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Abstract 18 

Many plant species can exhibit remarkable variation in leaf characteristics, depending on their 19 

abiotic and biotic environment. Environmental changes therefore have the potential to alter leaf 20 

traits, which in turn scale up to influence ecosystem processes including net primary 21 

productivity, susceptibility to fire and palatability to herbivores. It is not well understood how 22 

consistent trait-environment relationships are among species, across sites and over time. This 23 

presents a fundamental challenge for functional ecology, since no study can measure all relevant 24 

species in all places at all times. Thus, understanding the limits of transferability is critical. 25 

 26 

We collected leaf trait measurements on 13 species of grass (family: Poaceae) across 11 sites and 27 

five years (n = 3091 individuals). Sites were arrayed along a spatial precipitation gradient in 28 

coastal northern California (annual precipitation of 590 to 1350 mm) with substantial inter-29 

annual precipitation variability (from 60% below the 30-year average to 100% above average). 30 

Temporal and spatial linear relationships between precipitation and specific leaf area (SLA) 31 

appear at first idiosyncratic, with each species sometimes displaying positive and sometimes 32 

negative responses. However, this variation arises from sampling different portions of an 33 

underlying hump-shaped relationship, which was shared across most species. This hump-shaped 34 

relationship was driven primarily by changes in leaf tissue density. These results suggest the 35 

potential for transferability among species, as well as between space and time, as long as the 36 

gradients are sufficiently long to capture the non-linear response. Future work could explore the 37 

physiological basis of the non-linear SLA response, including the possibility that distinct 38 

physiological mechanisms are operating at the two extremes of the gradient. 39 

 40 
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Introduction 41 

Functional traits can shed light on plant ecological strategies and responses to environmental 42 

change (Suding et al. 2008; Diaz et al. 2016). As Earth’s climate changes, it is important to 43 

understand how plant traits might respond, as shifts in the functional attributes of plant 44 

communities can impact ecosystem processes (Lavorel and Garnier, 2002). Leaf traits are often a 45 

focus of study, given their critical role in gas exchange and light capture (Wright et al. 2004, 46 

Ordoñez et al. 2009), as well as interactions with several ecosystem processes including forage 47 

palatability (Pontes et al. 2007) and fire intensity (Simpson et al. 2016). Specific leaf area (SLA), 48 

the ratio of a leaf’s surface area to dry mass can characterize the resource-use economics of a 49 

leaf, particularly with regards to carbon and light capture (Westoby 1998, Wright et al. 2004, 50 

Diaz et al. 2016). Plants with low SLA values are considered “conservative”, displaying low 51 

relative growth rates, greater longevity, and low leaf tissue nitrogen and phosphorous 52 

concentrations (Wright and Westoby 1999, Wright et al. 2004, Shipley 2006, Diaz et al. 2016). 53 

Accordingly, plants with low SLA are often associated with nutrient poor (Ordoñez et al. 2009) 54 

and sometimes dry environments (Wright et al. 2005, Dwyer et al. 2014), though relationships 55 

with precipitation are often weak (e.g. Maire et al. 2015, Bruelheide et al 2018). In grasslands, 56 

ecosystem productivity often shows large inter-annual variation (Lauenroth and Sala 1992, 57 

Zhang et al. 2014) associated with precipitation variation. Changes in community-level variation 58 

in SLA is potentially an important driver of these responses (Griffin-Nolan et al. 2019). Thus, 59 

understanding how SLA responds to climate variation could improve predictions of grassland 60 

responses to climate change. 61 

 62 
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It is infeasible to directly quantify responses for all species in all regions to all potentially 63 

important environmental drivers. An appeal of trait-based ecology is the premise that, by 64 

focusing on functional characteristics of organs shared across many plant species, it will be 65 

possible to make general predictions and transfer inferences across domains (McGill et al. 2006). 66 

