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ABSTRACT

El Nifio-Southern Oscillation (ENSO) is a major source of seasonal western North Pacific (WNP) tropical
cyclone (TC) predictability. However, the spatial characteristics of ENSO have changed in recent decades, from
warming more typically in the eastern equatorial Pacific during canonical or cold tongue El Nifio to warming
more typically in the central equatorial Pacific during noncanonical or warm pool El Niflo. We investigated the
response in basinwide WNP TC activity and spatial clustering of TC tracks to the location and magnitude of El
Niflo using observations, TC-permitting tropical channel model simulations, and a TC track clustering meth-
odology. We found that simulated western North Pacific TC activity, including accumulated cyclone energy
(ACE) and the number of typhoons and intense typhoons, is more effectively enhanced by sea surface tem-
perature warming of the central, compared to the eastern, equatorial Pacific. El Nifio also considerably influ-
enced simulated TC tracks regionally, with a decrease in TCs that were generated near the Asian continent and
an increase in clusters that were dominated by TC genesis in the southeastern WNP. This response corresponds
with the spatial pattern of reduced vertical wind shear and is most effectively driven by central Pacific SST
warming. Finally, internal atmospheric variability generated a substantial range in the simulated season total
ACE (%£25% of the median). However, extremely active WNP seasons were linked with El Nifio, rather than
internal atmospheric variability, in both observations and climate model simulations.

seasonal tropical cyclone (TC) predictability in most TC
basins including the Atlantic, eastern North Pacific,
western North Pacific (WNP), and southwestern Pacific
(e.g., Gray 1984; Whitney and Hobgood 1997; Bove
et al. 1998; Pielke and Landsea 1999; Nigam and Guan
2011; Smith et al. 2007; Ralph and Gough 2009; Chand

1. Introduction

El Nifio—Southern Oscillation (ENSO) is a coupled
atmosphere—ocean mode of interannual tropical Pacific
climate variability that provides a major source of
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etal. 2013; Jin et al. 2014; Jien et al. 2015). In considering
basinwide TC statistics, there is an observed positive
correlation between ENSO and WNP accumulated cy-
clone energy (ACE), with more intense and longer-lived
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TCs during El Nifio seasons compared to La Nifla sea-
sons (Camargo and Sobel 2005). The recent strong 2015
El Nifio event experienced high WNP TC activity levels
typical of El Nifio seasons, falling in the top 5th per-
centile of observations with eight super typhoons
(Camargo 2016). In addition to ENSO-driven changes in
TC lifetime and strength, WNP TCs tend to be larger
during El Nifio than La Nifia years (Chan and Yip 2003).

The relationship between ENSO and TC activity
displays a spatial pattern within the WNP basin. Genesis
locations of TCs in the basin have a southeast (north-
west) shift during El Niflo (La Nifna) years (Chia and
Ropelewski 2002). TC activity decreases over the South
China Sea and increases over the eastern WNP late in
the typhoon season during El Nifio years and vice versa
during La Nifia years (Chan 2000). A probabilistic
cluster analysis yields similar relationships between
ENSO and spatial patterns of WNP TC tracks (Camargo
et al. 2007a,b). Accompanying the ENSO-driven spatial
patterns in WNP TC track density are changes in land-
fall rate, with general reductions in landfall during El
Niflo, except over Japan and the Korea Peninsula,
and increased landfall over China during La Nifia
(Wu et al. 2004).

Although the relationship between ENSO and WNP
TCs has been widely investigated, many studies consider
all El Nifio events together, regardless of their charac-
teristics. This leaves a major knowledge gap, as it has
been recognized in the last decade that the spatial pat-
terns of sea surface temperature (SST) warming can
vary substantially between El Nifio events. In particular,
noncanonical El Nifio (also known as central Pacific El
Nino, El Nifio Modoki, or warm pool El Nifio), which is
characterized by equatorial central Pacific warming, has
been observed more frequently and with increasing in-
tensity in recent decades (Ashok et al. 2007; Guan and
Nigam 2008; Kug et al. 2009; Lee and McPhaden 2010).
In addition, the intensity and frequency of central Pacific
El Nifio is projected to increase in the future at the ex-
pense of canonical (also known as eastern Pacific or cold
tongue) El Nifio (Yeh et al. 2009; Kim and Yu 2012).

Given the observed and projected changes in ENSO
spatial characteristics, together with the strong de-
pendence on El Nifio “flavor” of Atlantic TC suppres-
sion and eastern North Pacific TC enhancement
(Patricola et al. 2016), it is important to understand how
El Nifio’s flavors influence the basinwide statistics and
spatial patterns of WNP TCs. However, using an ob-
servational record that is relatively short and sub-
sampled by different flavors of El Nifio can suggest
misleading links between ENSO and Atlantic TCs,
owing to the small sample size together with internal
atmospheric variability (Patricola et al. 2016, and
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references therein). A short record can lead to different
conclusions in observational studies depending on the
dataset and definition of ENSO considered. This is es-
pecially the case when studies further divide ENSO
types according to temporal evolution (Kim et al. 2016)
or rainfall impacts (Wang and Wang 2013).

This paper will focus on these questions: 1) How do
the spatial characteristics and intensity of ENSO influ-
ence basinwide seasonal TC activity in the western
North Pacific, and through what mechanisms? 2) How
are the spatial characteristics of WNP TC tracks
changed by ENSO flavors? This investigation uses large-
ensemble climate model simulations that address the
challenges in using a short observational record that is
confounded by concurrent SST variability unrelated to
ENSO. We compare simulated TC activity with an ob-
servational analysis that is an update from Wang et al.
(2013) to include 2010-15. In addition, a sophisticated
clustering technique is used to quantify ENSO-driven
changes in the spatial pattern of WNP TC tracks.

2. Background

Here we review observationally based studies that
focused on WNP TC activity and ENSO flavors.
Whereas these studies are marked by uncertainty asso-
ciated with small sample sizes as described previously,
the model simulations presented in the following sec-
tions can be subject to uncertainties associated with
model biases and physics parameterizations. Therefore,
results that are common to both approaches provide the
most robust understanding of this topic.

