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Glycealling, a family of phytoalexins elicited in legume species, play crucial roles
in environmental stress response (e.g., defending against pathogens) and
hurnan health. However, little is known about the genetic basis of glyceollin
elicitation. In the present study, we employed a metabolite-based genome-
wide association (mGWA) approach to identify candidate genes involved in
glyceollin elicitation in genetically diverse and understudied wild soybeans
subjected to soybean cyst nematode. In total, eight SNPs on chromosomes
3.9, 13, 15, and 20 showed significant associations with glyceollin elicitation. Six
genes fell into two gene clusters that encode glycosyltransferases in the
phenylpropancid pathway and were physically close to one of the significant
SMPs {s5715603454) on chromosome 9. Additionally, transcription factors (TFs)
genes such as MYE and WRKY were also found as promising candidate genes
within close linkage to significant SMPs on chromosome 9. Notably, four
significant SMPs on chromosome 9 show epistasis and a strong signal for
selection. The findings describe the genetic foundation of glyceollin
biosynthesis in wild soybeans, the identified genes are predicted to play a
significant role in glyceollin elicitation regulation in wild soybeans. Additionally,
how the epistatic interactions and selection influence glycecllin variation in
natural populations deserves further investigation to elucidate the molecular
mechanism of glyceollin biosynthesis.
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1 Introduction

Plants synthesize a wide array of specialized metabolites, also
referred to as secondary metabolites or phytochemicals. These
compounds play crucial roles in facilitating plant adaptation to
dynamic environments, ensuring survival, and presenting potential
applications for human use {(Ahmed and Kovinich, 2021}
Phytoalexins are specialized metabolites synthesized de nove in
response to various biotic and abiotic stresses. Examples include
indole alkaloid camalexin in Arabidopsis, phenolic aldehyde
gossypol in cotton, phenylpropanocid stilbenes in grapevines,
isoflavonoid-derived glyceolling in legume, and momilactones and
phytocassanes terpencids in rice (Jeandet et al., 2002; Wang et al.,
2009; Donnez et al., 2011; Saga et al., 2012; Yamamura et al., 2015;
Jahan et al., 2019; Jeandet et al., 2020). Among these phytoalexins,
isoflavonoids have been of research interest due to the various
pharmacological properties and essential roles in plant defense
(Dizon and Steele, 1999). The major isoflavones identified in
soybeans are comprised of genistein, daidzein, and glycitein
{(Murphy et al. 2002). It has been reported that trace amounts of
glyceollins are produced transiently from daidzein under the
influence of both abiotic and biotic stresses. This observation
sugpests that the production of glyceollins, to a significant extent,
is contingent upon external stress factors (Subramanian et al., 2006;
Aisyah et al., 2013; Lygin et al., 2013; Bamji and Corbitt, 2017; Jahan
and Kovinich, 2019; Jahan et al., 2019}, In this regard, produdng
glycecllins contributes to multiple beneficial effects, such as
fostering symbiosis between soybean and Bradyrhizobium
japonicum and inhibiting the growth of various microbes
(Graham and Graham, 1996; Subramanian et al., Z008).
Moreover, they have properties that are beneficial to human
health, such as anti-cancer, antioxidant, and neuroprotective
(Kim et al., 2012; Nwachukwu et al., 2013; Bamji & Corbitt, 2017;
Seo et al, 2018; Pham et al, 2019). However, studies on glyceolling
are mainly focused on their medicinal properties, and to the best of
our knowledge, little is known about how their elicitation
is regulated.

To date, few genes have been identified associated with
glyceollin biosynthesis. For example, two key transcription
factors, known as GmNAC42-1 and GrmMYB29A2, were identified
play a crudal role in the biosynthesis of glyceollin | in soybeans, and
they contribute to resistance against Phytophthora sojae (Jahan
et al, 2019; Jahan et al, 2020). In a study conducted by Jahan
and colleagues in 2019, acidity stress was employed to elicit the
biosynthesis of glyceollin. They cbserved that the overexpression of
GmNACE2-1 in hairy roots resulted in a remarkable increase of over
10-fold in glyceollin production. The NAC-family transcrption
factor GmNAC42-1 plays a crucial role in regulating certain
glyceollin biosynthesis genes, though not all. This suggests that
there is still unidentified essential transcription factor(s) within the
ghreeollin gene regulatory network (Jahan et al., 2019), In a separate
investigation conducted by Jahan and colleagues in 2020, it was
revealed that upon stimulation with wall glucan from P. sojae,
GmMYB2942 interacted with the promoters of two glyceollin [
biosynthesis genes in vitro and in vivo. This interaction led to the
accumulation of glyceollin T and the expression of resistance against
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Phytophthora (Jahan et al, 2020). Given that glyceollins are
produced in trace amounts and transiently under stress
conditions, finely adjusting these transcription factors emerges as
a promising strategy to enhance their production efficiently.