However, the constraints on this transferability are poorly delineated. For example, if wetter 67 

regions tend to have tree communities with higher average SLA, do wetter years also tend to 68 

have higher-SLA communities (Sandel 2019)? Do intraspecific shifts in traits along an 69 

environmental gradient mirror among-species turnover, such that sites with taller species also 70 

tend to have taller individuals of a species (Lepš et al. 2011)? Most evidence for the form of 71 

trait-environment relationships is derived from interspecific trait variation along spatial 72 

environmental gradients (Moles et al. 2009; Sandel et al. 2016, Bruelheide et al. 2018, Šímová et 73 

al. 2018, Sandel and Low 2019), yet in a global change context the goal is often to predict a 74 

change through time (e.g. Gaüzère et al. 2020, Pansini et al. 2021, Rubio-Rios et al. 2022). This 75 

requires a space-for-time substitution, which may or may not be reliable (Pickett 1989, Johnson 76 

and Myanishi 2008, De Lombaerde et al. 2018, Blois et al., 2013, Damgaard 2019). For example, 77 

warming-induced shifts in community trait values in tundra ecosystems often lagged behind the 78 

predictions made from spatial relationships between plant traits and temperature (Bjorkman et al. 79 

2018). 80 

 81 

Furthermore, many of the known trait-climate relationships are based on measurements across 82 

species, ignoring significant intraspecific trait variability and potentially misrepresenting a 83 

species’ fitness in a particular environment (Siefert et al. 2015; Sandel et al. 2021; Westerband et 84 

al. 2021). Thus, we currently lack an understanding of whether intraspecific trait-climate 85 
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relationships are consistent across space and time (Lang et al. 2019) and some early studies have 86 

struggled to identify consistent patterns (e.g. Albert et al. 2010, Roybal and Butterfield 2019). In 87 

at least some cases, intraspecific trait shifts are opposite to those associated with community 88 

turnover. For example, in communities consisting of species with typically high stem dry matter 89 

content (LDMC), individuals tended to have lower-than-average SDMC (Leps et al. 2011). Leaf 90 

nitrogen and phosphorous concentrations have shown similar negative covariation between inter- 91 

and intraspecific variation (Kichenin et al. 2013). 92 

 93 

Our goal is to assess the transferability of intraspecific trait-climate relationships across space, 94 

time and among species. We examine intraspecific shifts in SLA and associated leaf traits (e.g., 95 

leaf thickness and tissue density) for 13 grass species along a precipitation gradient across 11 96 

grassland sites in the San Francisco Bay Area of California for 5 years. We focus on SLA as it 97 

shows substantial intraspecific variation (Shipley and Almeida-Cortez, 2003; Sandel et al. 2021, 98 

Griffin-Nolan and Sandel 2023) and is sensitive to precipitation variability (Wellstein et al., 99 

2017). While positive and negative intraspecific precipitation-SLA relationships are roughly 100 

balanced globally (Griffin-Nolan and Sandel 2023), the first year of data from this project 101 

revealed consistently negative intraspecific spatial precipitation-SLA relationships, opposite to 102 

the interspecific pattern and possibly due to changing trait covariance with precipitation (Sandel 103 

and Low 2019). Here, we ask whether these relationships remain consistent across years of 104 

widely varying precipitation, whether wetter years within a site are also associated with lower 105 

SLA values, and whether these relationships are consistent across species. If inconsistencies are 106 

detected, we further hypothesize that they may be segments of one non-linear relationship 107 

between traits and climate (Albert et al. 2010). Finally, we assess the relative importance of 108 
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changes in leaf thickness and leaf tissue density in driving changes in SLA, considering that 109 

uncoordinated shifts in these traits could lead to opposite responses of SLA at the two ends of the 110 

precipitation gradient. 111 

 112 

Materials and Methods 113 

Site Characteristics 114 

Grasslands in the San Francisco Bay Area are characterized by a Mediterranean climate, with 115 

warm, dry summers and cool, wet winters. Growth occurs during the wet season, with most grass 116 

species reaching reproductive maturity in April or May. We selected 11 sites (Figure 1, Table 117 

S1) to collect trait data across five years (2017-2021), although not all sites were sampled in all 118 

years. Sampling was particularly limited during the 2020 field season because of COVID-19. 119 

The sites include eight Marin County Parks, here divided into three “regions”: the Tiburon 120 

Peninsula (Old Saint Hilary’s, Ring Mountain), Central Marin (Loma Alta, French Ranch, Terra 121 