Chen and Tam (2010) found a distinct response of
WNP TC frequency to different ENSO flavors, with
observed TC number positively correlated with the
ENSO Modoki index and weakly correlated with ca-
nonical El Nifio, represented by the Nifio-3 index. Fur-
thermore, observed WNP TC activity was shifted to the
west and conditions were more favorable for landfall,
particularly over East Asia, during central Pacific El
Niflo events (Kim et al. 2011; Zhang et al. 2012). Com-
parison of TC tracks for both ENSO flavors revealed
little difference in boreal summer, but large differences
in boreal fall, with TCs recurving northward at a farther
westward location near the coastline of East Asia during
central Pacific El Nifio, explaining the increase in land-
fall frequency in East Asia (Hong et al. 2011). Using
composites of 5-8 observed seasons, Wang et al. (2013)
found that although the eastern Pacific El Nifio drives a
southeastern shift in WNP TC genesis during the peak
typhoon season of July—September, there was no sig-
nificant change in TC genesis during central Pacific El
Nifio events. On the other hand, Xu and Huang (2015)
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found increases in TC activity over the western and
eastern North Pacific in composites of four central Pa-
cific warming years. Using a statistical downscaling
technique, the track differences during different El Nifio
flavors were further linked to differences in lifetime and
intensity during the WNP TC season (Zhao 2016), with a
higher occurrence of intense typhoons for central Pacific
El Nifio events (Zhang et al. 2015).

Recent model simulations of the response of WNP TC
activity to ENSO were forced with observed SSTs (e.g.,
Mei et al. 2015; Han et al. 2016) and therefore, like ob-
servations, are confounded by non-ENSO oceanic var-
iability. In addition, most climate models have difficulty
reproducing the WNP TC response to El Nifio flavors
(Han et al. 2016). Model biases may contribute to pro-
jections of WNP TC tracks that are not robust across
models and greenhouse gas emissions scenarios, with
some models projecting a northward shift (Wu et al.
2014; Kossin et al. 2016) and other models an eastward
shift (Li et al. 2010; Murakami et al. 2011; Yokoi et al.
2013; Mori et al. 2013; Chand et al. 2017) or a combi-
nation of both (Zhao and Held 2012; Murakami et al.
2012; Colbert et al. 2015; Roberts et al. 2015; Nakamura
et al. 2017). The differences among projections make
understanding the response of WNP TCs to ENSO’s
spatial patterns even more critical.

3. Data and methodology
a. Observational data

TC data were taken from the Joint Typhoon Warning
Center (JTWC) dataset as archived in the International
Best Track Archive for Climate Stewardship, version
03r09 (Knapp et al. 2010). The JTWC maintains the only
dataset that has wind data for all WNP TCs back to 1950.
While the observational platforms underpinning this
dataset have changed considerably since 1950 (Chu et al.
2002), compositing over a large number of years should
help to ameliorate any observationally generated biases.

Tropical Pacific SST data were obtained from the
National Oceanic and Atmospheric Administration’s
(NOAA) Climate Prediction Center for the 1950-2015
period. This dataset calculates SST anomalies in several
regions using the NOAA Extended Reconstructed SST,
version 4 (Huang et al. 2015). We examined SSTs in
three boxes frequently used to assess the strength of
ENSO events: Nifio-4 (5°S-5°N, 150°E-150°W), Nifio-
3.4 (5°S-5°N, 170°-120°W), and Nino-3 (5°S-5°N,
150°-90°W).

Many different approaches have been used to sepa-
rate El Nifio events into eastern Pacific and central Pa-
cific types (e.g., Ashok et al. 2007; Guan and Nigam
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TABLE 1. List of WNP typhoon seasons over the 1950-2011
period classified as CT El Nifio, WP El Nifio, neutral ENSO, and
La Nifia, based on August-October averaged Nifio-3, Nino-3.4,
and Niflo-4 indices as described in section 3a.

CT El Nifio 1965, 1972, 1976, 1982, 1987, and 1997
WP EI Nifio 1986, 1991, 1994, 2001, 2002, and 2004
La Nifia 1954, 1955, 1964, 1973, 1975, 1988, and 2010

2008; Kao and Yu 2009; Takahashi et al. 2011; Patricola
et al. 2016). In the remainder of this manuscript, we
follow the physically based nomenclature of Kug et al.
(2009) and Patricola et al. (2016) and refer to eastern
Pacific El Nifio as cold tongue (CT) El Nifio and central
Pacific El Nifio as warm pool (WP) El Nino. We first
performed the observational analysis by defining ENSO
events in the same way as for the model simulations
[described in Patricola et al. (2016, 2017)]. CT and WP
El Nifio events were defined as the strongest 10% of
observed events based on the August-October averaged
Nifio-3 index and Nifio-4 index, respectively, during the
1950-2011 period (Table 1). Events defined as CT El
Nifio were excluded from the set of WP El Nifio events.
Similarly, La Nifia is based on the strongest 10% of
negative August-October averaged Nifio-3.4 index
occurrences.

Since the first method of defining ENSO events pro-
duced small sample sizes (six for each El Nifio flavor and
seven for La Nifia), we recalculated the observational
analysis using a more relaxed event definition that
allows for slightly larger sample sizes. In the second
sensitivity analysis, we calculated anomalies over July—
October, as over 70% of typhoons occurred during this
period. The 1950-2015 period was included in the
analysis, and anomalies were calculated from the 1981—
2010 base period. If the July—October SST anomaly in
the Nifio-3 region exceeded 0.7°C and was greater than
the Nifio-4 region, it was classified as a CT El Nifio
event. If the SST anomaly in the Nifio-4 region exceeded
0.2°C and exceeded that in the Nifio-3 region, it was
classified as a WP El Nifio event, provided the Nifio-3
region was also >0°C. If the Nifio-3 SST anomaly was
less than —0.7°C, it was classified as La Nifa, while all
other years were classified as neutral ENSO. Table S1 in
the supplemental material displays the years that met
each classification, while Fig. S1 therein displays the SST
composites for each ENSO type. Of the 66 years studied
(covering 1950-2015), 8 were classified as CT El Niiio, 8
as WP El Nifio, 30 as neutral ENSO, and 20 as La Nifa.

b. Regional climate model and simulations

We conducted simulations with the Weather Research
and Forecasting (WRF) Model (Skamarock et al. 2008)
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Fi1G. 1. August-October averaged SST (°C) from the climatology simulation on the TCM
domain. Land is shaded gray.

configured as a tropical channel model (TCM), as in
Patricola et al. (2016, 2017). The TCM uses a TC-
permitting horizontal resolution of 27km and covers a
model domain (Fig. 1) that extends around the globe
from 30°S to 50°N, allowing atmospheric disturbances to
propagate throughout the tropics and part of the northern
midlatitudes.

Five mechanistic experiments (Table 2) were per-
formed with prescribed SST derived from the 1.0° X 1.0°
resolution Met Office Hadley Centre Sea Ice and SST
dataset (HadISST; Rayner et al. 2003). The control or
“climatology” simulation used the monthly SST clima-
tology from 1950-2011, and is the same control simula-
tion as in Patricola et al. (2016). The August-October
averaged SST (Fig. 1) shows the cold tongue and warm
pool in the eastern and western equatorial Pacific,
respectively.

