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Abstract. In community first responder (CFR) systems, traditional emergency service
response is augmented by a network of trained volunteers who are dispatched via an app.
A central application of such systems is out-of-hospital cardiac arrest (OHCA), where a very
fast response is crucial. For a target performance level, how many volunteers are needed, and
from which locations should they be recruited? We model the presence of volunteers
throughout a region as a Poisson point process, which permits the computation of the
response-time distribution of the first-arriving volunteer. Combining this with known
survival-rate functions, we deduce survival probabilities in the cardiac arrest setting. We then
use convex optimization to compute a location distribution of volunteers across the region
that optimizes either the fraction of incidents with a fast response (a common measure in the
industry) or patient survival in the case of OHCA. The optimal location distribution provides
a bound on the best possible performance with a given number of volunteers. This can be
used to determine whether introducing a CFR system in a new region is worthwhile or can
serve as a guide for additional recruitment in existing systems. Effective target areas for
recruitment are not always obvious because volunteers recruited from one area may be found
in various areas across the city depending on the time of day; we explicitly capture this issue.
We demonstrate these methods through an extended case study of Auckland, New Zealand.
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1. Introduction

surveyed in Phung et al. (2017) and include Lives, NHS

Certain medical emergencies require such a fast
response that it can be helpful to supplement traditional
ambulance services with community first responders
(CFRs). CFRs are volunteers available to be dispatched
by an ambulance control center and can be members of
the public who have received training or off-duty medi-
cal professionals.

The predominant application is out-of-hospital car-
diac arrest (OHCA) for which, in Europe alone, 19 of 29
countries have a CFR system in place (Oving et al. 2019).
OHCA is a major cause of mortality around the world,
and the probability of survival significantly improves
if patients have early access to treatment such as car-
diopulmonary resuscitation (CPR) (Nichol et al. 1999,
Berdowski et al. 2010). Alternative applications where
CFRs are dispatched to general medical emergencies are

North West Ambulance Service, and Northern Ireland
Ambulance Service Health and Social Care Trust.

CFR systems are activated by an ambulance control
center in parallel with traditional emergency medical
services (EMS). In the past, CFRs were dispatched based
on their self-reported home and work addresses (Hart-
slagNu 2020), whereas in recent years, an increase in
smartphone usage has enabled applications (apps) that
alert CFRs based on their real-time GPS location. Such
systems include PulsePoint in the United States (Pulse-
Point 2020) and GoodSAM in several countries, includ-
ing the United Kingdom, Australia, and New Zealand
(Smith et al. 2017, GoodSAM Platform 2020). These sys-
tems monitor the real-time location of CFRs who have
the app running on their smartphones, though these
data are not logged for privacy reasons. CFRs near an
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incident are alerted, and some random subset of them
accept the alert and proceed to the scene. CFRs typically
do not have trouble accessing the patient, as the person
who made the emergency phone call is informed about
their dispatch. The CFR provides first aid to the level
that their training allows until the ambulance crew,
which is dispatched independently, takes over.

The central goal of this paper is to determine how the
availability of CFRs and their distribution throughout
the city affect response times. Faster responses are often
equated with better care, and consequently, response
times are commonly used as a proxy for a system’s effec-
tiveness. The response time largely depends on the CFR
density, which, in turn, depends on the number of regis-
tered CFRs and their distribution over the city. The num-
ber of registered CFRs ranges from 0.1% of the
population in a newly introduced system in New Zea-
land (Global Resuscitation Alliance 2019) to more than
1% in a mature system in the Netherlands (Wikipedia
2020). Another major factor is the acceptance probability
of CFRs; Brooks et al. (2016) found that PulsePoint CFRs
accepted, on average, 23% of the alerts they receive,
though this value varies considerably from one city to
another. One might be concerned that CFRs could
receive simultaneous alerts, leading to queueing effects,
but the rate at which CFRs receive alerts is typically very
low; for example, Pijls et al. (2019) report an average of
1.3 alerts per CER per year.

One might attempt to understand CFR response by
looking at how recorded CFR response times differ as a
function of location. Doing so is unlikely to give good
results because of data sparsity. Indeed, the number of
incidents per location is very small, leading to few obser-
vations even after collecting years of data. Even if such
data were sufficient to accurately estimate how the num-
ber of incidents differs from location to location, much
more data would be needed for predicting the distribu-
tion of response times.

In contrast with these retrospective approaches, we
offer a prospective method by estimating the perfor-
mance of CFR systems using a stochastic model. Besides
being less sensitive to statistical error, an additional ben-
efit of this method is that it can be applied to either exist-
ing or prospective CFR systems. The model we propose
uses a Poisson point process to estimate response-time
distributions based on CFR densities and is combined
with traditional EMS response and survival functions
from literature. The Poisson point process model enables
the use of convex optimization to obtain bounds on the
potential performance of various CFR deployments. We
can then answer the following questions:

1. In what areas is introducing a CFR app an efficient
way to reach certain response-time targets? (Section 6.1)

2. What is the benefit of introducing a CFR app for a
base of already trained volunteers, with known home
addresses? (Section 6.2)

3. What is the benefit of a CFR app with a given
number of registered volunteers when you do not
know where they live or spend their time? (Section 6.3)

4. Where should one recruit additional CFRs for an
existing app with a known current CFR base? (Section
6.4)

All of these questions arose in real-life use cases. Ques-
tion 1 was of interest to the Fire Department of Amster-
dam, which adopted a moonshot goal of having a
CFR app and a large CFR base by 2030 (Brandweer
Amsterdam-Amstelland 2021, p. 6). Question 2 was
posed by a national Red Cross organization that consid-
ered extending the use of its existing volunteer base via
an app. Both of these parties executed a case study based
on the models in a preliminary version of this paper.
Questions 3 and 4 are relevant to the St. John Ambulance
Service that operates GoodSAM in Auckland, and we
performed corresponding calculations that are partially
included in this paper.

We view the primary contributions of this work to be
(1) the introduction of a new class of CFR problems to
the operations research community, and (2) the selection
of, and interplay between, Poisson point processes to
model volunteers and convex optimization to perform
spatial optimization. The combination of these techni-
ques enables powerful and transparent analyses that can
inform, and have informed, decisions that save lives.

The remainder of this paper is structured as follows.
Section 2 reviews the existing literature, and Section 3
introduces our model that quantifies the impact of a
given CFR base. Building upon this model, Section 4
introduces optimization models to determine the ideal
geographical distribution of CFRs. We demonstrate our
methods within the city of Auckland, New Zealand, in
Sections 5 and 6. We conclude by answering the four
questions given and discussing the managerial implica-
tions of this work in Section 7. An Online Appendix pro-
vides supporting details.

2. Literature

We discuss performance metrics for CFR systems in Sec-
tion 2.1 and review studies that evaluate the effective-
ness of such systems in Section 2.2. Section 2.3
summarizes CFR literature that is specific for OHCA
patients, and Section 2.4 reviews studies on first-
responder dispatching. Section 2.5 places our work in a
broader context.

2.1. Performance Metrics

As an essential goal of CFR systems is to reach patients
quickly, their performance can be measured in terms of
response times: the duration between the moment a call
arrives in the emergency call center and the moment the
first responder arrives on scene. The same is true for
EMS providers, who often have targets that are a
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function of response times, phrased as service-level
agreements (responding to x percent of all calls in y
minutes).