Linda/Sleepy Hollow Divide, Lucas Valley) and Northern Marin (Verissimo Hills and Mount 122 

Burdell), one University of California Natural Reserve (Blue Oak Ranch Reserve), one National 123 

Seashore (Point Reyes), and one site held by the Peninsula Open Space Trust (Wavecrest). The 124 

San Francisco Bay Area has very strong gradients in annual precipitation, which are well 125 

captured by these sites. Based on downscaled climate estimates from PRISM (see details below), 126 

the driest site, Blue Oak Ranch Reserve, receives about 590 mm of precipitation per year. The 127 

wettest, Lucas Valley, receives about 1350 mm per year. The wettest year in the study (2017) 128 

received 60-100% more rainfall than average across the sites, while the driest year (2021) 129 

received 60-70% less than average (Figure 2, Table S1). Precipitation is a strong positive 130 

predictor of net primary productivity within California annual grasslands (Alexander et al. 2023). 131 
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 132 

Trait Measurements 133 

We measured leaf traits of grasses in late April through early June, near the end of their growing 134 

season. We established an average of 5 plots (5x5 m) in each site in each year. For every grass 135 

species present in a plot, we collected trait measurements from an average of 4 individuals. New 136 

plots were established each year to avoid resampling the same individuals. Plots within a 137 

sampling site were separated by a median distance of 465 m, with an inter-quartile range of 152 138 

to 1023 m. 139 

 140 

From each individual, we collected the highest fully expanded, undamaged, green leaf along the 141 

stem and measured its thickness using a caliper. We immediately photographed the leaf against a 142 

white background with a scale bar, using a sheet of plexiglass if necessary to hold the leaf flat. 143 

The leaves were placed in individually labeled coin envelopes and returned to the lab, where we 144 

dried them at 55-60 ℃ for at least 48 hours and then weighed them. We determined leaf area (in 145 

cm2) from each image using ImageJ software (https://imagej.nih.gov/ij/). We calculated SLA as 146 

the ratio of leaf area to dry mass (cm2/g). Finally, we estimated leaf volume as leaf surface area x 147 

leaf thickness (cm3), and calculated leaf tissue density as leaf dry mass/leaf volume (g/cm3). 148 

 149 

In total, we collected trait measurements for 3517 individuals of 33 species across 136 sampling 150 

plots. For our analysis, we focus on those species that were sampled from at least 20 plots, 151 

leading to a sample size of 13 species and 3091 total individuals. Each of these species occurred 152 

at a minimum of 7 of our sites. 153 

 154 
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To describe recent and long-term precipitation patterns at each sampling plot, we used PRISM 155 

monthly climate data (PRISM Climate Group, 2021). Most plots were not located near weather 156 

stations, but the resolution of the PRISM dataset (800 m for 30-year normals) allowed us to 157 

capture the fine-scale variation in climate among plots. For each sampling plot, we extracted the 158 

long-term (30-year) mean annual precipitation (P) as well as the total precipitation during the 12 159 

months preceding sampling (P1). We used this 12-month window to capture the short California 160 

growing season as well as any rare precipitation events that may have affected plant trait 161 

expression.  162 

  163 

Analysis 164 

We fit Bayesian hierarchical models to relate SLA to P1. To improve the convergence of the 165 

Markov chain Monte Carlo (MCMC) sampler, we performed two initial processing steps. First, 166 

we standardized each SLA measurement against its species mean by subtracting the species 167 

mean value (all on a log scale), calling these values deltaSLA. Second, we scaled these deltaSLA 168 

values and P1to a mean of 0 and variance of 1.  169 

 170 

One model was fit to describe spatial relationships, in which a different slope and intercept was 171 

estimated for each species in each year. Another model described temporal relationships, with 172 

different slopes and intercepts for each species in each sampling region. We used five regions 173 

