity and Distributions*, 28(4),
557 pp.859-876.

558 Sack, L., & Scoffoni, C. (2013). Leaf venation: structure, function, development, evolution,
559 ecology and applications in the past, present and future. *New phytologist*, 198(4), 983-
560 1000.

561 Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbágy, E., & Peters, D. (2012). Legacies of
562 precipitation fluctuations on primary production: theory and data synthesis. *Philosophical
563 Transactions of the Royal Society B: Biological Sciences*, 367(1606), 3135-3144.

564 Sancho-Knapik, D., Escudero, A., Mediavilla, S., Scoffoni, C., Zailaa, J., Cavender-Bares, J., ...

565 & Gil-Pelegrín, E. (2021). Deciduous and evergreen oaks show contrasting adaptive

566 responses in leaf mass per area across environments. *New Phytologist*, 230(2), 521-534.

567 Sandel, B., Goldstein, L.J., Kraft, N.J., Okie, J.G., Shulzman, M.I., Ackerly, D.D., Cleland, E.E.

568 and Suding, K.N., 2010. Contrasting trait responses in plant communities to experimental

569 and geographic variation in precipitation. *New Phytologist*, 188(2), pp.565-575.

570 Sandel, B., Monnet, A.C. and Vorontsova, M., 2016. Multidimensional structure of grass

571 functional traits among species and assemblages. *Journal of Vegetation Science*, 27(5),

572 pp.1047-1060.

573 Sandel, B., 2019. Disequilibrium in trait-climate relationships of trees and birds. *Frontiers in*

574 *Ecology and Evolution*, 7, p.138.

575 Sandel, B. and Low, R., 2019. Intraspecific trait variation, functional turnover and trait

576 differences among native and exotic grasses along a precipitation gradient. *Journal of*

577 *Vegetation Science*, 30(4), pp.633-643.

578 Sandel, B., Pavelka, C., Hayashi, T., Charles, L., Funk, J., Halliday, F. W., ... & Spasojevic, M.

579 J. (2021). Predicting intraspecific trait variation among California's grasses. *Journal of*

580 *Ecology*, 109(7), 2662-2677.

581 Shipley, B., & Almeida-Cortez, J. (2003). Interspecific consistency and intraspecific variability

582 of specific leaf area with respect to irradiance and nutrient availability. *Ecoscience*, 10(1),

583 74-79.

584 Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: which is most
585 closely correlated with relative growth rate? A meta-analysis. *Functional Ecology*, 20(4),
586 565-574.

587 Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., ... & Wardle,
588 D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation
589 in plant communities. *Ecology letters*, 18(12),

590 Simpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E., Thomas, G. H., &
591 Osborne, C. P. (2016). Determinants of flammability in savanna grass species. *Journal of
592 Ecology*, 104(1), 138-148.

593 Šimová, I., Violle, C., Svenning, J. C., Kattge, J., Engemann, K., Sandel, B., ... & Enquist, B. J.
594 (2018). Spatial patterns and climate relationships of major plant traits in the New World
595 differ between woody and herbaceous species. *Journal of Biogeography*, 45(4), 895-916.

596 Suding, K. N., Lavorel, S., Chapin Iii, F. S., Cornelissen, J. H., Díaz, S., Garnier, E., ... & Navas,
597 M. L. (2008). Scaling environmental change through the community-level: A trait-based
598 response-and-effect framework for plants. *Global Change Biology*, 14(5), 1125-1140.

599 Svenning, J.C. and Sandel, B., 2013. Disequilibrium vegetation dynamics under future climate
600 change. *American Journal of Botany*, 100(7), pp.1266-1286.

601 Weemstra, M., Freschet, G.T., Stokes, A. and Roumet, C., (2021). Patterns in intraspecific
602 variation in root traits are species-specific along an elevation gradient. *Functional
603 Ecology*, 35(2), pp.342-356.

604 Wellstein, C., Poschlod, P., Gohlke, A., Chelli, S., Campetella, G., Rosbakh, S., ... &
605 Beierkuhnlein, C. (2017). Effects of extreme drought on specific leaf area of grassland
606 species: A meta-analysis of experimental studies in temperate and sub-Mediterranean
607 systems. *Global Change Biology*, 23(6), 2473-2481.

608 Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait variation in plants: a
609 renewed focus on its role in ecological processes. *Annals of botany*, 127(4), 397-410.

610 Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and*
611 *Soil*, 199, 213–227.

612 Wright, I.J. and Westoby, M., 1999. Differences in seedling growth behaviour among species:
613 trait correlations across species, and trait shifts along nutrient compared to rainfall
614 gradients. *Journal of Ecology*, 87(1), pp.85-97.

615 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., ... & Villar, R.
616 (2004). The worldwide leaf economics spectrum. *Nature*, 428(6985), 821-827.