One way of translating response times into a medical
outcome-based metric is to convert them to a survival
probability through a so-called survival function. This is
highly dependent on the medical condition of the
patient. Survival functions have been used in work on
ambulance operations in the absence of volunteer
schemes; see Erkut et al. (2008), McLay (2009), Bandara
etal. (2012), and Zaffar etal. (2016).

2.2. Retrospective Studies on Effectiveness

In contrast to our work, existing literature focuses on ret-
rospective analysis of data to determine the impact of
CFR systems.

Early work from Sweden (Ringh et al. 2011) analyzed
the impact of a CFR app using both a physical experi-
ment and a small retrospective study in which volun-
teers arrived before ambulances approximately half the
time. For a Dutch text-based volunteer CFR system, Zijl-
stra et al. (2014) compared response times in a system
with volunteers to a system with ambulances only,
reporting a reduction of 159 seconds in the time to defi-
brillation. Pijls et al. (2016) focused on survival rates: the
survival rate for OHCA increased from 16% to 27%
when at least one volunteer responded.

Several studies specifically investigated the impact of
volunteer density. Both Jansma (2014) and Stieglis et al.
(2020) investigated how density relates to response
times via an empirical study and computer simulation,
respectively. Pijls et al. (2019) show a positive correlation
between the fraction of inhabitants registered as volun-
teers and patient survival.

2.3. CFR for OHCA

Some CFR systems are designed explicitly for OHCA
patients, perhaps because OHCA survival is known to
significantly improve with early CPR administered by
trained individuals (Nichol et al. 1999, Sasson et al. 2010,
Yan et al. 2020). This relationship between time to CPR
and survival has been made explicit in multiple studies
that have followed a group of patients for which the
time to CPR has been recorded, for example, Valenzuela
et al. (1997), Waalewijn et al. (2001), and De Maio et al.
(2003).

Cardiac arrest patients are known to benefit from
receiving defibrillation by automated external defibrilla-
tors (AEDs). CFR systems are therefore often designed
to include information on AED locations. The optimiza-
tion of AED placement is explored in Folke et al. (2009)
and Chan et al. (2016, 2018); however, they treat this
question without explicitly incorporating the dynamics
of a CFR system. Like those studies, we view as out of
scope the detailed modeling of AED-CFR dispatch coor-
dination, such as when one CFR is sent directly to the

patient while another is sent to retrieve the nearest AED.
Whereas such considerations are important for an indi-
vidual OHCA, such detailed modeling seems unneces-
sary for the high-level questions of recruitment that we
consider here.

2.4. Dispatching

At the time of an incident, real-time decisions must be
made on which volunteers are dispatched by sending a
push notification to their phones. This decision is typi-
cally based on the observed locations of nearby volun-
teers and should balance overburdening volunteers
with response-time benefits (Henderson et al. 2022).

Advanced dispatch methods may vary the number
and time of alerts and may consider a range of tasks, for
example, picking up medical equipment (Nazarian
2018, Matinrad et al. 2019). In this context, Matinrad et al.
(2021) discuss uncertain task compliance.

A recent trend is to have medical supplies delivered
by drones, for example, AEDs (Boutilier et al. 2017, Chu
et al. 2021, Boutilier and Chan 2022) or blood (Nisin-
gizwe et al. 2022). Such a design disconnects equipment
delivery decisions from CFR coordination, hence further
confirming our choice to leave such questions out of
scope of this paper.

Recent unpublished work (Liu et al. 2022, Shin et al.
2022) considers AED drone management under ambu-
lance as well as bystander response. Both papers model
bystander availability through a Bernoulli distribution,
and the bystanders’ response time does not depend on
the number of available responders. This work, besides
evincing very recent interest in the topic, highlights the
unavailability of a detailed CFR response model, a gap
that we aim to fill here.

2.5. Time-Sensitive Volunteers

More broadly, our work relates to the literature on time-
sensitive volunteers and crowdsourcing, for example,
Ata et al. (2019), McElfresh et al. (2020), and Manshadi
and Rodilitz (2022). The key differences with our work
are that, in that setting, (1) requests that are relevant for
any fixed volunteer are likely to be more frequent, (2)
volunteer disengagement is a central consideration and
is modeled in a variety of ways, and (3) the proximity of
volunteers is relevant but not critical, as in our setting.
There is a slight resemblance between our work and the
literature on matching and crowdsourcing, for example,
Ozkan and Ward (2020), Tafreshian et al. (2020), and
Johari et al. (2021); queueing, pricing, and learning are
central in this literature but not in our work. The use of
spatial Poisson processes to model the location of servers
(CFRs in our setting) could potentially be relevant in
many applications, including the modeling of available
drivers in ride hailing; see, for example, Qin et al. (2020).
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3. Modeling CFR Response
In this section, we argue that CFR locations are well
modeled by a Poisson point process and thereby derive
the distribution of their response times. This distribu-
tion, particularly when complemented with the distribu-
tion of EMS response times, can be translated to an
expected health gain in the population because of CFRs.
Throughout the paper, we use the term “city” to refer
to the overall area in which the CFR response is mod-
eled. However, our modeling approach applies whether
the area under consideration is a city, a county, a state, or
even anation, atleast in principle.

3.1. Using a Poisson Point Process

We say that CFRs are available if they are present in the
city, have the app running on their phone, and will
accept a notification should it be sent to them. We
assume that available CFRs are distributed throughout
the city according to a spatial Poisson point process. We
assume that the set of available CFRs does not depend
on call volume, which is reasonable because, typically,
CERs are called out on the order of once per year (Pijls
etal. 2019), at least in the context of OHCA.

Modeling available CFRs as a spatial Poisson point
process is reasonable because of results that justify
approximating certain spatial point processes by Pois-
son point processes. For a general introduction to Pois-
son point processes, including theoretical results that
justify Poisson point process modeling in applications in
great generality; see Kingman (1993) and Barbour et al.
(1992). We justify the Poisson point process assumption
with Proposition 1 in Online Appendix 1, which shows
that a Poisson point process arises in a regime where the
number of CFRs # is large. That result is not the most
general result possible, nor will it be surprising to those
versed in point process theory, but we provide it to sup-
port our contention that the Poisson point process model
is a good one in our setting. This assertion is further sup-
ported by the prevalence of Poisson point process
modeling in related settings; see Larson and Odoni
(1981), for example.

Proposition 1 shows that even when CFRs have a
unique availability probability and location distribution,
the location of available CFRs is well modeled by a Pois-
son point process with a certain mean measure p. Thus,
it is not necessary to assume CFRs are a homogeneous
group: responders may have their own probability of
accepting alerts and own distribution of time spent in
each part of the city. The exact way in which individual
CFRs contribute to the aggregate mean measure y is not
important for our analysis; the overall measure (1 is what
is important.

It is therefore sufficient to henceforth assume that
u = nav, where n indicates the overall number of CFRs
who have the same availability probability a € (0,1) and

the same location probability distribution v, conditional
on being available.

3.2. Response-Time Distribution

The response time to an incident is the minimum of the
time until a CFR or ambulance arrives at the scene, with
these intervals measured from the moment the call to
EMS s initiated.