(Blue Oak Ranch, Tiburon Peninsula, Central Marin, Northern Marin and Point Reyes) for the 174 

temporal model and four years for the spatial model. One region, Wavecrest, was sampled in 175 

only one year, and therefore not usable to establish relationships through time. Similarly, 176 

sampling in 2020 was limited to just two sites, so we did not consider spatial relationships in that 177 
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year. These models describe, for each species, whether  1)  wet sites within a year produce 178 

different trait values than dry sites (spatial relationships), and 2) wet years within a region 179 

produce different trait values than dry years (temporal relationships). We were interested in the 180 

consistency of temporal relationships across space, spatial relationships through time, and 181 

temporal vs spatial relationships.  182 

 183 

The above approach allows us to compare model coefficients to assess consistency, but we also 184 

wanted to assess the transferability of model predictions across regions, years and species. We 185 

randomly selected two combinations of region, year and species that differed in only one respect 186 

(e.g. Bromus hordeaceus in Blue Oak Ranch in 2021 and Bromus hordeaceus in Blue Oak Ranch 187 

in 2017). We then used the estimated model coefficients for the first combination to predict trait 188 

values for both combinations. We computed the predicted-observed Pearson correlations in both 189 

cases, with the ratio of these correlations serving as an indication of the extent to which 190 

predictions can be transferred. We repeated this process 1000 times changing only year, 1000 191 

times changing only the region, and 1000 times changing only the species. Finally, we used the 192 

same procedure to assess a space-for-time substitution – using the estimated model coefficients 193 

for one species in one year across sites to predict its dynamics at one site through time (e.g. 194 

Bromus hordeaceus in 2018 to predict Bromus hordeaceus through time at Blue Oak Ranch). 195 

 196 

The model fitting and assessment of transferability were then repeated for models that included 197 

both P1and its quadratic term P1
2. To simulate a common application of a space-for-time 198 

substitution, we also examined quadratic terms in models fit only with data from 2017, 2018, 199 
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2019 and 2021. The idea was to examine whether data from one year could be enough to 200 

accurately estimate a non-linear relationship that might be apparent in a longer time-series. 201 

 202 

Finally, we explored precipitation-trait relationships for other traits related to SLA: leaf surface 203 

area, thickness, tissue density and dry mass. In each case, we fit one overall spatial-temporal 204 

hierarchical model including both species-by-region and species-by-year interactions. 205 

 206 

We fit all models using the brms package (Bürkner 2017,2018, 2021) in R v4.1.2 (R Core Team 207 

2021). For each model, we ran 2 chains for the MCMC sampler, each with 5000 iterations after a 208 

2500 iteration burn-in. Convergence metrics were adequate, including R-hat values very close to 209 

1 (maximum 1.01) and bulk effective sample sizes larger than 1000 for all estimated parameters. 210 

In the following text and figures, we present the mean value of the posterior distribution for these 211 

parameters. 212 

 213 

Results 214 

The overall main effects of P1 on deltaSLA were similar in the spatial and temporal models 215 

(mean estimate and 95% credible interval were 0.16 (-0.01,0.33) and 0.22 (0.06,0.40), 216 

respectively). However, the linear slopes of trait-precipitation relationships were not consistent 217 

within or among species, regions or years. For example, SLA of Bromus hordeaceus responded 218 

positively, negatively, or weakly to precipitation depending on the year (Figure 3A) or region 219 

(Figure 3B). Spatial relationships were highly variable among years. For example, in 2017, all 220 

species showed negative spatial precipitation-SLA relationships, while in 2019 most (11/13) 221 

were positive (Figure 3C). Considering temporal relationships, wetter years were associated with 222 
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higher SLA values for nearly all species in Point Reyes and the Tiburon Peninsula, while in 223 

Central Marin, all but one species had lower SLA in wetter years (Figure 3D). Every species 224 

showed both negative and positive P1 slope estimates among years in the spatial model. The 225 

same was true among regions for temporal P1 slope estimates, with one exception (Briza minor, 226 

with only positive slope estimates).  227 

 228 

Accordingly, transferability was low for these models, particularly across space and time. The 229 

median correlation between predicted and observed deltaSLA values for a particular species, 230 

region and year was about 0.24. Transferring a prediction to another region (for the same species 231 

and year) reduced the median correlation to -0.06, while transferring to another year (for the 232 

same species and region) reduced it to -0.07. Thus, these transfers are slightly worse than a 233 

random guess. Transferring to another species (in the same region and year) produced a less 234 

pronounced reduction in predictive performance, reducing the correlation to 0.16. The space-for-235 