Phytoalexins have been considered the target of natural
selection due to their activities in biotic and abiotic stress
responses in natural environments (Pichersky and Gang, 20005 O
et al, 2004; Mivamoto et al, 2014), Research has shown that
genomic approaches in crop wild relatives can reveal genes
responsible for target metabolites (Zhang et al., 2017h).
Improvements can be achieved by manipulating the metabolic
pathway in crops. Examples of this phenomenon include 7-
epizingiberene synthase (ShZIS), a sesquiterpene synthase specific
to trichomes that is involved in the naturally optimized
sesquiterpene biosynthetic pathway in wild tomatoes. This
enzyme enhances cultivated tomato resistance against various
herbivores when subjected to genetic engineering (Hlecker et al,
2012}, Mipeshwaree Devi et al. (2023} have comprehensively
summarized recent advancements in the realm of metabolic
engineering, specifically focusing on plant-specialized metabolites.
Notably, Zhang and colleagues (2022) employed CRISPR/Cas9 for
targeted mutagenesis in GmUGT, a UDP-glycosyltransferase pivotal
in flavonoid biosynthesis. This targeted mutagenesis resulted in
enhanced resistance against leaf-chewing insects (Zhang et al,
2022). Therefore, understanding the metabolic pathways and their
regulatory mechanisms is essential for targeted metabolite
engineering to achieve crop improvement. However, there is
limited reported progress in the field of metabolic engineering
{\fhpc-cl".v;.arrr Devi et al., 2023),

Furthermore, the study of metabolic gene clusters, which are
groups of co-localized and potentially coregulated non-homologous
genes involved in specific metabolic pathways, has gained attention
(Miitzmann et al., 2016; Topfer et al., 2017). While these dusters
have long been observed in microbial genetics, their existence in
plant metabolic pathways has only recently been explored (“heng
et al., 2002; Rocha, 2008; Koonin, 2009), A study by Chae et al.
(2014) focusing on metabolic gene clusters in Arabidopsis, soybean,
sorghum, and rice suggested that approximately one-third of all the
metabolic genes in Arabidopsis, soybean, and sorghum, and one-
fifth in rice were rich in gene clusters across primary and specialized
metabolic pathways (Chae et al, 2014). There is compelling
evidence indicating that the highly plastic plant genome itself
generates metabolic gene clusters via gene duplication,
neofunctionalization, divergence, and genome reorganization
instead of horizontal gene transfer from microbes (Dsbourn and
Field, 2009). This suggests that plants rewire their genome to gain
new adaptive functions driven by the need to survive in distinct
environments. Mining and functional validation of the candidate
genes in such dusters will facilitate the discovery of new enzymes
and chemistries that render pathway prediction. Moreover,
metabolic gene clusters are likely to be located within dynamic
chromosomal regions, and thus, many identified so far may be due
to recent evolution (i et al, 2004; Field et al,, 2011; Matsuba et al.,
2013). If s0, investigation of these clusters can provide insights into
their evolutionary history. The vast and diverse array of specialized
metabolites produced through multi-step metabolic pathways plays
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an essential role in plant adaptation to various ecological niches.
However, the occurrence, prevalence, and evolution of such gene
clusters in plants are largely unknown. Thus, the study of plant
metabolic gene clusters has implications for molecular biology and
evolutionary genomics (Yeaman and Whitlock, 2011; Takos and
Rook, 2012; Nitzmann et al., 2016; Chavali and Rhee, 2018),

To the best of our knowledge, due to the extraordinary
metabolic diversity, less than 50 plant-specialized metabolic
pathways have been biochemically and genetically identified to
date (Mitzmann et al, 2016), Metabolomic GWAS (mGWAS)
offers an effective approach to understanding the genetic basis of
metabolites and their associated traits (Chan et al., 20105 Chan ef al.,
2011; Riedelsheimer et al, 2012; Luo, 2015}, mGWAS allows the
identification of common polymorphic regions controlling complex
metabolic traits by substantially increasing association panel and
genome-wide molecular markers. Besides elucidating genetic
architecture, mGWAS can also be used to infer gene functions
(Lo, 2015), Hence, mGWAS provides a comprehensive approach
to discovering candidate genes. Thus far, it has been used to
uncover the genetic basis of variations of a number of different
metabolites. For example, Chen et al. (2014) carried out a rice
mGWAS study that identified 36 candidate genes influencing the
variation of metabolites with physiological and nutritional
importance (Chen et al., 2014). Additionally, Petersen et al.
(2012) illustrated that in an association study (ie. mGWAS), a
ratio between two metabolite concentrations provides more
insightful information than the concentrations of the two
metabolites individually. Implementing this innovative approach
in mGWAS proves to be valuable for revealing novel and
biologically significant associations. They emphasized several
studies in which the incorporation of metabolite ratios in both
genome-wide and metabolite-wide association studies significantly
strengthened the associations {Petersen et al., 2012). For instance,
Gieger et al (2008); Hlig et al. (2010), and Suhre et al (2011)
illustrated that the utilization of metabolite ratios in GWAS studies
resulted in a substantial increase in the power of association,
reaching tens of orders of magnitude (Gieger et al., 2008; Tllig
et al., 2010; Suhre et al., 2011).

The isoflavonoid pathway has been relatively well studied
(Yoneyama el al., 2016; Sukumaran & al, 2018), However, a gap
in our understanding of the genetic basis of glhyceollin elicitation
remains. As of now, researchers have identified transcription factors
crucial for the regulation of glyceollin bicsynthesis, such as
GmNAC42-1 and GmMYB29A2 (Jahan et al., 2019 Jahan ef al.,
2020). In the present study, we selected wild soybean (Glycine soja),
a wild relative of soybean (Glycine max), to delineate the genetic
basis and evolution of glyceollin accumulation resulting from biotic
stress, Le., soybean cyst nematode (SCN), the most devastating
soybean pest worldwide (Tylka and Marett, 2021). Wild soybeans
thrive in diverse habitats and harbor much higher, underexplored
genetic diversity than cultivated soybeans (Zhang et al, 2019).
Hence, it is an ideal system to understand the genetic basis and
evolution of glyceollin variation. Eventually, the essential genes
identified in wild soybeans can be used for metabolic engineering or
in a breeding program to develop nutrition-rich biofortified
soybean cultivars as they exhibit similar genome size and content
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with no reproductive barriers (Singh and Hymowitz, 1999). In this
study, we aim to address these three questions: (1) What is the
genetic basis of variation in glyceollin elicitation by SCN? (2) Are
there any gene clusters and transcription factors invalved in
glyceollin variation? (3) Are epistatic interactions and natural
selection important evolutionary factors influencing the variation
of glyceollin elicitation in natural populations? Our study is the first
to employ genomic and evolutionary approaches to understand the
genetic basis and selection of glyceollin elictation. The results
provide a fundamental basis for the long-term goal of developing
glyceollin-fortified soybean cultivars.