As is common in CFR apps (Smith et al. 2017), we
assume that the closest available CFR is dispatched to an
incident as long as the CFR is within a given maximal
distance from the patient. We are interested in the distri-
bution of the response time of this closest CFR, which
depends on two components: (1) the response delay,
and (2) walking time. The response delay is the time that
passes between the call initiation and the responder
starting to travel. This consists of the interval between
the time the call is made and the time a CFR is dis-
patched (triage and dispatch delay) and the interval
between the CFR dispatch and the time a CFR starts
walking (CFR acceptance delay). For simplicity, the total
response delay for a CFR is assumed to be constant and
is denoted by «. For any location x, define the ball B(x, )
as the area surrounding x within which a CFR can reach
the location within t minutes, including response delay.

We assume that ambulance bases are given and
ambulances respond from their bases and not from the
road. This is an approximation that is reasonable when
the ambulances are not too heavily loaded. Thus, ambu-
lances incur the first two components of the response
delay along with a potentially different (from CFR)
delay from dispatch to the time they begin traveling. As
in many standard models of ambulance operations, for
example, Daskin (1983), we assume that each ambulance
is busy with probability g € (0,1) and that ambulances
are busy or not, independent of one another. We also
assume that ambulance locations and availabilities are
independent of those for CFRs. For any given call loca-
tion x, let y(x, t) denote the number of ambulances that
can reach the location x within t minutes of the incident
when stationed at their base.

The response time, including response delay, of the
closest responder, whether CFR or ambulance, to a
patient at location x is a random variable, which we
denote T(x). The number of CFRs that are available
within f minutes from a patient at location x is, because
of the Poisson point process assumption, Poisson distrib-
uted with mean p(B(x, t)) = nav(B(x, t)). As is standard
for Poisson point processes, the probability P(T(x) > t)
that the response time of the closest responder is greater
than tis then

P(T(x) > t) = " Dexp(—u(B(x, 1))). 1)

Here, we used the fact that the response time is greater
than ¢ if and only if all ambulances stationed at nearby
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bases are busy and there are no CFRs in the set B(x, t). The
number of CFRs in the set B(x, t) is a Poisson-distributed
random variable, Z say, with mean y = p(B(x, t)), and for
such random variables, IP(Z =0) =¢™7.

To illustrate how one might perform these calcula-
tions, suppose a CFR walks with a constant pace of w
km/min, and let d; be the distance in kilometers for
which the response delay plus walking time equals f for
t > x. We can convert response times f > x to distances
using d; = w(f — k). We further assume that f is so small
that the CFR density may be assumed to be constant
throughout the ball B(x, t). Letting @ denote the value of
the assumed-constant available CFR density in the ball
B(x, t), we get

P(T(x) < t) =1~ " exp(—u(B(x,1)))
=1— g""exp(—wnd?). )

The number of sufficiently close ambulances y(x, t) is
readily computed for any fixed x and ¢ given determinis-
tic travel time models. Online Appendix 2 shows the
CER response time distributions (not counting ambu-
lances) that follow from our model.

Our discussion thus far assumes a fixed call location x.
The unconditional response time, T say, is a mixture of
the call location-specific response-time random vari-
ables. Assume that calls arise over the city according to a
probability distribution A, where A(B) is the probability
that a given call arises within the ball B. Then,
P(T < t) = [P(T(x) < H)A(dx).

For computational convenience, we subdivide the city
into a finite number of regions indexed by le [ =
{1,2,...,¢}. The location of a generic call lies in region /
with probability A;, [ € £, so that ) ;. .A; = 1. For all call
locations x within region /, we assume that response
times T'(x) are identically distributed as in (2), with distri-
bution function P(T(x) <t)=1-¢""" exp(—und?).
Here, z(l, t) is the location-discrete equivalent of y(x, t)
and yields a region-specific number of nearby ambu-
lances, and p; is a region-specific CFR density. Thus,
P(T <) =1~ g™ Dexp(—umdy).

This model for the CFR response assumes that the
density of CFRs and the number of nearby ambulances
are constant within each region /€ £ and that the
response-time distribution does not vary, as the call loca-
tion varies within the region. This is an imperfection in
the model because calls that arise close to the boundary
of a region may receive a CFR response from a neighbor-
ing region where the CFR density is different, but this
effect is not captured. This model is therefore plausible
when regions are large enough that CFRs outside the
region are unlikely to materially impact survival rates
within the region or in the situation when neighboring
regions have similar CFR densities. Online Appendix 3
numerically checks the effect of the constant density
assumption on our case study and concludes that,

overall, it is minor. A similar discretization effect occurs
for the modeling of the ambulance response, in line with
existing literature modeling ambulance response.

4. The Ideal CFR Distribution

Inview of (1), itis clear that for any fixed ball B, we want
t(B) to be as large as possible. Recall that (B) = nav(B),
where 71 is the number of CFRs, a is the probability that a
CFR is available, and v(B) is the conditional probability
that a given CFR can be found in the ball B given that the
CER is available. Accordingly, to make p(B) large, we
can increase the number of CFRs 71, we can increase the
probability « that a given CFR is available, or we can
influence the probability distribution v that describes
where a given available CFR is found across the city. We
assume that « is exogenous to our model, though reality
is potentially more complicated.

The probability distribution v is not under our direct
control. Nevertheless, it is worth identifying the choice of
probability distribution v that is most beneficial for two
reasons:

1. An optimal CFR distribution can guide efforts in
recruiting new volunteers by indicating populations of
potential CFRs that are likely to have a large impact.

2. The performance of an optimal CFR distribution
can be used to determine a lower bound on the number
n of volunteers needed to reach response-time goals.

With these reasons in mind, we now identify the opti-
mal probability distribution v for a given demand distri-
bution A.

First, we investigate the ideal CFR distribution across
the city, where regions in the city are linked only
through a bound on the total CFR mass to be allocated.
Then, we incorporate the reality that an individual
recruited from region [ has a region-specific profile, that
is, a contribution of its CFR mass to all regions across the
city.

As in Section 3, we assume that the locations in a city
are partitioned into a finite list of neighborhoods or
regions indexed by [ € £ as earlier, with A; denoting the
conditional probability that a call originates within
region [, given that a call arises. Rather than optimizing
over all possible probability measures v, which is an
infinite-dimensional optimization problem, we restrict
attention to probability distributions v that are uniform
within a region so that they can be parameterized by the
probability mass v, associated with region [, with
> iecvi = 1. This greatly reduces the complexity of deter-
mining an optimal probability distribution because the
calculation becomes finite dimensional. This is also rea-
sonable in practice because our goals relate to the overall
distribution of CFRs across a city and not to the small-
scale detail of exactly how they are distributed within
small areas. To quantify the impact of dividing CFRs
into a finite set of homogeneous regions, we compare
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our results with those of a more common approach: a
very fine-grained but discrete network. This analysis in
Online Appendix 3 confirms that our approach is
reasonable.