Four ENSO simulations, representing La Nifia and
cold tongue, warm pool, and doubled warm pool El
Nifio, were conducted by adding a SST anomaly char-
acteristic of each ENSO phase to the SST of the clima-
tology simulation. We created the ENSO forcings in an
idealized way, since our main focus is to understand the
impact of spatial patterns of ENSO on TC activity.
Specifically, CT El Nifio, WP El Nifio, and La Nifia
forcings (Fig. 2) were constructed according to the
strongest 10% of observed events based on the August—
October averaged Nifio-3, Niflo-4, and Nifio-3.4 indices
during the 1950-2011 period, as described in the pre-
vious section and Patricola et al. (2016, 2017). The cor-
relation between August—October averaged Nifio-3 and
Nifo-4 indices is high (r = 0.82), as the flavors of El Nifio
may not represent fundamentally different phenomena
(Takahashi et al. 2011), an important subject separate
from this study. We also constructed an idealized
“doubled warm pool” SST forcing, which is a doubling
of the warm pool El Nifio forcing based on the strongest
10% of observed events, and is investigated because the
intensity of WP El Nifio has approximately doubled in
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recent decades (Lee and McPhaden 2010). Only
tropical-subtropical SST anomalies significant at the 5%
level were included in the ENSO forcings. By con-
structing the SST forcings this way, the ENSO patterns
were isolated from sources of SST variability in other
basins, for example, the Atlantic multidecadal oscilla-
tion (AMO) (Kerr 2000). In each of the ENSO simula-
tions, constant-in-time SST forcings (Fig. 2) were added
to the monthly varying SST of the climatology simula-
tion throughout the entire integration. We note that
the simulations deviate from reality in that they do
not account for the temporal evolution of ENSO,
which intensifies in the latter half of the typhoon
season. In addition, the extratropical SST footprints
commonly generated by coupled atmosphere—ocean
interactions associated with ENSO were not included
in our uncoupled atmospheric model simulations.

An ensemble size of 16 and 22 was performed for the
La Nifia and each of the three El Nifio experiments,
respectively, in order to quantify internal atmospheric
variability and evaluate statistical significance. (The re-
sults are insensitive to whether an ensemble size of 16 or
22 members was used for the El Nifio experiments.) The
ensemble members were generated by initializing the
model with different atmospheric states from the Na-
tional Centers for Environmental Prediction (NCEP)-
U.S. Department of Energy (DOE) AMIP-II reanalysis
(Kanamitsu et al. 2002). Specifically, we started the
simulations on 15, 16, 18, 20, 22, 25, 28, and 30 April of
1989 and 1996 and, for all experiments except the La
Niiia simulation, on 15, 20, 24, 27, 30, and 31 March 1996.
Northern and southern lateral boundary conditions
(LBCs) are from the 6-hourly NCEP-DOE AMIP-II
reanalysis for the corresponding year, 1989 or 1996.
These years were chosen so that the LBCs were not
strongly affected by midlatitude climate modes near the
northern model edge, as 1989 and 1996 were character-
ized by a relatively neutral Atlantic multidecadal oscil-
lation and Pacific decadal oscillation (Mantua et al. 1997).
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TABLE 2. List of simulations with prescribed SST and ensemble-averaged seasonal total (1 June-30 November) ACE (10*kt?) and
number of TCs, typhoons (TYs), and intense typhoons (ITYs) over the WNP. The percentage change between the ENSO experiments and
the climatology simulation are in parentheses. The ensemble-averaged ACE, TC, TY, and ITY of the ENSO simulations are all signif-

icantly different (5% level, one-tailed ¢ test) from those of the climatology simulation. The same measures of TC activity are also shown for

the 1950-2015 period of observations, for comparison with the climatology TCM simulation.

Simulation SST ACE TC TY ITY
Climatology 1950-2011 monthly climatology 306 28.4 27.0 13.4
CT El Nifio Climatology plus CT El Nino forcing (Fig. 2a) 351 (14%) 32.6 (15%) 32.0 (19%) 19.0 (42%)
WP El Nifio Climatology plus WP El Niio forcing (Fig. 2b) 357 (17%) 33.0 (16%) 32.2 (19%) 19.2 (44%)
Doubled WP El Nino  Climatology plus doubled WP El Nifio forcing 462 (51%) 43.1 (52%) 42.8 (59%) 29.4 (120%)

(Fig. 2¢)

La Nifia Climatology plus La Nifia forcing (Fig. 2d) 239 (=21%) 241 (-15%) 225(-17%) 9.4 (—29%)
Observations Observed 1950-2015 308 254 16.8 9.4

Results are insensitive to the choice of LBCs. We note
that prescribing the LBCs in this way constrains the in-
fluence of the extratropics on the tropics and TCs
(Alexander et al. 2010; Smirnov and Vimont 2012; Zhang
et al. 2016) in order to focus on the impacts of ENSO on
TCs. Each simulation covers the main typhoon season
from June through November and ends on 1 December.

TCs were identified in the TCM simulations using the
algorithm of Walsh (1997), which includes criteria for a
sea level pressure minimum, surface wind speed of at
least 17ms ', and a warm core. We quantified TC ac-
tivity using TC number and ACE (10*kt%; 1kt ~
0.51ms '), which is defined as the sum of the squares of
the 6-hourly maximum sustained wind speed throughout
the lifetime of a tropical cyclone (Bell et al. 2000).

Cold Tongue EI Nino

Whereas observed TC categories are based on maxi-
mum surface wind speed, the simulated categories were
estimated using minimum sea level pressure, because of
the underrepresentation of intense TCs as categorized
by surface wind speed (Patricola et al. 2017). A better
representation of TCs in terms of pressure than wind
speed is common in climate models (e.g., Roberts et al.
2015; Murakami et al. 2015a). Furthermore, the intensity
bias in the modeled TCs should be expected for climate
models with a resolution of 27km (Camargo and
Wing 2016).

The TCM reproduces the climatology of WNP TC
activity reasonably well, with an ensemble-averaged
season total ACE of 306 in the control simulation,
compared with an observed ACE of 308 during the
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FIG. 2. SST (°C) forcings applied in the TCM simulations representing (a) CT El Niiio, (b) WP El Niiio, (c) doubled WP El Nifio, and
(d) La Niiia.

Brought to you by OLD DOMINION UNIVERSITY LIBRARIES | Unauthenticated | Downloaded 07/01/24 08:13 PM UTC



5400

—aobservations (1950-2015)
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FIG. 3. Average number of TCs generated by month from the
19502015 period of observations (black) and the 22-member en-
semble of the climatology TCM simulation (blue). The TCM
simulation only includes June-November, which includes the ob-
served peak in the typhoon season.