2 Materials and methods
2.1 Plant materials

A total of 265 accessions of wild soybean, Glycine soja, from a
wide peographic range, originally collected from China, [apan,
Russia, and South Korea, were utilized (Supplementary Table 1),
The seeds of these ecotypes were obtained from the USDA National
Germplasm resources laboratory (https:/ fwww.ars-gringov/).

2.2 Plant preparation, SCN inoculation, and
sample collection

Seed preparation, germination, transplanting, and soybean cyst
nematode (SCN, Heterodera glycines Ichinohe, HG type 1.2.5.7)
inoculation were performed following a previously developed
protocol (Zhang and Song, 20175 Zhang et al., 2017a). Spccjﬁmll}r,
each wild soybean ecotype seed underwent surface sterilization
using a 0.5% sodium hypochlorite solution for one minute,
followed by thorough rinsing. These sterilized seeds were then
germinated on sterile filter paper in petri dishes containing an
appropriate amount of sterile water for a duration of 3 to 4 d. Once
germinated, it was transplanted into a cone-tainer (Greenhouse
Megastore, Danville, IL, USA), utilizing sterile sand as the growth
medium. The arrangement of cone-tainers in a cone-tainer tray
(Greenhouse Megastore, Danville, IL, USA) followed a randomized
complete block design. To ensure optimal growth conditions, all the
plants were kept within a growth chamber maintained at a
temperature of 27°C, with a relative humidity of 50%, and
subjected to a long-day photoperiod of 16 h of light followed by
8 h of darkness. The seedlings received regular daily watering to
maintain adequate moisture levels for healthy growth.

For SCN inoculation, the HG type 1.2.5.7 nematodes stocks
were maintained in a controlled greenhouse environment, with a
consistent temperature of 27°C and a photoperiod of 16 h of light
followed by & hof datkness, spanning over 30 generations. To isolate
female nematodes, they were carefully extracted from the roots of
soybean ov. Hutcheson by gently massaging the roots in water and
then filtering the solution through nested sieves with mesh sizes of
850 and 250 micrometers. The collected female nematodes were
then crushed using a rubber stopper in an 8-inch diameter sieve
with a 250-micrometer mesh, releasing the eggs, which were
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subsequently collected using a 25-micrometer mesh sieve. For
further purification, the eggs underwent a modified sucrose
flotation method (Matthews et al., 2003).

Following purification, the eggs were placed on moist paper
tissues and placed in a plastic tray filled with 1 centimeter of water.
The tray was covered with aluminum foil and maintained at a
temperature of 27°C. Three days after hatching, the second-stage
juvenile nematodes (referred to as J2) were harvested and
concentrated to achieve a final concentration of 1,800 |2 per
milliliter in a 0.09% agarose suspension. After three days of
transplantation, when the seedlings were healthy and displayed
uniform growth, they were inoculated with 1 milliliter of the ]2
nematode imoculum. Concurrently, seedlings inoculated with a
0.05% agarose solution served as the control group.

Whole root tissues were collected and weighed five days post-
infection (dpi). The 5 dpi time point was chosen because our
previous study suggested a significant inhibition in SCN
development in a resistant genotype compared to normal growth
in a susceptible genotype (Zhang et al., 2017a). All samples were
flash-frozen in liquid nitrogen and stored at -80°C. Four biological
replicates per wild soybean genotype were used, eventually a total of
1,020 samples.

2.3 Metabolite extraction
and quantification

We employed the extraction method of metabolites from root
tissue described in Strauch et al (2015) (Stranch et al, 2015), The
soybean root samples underwent homogenization within a ball mill
homogenizer, utilizing an extraction solvent that featured daidzein-
dé (Biotek, catalog#BT-387818) as an internal standard. The
metabolite profiling was provided by the service from David H.
Murdock Research Institute at the North Carolina Research
Campus employing UPLC-MS/MS (ultraperformance liquid
chromatography-tandem mass spectrometry). Method
development and analysis were conducted using a Waters
ACQUITY UPLC-Quattro Premier XE MS. The UPLC and MS/
MS parameters were established through experimentation with test
samples and analytical standards of glyceollin {chemically
synthesized by Dr. P. Erhardt at University of Toledo), daidzein
{Sigma Aldrich, catalog#D7802), and daidzein-dé (LGCstandards).
The MS/MS acquisition parameters were optimized based on the
analytical standards. Additionally, optimized UPLC gradient
conditions were determined to effectively separate the glyceollin
and daidzein peaks. Peaks that were consistently detected in at least
three biological replicates within each genotype were used for
downstream analyses. Each metabolite was confirmed using pure
standard compounds, including daidzein, daidzein-d6, and
ghrceollin. Due to the low concentrations of these compounds
and the small sample masses of the wild soybean root samples
that had been collected, we used a signal-to-noise ratio of =10 for
the measurement of the peaks for glyceollin and daidzein. Our
method successfully measured daidzein (Pg'g root) and glyceollin
{unitless) in 264 accessions of wild soybean G. soja roots
quantitatively and semi-quantitatively, respectively. Following
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method development, optimization, and analyses of the test
samples, calibration curves were designed using at least six
different concentrations of daidzein, created in triplicate to
quantify known concentrations of daidzein and glyceallin. A
second-degree polynomial was derived from the known
concentrations of the standard curve samples and the mass
spectrometer response (daidzein/internal standard) from the
standard curve data. The resulting polynomial was used to
calculate the concentrations of daidzein in the experimental
samples. Low, medium, and high QC (gquality control} samples
were created to assess the accuracy of the calculations. We used
the ratio of glyceollin (unitless, a semi-quantitative measurement
of glyceollin) to daidzein {pg/g root) (GVSD) as our phenotypic
trait (Supplementary Table 1 and Supplementary Figure 2).
This phenotype henceforth is denoted GVSD. The justification
for employing the ratio is to enhance statistical power by
minimizing variability in the metabolomic data and mitigating
experimental errors associated with data noise (Petersen
et al., 2012).