We consider the contribution of CFRs to both (1) cov-
erage with respect to a fixed response-time threshold,
and (2) a function of the full response-time distribution.
The first is a standard objective in EMS; the second is
more general and can capture, for example, the average
response time and the probability of patient survival
(under the assumption that it is known how survival
declines with response time). The details for the first
objective are more straightforward, so we begin there.
Moreover, insights obtained from the structure of the
solution based on the first objective can help explain the
solutions with respect to more complex objectives.
Henceforth, when we discuss or illustrate the second
type of objective, we will phrase it as “survival,”
although those analyses have a broader applicability
and can be performed for essentially any monotone
function of the response time, including the mean.

4.1. Optimizing Coverage

Coverage is defined as the fraction of demand that can
be served within a predefined threshold time 7. For our
purpose, it is slightly more convenient to work with the
probability that the response time exceeds T, conditioning
on the region [ in which the call occurs and using (2). Let
v; denote the CFR probability mass within region [, and
let a; be the area of region / in square kilometers. Thus,
within region [, the density of available CFRs is nav; /a;.
Recalling that d; is the distance within which a CFR can
reach a call within the time threshold 7 and z(/, 7) is the
number of ambulances that can reach a call in region [
within time 7, we get

P(T>1) =Y A (T() > 1)
1

= Z Mg Dexp(—nd*nav /ay). 3)

lel

Expression (3) is (jointly) convex in the probabilities
(vi:1€ L),yielding

Proposition 1. The probability that the response time is
greater than any fixed quantity T is a convex function of
the probabilities (v, : 1 € L).

A consequence of Proposition 1 is that we can use con-
vex optimization methods to minimize the probability
that the response time is greater than the time threshold
7, IP(T > 1), subject to the simplicial constraints that
> iesvi=1landv; >0 foralll € L. For notational simplic-
ity, let the residual call probability A; = Aig?""?, which is
the probability a call arises in region I and all nearby
ambulances are busy, and let 0; = nd?na/a; for 1 € L.

The optimization problem we want to solve is to

min E Ale—le;’
v

lel

S/t ZV] =1,
leL
v >0,leL.

The objective function is separable, and each term is con-
vex and decreasing in v;. Accordingly, a standard appli-
cation of the Karush-Kuhn-Tucker conditions ensures
that a greedy allocation is optimal. To describe this allo-
cation, let us call A;exp(—6;v;) the late rate from region I.
We define the marginal benefit of adding CFR mass to
region | to be the absolute value of the derivative of the
late rate with respect to v, namely, A0, Starting
from v; =0 for all i, we begin by increasing CFR mass
across all regions [ in the set, I say, of regions having
maximal marginal benefit. In doing so, the marginal
increase in CFR mass in region [ should be inversely pro-
portional to 0;, and, in particular, proportional to the
area a; so that the marginal benefit remains equal across
all regions [ € I. In other words, the CFR density in all
regions [ € I increases at the same rate. This continues
until either the total CFR mass 1 is used up or the maxi-
mal marginal benefit is reduced to the point where a
new region j joins the set I of regions attaining the maxi-
mal marginal benefit. A more precise description of the
algorithm can be found in Online Appendix 4.

The value of v, for each [ €I at which a new region
joins the index set I can be computed in closed form. Let
j € arg max{A;0; : i ¢ I} be the maximal marginal benefit
of any region that is yet to receive positive CFR mass,
and let /€] be arbitrary. We solve A Qe O = /~\]-9j.
Using the definition of 6, and 0;, canceling common
terms, and solving for v, yields

v= (M) e (Ai/a 4)
=00 \Ayfay)  mdina\A/a; )0

A proviso is that we do not reach this new value if we
“hit” the constraint » ,,v; =1 first. In this case, we do
not reach the point where v;becomes positive.
Expression (4) yields several insights that are rein-
forced in a two-region example in Online Appendix 5.
First, regions are not guaranteed to receive positive
probability mass; excluded regions are those with the
lowest residual call densities A, /a;. Second, regions
receiving positive probability mass do so roughly in pro-
portion to the product of their area and the log of their
residual call densities. Because the density of CFRs is
proportional to v;/a; and thus divided by area, it follows
that regions receiving positive CFR density do so
roughly in proportion to the log of their residual call
densities. We use the term “roughly” because (4) is not
the precise form of the optimal allocations, as mentioned
earlier. Third, the expected number of CFRs allocated to
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a region [ that receives positive mass is roughly nv,
which, from (4), does not depend on 1 because v; is pro-
portional to n!, where “roughly” has the same sense as
before. Finally, the optimal allocations are roughly pro-
portional to the inverse of the area, nd%, of the circle
within which CFRs can respond within time 7. For smal-
ler 7 (more stringent targets), the optimal allocations are
thus more concentrated in high-call-density regions.

4.2. Optimizing Survival

The same approach works for more complex perfor-
mance metrics, which we illustrate by showing that
maximizing the probability of survival for OHCA is a
convex optimization problem in the CFR location proba-
bilities (v, [ € £).

Proposition 2. If the probability of death is increasing in
the response time, then the probability of survival is a con-
cave function of the probabilities (v, : 1 € L).

Proof. We show that the probability of death is con-
vex in the CFR location probabilities (v, I € £). We
assumed that the death probability is an increasing
function, f() say, of the response time T, which
includes the response delay «x. Increasing functions
have at most a countable number of discontinuities, so
we can adjust f to an increasing, right-continuous
function f by redefining f in at most a countable num-
ber of points. Thus, we now work with the increasing,
right-continuous function f. Let d = f(x) € [0,1] be the
minimal death probability assuming immediate ambu-
lance response. Let d €[0,1] be the maximal death
probability assuming response time is infinite. Using
the fact that the mean of a nonnegative random vari-
able Y can be expressed as [; P(Y > u)du, the death
probability as a function of v, d(v) say, is

1
d(v) = EF(T) = /O P(F(T) > 1) du

_d+ / BT ) du,
d

where f (1) = inf{r : f(r) > u} foru € [0,1], and the final
step follows from Serfling (1980, lemma 1.1.4(iii)).
Hence, conditioning on region [ of the call,

dv)=d+ Z/\[/ddIP(T(l) >f*1(u)) du

leL
d
=d+) A /d O exp(—|BALf () [navy/ar} du.

leL
)
The integrand in (5) is convex inv;. O

Thus, we can efficiently maximize the survival proba-
bility over probability distributions v on L. In fact, a
greedy approach that adds CFRs to regions where they

yield the highest marginal reduction in death rate gives
an optimal solution. In contrast to the greedy approach
for late arrivals, the marginal allocation over the differ-
ent regions does not remain constant. Therefore, an
expression similar to (4) to compute the exact CFR distri-
bution does not hold. Instead, we use a discretized step
size €, which is optimal as € — 0. We implement this
method and give numerical results in Section 6.