1950-2015 period (Table 2). The TCM slightly over-
estimates the frequency of WNP TCs, with 28.4 named
TCs per year in the climatology simulation and 25.4
observed named TCs per year during 1950-2015 (Table
2). The main model deficiency is in producing too many
TCs of typhoon and intense typhoon intensity. In addi-
tion, the observed seasonal cycle of TC genesis, in-
cluding the peak in August, is reasonably represented in
the climatology simulation (Fig. 3), with a slight positive
bias in the number of simulated TCs present throughout
the season.

The spatial patterns of TC track density are similar
between the TCM simulations and observations, al-
though the TCM underestimates TCs in the South
China Sea relative to the region east of the Philippines
(Fig. 4) and generally underestimates the magnitude of
the track density. In addition, the TCM is able to re-
produce the observed southeastward shift in TC gene-
sis location during El Nifio and northwestward shift in
genesis during La Nifia, despite a westward bias of
about 10° in average longitude of genesis in the clima-
tology simulation (Table 3). However, the TCM fails to
reproduce the observed increase in TC lifetime in re-
sponse to El Nifio (not shown) demonstrated by Chan
and Yip (2003), Camargo and Sobel (2005), and Zheng
et al. (2015). This may be related to TC identification
criteria that are stricter for the model data than for
observations.

c¢. Cluster methodology

In our analysis, we used the Gaffney cluster tech-
nique (Gaffney 2004). A detailed description of its
application to Atlantic extratropical cyclone tracks
appeared in Gaffney et al. (2007). This cluster
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FI1G. 4. TC track density from (a) observations during 1950-2015
(No. of TCs per 10 seasons) and (b) the climatology, CT El Niiio,
and La Nina TCM simulations (No. of TCs per day per 10 seasons),
with each of the three experiments given equal weight to normalize
for the smaller ensemble size of the La Nifia simulation.

technique has been extensively applied to TC tracks
for various basins in observations (Camargo et al.
2007a,b, 2008; Kossin et al. 2010; Ramsay et al. 2012;
Kozar et al. 2012; Caron et al. 2015; Boudreault et al.
2017), as well as in model simulations (Camargo 2013;
Daloz et al. 2015; Nakamura et al. 2017). The cluster
technique is based on a mixture of polynomial re-
gression models (quadratic here), which are used to fit
the geographical shape of the tracks by maximizing the
likelihood of the parameters. The log likelihood can
be interpreted as a goodness of fit metric for proba-
bilistic models. One of the advantages of this tech-
nique is that it is possible to consider tracks of
different lengths, in contrast to other cluster tech-
niques, such as the K-means method. Each track is
assigned to one of K different regression models,
where K is the number of clusters considered. Each
model is described by a set of parameters, regression
coefficients, and a noise matrix.

First, we updated the cluster analysis of observed
western North Pacific TC tracks from the JTWC,
which was originally done in Camargo et al. (2007a,b)
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TABLE 3. Average genesis latitude and longitude location from observations and the TCM simulations, with standard deviations in
parentheses.

TCM simulations

Observations 1950-2015 Climatology

CT El Nifio

WP El Niiio Doubled WP El Niiio La Nifia

Lat 15.6°N (5.7°)
Lon 137.3°E (15.3%)

15.9°N (5.7°)
148 8°E (17.2°)

14.0°N (5.7°)
147.2°E (16.9°)

14.6°N (5.6%) 13.4°N (5.5°)
149.8°E (17.7°) 153.2°E (18.4%)

17.0°N (6.1°)
146.2°F (17.4°)

for the period 1950-2002. Here we consider the tracks
for the period 1950-2015. The same number of clus-
ters (K = 7) as in the original analysis was used here.
We applied the cluster analysis to the tracks in his-
torical order, and then modified the order of the tracks
randomly 100 times and reran the cluster analysis. The
final chosen cluster assignment for each track was the
one with the smallest absolute value of the log-
likelihood among the 101 cases. The clusters were
then named A through G and ordered from the largest
to the smallest number of TCs in each cluster, based
on the frequency of the original analysis (Camargo
et al. 2007a,b) so that it was easier to compare with the
original results.

We used a similar procedure for the model tracks,
running the cluster analysis 501 times and choosing
the case with the minimum absolute value of the log-
likelihood as the chosen cluster assignment for each
track. Given that the choice of the number of clusters
always has some amount of subjectivity [see discus-
sion in Camargo et al. (2007a)], we decided to use the
same number of clusters as in the observations (K =
7), so that the comparison with observations would be
straightforward, as was done in Nakamura et al.
(2017). To increase the sample size of the model
tracks dataset, we applied the cluster analysis to all
model simulations jointly, similar to what was done in
other model track analysis (e.g., Camargo 2013; Daloz
et al. 2015; Nakamura et al. 2017). It should be em-
phasized that the only input of the cluster analysis was
the latitude and longitude of each trajectory. Conse-
quently, there was no information as to which model
simulation the track belongs to. To match the model
clusters with the observed ones, we compared the
track type and location of the model and observa-
tions. Therefore, the model clusters are not neces-
sarily ordered by TC occurrence, as the observed
tracks are.

d. Statistical significance in cluster assignments

To estimate the statistical significance of differences
in cluster assignments among the different simulations,
we used a Monte Carlo procedure. We randomly
assigned each TC to a cluster using two constraints:
1) the total number of TCs in each simulation was fixed,
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and 2) the total number of TCs in a cluster summed over
all simulations was fixed. By using these constraints, we
reproduced in our random samples the main charac-
teristics of the cluster distributions across all scenarios.
We generated 10000 random cluster assignments and
then counted the number of TCs in each cluster and
scenario.

We then calculated the probability that the number
of TCs across the 10000 random assignments was
higher and lower than the actual number of TCs in
that cluster and scenario. We repeated the same cal-
culation but used instead of the total number of TCs:
1) the absolute difference in the total number of TCs
in each cluster between two scenarios, 2) the per-
centage of TCs in a cluster and scenario, and 3) the
absolute difference in the percentages of TCs in each
cluster between the two scenarios. There was a large
difference in total number of TCs among the simu-
lations, because of the different forcings, as well as
the smaller number of ensemble members in the La
Nifa simulation. Therefore, we restricted our analysis
to the differences in percentages across the scenarios
(Table 4) even though the results were robust for all
cases, when only the three El Nifio scenarios were
considered.