2.4 Genotypic data

Genotype data for the 264 accessions were obtained from
SoySNPSOK (Song et al, 2013), which was downloaded from
SoyBase (SoyBaseorg). After the filter, the genotype included
32,976 genome-wide single nucleotide polymorphic markers
(SWPs) with a minor allele frequency (MAF) of at least 5% and a
missingness rate of less than 10%.

2.5 Metabolite-based genome-wide
association study and linkage
disequilibrium estimation

Our genome-wide association analysis was conducted on GVSD
(a ratio of glyceollin mean to daidzein mean) in response o SCN
infection on all 264 ecotypes using the GAPIT R package (2.0)
(Tang et al, 2016). To minimize false-positive associations, we
controlled population structure among genotypes with four
principal components as calculated with the GAPIT. Heritability
estimate and SNP effect were calculated by running GWAS applying
CMLM and MLM methods, respectively, implemented in the
GAPIT R package (2.0} (Tang et al., 2016),

The Manhattan plot was generated using the R package qgman
(Turner, 2018). In addition to the genome-wide significant
threshold, we also calculated the chromosome-wide Bonferroni
thresholds using independent SNPs estimated on each
chromosome following the method of Li and Ji (2005) (Li and Ji,
2005), Linkage disequilibrium (LI} was calculated across the panel
with the TASSEL program, version 5 (Bradbury et al., 2007), for the
significant SNPs identified from the GWAS analysis. LD was
measured using squared correlation R-squared () of 0.2 (upper
right in the LD plot) and p-value < 0.05 (the lower left in the LD
plot). A pairwise LD was generated following the R function
described by Shin et al. (2006) (Shin et al., 2006), Genes within
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LD blocks containing significant SNPs were identified as potential
sources of candidates for further analyses.

2.6 Ildentification of candidate genes

For extensive gene mining, a pairwise linkage disequilibrium
(LD) analysis was initially used for potential candidate gene
identification. Then, genes in each LD block were examined as
potential candidate genes, and their annotations were obtained
from the Phytozome v13 database (Goodstein et al, 2011).
Afterward, a GO enrichment analysis of the identified candidate
genes was performed using ShinyGO v0.66: Gene Ontology
Enrichment Analysis (p-value cutoff (FDR, false discovery rate) =
0.05) (Ge et al, 2020), SoyBase GO Enrichment Data (Grant et al,
2010). To investigate the involvement of these potential candidate
genes in metabolic pathways, a database search was performed
through an annotation file from Phytozome v13 (Goodstein et al,
2011), SoyBase (Grant et al, 2010), SoyCyc 10.0 Soybean Metabolic
Pathway {Hawkins et al,, 2021), and Pathview databases (Luo et al,,
2017). Finally, a PMN plant metabolic chaster viewer was applied to
categorize enzymes into classes (signature or tailoring) and
metabolic domains (Hawking et al, 2021).

2.7 Analysis of epistatic interactions

For any significant SNPs uncovered in the GWAS analysis, it is
useful to test whether, beyond their direct effects, they also exhibited
interactive effects on GVSD. To accomplish this, we first produced
numerically formatted genotypes, in which the homozygous
genotype index value is 1 and -1 and the heterozygous 0. This
allows us to test for epistasis for each pairwise combination in a
simple general linear model with 1 degree of freedom for the
additive effects of each of the two SNPs and their interaction, We
included the first four principal components from the GAPIT
analysis in the model to be consistent with the GWAS scan,
where these components were used to adjust for structural
relatedness (see below). The significance of all interactions was
evaluated with the sequential Bonferroni procedure. To illustrate
the interactions of SNP pairs, we also calculated regressions of
GVSD on each SNP, but at each of the three genotypes (using the -1,
0, and 1 index values) of the second SNP involved in the
significant interaction.

2.8 Extended haplotype
homozygosity analysis

To test allele-specific selection patterns of the identified
significant SNPs, we analyzed extended haplotype homozygosity
(EHH, (Sabeti et al., 2002)) for each significant SNP. The EHH
analysis was conducted in SELSCAN v.1.20a (Szpiech and
Hernandez, 2004} with default parameters, and only SNPs with
MAF = 0.05 was used in this analysis.
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3 Results

3.1 Genomic dissection of glyceollin
accumulation upon biotic elicitation

To investigate the genetic basis of glyceollin elicitation, we
performed a metabolite-based genome-wide association study
(mGWAS) of glyceollin content in wild soybean roots infected
with soybean cyst nematode (SCN). The mGWAS identified a total
of eight significant SNPs, with four (ss715603454, ss715603455,
55715603462, and s5715603471) located on chromosome 9 and
55715585948, s:715615975, ss715620269 and ss715636844 on
chromosomes 3, 13, 15, and 20, respectively (Figure 14; Table 1),
These significant SNPs were identified based on both genome-wide
Bonferroni threshold of 5104 and chromosome-wide Bonferroni
thresholds that varied narrowly from 3.79 to 3.82 among the 20
chromosomes (3.803 on chromosome 9) (Figures 1A, B;
Supplementary Table 2). The mGWAS are visualized with the
Manhattan and Q-Q (quantile-gquantile} plots as shown in
Figure 1. The four significant SNPs ss715603454, ss715603455,
557 15603462, and ss715603471 on chromosome 9 al positions
30262482, 30191235, 30393285, and 30725658, respectively, are
located closely to each other within a 535-kb genomic region
(Supplementary Table 2). The heritability for glyceollin was
estimated at 35%, suggesting that glyceollin elicitation was
genetically controlled (Supplementary Table 2).