4.3. More Complex Survival Functions for OHCA
So far, we have focused on survival functions that
depend only on the response time, whether by CFR or
ambulance. More complex survival functions for OHCA
patients, such as model 1 in Waalewijn et al. (2001),
depend on both the time to CPR (tcpr) and the time to
EMS arrival (tgvms), where tcpr = tgmvs when an ambu-
lance arrives before volunteers, and tcpr equals the
response time of the volunteer otherwise. Let f(tcpr,
tems) be the probability of death as a function of the time
to CPR and the time to EMS arrival. Model 1 of Waale-
wijnetal. (2001) uses

f(tCPR/ tEMS) — 1 _ (1 + 60-04+0-3tCI’R+0-14(tEMS_tCl’R))_1. (6)

These times are measured from patient collapse instead
of call initiation. Waalewijn et al. (2001) estimate the dif-
ference between these two moments to be one minute
(median). Recall that z(/, 7) is the number of ambulances
that can reach region / from their home base within 7
minutes of cardiac arrest. As before, let d(v) be the proba-
bility of death for a single call as a function of the CFR
location distribution v. Let a; denote the response time
of the jth closest ambulance to region [ when all ambu-
lances are available and at their respective bases. Let
To(I) be the (random) response time of the closest volun-
teer, the distribution of which can be found by dropping
the g/*" term in (2). Conditioning on the location of the
call and the closest available ambulance to region [, we
get

) = Z MEf(Tcpr(l), Tems (1))

leL

= Z Ap (kuEf(Tv(l)/ )

leL
k
+> 4 (1 = QEf(min{T,()), ﬂﬂ}f”ﬂ)> Y
j=1

The term f(T,(I), ), corresponding to the situation
where all ambulances are busy, is zero according to
model 1 of Waalewijn et al. (2001) but, more generally, is
convex in v as long as fis increasing in its first argument,
as we have already established. As to IEf(min{T,(I),
ap},aj), as long as f(tcpr, tems) is increasing in tcpr for
any fixed value of tgvs, which we henceforth assume,
then our previous arguments extend to ensure convexity
inv. Thus, we have established
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Proposition 3. Suppose that f(tcpr, tems) is increasing in
tcpr for each fixed tpms € [0,00]. Then, the probability of
survival is a concave function of the probabilities (v;:1€ L),
even when accounting for the impact of ambulances provid-
ing advanced care in addition to CPR.

4.4. Profile Optimization

Until now, we have assumed that CFRs spend all their
time in a single region, yet in reality, a person likely
spends one’s time in a few different regions during
different times of day. Therefore, instead of having one
specific location probability distribution v, we have
time-dependent CFR location distributions v*), where ¢
is assumed to fall into one of a small number of discrete
time blocks 7, for example, 7 = (weekday, weeknight,
weekend day, weekend night). A CFR provides a contri-
bution in each time t € 7, and, for any fixed ¢, can con-
tribute to several elements of V). We model these
contributions through time-dependent profiles in which
people with the same profile are assumed to spend their
time in the same way, at least probabilistically speaking.
That is, we focus on the aggregate contribution of all
CERs of a certain profile.

Assume CFRs take one of m different profiles. For
each time block €7, let P €[0,1] I£Pm Jenote the
given CFR profile matrix in which Pl(f 'is the probability,
in time block f, that a CFR with profile i appears in region
I.We have ) ;. LP;: ) < 1forallt € T, with strict inequal-
ity when CFRs temporarily leave the city.

Let x; be a decision variable denoting the proportion
of CFRs recruited with profile 7 for i=1,2,...,m such
that Y17, x; = 1,x; > 0. The resulting CFR location distri-
bution per time block can then be calculated as

v =phy teT. 8)

Our goal is to optimize either coverage or patient sur-
vival obtained from this v¥) with decision variables (x; :
i=1,2,...,m) and Constraints (8) ensuring the link
between recruitment and CFR location.

Proposition 4. For both the coverage and survival objec-
tives, the optimization problem with profiles remains a con-
vex optimization problem under the same conditions stated
in Proposition 2.

To prove Proposition 4, observe that the objective
function becomes a weighted sum of (3) or (5) over the
set of time blocks 7, which remain convex. Moreover,
the constraints we add are linear. Hence, the problem
remains convex under both objectives.

With profiles, the optimization problems are no lon-
ger separable, so a greedy approach is no longer optimal.
To solve the optimization problem with profiles, we
implemented a version of the away-step Frank-Wolfe
algorithm in Bomze et al. (2020) with an adaptive line
search and a stopping criterion based on the (optimality)
gap between the objective value of the current iterate

and a lower bound obtained through a cutting plane
method that relies on convexity of the objective function.
See Online Appendix 6 for more details and the pseudo-
code of the implemented Frank-Wolfe algorithm.

5. Case Description

Auckland is the largest city in New Zealand, with the
greater Auckland region having a population of 1.4 mil-
lion and an area of 5,000 square kilometers. We focus on
the most urban area by excluding seven out of 21 local
boards with a population density of less than 1,000 peo-
ple per square kilometer. The resulting area has a popu-
lation of 1.1 million, covers 500 square kilometers, and is
divided into 287 so-called area units, yielding the set of
regions L. These area units are the second smallest unit
at which Statistics New Zealand collects data (Stats New
Zealand Geographic Data Service 2016).

5.1. OHCA Incidence Rates

The St. John Ambulance Service (SJAS) has provided us
with the time and location of all OHCAs in Auckland
since 2013. One could use the empirical OHCA rate to
estimate the demand vector A, but low counts in some
area units have very high variability relative to their
mean. Instead, we estimate the OHCA incident rate by
combining demographics with socioeconomic factors as
in Dicker et al. (2019).

Figure 1 shows both the empirical incident rate of dif-
ferent area units and a scatter plot of the number of
OHCA incidents since 2013 versus the number of esti-
mated OHCA incidents using Dicker et al. (2019), where
each point represents one area unit. We see a general lin-
ear trend as expected, but the OHCA incident counts are
dispersed relative to a linear trend. The three area units
highlighted in Figure 1(b) are two area units covering
the central business district (CBD) and the area unit con-
taining the airport. We replaced the estimated rates in
these three area units with the empirical counts in SJAS
data because these area units were extreme outliers in
the original fit. The input demand rate A to our model is
then the normalized estimated OHCA counts after the
CBD and airport adjustments. More details and discus-
sion on this estimation process can be found in Online
Appendix 7.

5.2. Response Process

We assume that an ambulance always responds and that
volunteers are alerted if they are close to the incident. Of
interest is the time it takes for the first responder to arrive
on site. All reported response times are measured from
call initiation, meaning that they do not include the time
between cardiac arrest and call initiation. This is in line
with classical performance measures for EMS systems
and is the only time known to dispatchers. A response
time, whether by ambulance or by volunteer, consists of
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Figure 1. (Color online) OHCA Incidence for Auckland, New Zealand
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Notes. (a) The empirical incident rate per area unit in Auckland, New Zealand. (b) Scatter plot of the actual and estimated number of cardiac

arrests between 2013 and 2020 over all area units.

a response delay and a travel time. We base our esti-
mates on GoodSAM data whenever available and reli-
able; in other cases, we resort to estimates in the
literature.

5.2.1. CFR Response. The local CFR app GoodSAM is
run by the SJAS. We have obtained data from the SJAS
on CFR operations since the inception of the program in
December 2017. Between December 2017 and November
2020, 6,749 CFR alerts were sent out for 2,827 OHCA
incidents. We provide an exploratory data analysis in
Online Appendix 8 that suggests that our model is rea-
sonably consistent with the very noisy data at hand.