time substitution was poor, with a median correlation of 0.06. Thus, a linear relationship fit in 236 

one region was essentially useless to predict patterns in another region, and the same was true for 237 

years. 238 

 239 

Across the complete dataset, the quadratic effect of P1 on SLA was strongly supported in the 240 

models, and reliably negative (spatial model coefficient: -0.36, CI: (-0.51, -0.20), temporal 241 

model coefficient -0.43, CI: (-0.58, -0.27)). The overall estimated equation from spatial models 242 

was deltaSLA = 0.37 + 0.28 P1 – 0.36 P1
2. For the temporal model it was deltaSLA = 0.38 + 0.14 243 

P1 – 0.43 P1
2. Back-transforming to original precipitation values, the spatial model estimates 244 

maximum SLA values at 1.4 m of rainfall, while the temporal model estimates the maximum 245 
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slightly lower, at 1.25 m. Across species, years and regions, the quadratic terms were nearly 246 

uniformly negative, and their 95% credible intervals often did not include 0 (Figure 4). In any of 247 

the four individual years, however, there was weak support for a quadratic term in the model. Of 248 

the four years, only the wettest year (2017) showed clear evidence for a negative quadratic 249 

relationship (estimated quadratic term -1.01, 95% credible interval: (-1.51, -0.53)). In one of the 250 

dry years (2018) it was positive (7.77, CI from (2.72 to 12.90)), and in both 2021 (very dry) and 251 

2019 (wet) the estimates were close to zero, with credible intervals including zero. Therefore, in 252 

the complete data set a clear and consistent hump-shaped relationship appeared across many 253 

species, but this was not readily detectable in most single years. 254 

 255 

The quadratic term also substantially improved transferability, particularly among regions and 256 

years. The median correlation between predicted and observed deltaSLA values for a given 257 

species, region and year was 0.30. Transferring predictions to another region (maintaining the 258 

species and year) reduced this correlation by 23%, transferring to another year (maintaining 259 

species and region) reduced it by 57% and transferring to another species (maintaining region 260 

and year) reduced it by 20%. A space-for-time transfer reduced the correlation by 23%. Thus, 261 

there was always some loss of predictive power when transferring across domains, but this loss 262 

was fairly small across space, across taxa and from space to time. However, transferring across 263 

years produced a much weaker prediction. 264 

 265 

The pattern in leaf area largely mirrored that for SLA, while leaf dry mass is essentially invariant 266 

with respect to P1 (Table 1, Figure 5). Thus, the same mass produces variable leaf areas 267 

depending on precipitation This difference in area return per mass invested appears to be driven 268 
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primarily by changes in leaf tissue density rather than thickness, as density showed responses 269 

very much the opposite of the SLA response (Figure 5). Consistent with an important role for 270 

density, variation in density was overall much more strongly related to SLA than was thickness 271 

(median within-species r = -0.80 for density, r = -0.08 for thickness). 272 

 273 

Discussion 274 

Consistency of trait-climate relationships 275 

We explored the spatial and temporal relationships between SLA and precipitation within grass 276 

species to determine the consistency and transferability of trait-climate relationships. Overall, we 277 

make the following three conclusions: (1) linear precipitation-SLA relationships are inconsistent 278 

among species, regions and years, (2) this idiosyncrasy could be resolved by postulating an 279 

underlying non-linear relationship (approximated piece-wise by subsets of the data) which is 280 

undetectable from single years of data, and (3) when the range of precipitation values is 281 

sufficient to detect the unifying nonlinear relationship, a fairly consistent negative hump-shaped 282 

relationship does appear. This closely matches the expectation presented by Albert et al. (2010) 283 

in their attempt to explain idiosyncratic intraspecific trait patterns among species. 284 

 285 

Like previous studies on grasses that assessed linear relationships between climate and traits 286 

within species, we found very inconsistent relationships (Roybal and Butterfield 2019, Sandel et 287 

al. 2021, Weemstra et al. 2021). This has led to some skepticism that these relationships could be 288 

understood in a general way. Albert et al. (2010) recognized this problem, and proposed a 289 

conceptual model unifying divergent responses according to the position along a species’ niche 290 

axis. Because one region or year often did not encompass enough precipitation variability to 291 
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reveal the nonlinearity, individual spatial and temporal relationships between precipitation and 292 