3.2 Candidate gene identification

We employed a pairwise linkage disequilibrium (LD} analysis to
identify potential candidate genes. For candidate gene
determination, we considered r2>0.2 as a cutoff for our LD
analysis, where #* is the extent of allelic association between a
pair of sites (Weir, 1990}, Figure 2A shows the LD decay plot in the
studied panel. We identified a total of 666 possible candidate genes
within either side of 200 kb covering linkage disequilibrium (LD)
blocks of the eight significant SNPs (soybean reference genome
Glycine max WmB2.a2¥1) (Goodstein et al., 2011; Zhou et al,
2015). Further refining our selection, we narrowed the list to 51
candidate genes, focusing on the eight significant SNPs within the
mentioned LI block region. Another criterion for this selection was
the alignment with our pathway of interest, demonstrating a strong
correlation with the target metabolites (Supplementary Table 3).
The LD block within either side of the 200 kb region on
chromosome 9 showed the strongest LD compared to the LD
blocks for other significant SNPs identified on chromosomes 3,
13,15 and 20 (Figure 2B; Supplementary Figure 1). Specifically, the
candidate gene Glyma.09G128200 exhibits the highest level of
linkage disequilibrium (LD) near the significant SNP 55715603454
on chromosome 9 in comparison to the LD block associated with
the remaining significant SNPs on this chromosome (Figure 2E).
The functional annotation of the candidate genes on chromosome 9
(i.e., Glyma. 090G 127700, Glyma,09G 128200, Glyma. 096128300, and
Glyma. 09G128400) within this block is biosynthetic enzymes,
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mainly glycosyltransferase involved in isoflavonoid pathway, as well
as regulatory genes such as WRKY and MYEB transcription factors
(Table 13 Supplementary Tables 3-5). Their likely role as regulatory
genes suggests their potential involvement at the transcriptional
level in glyceollin elicitation in response to SCN stress (Colinas and
Goossens, 2018).

We also found putative genes encoding enzymes involved in the
specialized metabolic pathways within the LD blocks of the
significant SNPs on chromosomes 3, 13, 15, and 20. The enriched
GO category includes the phenylpropancid metabolic process
(G0:0055085,G0:0016021,G0:0008308,G0:0006873), linamarin
biosynthesis (GO:0055114,G0:0020037,G0:0016705,
GO:0005506), and terpenoid biosynthesis (GO:0016829,
GO:0010333,G0:0008152,GC:0000287) (Supplementary Table 3).
Apart from the biosynthetic enzymes on these chromosomes, we
also found transcription factor genes, such as WRKY, MY8, and
NAC on chromosomes 3, 9, 13, and 15. Por instance, candidate
genes within the WRKY family transcription factor group include
Glyma. 03G176600, Glyma.09G129100, Glyma.09G127100,
Glyma. 15G139000, and Glyma.15G135600. In the MYB
transcription factor category, promising candidate genes include
Glyma, 09G 113000, Glyma.09G113100, and Glyma, 15G134100,
Additionally, the NAC transcription factors include
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Glyma.13G274300, Glyma, 136279900, and Glyma, 13G280000 as
potential candidate genes (Table 1, Supplementary Table 3).

3.3 Metabolic gene clusters identification

We were particularly interested in the candidate genes in the
branch from daidzein to glyceollin in the isoflavonoid biosynthesis
pathway (Lozovaya et al, 2007). We found that the identified
candidate genes on chromosome 9 are clustered together based
on our analysis using the PMN plant metabolic cluster viewer, and
they fall into two clusters. These two clusters belong to the tailoring
enzyme glycosyltransferase within the phenylpropanoid specialized
metabolic domain (Supplementary Table 4) (Hawkins et al., 2021).
Six genes that belong to these two clusters are within the branch of
the isoflavonoid biosynthesis pathway. Two of these six genes,
Glyma.09G127200 and Glyma 006127300, are called cluster 1,
while the other four (Glyma. 09GI27700, Glyma 09G128200,
Glyma.09G128300, and Glyma.09G128400) are called closter 2
(Supplementary Table 4).

Through further investigation of annotation of these candidate
genes within the gene clusters (Supplementary Table 5), we found
the candidate gene Glyma.09G 127200 encodes a glucosyltransferase.
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TABLE 1 |dentification of significant SMPs and functional annotation of
the plausible candidate genes,

Functional annotation of
associated genes

Chromosome

Significant

SNP

55715585548 Grl3 WREY famdly transcription factor

I':mil:,r prodein
Zinc fingers superfamily protein

£ST15603454 UDP-glacosy] transferase B3A1
RINGU-box superfamily protein,
RING/FYVE/PHD zine finger
superfamily protein

WREY famdly transcription factor
family protein

MYE domain

Zine fingers superfarmily protein
Cytechrome P450 enzyme family
Zinc finger, RING-ype;
Transeription factor jumonii/aspartyl
beta-hydroxylase

BZIP transcription factar
RING/U-box superfamily protein,
RING/FYVE/PHD zinc finger
superfamily protein

Zinc fingers superfamily protein
NAC trangeription factors
Cytechrome P450 enzyme family

557 15603455

SST15603462

557 15603471

#T156155975 Gm13

55715620269 RINGU-box superfamily protein,
RINGFYVE/PHD rinc finger
superfamily protein

WRKY family transcription factor
family protein

MYE domain

715636844 Gma20 UDP-Glyeosyltransferase superfamily
priskein

UDP-glucosyl transferase 8542
hydroey methylglutaryd Coa
reductase 1

Cytachrome P450, family 71,
subfamily B, polypeptide 34
cytochrome p450 7942
RINGU-box superfamily protein,
RING/FYVE/PHD zine finger
superfamily protein

Zinc fingers superfamily protein

Interestingly, the four genes within cluster 2 have a similar
functional annotation as Glyma.09GI127200 and
Glyma 09G127300 in cluster 1, and all these four genes could be
isogenes suggesting their origin from genome duplication events
(Supplementary Table 5) (Bharadwaj et al., 2021).