4. Observed influence of ENSO flavors on
basinwide TC activity

We begin by presenting the observed influence of
ENSO flavors on WNP TC activity, recognizing the
difficulties that can arise in analyzing a relatively short
subsampled data record. The analysis here is compared
with previous studies, uses a longer dataset that
therefore has a greater occurrence of ENSO events,
and considers potential sensitivity to ENSO event
definition. Table S displays the average and standard
deviation of TC activity given by ACE and the number
of tropical storms, typhoons, and intense typhoons in
the WNP based on composites of CT El Nifio, WP El
Nifo, neutral ENSO, and La Nifa seasons (defined in
Table 1). (Table S2 in the supplemental material shows
the same quantities for the more relaxed event defini-
tions listed in Table S1.) As has been shown in prior
work (e.g., Camargo and Sobel 2005), overall TC



5402

JOURNAL OF CLIMATE

VOLUME 31

TABLE 4. Differences in the percentages of cluster assignments between TCM simulations, abbreviated as follows: CT El Nifio (CT), WP
El Nifio (WP), doubled WP El Nifio (2WP), and climatology (CTL). Boldface indicates differences that are statistically significant.

Cluster CT — CTL WP — CTL 2WP — CTL WP - CT 2WP - CT 2WP — WP
A 0.3 1.3 1.0 1.0 0.7 -0.3
B 1.4 -32 -51 —4.6 —6.5 -1.9
C -8.1 -3.0 —-5.8 51 2.3 —2.8
D 6.0 1.7 3.0 —4.2 -3.0 1.3
E 24 2.0 10.8 -0.4 8.4 8.8
F 3.0 0.3 —-4.9 -2.7 =79 -51
G -5.0 0.9 1.1 58 6.0 0.2

activity levels tend to be higher during El Nifio events,
with more long-lived and intense typhoons compared
to La Nina events. Overall, CT El Nifio events have
comparable or more TC activity than WP El Nifio
events, with a 35% and 34% increase in ACE relative
to neutral ENSO events, respectively, and a 35% and
24% increase in the number of intense typhoons, re-
spectively. La Nifia events have less overall TC activity
than either El Nifio event type or neutral ENSO con-
ditions, consistent with Camargo and Sobel (2005). The
TC responses to ENSO are insensitive to event defi-
nition (Tables 5 and S2), with the exception of stronger
TC activity for the WP El Nifio composite when using
the stricter event definition.

The comparable increases in WNP ACE for WP and
CT El Nifio (Table 5), despite considerably weaker WP
El Nifio SST anomalies (Fig. 5) are intriguing, and may
suggest that warming of the warm pool is more effective
at influencing WNP TC activity than warming of the cold
tongue, as was the case for TCs in the Atlantic and
eastern Pacific (Patricola et al. 2016). The TCM simu-
lations presented in the next section, together with the
recent observationally based study of Wu et al. (2018),
provide stronger support for this idea.

Figure 6 shows the maximum lifetime intensity dis-
tribution of TCs by Saffir-Simpson wind scale category
stratified by ENSO. As would be expected given the
overall higher levels of ACE in El Nifio events, more
intense typhoons (categories 3-5) also tend to occur
during El Nifio compared with La Nifla, as in Camargo
and Sobel (2005). Overall, CT El Nifio events have the

highest number of category 5 intensity typhoons, as was
found by Zhang et al. (2015).

5. Simulated influence of ENSO flavors on
basinwide TC activity

We now present the influence of ENSO flavors
on simulated TC activity by first quantifying the
ensemble-averaged basinwide TC activity and atmo-
spheric response. In the next section, we extend the
analysis to consider the role that internal atmospheric
variability plays in driving seasonal WNP TC vari-
ability within the context of ENSO. The influence of
ENSO flavors on WNP TC tracks and landfall is pre-
sented in section 7.

The simulated TC track density shows a substantial
response to ENSO, with decreases over much of the
WNP in the La Nifia experiment (Fig. 7d). The TC track
density response in the El Nifio experiments (Figs. 7a—c)
is characterized by a swath of increased activity oriented
from the southeast to central western portions of the
WNP basin, with the greatest magnitude of response in
the doubled warm pool El Nifio simulation (Fig. 7c) and
moderate and weak responses in the CT and WP EI
Nifio simulations, respectively (Figs. 7a and 7b).

These changes in TC track density are accompanied
by significant changes in basinwide TC activity. The
ensemble-averaged season total WNP ACE and number
of TCs are significantly greater (5% level) in the three El
Niflo simulations compared with the control simulation,
and vice versa for the La Nifia simulation (Table 2). The

TABLE 5. Average and standard deviation (in parentheses) of observed WNP number of named storms (NSs), TYs, ITYs, and ACE in
composites of CT El Nifilo, WP El Nifio, neutral ENSO, and La Nifia typhoon seasons over the 1950-2011 period, as defined in Table 1. The
percentage change in activity relative to neutral ENSO seasons is shown for El Nifio and La Nifia seasons.

ENSO type NS NS (%) TY TY (%) ITY ITY (%) ACE (10%kt?) ACE (%)
CT El Nifio 27.5 (3.8) 10% 18.8 (2.9) 15% 12.3 (2.1) 35% 400 (94) 35%
WP El Nifio 28.8 (3.5) 15% 19.3 (1.8) 18% 11.3 (2.0) 24% 396 (68) 34%
Neutral ENSO 25.1 (4.6) — 16.4 (3.6) 9.1 (3.1) — 296 (88) —

La Nifia 22.6 (7.6) -10% 15.4 (5.6) —6% 7.6 (3.5) -16% 230 (99) -22%
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FIG. 5. Observed SST composite anomalies (°C) averaged from August to October for typhoon seasons defined as (a) CT El Nifio, (b) WP
El Nifio, (c) neutral ENSO, and (d) La Nifia.

magnitude of the responses is similar between the CT
and WP EIl Nino simulations, with a 14% and 17% in-
crease in ACE and a 42% and 44% increase in the
number of intense typhoons, respectively. The TCM
responses to CT and WP EI Nifio are more similar in
magnitude to each other than in observations for num-
ber of intense typhoons, although it is difficult to make
an exact comparison as a result of different SST anom-
alies in the model compared with observations. The re-
sponse to La Nifia is of similar magnitude, but negative,
with a 21% decrease in ACE and a 29% decrease in
number of intense typhoons. On the other hand, the
doubled WP El Nifio experiment produces a 51% in-
crease in ACE and a 120% increase in the number of
intense typhoons, both of which are significantly (5%
level) greater than the corresponding TC activity in the
CT and WP El Nifo simulations. This indicates that
although CT and WP El Nifo corresponding to the
strongest 10% of observed events impact WNP TC ac-
tivity by similar magnitudes, warming of the warm pool
is more effective at enhancing WNP TC activity com-
pared with warming of the cold tongue for similar
magnitudes of warming (comparing the CT and doubled
WP El Nifio simulations).