For the probability that a volunteer accepts an alert,
we use the historical value as observed in the data: o =
0.14. We take this value to be equal for all CFRs rather
than assuming an individual-specific acceptance proba-
bility because our data are insufficient to accurately esti-
mate such values. We assume that accepting CFRs
respond on foot, and we use the most conservative esti-
mate of Slaa (2020) in the Netherlands to model their
speed at six kilometers per hour. We assume a constant
response delay, which consists of a triage and system
activation time as well as a delay for CFR acceptance.
For triage and system activation, we assume 1.5 minutes;
this is in line with Slaa (2020), who estimated this time at
105seconds before a system update that automates and
thereby speeds up system activation. For the time it
takes for a volunteer to accept or reject (CFR acceptance
delay), we take the mode of the GoodSAM data:
30seconds. The sum gives a response delay of two min-
utes. We further assume that only CFRs within one kilo-
meter of the patient are dispatched, in line with current
practice. This implies that the response time of CFRs,
conditioned on finding at least one available CFR within
one kilometer, is between two and 12 minutes.

The assumed 30-second CFR acceptance delay is not
perfect because volunteers may accept an alert but not
initiate their departure immediately, or they may accept
the alert after they start traveling. To see the impact of a
shorter or longer acceptance delay, one can refer to adja-
cent columns in Table 1.

5.2.2. Ambulance Response. The SJAS operates 15
bases from which they could realistically respond to the
part of the city that we analyze. We model the ambu-
lance pretrip delay as two minutes; Ridler et al. (2022)
estimate this value to be 2.1 minutes in Auckland. We
used driving times for EMS vehicles between each base
and the centroid of each area unit as obtained from an
open-source ambulance simulation package (Ridler
2020); see also Ridler et al. (2017,2022).

Because OHCA patients only constitute a small por-
tion of all the requests served by SJAS, it is not reason-
able to assume the ambulances are placed optimally
with respect to OHCA response targets. Instead, we
assume that ambulances are placed to meet the SJAS tar-
get of responding within 12 minutes for at least 95% of
their patients (Ministry of Health 2020). We obtained the
corresponding ambulance locations as follows. We
assume that each ambulance has a utilization of 0.44, as
used in Ridler et al. (2022), and distribute ambulances
across the existing bases according to the optimal solu-
tion of MEXCLP (Daskin 1983). We use 25 ambulances,
which is just sufficient to achieve the mentioned target
(95% within 12 minutes, including a pretrip delay of two
minutes).

5.3. CFR Profiles

For the optimization that includes CFR movement
as introduced in Section 4.4, we need data on profiles.
These profiles within a given time block can be interpreted
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Table 1. Required Density of Available CFRs (per Square Kilometer) to Meet a Range of Response-Time Targets, Assuming
a Two-Minute Pretrip Delay and a Walking Speed of Six Kilometers per Hour

Response-time target (minutes)

Coverage 3 4 5 6 7 8 9 10 11 12

0.5 22.06 5.52 2.45 1.38 0.88 0.61 0.45 0.34 0.27 0.22
0.7 38.32 9.58 4.26 2.40 1.53 1.06 0.78 0.60 0.47 0.38
0.9 73.29 18.32 8.14 4.58 2.93 2.04 1.50 1.15 0.90 0.73

as giving the probability that a certain CFR appears in a
given area unit in that time block. We introduce a profile
for each area unit and assign potential CFRs a profile based
on their home address. We distinguish two time blocks:
working hours (weekdays from 8 am. until 10 p.m.) and
all hours outside of that, which we will refer to as “nights
and weekends.” Thus, the interpretation of P;Z.t) is the prob-
ability that a CFR living in area unit i appears in area unit /
in time block t. Although we defined profiles per area unit,
it is also possible to have more—or fewer—profiles than
area units, for example, based on other location aggrega-
tion levels, for example, people who work at the airport or
other properties on which one can distinguish recruitment,
for example, students.

To obtain profile data for working hours, we combine
the population of age 15years or older from the 2013
census (Stats New Zealand Geographic Data Service
2015) with the commuting routes for the resident popu-
lation (Stats New Zealand Geographic Data Service
2020). These data give the work location of residents
from each area unit in New Zealand. We then assume
that working potential CFRs spend their time in the area
unit of their work location and nonworking potential
CFRs spend their time in the area unit in which they live.
The resulting profiles have, on average, 62% of people
on the diagonal, so a CFR recruited from a certain area
unit will, on average, contribute to another part of the
city for 38% of the “working hours” time block. For the
profiles during nights and weekends, we assume that
everyone stays in the area unit where they live.

This fitting process is not perfect, but we consider the
approach sufficiently realistic to illustrate our models.
Indeed, a closely related approach was used in Cont et al.
(2021) to model population mobility in a study of
intervention policies during the COVID-19 pandemic.
Alternative sources were infeasible for this case study
because they either were not sufficiently fine-grained
(Facebook Data For Good 2021) or were not available for
Auckland (Safegraph 2021). We discuss profile estima-
tion impact on performance and provide a sensitivity
analysis in Online Appendix 9.

5.4. Performance Metrics

To measure late arrivals, we consider the two response-
time targets under which the SJAS operates: 95% of their
incidents should be reached within 12 minutes, and 50%

should be reached within six minutes (Ministry of
Health 2020). The other metric we consider is patient
survival, which we quantify using (6). This function was
fitted on data where both ambulances and volunteers
responded and volunteers did not carry a defibrillator.
This function takes as input fcpr and tgps, which are
measured from patient collapse, unlike response time,
which is measured from call initiation. In line with Waa-
lewijn et al. (2001)’s estimate, we add one minute
(median time to call initiation) to account for this
difference.

6. Numerical Results

In this section, we answer the four questions posed in
the introduction: (1) in what areas is introducing a CFR
app an efficient way to reach certain response-time tar-
gets? (Section 6.1); (2) what is the benefit of introducing a
CFR app for a base of already trained volunteers, with
known home addresses? (Section 6.2); (3) what is the
benefit of a CFR app with a given number of registered
volunteers when you do not know where they live or
spend their time? (Section 6.3); and (4) where to recruit
additional CFRs for an existing app with a known cur-
rent CFR base? (Section 6.4). The first two questions are
answered using the models from Section 3; the last two
questions relate to the optimization models presented in
Section 4. For clarity, ambulances are omitted in Section 6.1.
The results in all other sections incorporate ambulance
response as outlined in Section 5.2.2. We illustrate our
calculations with data from the case study described in
Section 5.

6.1. CFR Density Requirements
We next analyze the response-time distributions derived
in Equation (2) and, for clarity, omit ambulances. The
CER response-time distributions are plotted in Figure 1
in Online Appendix 2. These allow us to calculate the
required CFR density to reach a given response-time tar-
get in closed form. This can be used to investigate in
what areas introducing a CFR app would be an efficient
way to meet a certain target. Table 1 gives the required
density of CFRs to meet a target that is defined by a com-
bination of a time limit and a compliance level.

The results presented in Table 1 are generic in the
sense that they apply to any location. They assume a
fixed walking speed and pretrip delay. The table gives
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the required density of available CFRs; the required num-
ber of registered CFRs can be obtained by dividing the
given density by the acceptance probability a.

We illustrate the application of these results for the
city of Auckland, where the observed value of « is
0.14. For each area unit, we can compute the fraction
of the area-unit population that needs to be registered
in order to satisfy the response-time requirements.
We take both requirements (90% in 12 minutes and
50% in six minutes) and observe that the latter
requires more CFRs: reaching this target requires a
density of 1.38/0.14 =9.19 registered CFRs per square
kilometer.