3.4 Epistatic interactions among all
significant SNPs

The results of the epistasis tests for each of the 28 pairwise
combinations of the eight significant SNPs are shown in Table 2.
Three probabilities, all assodated with the SNF on chromosome 20,
were not estimable {Table 2). Among the remaining 25 SNP pairs,
20 show statistical significance. Particularly noticeable is the high
significance for all interactions of the SNPs on chromosomes 3, 13,
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and 15. Three of the six pairs among the four SNPs on chromosome
9, all involving ss715603462, are also statistically significant. In
general, therefore, this is evidence for substantial epistasis among
these SNPs affecting GVSD.

These epistatic interactions of the SNP pairs are illustrated in
Figure 3 for each of the four chosen combinations, For example, in
panel A (Figure 3A), it can be seen that regression dopes of GVSD
on 55715603454 are close to 0 for 5571585948 CC genotype but are
positive for TC and especially TT genotypes. In panel D
(Figure 3D), regression slopes of GVSD on ss715603471 are
negative for 715603462 AA and GA genotypes but positive for
GG genotypes. With no epistasis, these slopes would be expected to
be roughly parallel, but in fact, they diverge considerably from
parallelism in these four examples, indicating epistasis.

3.5 Significant SNPs exhibited extended
haplotype homozygosity

To examine allele-specific selection patterns associated with the
identified significant SNPs, we conducted an analysis of extended
haplotype homozygosity (EHH) for each of these SNPs, as proposed
by Sabeti et al. (2002} (Sabeti et al, 2002). The extended
homozygosity analysis (EHH) analyses revealed allele specific
EHH values of the significant SNPs (35715603454, ss715603455,
54715603462, and 55715603471) on chromosomes 9 (Figure 4). For
example, the T allele of 55715603454 showed a much higher EHH
value than the G allele. Alleles of significant SNPs on the other
chromosomes showed compatible EHH values (Figure 4).

4 Discussion

4.1 Metabolic gene clusters in
glyceollin elicitation

Gene clusters have been reported to play important roles in
phytochemical diversity in Arabidopsis, sorghum, soybean, tomato
and rice (Chae et al., 2014; Fan et al., 2020), as well as their roles in
important ecological functions in plants ie, antibacterial, anti-
herbivore, antifungal, and insecticidal activities (Polturak and
(Osbourn, 2021; Polturak et al., 2022). However, their roles in
regulating metabolic variation in wild species are relatively less
investigated. Even though the isoflavonoid biosynthesis pathway is
relatively well studied, the genetic basis of glyceollin elicitation is
unclear. Particulardy, the contdbution, prevalence, and occurrence
of gene dusters in plant metabolic diversity are largely unclear, Our
mGWAS results suggest there are two probable gene clusters with
functionally related but non-homologous genes, which may involve
glyceollin elicitation in wild soybean. Thus far, to the best of our
knowledge, the genes within these plausible clusters are the first
reported candidate genes located on chromosome 9 invaolved in
glyceollin accumulation induced by biotic stimuli in wild soybean.
To date, the reported glycecllin biosynthesis genes are located on
chromosomes 1, 2,3, 4, 6,7, 10, 11, 13, 15, 19 and 20 (A kashi et al |
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2009; Yonevama et al., 2016; Sukumaran et al., 2018; Jahan et al.,
2020). Our predicted gene clusters suggest that glyceollin may be
synthesized where the enzyme-encoding genes are adjacent to each
other on the same chromosome (Chavali and Rhee, 2018). Physical
clustering of genes with similar functions can facilitate co-
inheritance of alleles with favorable combinations and their
coordinated regulations at chromatin level (Osbourn, 2010a; Chu
el al, 2011). Besides, such clusters indine to locate in the sub-
telomeric regions (Gierl and Frey, 2001; Qi et al., 2004; Sakamoto
et al,, 2004), near the ends of chromosomes that are known to
harbor mutations. For example, an examination of the complete
genome sequence revealed that the maize DIMBOA cluster is
located close to the end of chromosome 4 (Farman, 2007; Joncryk
et al, 2008). Thus, identifying the positions of the genes can

TABLE 2 Epistasis for the eight significant SNPs.

contribute to inferences of possible mechanisms underlying
chemical diversity in natural populations.