A number of physical mechanisms connect ENSO
with interannual WNP TC variability. Observed TC
genesis location has been linked with changes in vertical
wind shear (VWS) between the lower and upper tro-
posphere, the Walker circulation, midtropospheric
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relative humidity, and the position and strength of the
Asian monsoon trough and western Pacific subtropical
high, all of which are linked to ENSO (e.g., Chan 1985;
Chen et al. 1998; Chia and Ropelewski 2002; Chan 2005;
Camargo et al. 2007¢c). We found that the WNP TC re-
sponse to ENSO flavors in the TCM simulations is as-
sociated with several of these mechanisms.

The TCM produces a response in vertical wind shear
to ENSO that is characterized by a complex spatial
pattern. The CT EI Nifio simulation shows increases in
VWS in the southwestern portion of the WNP basin and
decreases in VWS in the southeastern WNP that almost

Average Number of TCs

Cat.2
Saffir-Simpson Wind Scale Category

Cat. 3 Cat. 4 Cat.5

=#-CT El Nino ==~WP El Nino -#~Neutral ENSO =®=La Nina

FIG. 6. Observed distribution of maximum intensity of north-
western Pacific TCs binned by Saffir—Simpson wind scale category
based on ENSO phase.
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FIG. 7. TC track density (No. of TCs per day per 10 seasons) from the (a) CT El Niiio, (b) WP El Nifio, (c) doubled
WP El Nifio, and (d) La Nifia simulations minus the climatology simulation.

continuously extend to the region surrounding Taiwan
(Fig. 8a). The VWS response is similar but weaker in the
WP El Nifo simulation (Fig. 8b). The simulated results
are comparable with composites of ENSO events from
the NCEP-National Center for Atmospheric Research
(NCAR) reanalysis (Kalnay et al. 1996) (Figs. 8e.f).
Furthermore, the patterns and relative magnitudes of
the VWS response to CT and WP El Nifio in the TCM
simulations are similar to those simulated by Li and
Wang (2014). A new finding here is that the amplitude of
the VWS response is greater for an equal magnitude of
SST warming in the central Pacific, compared to in the
eastern Pacific, as demonstrated by the doubled WP El
Nifio and CT El Nifio simulations, respectively (Figs. 8c
and 8a). This is consistent with regional climate model
experiments showing that northern off-equatorial cen-
tral Pacific warming is more effective than equatorial
central Pacific warming in inducing changes in the
steering flow associated with increased TC activity over
East Asia (Jin et al. 2013).

In addition to changes in VWS, increases in mid-
tropospheric relative humidity over the southeastern
portion of the WNP and the South China Sea, the
Philippines, and Taiwan produce more favorable con-
ditions for TCs in the El Nifio simulations (Figs. 9a—c).
Again, SST warming near the warm pool (Fig. 9c) is
more effective at enhancing relative humidity near the
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South China Sea compared with warming of the cold
tongue region (Fig. 9a), for similar magnitudes of SST
warming. The WP El Nifio SST forcing representative of
the warmest 10% of observed cases (Fig. 9b) produces a
weaker VWS response compared with the CT El Nifio
case (Fig. 9a).

6. Internal atmospheric variability and seasonal
predictability

In the previous section, we demonstrated that La Nifia
and both flavors of El Nifio drive a significant response
in ensemble-averaged WNP TC activity. This satisfies
one of two criteria needed to gain seasonal TC pre-
dictability from skillful ENSO predictions. The second is
relatively small internal atmospheric variability, since
high predictability requires a low signal-to-noise ratio
(i.e., ratio of mean response to internal atmospheric
variability). Figure 10 shows box-and-whisker plots of
the season total of WNP ACE from the JTWC obser-
vations from the full 1950-2011 record and the ENSO
composites (as defined in Table 1), and from the 22
ensemble members of the climatology and EI Nifio
simulations and the 16 ensemble members of the La
Nifia simulation. Recall that the SST forcing is identical
for each TCM simulation within an experiment set, and
that ensemble members were generated by varying the
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FIG. 8. VWS (ms™ ') between 850 and 200 hPa averaged for July-October from the ensemble average of the
(a) CT El Nifio, (b) WP El Nifo, (c) doubled WP El Nifio, and (d) La Nifia simulations minus the climatology
simulation, and from observed composites of (¢) CT El Nifio, (f) WP El Nifio, and (g) La Nifia events minus the
1950-2015 climatology. Land at 850 hPa is shaded gray in (a)—(d).

atmospheric initial conditions, specifically by starting comparison, the range represented in the box-and-whisker
the simulation at a different time. Therefore, the range plots of observations can represent internal atmospheric
of TC activity over the full ensemble represents vari- and oceanic variability, as well as external forcings such as
ability that is generated internally by the atmosphere. In  greenhouse gas and aerosol concentrations.
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FIG. 9. Relative humidity (%) at 700 hPa and averaged July—October from the ensemble average of the (a) CT El
Nifio, (b) WP El Nifo, (c) doubled WP El Nifio, and (d) La Nifa simulations minus the climatology simulation.

Land at 700 hPa is shaded gray.

The internal atmospheric variability in the TCM
simulations is substantial, with a minimum (228) and
maximum (375) season total WNP ACE that is 24% less
than, and 25% greater than, the median (300) in the
climatology simulation (Fig. 10). Despite this range of
simulated seasonal TC activity under the same SST
conditions, the magnitude of the TC activity response to
the ENSO forcings is sufficiently large that there is a
noticeable shift in the distributions of ACE. For
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example, the 25th-75th percentiles of seasonal WNP ACE
values in the CT and WP El Niilo simulations correspond
to the 50th—100th percentile of seasonal ACE values in the
climatology simulation. In addition, the 75th-100th per-
centile of seasonal ACE in the CT and WP EI Nifio sim-
ulations exceeds the maximum value in the climatology
simulation. Furthermore, the response in the doubled WP
El Niflo simulation is so large that the ACE distribution
does not overlap with that of the climatology simulation.

?

%s., Ty, ey, %, oy,
&y
Ving Vine o

FI1G. 10. Box-and-whisker plots of season total WNP ACE, showing the min, the 25th, 50th,

and 75th percentiles, and max values, from observations over the 1950-2011 period and for
composites according to neutral ENSO, CT El Nifio, WP El Nifio, and La Nifia, as defined in
Table 1, (gray) and from the climatology, CT El Nifio, WP El Nifio, doubled WP El Nifio, and
La Nifia TCM simulations and all experiments (blue).
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Therefore, in addition to confirming what we already
knew, namely that ENSO provides seasonal TC pre-
dictability in the WNP, this also suggests that central Pa-
cific warming provides greater predictability of seasonal
WNP TC activity than eastern Pacific warming, for equal
magnitudes of warming.