Looking at the population density of Auckland, we
see that this density translates to 0.42% of the population
registered as CFRs. However, the population density
fluctuates over the city, so we need different registration
rates in different parts of the city. A uniform registration
rate of 0.42% of the population would meet the target
only in 217 out of 287 area units. The required registra-
tion rate per area unit fluctuates between 0.08% and
130% of the population. Under the assumption that reg-
istration rates will not exceed 1% (a number currently
achieved in countries with high participation), at least 23
area units (covering 3.7% of the population) will not be
able to meet the specified target. Thus, even in an urban
area like Auckland, the population density is not suffi-
ciently consistent to obtain good response times
throughout. Given that organizations are evaluated
based on aggregate performance, one might observe dif-
ferent CFR densities in different area units that, together,
do achieve an overall response-time requirement, which
we explore next.

6.2. Quantifying the Benefit of a Given CFR Base
Next, we quantify the benefit of introducing an alert app
in a scenario with a known base of already trained CFRs

and a given ambulance distribution. As already noted,
we have been contacted by a party facing exactly this
question. They have a base of trained CFRs that is nor-
mally used at events such as festivals or parades, and
they are considering introducing an alert system to
expand CFR impact.

When we say a given CFR base is known, we mean
thatn and v are known, for example, because CFRs regis-
tered their home and/or work address or because they
allow GPS tracking. We quantify how such a known
CFR base would contribute to the fraction of late arrivals
and the survival probability, and we explore how this
depends on the acceptance rate « € [0,0.5]. We vary a
because it is, to some extent, controllable, and there is
uncertainty about its true value. This range covers
values that seem plausible given Auckland data and
conversations with app developers.

As the party that raised this question wants to remain
anonymous, we illustrate our calculations for Auckland.
We consider the case where 1% of the population of Auck-
land are trained CFRs and a probability measure v that is
proportional to the estimated demand. In contrast to the
results from Table 1 for which it was sufficient to consider
every area unit separately, this question requires us to
look at the entire city with varying CFR and incident den-
sities, aggregating results over the city of Auckland.

Figure 2(a) shows that bringing down response times
that exceed the 12-minute target from 4.8% (without
using CFRs) to 1% requires an a of 9% (1,000 available
CFRs). Although not depicted in the figure, to satisfy the
requirement of reaching 50% of the incidents within six
minutes, @ = 2.7% sulffices. In Figure 2(b), we see that
even for low values of a, CFRs contribute substantially
to survival. Convergence to the upper limit of survival is
very slow and cannot be achieved by only increasing «.
Additional recruitment would be needed, which we dis-
cuss later.

Figure 2. (Color online) Impact of Increasing the CFR Availability & on Fraction of Late Arrivals and Survival, Assuming 1% of
the Population Is Signed Up as CFRs, Distributed over the Area Units Proportionally to Demand
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6.3. Quantifying the Impact of CFRs’
Geographical Spread

In the previous section, we assumed that the CFR distri-
bution v was known; in contrast, we now investigate the
scenario in which it is unknown where CFRs spend their
time. Practitioners in Auckland are facing this scenario
and would like to quantify the benefit of their app along-
side the existing ambulance response. Whereas a retro-
spective study is possible, this is difficult for recently
introduced CFR systems, as they have limited data avail-
able, and accurately estimating the response-time distri-
bution requires many data points per area unit.

First, we consider two scenarios: one where CFRs are
uniformly distributed over the city and another where
CFRs are distributed proportionally to demand. The
uniform distribution serves as a useful reference,
whereas the proportional distribution is plausible. Sec-
ond, we bound the performance of a CFR base of given
size, using the optimization models from Section 4.
These result in a lower bound for the fraction of late arri-
vals and an upper bound for the survival probability
with a given total number of CFRs.

For a city that operates a CFR app, the values of 7 and
«a are likely known. However, to provide more insight,
we perform this case study for different values of na, the
expected number of available CFRs. As we shall see, differ-
ent values result in different optimal CFR allocations to
area units, requiring us to solve the optimization prob-
lem separately for each value of na. We run our calcula-
tions up to 5,000 available CFRs, which, with the
observed « of 0.14, corresponds to approximately 3.2%
of the overall population of 1.1 million.

Recall that for both objectives—late arrivals and
patient survival—a greedy approach is optimal. When
optimizing late arrivals, an exact implementation (up to
numerical precision) of the greedy method exists, using
Equation (4). In contrast, when optimizing patient sur-
vival, the greedy method requires a step size €, which
we set to 1/10,000. This means that we allocate the total

number of CFRs in portions of size 11/10,000 to the area
unit where they would most improve the objective.

Figure 3 depicts the performance of the three CFR dis-
tributions for two different objectives. Figure 3 shows
that the impact of the system depends on the geographi-
cal distribution of the CFRs. For example, in Figure 3(a),
we can see that to bring the late arrivals down to 10%,
one needs either 1,400 optimally distributed CFRs, 1,900
uniformly distributed CFRs, or 1,800 proportionally dis-
tributed CFRs. In particular, in this part of the graph, the
proportional distribution outperforms the uniform dis-
tribution. In contrast, for a large number of CFRs, the
uniform distribution outperforms the proportional one
and approaches the optimal performance. This observa-
tion is even more apparent in the case with a homoge-
neous ambulance response, for which the results are
given in Online Appendix 10. Not only is the perfor-
mance similar but the optimal volunteer distribution
also closely resembles the uniform distribution, as
illustrated in Figure 4. This figure compares the geo-
graphical distribution of an optimal v for both a limited
number of CFRs (na = 500) and a larger number of CFRs
(na = 5,000). Distinguishing two objectives (late arrivals
and patient survival) yields four scenarios. In particular,
Figure 4(c) shows a distribution of CFRs that resembles a
uniform distribution, only distorted by the ambulances.
This is in line with our earlier observations regarding the
greedy algorithm. Figure 4(a) shows that for a limited
number of CFRs, area units with a low call density do
not receive any CFR mass.

For survival (Figure 4, (b) and (d)), the uniform dis-
tribution does not emerge as na grows; it remains opti-
mal to focus on high-demand areas even with 5,000
available CFRs, in accord with the close-to-optimal
performance seen in Figure 3 for the proportional dis-
tribution. For a high number of CFRs, low-demand areas
receive slightly more CFRs than a proportional allocation
would assign to them, as is further detailed in Online
Appendix 11.

Figure 3. (Color online) Impact of Increasing Number of Available CFRs (na) for Different CFR Distributions (v) on the Fraction

of Late Arrivals (7 = 6min) and the Survival Probability
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Figure 4. (Color online) Optimal CFR Distribution (Fraction of CFRs in That Region Divided by Surface Area)
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Notes. (a) and (c) Minimizing late arrivals for 7 = 6 min. (b) and (d) Maximizing survival, with na = 500 or na = 5,000. Darker colors represent
higher CER density. The white circles represent the location of the ambulance bases, and the numbers within them indicate the number of ambu-
lances stationed at each base. (a) Late arrival, na = 500. (b) Survival, na = 500. (c) Late arrival, na = 5,000. (d) Survival, na = 5,000.