Beyond gene clusters playing critical roles in phytochemical
diversity, tailoring enzymes, such as methyltransferases,
glycosyltransferases, CYPs, dehydrogenases/reductases, and
acyltransferases, are reported to be responsible for modifying the
chemical backbone of specialized metabolites (Osbourn, 2010b).
The genes in these two plausible clusters are annotated with
tailoring or regulating glycosyltransferase enzymes. One of the
common plant defense mechanisms involves glycosylation of
secondary metabolites with these enzymes (Mylona @ al, 2008),
Therefore, the clustering of the genes encoding glycosyltransferase
on chromosome 9 might be very critical in the formation of
glyceollin, the stress-induced (ie. SCN stress in our study)

Ch9a Chob ChSc Ch9d Chl3 Chls Ch20
Ch3 <0.001* (L0 <0.001* <0001 <Q.001* {001 0002
Chéa 010 0053 0007 <0.001* <001+ 0907
Chivh 001 0006 <Q.001* {001 835
Chic < (L0 <0001 001 n.e,
Chind <0001 <{001" e,
Chi3 001 n.e,
Chls [

Shown are the probabilities for each pairwise interaction of SMPs. * = P < 005 from sequential Bonferroni tests. nue = not estimable. Ch3 = ss7T15585048, Ch%a = 715603454, Cheb =
w71 5600455, Chic = ssT1560362, Chad = 715600471, Chld = =7 15615975, Ch15 = =7 15620269, ChI0 = 715636844,
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protective compounds in legumes. For example, the cyclic
hydroxamic acid (DIBOA) in maize (Frey et al, 1997; Gierl and
Frey, 2001}, the triterpene avenacin in oat ()i et al., 2004; Qi et al,,
2006; Field and Osbourn, 2008; Mugford et al, 2009), and two gene
clusters associated with diterpene (momilactone and phytocassane)
synthesis in rice, which may be pre-formed or synthesized after
stress elicitation for plant defense. Disruption of such gene clusters
may compromise pest and disease resistance and lead to the
accumulation of toxic pathway intermediates (Chu et al, 2011),
In the multi-step plant specialized metabolic pathways, rapid
adaptation to a particular environmental niche could result in
highly diverse and rapidly evolving metabolic gene clusters
(Osbourn and Field, 2009), Hence, the level of conservation of
the identified gene clusters across different legume species may shed
light on the evolutionary insight of these clusters (Field and
Osbourn, 2008). Synthetic biology and functional genetics can
further help investigate the organization and contribution of these
clusters in metabolite diversity, as well as decipher the mechanism
of adaptive evolution and genome plasticity { Osbourn, 2010b; Chu
et al, 2011),

4.2 Plausible transcriptional factors in
glyceollin elicitation

Advancement of genetics, genomics, and bicinformatic
approaches fadlitate the prediction and identification of a large
number of genes, including transcription factors associated with
plant-specialized metabolic pathways {Anarat-Cappillino and
Sattely, 2014; Moore et al, 2019), However, the transcriptional
regulators of specialized metabolism are less well characterized
(5hoji and Yuan, 2021). The regulation of plant-specialized
metabolic pathways is dynamic, reflecting the inherent
adaptability of these pathways to the ever-changing environment.
Such regulation generally ocours at transcription level, and thus, it
requires coordinated regulation mediated by transcription factors
(TFs) {Colinas and Goossens, 2018; Shoji, 2019). For instance, MYB
and basic helix-loop-helix (bHLH) TF family genes were reported to
regulate anthocyanin and related flavonoid bicsynthetic pathways
in a wide range of species (Cherem and Clay, 2016). Moreover,
significant modifications of these regulatory genes give rise to the
vast diversity in plant specialized metabolism {Huang et al., 2015;
Springer et al., 2019),

It is possible that transcription factors, such as MYE and WRKY
TFs on chromosome 9, may influence glyceollin eicitation. The
regulation of glyceollin elicitation with SCN stress may involve a
highly complex interplay among multiple genes and pathways.
Previous studies reported that gene families of transcription
factors, such as NAC, MYB, bHLH, and WRKY, exhibited
conservative patterns among Arabidopsis, cotton, grapevine,
maize, and rice (Xu et al., 2004; Zheng et al., 2006; Saga et al,
2012; Thraheem et al., 2015; Yamamura et al, 2015; Ogawa et al,
2017). These plant species produce various phytoalexins, such as
indole alkaloids, terpencid aldehydes, stilbenoids,
deoxyanthocyanidins, and momilactones/phytocassanes,
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respectively. The investigation of TFs binding promoter regions
can give insights if the pathways are co-opted into stress-inducible
regulation by the respective TFs such as NAC TF gene GmNAC42-1
and MYB TF gene GmMYB2942 regulates glyceollin biosynthesis
(Jahan et al, 2019; Jahan et al., 2020). The transcription factor gene
GmNAC42-1 plays a crucial role as a positive regulator in glyceollin
biosynthesis. Jahan and colleagues (Jahan et al., 2019) showed that
elevating the expression of GmNAC42-1 in hairy roots has the
potential to amplify glyceollin yields by more than tenfold when
elicited. Furthermore, the TF gene GmMYB29A2, as identified by
Jahan et al (2020) (Jahan et al., 2020), plays a crudal role in bath
the accumulation of glyceollin I and the expression of resistance
against Phytophthora. It would be intriguing to explore whether the
transcription factor genes we've identified exhibit homology across
different plant species. The homology of TFs among different plant
species can facilitate metabolic engineering of a wide variety of crop
plants to produce phytoalexing in greater amounts (Ahmed and
Kovinich, 2021).