SLA often appeared approximately linear. And, because these linear approximations are pieces 293 

of a hump-shaped function, their slopes often differed not just in magnitude but in sign. Thus, the 294 

patterns among years or regions can appear idiosyncratic, despite being pieces of one nonlinear 295 

function.  296 

 297 

Given the inadequacies of the linear models, it might seem that it would be easy to detect a 298 

unifying non-linear relationship. However, among the four years we modeled, the hump-shaped 299 

relationship between P1 and SLA was only detectable in 2017. In other years, the estimated 300 

curvature was either weak or in the opposite direction. Were we to have conducted the study in 301 

just one of those years, any resulting space-for-time substitution would be weak. Furthermore, 302 

our own previous analysis of the 2017 data (Sandel and Low 2019) was solely based on linear 303 

relationships between precipitation and SLA, which seemed at the time to fit the data adequately. 304 

The lesson we take from this is that a unifying non-linear relationship may be very difficult to 305 

detect in just one year of study.  306 

 307 

However, with our multi-year data, predictions from the quadratic model were transferable 308 

among regions, years and species, with less loss in explanatory power. By virtue of the similar 309 

estimated equations for temporal and spatial patterns, spatial predictions were also transferable to 310 

temporal dynamics. Thus, our results emphasize the importance of carefully considering the 311 

extent of the spatial gradient, and whether it is sufficient to encompass the expected climatic 312 

changes through time. In this case, despite large spatial variability in precipitation, the 313 

interannual variation was even larger (Figure 2). Thus, several years of spatial data with varying 314 
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climate conditions is likely needed to establish a robust space-for-time substitution, at least when 315 

the underlying function is nonlinear. 316 

 317 

It is common to detect evidence of some degree of non-equilibrium in evaluations of space-for-318 

time substitutions (Sandel et al. 2010, Blois et al. 2013, Svenning and Sandel 2013, Sandel 2019, 319 

Gaüzère et al. 2020). Perfect spatial-temporal equilibrium in trait-climate relationships implies 320 

that the function linking the two is equivalent regardless of whether the relationship is computed 321 

across space or through time. However, a large number of processes can disturb this equilibrium, 322 

including lagged responses to environmental change and non-climatic influences on trait values 323 

(Svenning and Sandel 2013). Here, we found largely congruent spatial and temporal responses, 324 

suggesting strong trait-climate equilibrium. This may be because, unlike most previous studies, 325 

we are focused on intraspecific trait variation rather than aggregate community metrics such as 326 

the community-weighted mean. Individual-level shifts in trait expression may be fairly rapid in 327 

response to variation in precipitation over the previous growing season, leading to weak lags and 328 

therefore strong equilibrium. Our focus on recent (12-month antecedent) precipitation, rather 329 

than long term averages as is most typical (e.g. Wright et al. 2005), also likely contributed to the 330 

stronger equilibrium we observed. Further, many of the species considered here are annuals, 331 

increasing the potential for rapid responses. Individual plants often respond to climate on short 332 

timescales (e.g., months to years). Legacies of antecedent precipitation can have a strong 333 

influence on both plant traits and ecosystem functioning (Sala et al. 2012). Understanding plant 334 

responses to recent climate may explain potential inconsistencies in space-for-time substitutions 335 

as plant responses to extreme wet or dry years are likely to differ from expectations based on 336 

spatial variation in mean climate.  337 
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 338 

Implications for plant functional ecology 339 

Our finding of a hump-shaped relationship between precipitation and SLA within species was 340 

somewhat surprising. Most previous research has found that SLA is generally lower in drier 341 

areas and years as plants reduce their potential area for evapotranspiration, produce hardier 342 

drought tolerant leaves, or both. Given that drought negatively influences SLA of grasses 343 

(Wellstein et al. 2017) and that increased competition and shading (as expected in wetter years 344 

with higher NPP) tend to increase SLA (Poorter et al. 2009, Bennett et al. 2016) the decline in 345 