617 Wright, I. J., Reich, P. B., Cornelissen, J. H., Falster, D. S., Groom, P. K., Hikosaka, K., ... &
618 Westoby, M. (2005). Modulation of leaf economic traits and trait relationships by
619 climate. *Global Ecology and Biogeography*, 14(5), 411-421.

620 Wright, I. J., Cooke, J., Cernusak, L. A., Hutley, L. B., Scalon, M. C., Tozer, W. C., & Lehmann,
621 C. E. (2019). Stem diameter growth rates in a fire-prone savanna correlate with
622 photosynthetic rate and branch-scale biomass allocation, but not specific leaf area.
623 *Austral Ecology*, 44(2), 339-350.

624 Xing, K., Zhao, M., Niinemets, Ü., Niu, S., Tian, J., Jiang, Y., Chen, H.Y., White, P.J., Guo, D.

625 and Ma, Z., 2021. Relationships between leaf carbon and macronutrients across woody

626 species and forest ecosystems highlight how carbon is allocated to leaf structural

627 function. *Frontiers in Plant Science*, 12, p.674932.

628 Zhang, Y., Qi, W., Zhou, C., Ding, M., Liu, L., Gao, J., Bai, W., Wang, Z. and Zheng, D., 2014.

629 Spatial and temporal variability in the net primary production of alpine grassland on the

630 Tibetan Plateau since 1982. *Journal of Geographical Sciences*, 24, pp.269-287.

631

632 Table 1: Regression coefficients (mean of posterior distribution) and 95% credible intervals
633 linking precipitation with five traits, derived from overall quadratic models including species-by-
634 region and species-by-year interactions.

Trait	P ₁		P ₁ ²	
	Estimate	Credible int.	Estimate	Credible int.
SLA	0.25	(0.11,0.39)	-0.38	(-0.57,-0.18)
Thickness	-0.09	(-0.19,0.01)	-0.10	(-0.23,0.02)
Density	-0.11	(-0.24,0.02)	0.35	(0.17,0.51)
Area	0.05	(-0.12,0.25)	-0.20	(-0.38,0.04)
Mass	0.00	(-0.18,0.18)	-0.01	(-0.19,0.19)

635

636

637 **Figure captions**

638 Figure 1: Sampling locations and illustration of spatial and temporal relationships. (A) Each
639 symbol represents a sampling location, divided into 6 main regions and sampled in one of 5
640 years. The background map indicates topography. The zoom-in shows the distribution of
641 sampling locations at one site: Blue Oak Ranch. (B) and (C) illustrate examples of spatial and
642 temporal relationships. In (B), the spatial relationship between precipitation and SLA is shown
643 for one year (2021) for *Bromus hordeaceus*. In (C), the temporal relationship is shown for one
644 site (Blue Oak Ranch). Symbols and colors as in (A).

645

646 Figure 2: Monthly rainfall totals across the five years within the five study regions (A) and their
647 deviation from the 30-year monthly averages for each site (B).

648

649 Figure 3: Spatial and temporal relationships between SLA and precipitation over the previous 12
650 months. Top row: example for one species, *Bromus hordeaceus*. Each point represents a
651 sampling location in a year, grouped either by the year of sampling (A) or by the sampling region
652 (B). Thus, (A) shows the spatial relationships estimated in each year, while (B) shows the
653 relationships through time in each region. Parameters for the fitted curves are the means of the
654 posterior distribution. The bottom row visualizes the distribution of spatial (C) and temporal (D)
655 precipitation-SLA estimated regression coefficients across species as violin plots. Coefficients
656 for 2020 are missing because of limited data collection that year. The numbers at the top and
657 bottom indicate the number of species with positive or negative posterior means, with the
658 number in parentheses indicating the number for which the 95% credible interval does not
659 include 0.

660

661 Figure 4: Summary of quadratic model fits. Panels A and B show the distribution of coefficients
662 for the P_1^2 term across species in each year or sampling region, respectively. Counts at the
663 bottom indicate the number of species within that region or year for which the quadratic term
664 was negative, while the number in parentheses indicates the number of species for which the
665 credible interval did not include 0. Counts at the top are the same for positive responses. Panels
666 C and D show the resulting fitted curves for each species in each year (C) or sampling region
667 (D). Colors in (C) and (D) correspond with (A) and (B), respectively.

668

669 Figure 5: Relationships between P_1 and delta trait values for four leaf traits, specific leaf area
670 (SLA, A), leaf thickness (B), leaf tissue density (C) and leaf surface area (D). Fitted curves
671 represent main effects from quadratic models. Symbols and colors as in Figure 1, dashed lines
672 indicate relationships for which the credible interval overlaps 0.

673

674