In addition to enzyme-encoding genes, TF genes can also be
found as gene dusters. For example, the gene cluster of TF ERF
(jasmonate (JA)- responsive ethylene response factor) consists of
five ERF penes in tomato (Cardenas et al, 2016; Thagun et al,
2016), eight in potato (Cirdenas et al, 2016), five in tobacco
(Kajikawa et al, 2017), five in C. roseus (Singh et al., 2020), four
in Calotropis gigantea (Singh et al., 2020), and four in Glesemium
sempervirens (Singh et al, 2020). Besides, TFs involved in plant
specialized metabolism can be found in arrays (Zhou et al., 2016;
Shoji and Yuan, 2021). Thus, it is possible that the TFs we identified
are located in the same genomic neighborhood as arrays or
biosynthetic gene clusters (BGCs). The co-regulation hypothesis
of gene clusters poses that dustering of TFs can co-regulate genes in
a pathway. Although co-regulation of metabolic pathways also
occurs un-clustered, clustering may accelerate the recruitment of
genes into a regulon (Wisecaver et al, 2017; Smit and

Lichman, 2022),

4.3 Epistasis and plausible selection on
glyceollin elicitation

Metabolic traits have been reported with low heritability due to
environmental effects on their accumulations (FEowe et al, 2008).
Recent studies have shown strong epistatic interactions of genes
influencing variation of plant specialized metabolites, which may
impact fitness in the field (Brachi et al, 2015; Kerwin et al, 2015;
Kerwin et al, 2017). For example, numerous epistatic interactions
influence the highly complex genetic architecture responsible for
Arabidopsis metabolism (Elicbenstein, 2001; Kliebenstein et al,
2001). Moreover, a mixture of positive and negative epistatic
interactions can assist identifying significant QTLs located within
a biosynthetic pathway (Rowe et al., 2008). Compared to expression
regulations, the power of epistasis in metabolomics is that they can
better indicate the interconnectedness of metabolites within
the metabolic pathway (Fell and Wagner, 2000; Jeong et al., 2000;
Arita, 2004). The widespread interactive effects found among
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our identified significant SNPs affecting targeted metabolic
traits may be a consequence of the interconvertibility between
daidzein and glyceollin. As an example, the study conducted by
Farrell et al. (2017) demonstrated that there is an augmentation in
the biosynthesis of glyceollin T from daidzein when there is an
elevation in the degradation of 6"-0-malonyldaidzin, an isoflavone
conjugate produced from daidzein (Farrell et al., 2017).

Genes containing causal variation for plant defensive compounds
may influence field finess and thus are likely under natural selection
(Kroyvmann, 2011). For example, Benderoth et al (2006) detected
positive selection in glucosinolate diversification in Arabidopsis
thaliana and its relatives {Benderoth et al, 2006). Prasad et al
(2012) showed positive selection for a mutation on a metabolic
pathway gene could enhance resistance to herbivory in natural
populations of a rocky mountain cress species (Prasad et al, 2012).
We detected strong signals of selection on the SNPs significantly
associated with glyceollin phenotypes with EHH and LD analyses
(Figure 4; Figure 2B). For example, the LD surrounding the
significant SNP ss715603454 that is next to the identified gene
clusters is more extensive, suggesting strong selection in this region
{Figure 2B), Meanwhile, the two alleles of this significant SNFP, G and
T, showed different EHH values, with T exhibiting much longer
haplotype homozygosity. This indicates that this T allele may be
under recent positive selection. Interestingly, the T allele is
significantly associated with higher elicitation of glyceollin and has
a higher frequency in South Korea (Figures 2C, D). The allde specific
EHH pattern and their geographic distribution may be due to
heterogeneous selection pressure in nature,

4 .4 Perspectives and future directions of
our study

Plant specialized metabolites exhibit extreme quantitative and
qualitative variation. Therefore, high-throughput metabolite
profiling, such as LC-MS3 analysis coupled with GWAS (as
applied here) can facilitate understanding the genetic
contributions to metabolic diversity in natural populations, A
common assumption is that biological variables or traits should
show a normal distribution, and skewed data may indicate
measurement error. However, the scenario is different in
metabolomics, espedally in secondary metabolism. For instance, a
ratio of two related compounds, mather than their separate values,
may provide a comprehensive understanding of the underlying
enzymatic process (Byrne et al., 1996; McMullen et al, 1998
Yencho et al, 1998; Kliebenstein, 2001; Klighenstein et al, 2001;
Kliebenstein, 2007; Chan et al., 2011; Petersen et al., 2012 Prasad
et al., 2012). We used a ratio of glyceollin and daidzein
concentrations as the phenotypic trait for our assocation study.
The use of a metabolic ratio also may produce: (1) a reduction in the
variability of the data collected for the biological replicates and thus
increase statistical power, and (2) a reduction in overall noise in the
dataset by canceling out systemic experimental errors. Most
importantly for our purposes, the glyceollin to daidzein
metabolite ratio is correlated to the corresponding reaction rate
under optimal steady-state assumptions, as this metabolite pair is

Fronters i Plant Scenos

11

10.3389/fpls.2024.1240081

connected in the phenylpropancid biosynthetic pathway (Subre
et al., 2011; Petersen et al., 2012).

The natural world has a lot to offer in tackling diseases and global
food scarcity. There is a nead to develop new medicines and future
value-increased food by unlocking the uncharted gene pools of wild
plants. Our chosen study system crop wild relative of soybean poses
much higher and underexplored genetic diversity than its
domesticated descendants. Given that glyceollin is produced in
trace amounts, it is an exciting challenge to define the plant
metabolic gene clusters and transcriptional regulators in the
glyceollin biosynthesis pathway. Besides complex cancer treatment
and therapies, the rise of different types of tumors and tumor
subtypes urges the need for new drugs. Along with glyceollin's role
in plant defense, it has been well-documented for anti-cancer
activities. Our follow-up studies will apply transcriptomics and
functional validation of the candidate genes, which can expand our
focus to explore assodations of genes in clusters to understand their
involvement in regulating glyceollin biosynthesis at the systems level,
As phytochemical variation can be caused by both structural genes
and their expression differences, it will be interesting to explore the
role of pathway-specific regulators (i.e, transcription factors) in
glyceollin eicitation (Osbourn, 2010b). Our results suggest that
improving our fundamental knowledge of plant specialized
metabolic geme clusters and regulators will facilitate metabolic
engineering with improved metabolic traits for sustainable
agriculture and novel pharmaceuticals.
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