SLA we observed at higher precipitation was puzzling. We investigated this further by exploring 346 

mechanisms of SLA variation and found that it was primarily driven by changes in leaf tissue 347 

density. In other words, as precipitation increased in wet sites/years, SLA decreased as leaves 348 

became denser. Increased leaf tissue density could result from greater cell wall fraction (vs. 349 

cytoplasm) (Poorter et al. 2009) or increased vein density (Alanso-Forn et al. 2020, reviewed in 350 

Sancho-Knapik et al. 2020). Additionally, reduced tissue density with little change to thickness 351 

may indicate that plants are producing leaves with more densely packed cells and/or smaller air 352 

spaces (Castro-Díez et al. 2000), which are already reduced in grasses compared to dicots (Byott 353 

1976). In turn, the percent airspace in leaf tissue is negatively correlated with area-based 354 

photosynthetic rates for some species (Chazdon and Kaufmann 1993). While we did not 355 

investigate microanatomy of leaves, it is possible that such mechanisms may be driving the 356 

nonlinear effect of precipitation on SLA. For example, enhanced ecosystem productivity on the 357 

wet end of a species’ range could increase herbivory activity, prompting greater resource 358 

investment in cell wall material and thus increased tissue density (Xing et al. 2021). In drier 359 

regions, however, species may increase tissue density via increased vein density as an adaptation 360 
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to drought (Sack and Scoffoni, 2013). Further investigations into the microanatomy of these 361 

species is required to determine the exact physiological mechanisms. 362 

 363 

Two previous studies of regional or global trait-climate relationships in grasses have found weak 364 

effects of precipitation on interspecific SLA patterns (Forrestel et al. 2017, Jardine et al. 2020). 365 

However, one study (Sandel et al. 2016, the largest of these in terms of species coverage) did 366 

reveal hump-shaped relationships between annual precipitation and community mean SLA at 367 

continental to global scales, with maximum SLA values expected around 1.0 to 1.5 m of annual 368 

precipitation. This may suggest some shared mechanism promoting maximal SLA in grasses 369 

around 1.0 m of annual rainfall at both inter- and intraspecific levels, but more work is needed to 370 

determine if this is robust. In particular, our study examined only C3 species, and it might be 371 

expected that C4 grasses (by virtue of their higher water use efficiencies) might experience a 372 

maximum SLA at a lower precipitation value; however, SLA of grass species do not generally 373 

vary by photosynthetic pathway, nor do intraspecific precipitation-SLA relationships (Griffin-374 

Nolan et al. 2023). It will also be valuable to extend these results beyond grasses, to other 375 

herbaceous plants and trees, which can exhibit different trait-climate relationships (e.g. Reich 376 

and Oleksyn 2004, Šímová et al. 2018). In particular, the traits of species with long-lived leaves 377 

may not track recent precipitation as strongly as annual grasses, which would likely cause greater 378 

mismatch between spatial and temporal trait-environment relationships.  379 

 380 

The strength and direction of trait-climate relationships shown here should be viewed cautiously 381 

considering we did not assess additional traits which may influence the response of SLA to 382 

precipitation. For example, rooting depth and associated root traits (e.g., root diameter, specific 383 
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root length) are known to influence plant responses to precipitation (Garbowski et al. 2020). 384 

Hypotheses on how SLA will respond to precipitation assume the plants are experiencing lower 385 

soil moisture and greater water stress in more arid sites. Deep-rooted species with large root 386 

diameters are an exception to this assumption as they can access groundwater stores (Ding et al. 387 

2021); however, grasses are generally shallow rooted and access water in upper soil layers 388 

(Nippert and Knapp 2007). Additionally, our predictions about how precipitation may impact 389 

SLA depends on a species biomass allocation to total leaf biomass production (Poorter and 390 

Remkes 1990). While we would expect plants to reduce SLA in drier conditions to limit 391 

evaporative leaf surface area, some plants may accomplish this through reduced allocation to leaf 392 

biomass in general (Eziz et al. 2017), and this can be independent of changes to SLA. 393 