The analysis presented here also indicates that the ex-
tremes in seasonal WNP TC activity are driven by SST
variability such as ENSO, rather than by internal atmo-
spheric variability. This is suggested by a comparison of
the box-and-whisker plots of seasonal ACE between the
full set of observations (which include SST variability) and
the climatology simulation, in which SST is prescribed
according to the monthly varying climatology (i.e., does
not contain ENSO variability) (Fig. 10). The climatology
simulation only overlaps with the 25th—75th percentile of
the observations. On the other hand, the TCM simulations
that were forced with ENSO overlap with portions of the
0th-25th and 75th—100th percentiles of the observations.
(We note that the box-and-whisker plots are comparable
between the full observational record, and all the TCM
experiments considered together, as would be expected if
the TCM represents the distribution of seasonal ACE
well.) The critical role of SST variability in driving the
strongest WNP TC seasons highlights the importance of
understanding how changes in ENSO characteristics can
influence TC activity. We note that the results are in-
sensitive to using the more relaxed definition of observed
ENSO events in Table S1 (see Fig. S2).

We note that the simulated ACE distributions are overall
consistent with the observed (Fig. 10). Within each ENSO
category, the observations do have a greater range between
maximum and minimum values compared with the TCM
simulations. This is also the case for neutral ENSO obser-
vations and the climatology TCM simulation, which pro-
vides the fairest comparison to neutral ENSO conditions in
that the anomalous tropical Pacific SST forcing is zero.
However, this is to be expected, since the design of the
TCM simulations isolates the ENSO-forced signals,
whereas the observationally based composites contain
other sources of oceanic and atmospheric variability.

7. TC cluster response to ENSO flavors
a. Observations

To examine the regional response of the WNP tracks to
ENSO flavors, we used cluster analysis, which can isolate
the effect of ENSO on each TC track type. First, however
we need to examine how well the model reproduces ob-
served tracks in the WNP. Figure 11 shows the TC tracks in
each of the seven clusters, as discussed in detail in
Camargo et al. (2007a,b). Here we updated the cluster
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analysis using observations for the period 1950-2015 (also
shown in Nakamura et al. 2017). Figure 12 shows the
genesis and landfall locations of each of these clusters. The
seven clusters have very different genesis locations and
track types and are modulated by climate modes. As dis-
cussed in Camargo et al. (2007b), the strongest modulation
by ENSO occurs in clusters A, C, E, and G. The most
common track type, cluster A, occurs more often during
La Nifia, as the genesis location in the basin shifts north-
westward. In contrast, TCs in clusters E and G, which have
genesis in the eastern part of the basin, tend to occur much
more often during El Nifio. These two clusters have a high
number of intense typhoons that generate large values of
ACE. In the case of cluster C, while there is a significantly
higher number of intense typhoons and high values of
ACE in El Nifio years, the total number of storms is similar
for El Nifio and La Nifia events. SST anomaly composites
associated with these clusters (Fig. 9 in Camargo et al.
2007b) show typical La Nifia (cluster A), WP El Nino
(clusters C and E), and CT EI Nifio (cluster G) patterns.
Note that in the observational analysis there was no at-
tempt to separate between the different ENSO flavors.

b. TCM simulations

Figure 13 shows the tracks in the TCM climatological
simulation also separated by clusters. We matched the
model clusters as closely as possible to the observed
clusters shown above. It is clear that the model tracks
have biases compared with observations. The first no-
table difference is the lack of occurrences of tropical
depression intensities in the model tracks, which is due
to the threshold used in the tracking routine in the
model tracking algorithm. Second, the model has more
difficulty in reproducing recurving track types (clusters
A, C, E, and G) than straight moving tracks (clusters B,
D, and F). Very few recurving tracks reach north of 40°N
in the model, which is not the case in observations. This
discrepancy could be due to a strict requirement of a
warm core storm that is used in the tracking routine for
the simulated TCs. The warm core criteria would no
longer detect TCs that undergo an extratropical transi-
tion (ET), as commonly occurs as TCs reach the mid-
latitudes. In fact, a larger percentage of storms that
reach high latitudes go through ET in the WNP com-
pared with other basins, with the percentage of WNP
TCs that undergo ET varying from 27% to 65% de-
pending on the observational dataset (Bieli et al. 2018,
manuscript submitted to J. Climate). Typical tracking
algorithms for TCs simulated in climate models have a
warm core requirement (e.g., Walsh 1997; Camargo and
Zebiak 2002; Horn et al. 2014) and therefore are not
designed to track the TC once it undergoes ET, easily
missing this part of the TC tracks. The discrepancy could
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FIG. 11. Observed TC tracks for the period 1971-2015 from clusters (a) A, (b) B, (c) C, (d) D, (e) E, (f) F, and
(g) G, and from (h) all clusters. Color denotes intensity, with tropical depressions in green, tropical storms in blue,

hurricanes in red, and major hurricanes in magenta.

also be related to the placement of the northern edge of
the TCM domain at 50°N. Despite these issues, there is
strong similarity among the simulated and observed
tracks. This is not always the case, as some models simu-
late TC tracks that have no similarity to observations
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(Camargo 2013; Nakamura et al. 2017). In summary, al-
though the model tracks in the climatological simulation
have some clear biases, there is overall similarity with the
observed tracks. Therefore, we can use the TCM to ana-
lyze the response in simulated tracks to ENSO flavors.
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(b) Cluster B — 267 Storms, 87% Landfall

s

70N
60N
50N
40N
30N
20N

TON &
N

0
100E

120E 140E 160E 180 160W

(d) Cluster D — 230 Storms, 86% Landfall

70N . : —
60N ‘%
s -
50N . b
40N
30N

20N

10N N A B
0 —_— & s s s
100E 120E 140E 160E 180 160W
(f) Cluster F — 142 Storms, 75% Landfall
70N . : —

60N
50N
40N
30N
20N

=2

10N%Q
0
100E 120E 140E 160E 180 160W
(h) 1693 Storms, 59% Landfall
70N . ; —_—

0
100E

120E 140E 160E 180 160W

FIG. 12. First position (gray circles) and landfall locations (colored asterisks) for the full period 1950-2015 from
clusters (a) A, (b) B, (c) C, (d) D, (e) E, (f) F, and (g) G, and from (h) all clusters. Color denotes intensity, as in

Fig. 11, at landfall.

There is a significant difference in the total number of
TCs among the ENSO-forced simulations, with a large
increase in the number of storms in the CT, WP, and
doubled WP El Nifio simulations, compared with cli-
matology simulations. Furthermore, the La Nifia simu-
lations contained fewer ensemble members than the
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three El Niflo cases. Therefore, we believe that the most
significant results are those for the differences in the
percentages between different simulations, shown in
Table 4. Table 4 and Fig. 14 indicate that there are sta-
tistically significant changes in the frequency of occur-
rence of specific type of tracks among the ENSO
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FI1G. 13. TC tracks from the climatology simulation from clusters (a) A, (b) B, (c) C, (d) D, (e) E, (f) F, and (g) G,
and from (h) all clusters. Color denotes intensity, as in Fig. 11.

scenarios. For instance, in the CT El Nifio simulation there
is an increase (decrease) in the occurrence of cluster C (D)
tracks, compared with climatology. In contrast, when we
compare the doubled WP El Nifio simulation to climatol-
ogy, there is a decrease in the occurrence of clusters B, C,
and F, and an increase in cluster E. Most interestingly, when
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comparing doubled WP El Nifio and CT El Nifio, there is a
decrease in the occurrence of clusters B and F and increase
in clusters E and G.

These changes in cluster occurrence indicate a re-
duction of TC track types that occur near the Asian
continent (clusters B and F) and an increase in the



15 JuLy 2018

Percentage of Storms per cluster
25 T T T

I LaNina
[ Climo
[ CTNino
[ WPNino
[ 2WPNino
201 -

Percentage of Storms

2 : = g
> ]
o 7
o/—————— ]
L ——
L —
B S — |
[0} E——

| | |

FIG. 14. Percentage of TCs in each cluster based on the TCM
simulations.

occurrence of tracks in the eastern part of the basin (clus-
ters E and G), in the WP El Nifio simulations compared
with CT El Nifio simulation (Fig. 15). Therefore, the
known observed signal of a southeastward shift in genesis
and tracks during El Nifio events in the WNP compared
with La Nifia events (Chan 1985; Chia and Ropelewski
2002; Camargo et al. 2007¢) is considerably amplified in the
model when El Nifio’s maximum SST warming is located in
the central Pacific (Table 3 and Fig. 16). In addition, it is
well known that El Nifio events tend to increase the oc-
currence of central North Pacific hurricane tracks, in par-
ticular in the vicinity of Hawaii (Chu 2004; Camargo et al.
2008). This has been observed even during weak El Nifio
events, such as the very active 2014 season, which had a
central Pacific warming signature (Murakami et al. 2015b;
Sobel et al. 2016). Therefore, this increase in the occurrence
of TC tracks in the eastern part of the WNP basin with
central Pacific SST warming could be seen as consistent
with an increase in TC activity in the middle of the Pacific
as a whole, as the basin division at the International Date
Line is somewhat artificial. Indeed, eastern North Pacific
TC activity increased substantially in response to WP El
Nifio, with greater TC activity increases in response to SST
warming in the central, compared to eastern Pacific, for
similar magnitudes of SST warming (Patricola et al. 2016).

8. Conclusions

ENSO is a major source of seasonal TC predictability
in several ocean basins, including the WNP. However, in
order to achieve the greatest improvement in seasonal
TC prediction and future TC projections, it is necessary
to understand how the relationship between ENSO and
WNP TCs depends on the spatial characteristics of El
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Nifio. This is especially important given the observed
and projected increase in frequency and intensity of
warm pool El Nifio events.

Here we investigated the response in basinwide WNP
TC activity, as well as the spatial clustering of TC tracks, to
two El Nifio flavors (i.e., cold tongue and warm pool El
Nifio), using observations, tropical channel model simu-
lations, and a sophisticated TC track clustering method-
ology. The climate model simulations were performed at a
TC-permitting resolution of 27 km. In addition to a con-
trol simulation that was forced with monthly varying cli-
matological SST, we conducted mechanistic experiments
with SST forcings characteristic of the strongest 10% of
observed CT and WP El Nifio and La Nifia events, as well
as a doubled WP El Nifio forcing.

We found that both El Nifio flavors enhance seasonal
WNP TC activity in observations and climate model sim-
ulations. An important new finding is that the simulated
WNP TC activity, including ACE and number of typhoons
and intense typhoons, is more effectively enhanced by SST
warming of the central, compared to the eastern, equato-
rial Pacific. This fits with the conclusion that warm pool El
Nifio is more effective at enhancing eastern Pacific and
suppressing Atlantic TC activity, owing to warmer clima-
tological SST and greater atmospheric instability in the
central Pacific; that is, WP El Nifio warms where it is al-
ready warm, whereas CT El Niflo warms where the
background SST is cool (Patricola et al. 2016).

El Nifio also has a considerable influence on simulated
TC tracks regionally, with a decrease in the percentage
of TCs that generate near the Asian continent, and an
increase in clusters that are dominated by TC genesis in
the southeastern portion of the WNP with a north-
westward track trajectory. This pattern of track cluster
response is particularly strong in the doubled WP El
Nifio simulation and corresponds spatially with a pattern
of reduced vertical wind shear.

In terms of seasonal prediction, the 22-member and
16-member ensemble of ENSO-forced simulations
indicates that although internal atmospheric variability
can generate a substantial range in the season total
ACE (%£25% of the median), the mean response in ACE
to the ENSO forcings is sufficiently large to provide sea-
sonal predictive value for WNP TC activity. Furthermore,
extremely active WNP seasons are linked with El Nifio in
both observations and the climate model simulations.
Internal atmospheric variability alone did not produce
an extremely active WNP season in the climate model.

In addition to informing potential improvements in
seasonal TC prediction, the findings presented here have
several implications for climate change. First and most
importantly, in order to reliably project future TC ac-
tivity, coupled atmosphere—ocean global climate models
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FIG. 15. TC tracks of model clusters B, E, F, and G, from the (left) CT El Nifo, (center) WP El Nifio, and (right) doubled WP El Nifio
simulations.

must be evaluated and improved to reliably represent
the mean state of SST, as well as the frequency and
spatial characteristics of El Nifio, a topic that is the focus
of ongoing essential research (e.g., Capotondi et al.
2015a,b; Richter 2015; Zuidema et al. 2016; references
therein). Second, these results suggest that if warm pool
El Nifio events were to become more frequent and
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intense in the future, El Nifio could become more ef-
fective at producing intense typhoons and consequently
driving extremely active WNP TC seasons. This pro-
vides one of several pieces of information needed for
reliable future TC projections, as, for example, the re-
lationship between ENSO and TCs may change with a
warming climate. Another important point is that future
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projections of WNP TC activity include an eastward shift
in storm tracks toward the central North Pacific (e.g.,
Nakamura et al. 2017), as well as an increase in the oc-
currence of TCs in the vicinity of Hawaii (Murakami et al.
2013). Given the relationship between warm pool El Nifio
and the eastward shift of WNP TC activity in the tropical
channel model simulations, together with the eastward
shifts in global model projections, it is important to ex-
amine if the projected changes in Pacific TC tracks are
related to an increase in the occurrence of warm pool El
Nifio events in global climate model projections.
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