Interestingly, low SLA species can sometimes have denser canopies as their leaves have longer 394 

lifespans and thus accumulate over time (Wright et al. 2019); thus, our predictions also depend 395 

on a plant's lifespan. Finally, our sampling covers a limited geographical scope; therefore, we 396 

call for more expansive temporal and spatial trait datasets to make general conclusions about 397 

spatiotemporal trait-climate relationships for grasses. 398 

 399 

It is particularly important to understand the drivers of SLA variation for grasses as the traits of 400 

these species contribute to net primary production, grazing dynamics, fire regimes, and carbon 401 

sequestration. Relative growth rate of herbaceous plants is strongly determined by SLA (~64% 402 

interspecific variation in RGR is attributed to SLA; Poorter and Van der Werf 1998) which 403 

suggests shifts in SLA with climate will also impact productivity. This is important for 404 

understanding fire regimes in California grasslands as grass flammability is linked to biomass 405 

production in addition to vegetation moisture content (Simpson et al. 2016). Additionally, 406 
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species with higher SLA are often more flammable, particularly exotic grasses which are 407 

common to California (Murray et al. 2013).  408 
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Table 1: Regression coefficients (mean of posterior distribution) and 95% credible intervals 632 

linking precipitation with five traits, derived from overall quadratic models including species-by-633 

region and species-by-year interactions. 634 

 P1 P1
2 

Trait Estimate Credible int. Estimate Credible int. 

SLA 0.25 (0.11,0.39) -0.38 (-0.57,-0.18) 

Thickness -0.09 (-0.19,0.01) -0.10 (-0.23,0.02) 

Density -0.11 (-0.24,0.02) 0.35 (0.17,0.51) 

Area 0.05 (-0.12,0.25) -0.20 (-0.38,0.04) 

Mass 0.00 (-0.18,0.18) -0.01 (-0.19,0.19) 

 635 

  636 
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Figure captions 637 

Figure 1: Sampling locations and illustration of spatial and temporal relationships. (A) Each 638 

symbol represents a sampling location, divided into 6 main regions and sampled in one of 5 639 

years. The background map indicates topography. The zoom-in shows the distribution of 640 

sampling locations at one site: Blue Oak Ranch. (B) and (C) illustrate examples of spatial and 641 

temporal relationships. In (B), the spatial relationship between precipitation and SLA is shown 642 

for one year (2021) for Bromus hordeaceus. In (C), the temporal relationship is shown for one 643 

site (Blue Oak Ranch). Symbols and colors as in (A). 644 

 645 

Figure 2: Monthly rainfall totals across the five years within the five study regions (A) and their 646 

deviation from the 30-year monthly averages for each site (B).  647 

 648 

Figure 3: Spatial and temporal relationships between SLA and precipitation over the previous 12 649 

months. Top row: example for one species, Bromus hordeaceus. Each point represents a 650 

sampling location in a year, grouped either by the year of sampling (A) or by the sampling region 651 

(B). Thus, (A) shows the spatial relationships estimated in each year, while (B) shows the 652 

relationships through time in each region. Parameters for the fitted curves are the means of the 653 

posterior distribution. The bottom row visualizes the distribution of spatial (C) and temporal (D) 654 

precipitation-SLA estimated regression coefficients across species as violin plots. Coefficients 655 

for 2020 are missing because of limited data collection that year. The numbers at the top and 656 

bottom indicate the number of species with positive or negative posterior means, with the 657 

number in parentheses indicating the number for which the 95% credible interval does not 658 

include 0. 659 
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 660 

Figure 4: Summary of quadratic model fits. Panels A and B show the distribution of coefficients 661 

for the P1
2 term across species in each year or sampling region, respectively. Counts at the 662 

bottom indicate the number of species within that region or year for which the quadratic term 663 

was negative, while the number in parentheses indicates the number of species for which the 664 

credible interval did not include 0. Counts at the top are the same for positive responses. Panels 665 

C and D show the resulting fitted curves for each species in each year (C) or sampling region 666 

(D). Colors in (C) and (D) correspond with (A) and (B), respectively. 667 

 668 

Figure 5: Relationships between P1 and delta trait values for four leaf traits, specific leaf area 669 

(SLA, A), leaf thickness (B), leaf tissue density (C) and leaf surface area (D). Fitted curves 670 

represent main effects from quadratic models. Symbols and colors as in Figure 1, dashed lines 671 

indicate relationships for which the credible interval overlaps 0. 672 

 673 

 674 