6.4. Optimal Recruitment Efforts

Next, we investigate efficient recruitment strategies
while taking into account the current ambulance bases.
We explore profile recruitment, where we take into
account CFR presence across the city depending on
where they live. In the previous upper bound calcula-
tions, we optimized for the available CFR location distri-
bution v, which, in a scenario without profiles, is equal
to x. When CFR locations are driven by profiles, the

relationship between x and v is described by Equation
(8). Not every desired CFR probability mass v is attain-
able by adjusting recruitment mass x per area unit. To
find the optimal recruitment strategy, we use the formu-
lation given in Section 4.4 and the method for obtaining
profiles described in Section 5.3.

The impact of profiles on the optimal recruitment
strategy can best be illustrated when we consider a
homogeneous ambulance response throughout the city.
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We contrast the difference in recruitment per area unit
with and without profiles in Online Appendix 12. There,
we see that some area units require no recruitment
under profiles because of the influx of CFRs from other
area units. Some of these area units, most notably the
CBD, have such a high influx of CFRs that, even without
recruitment from that area unit, the density of CFRs
exceeds the optimal density without profiles. Most other
area units have slightly higher recruitment under pro-
files to compensate for the outflux of CFRs.

6.4.1. Time-Dependent Profiles. Thus far, we have
ignored a time component so we could isolate the impor-
tance of capturing CFR movement. Next, we consider the
more realistic case where profiles have both a time and
location component, as modeled in Section 5.3. We apply
the models from Section 4.4 to investigate optimal recruit-
ment under these time-dependent profiles. We illustrate
our results for a survival objective and the equivalent of
500 available CFRs. Because the value of « is now time
dependent, we cannot fix the value of na throughout the
day but, instead, fix n ton = 500/0.14 = 3,571.

Figure 5 shows the amount of recruitment as well as
the resulting CFR density per area unit. The area around
the CBD is easily recognized as an area with high influx
(dark blue in Figure 5(b)), so it requires little to no
recruitment. Only in the CBD itself, a minor recruitment
effort is still advised because of the disproportionately
high demand there.

The solution in Figure 5 results in a 24-hour-average
survival rate of 10.58% city-wide, which breaks down to
10.74% for day and 10.21% at night. Optimizing for day-
time only, the survival rate during the day would be
10.75%, but this improvement would not outweigh the
lives sacrificed during the night.

Our case study demonstrates the possibility of captur-
ing profiles in recruitment. Ignoring profiles altogether
(both their time and location component) would lead to
a minor reduction in survival: 10.56% instead of 10.58%.
This difference, though small, is unnecessary. To pro-
vide some perspective, a survival difference of this mag-
nitude is the equivalent of recruiting and training
approximately 80 extra CFRs (2% of the CFR base).

7. Conclusion and Discussion

We introduced models to quantify the impact of CFR
systems alongside the existing ambulance response.
These models were subsequently used to answer four
questions that are central in practice in Sections 6.1-6.4,
using data from the city of Auckland, New Zealand. The
results yield important insights, such as how the perfor-
mance depends on the number and location of CFRs.
Whereas the results and insights are then specific to
Auckland, the same models and approaches may be
used to explore the potential impact of such an app in
new cities or to guide the recruitment of additional CFRs
in existing systems.

Figure 5. (Color online) Time-Dependent Profile Recruitment That Maximizes Survival for n = 500/0.14 = 3,571
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Notes. The white circles represent the location of the ambulance bases, and the numbers within them indicate the number of ambulances sta-
tioned at each base. (a) Optimal recruitment (x; values). (b) Resulting daytime density (v;,).
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Figures 2 and 3 show the steady improvement in two
performance metrics (late arrival and patient survival)
over a wide range of numbers of available CFRs that
complement the existing ambulance contribution. The
marginal benefit of additional CFRs remains practically
important, even beyond optimistic registration rates
(~1%). Besides increasing the number of CFRs 7, one
may take measures to increase the availability probabil-
ity a. The importance of increasing « is underlined by
the insight that doubling « has the same impact as dou-
bling the number of CFRs. Thus, systems must be
designed to maximize a.

Every additional CFR improves the system-wide
response time, but where those CFRs spend their time
matters. Thus, it makes sense to steer recruitment efforts
to the right areas. These areas can be determined with
the models from Section 4. An important empirical
observation from Section 6 is that optimal CFR densities
heavily depend on the objective. To maximize cardiac
arrest survival, a volunteer distribution proportional to
demand is nearly optimal. Conversely, for late arrivals,
we see clear differences between uniform volunteer den-
sities (if the time threshold is loose) and clustered volun-
teers (if the time threshold is strict). Thus, the objective
heavily influences the equity of the final solution. A uni-
form distribution is, at least in the absence of ambu-
lances, perhaps the most equitable. However, having
equal volunteer densities everywhere would require an
impractically high sign-up rate in sparsely populated
areas. If equity needs to be explicitly captured, our
model can be extended by specifying a lower bound on
the performance in each area without overly complicat-
ing the solution method.

For OHCA, we consider maximizing survival an
appropriate objective, and under that assumption, a first
conclusion appears that incident rates can guide recruit-
ment efforts. However, CFRs do not spend all of their
time in the area unit where they live, and these effects
typically do not even out. Consequently, even without
any recruitment from the city center, our daytime sce-
nario showed an overresourcing of CFRs in the city cen-
ter. We expect similar effects in other cities. The results
from Section 6.4 show that this indeed makes a signifi-
cant difference in terms of where to best recruit. If one
knows how volunteers tend to move through the city,
these dynamics can be incorporated in the form of pro-
files, and our method remains able to find the optimal
recruitment. An additional use of the profile concept is
to quantify the marginal benefit of training a new CFR
based on that person’s profile, which could inform, for
example, an organization’s willingness to fund the
CFR’s training. In this manner, our model allows per-
sonalized advice and ensures that a limited training
budget can be spent in an effective way.

As mentioned in the introduction, the practical value of
our work has already been demonstrated through studies

with the Fire Department Amsterdam-Amstelland in the
Netherlands and a Red Cross organization (anonymous,
but at a national level). Similar ideas are applicable in set-
tings with many uncontrollable servers that can thus be
modeled as randomly situated throughout an area. One
of the authors has used these ideas in that manner, but
confidentiality agreements prevent the disclosure of the
setting.

There are many important directions for future
research. First, a detailed analysis of data from CFR
schemes is needed to understand CFR responses. For
example, how do acceptance probabilities depend on
the distance to the patient or personal attributes of the
CFR such as age or mobile phone specifications? Second,
how should dispatch strategies be designed, for exam-
ple, given the distances of nearby CFRs, which should
be notified in a first batch of alerts, and what is the bene-
fit to retaining notifications for very close CFRs after a
more distant CFR accepts? Should one avoid overutiliza-
tion of CFRs and navigate a trade-off between notifying
CFRs for the current task and saving them for future
ones? This question is posed in more detail in Hender-
son et al. (2022) and explored in a more general setting in
Manshadi and Rodilitz (2022).

It may appear that we have ignored the impact of
bystanders on survival rates. Even though bystanders
are unlikely to be trained in CPR, De Maio et al. (2003)
found that most patients who survived received some
sort of bystander intervention. This bystander help was
already included in the patient data that was used to
train survival functions. In the absence of more compre-
hensive data, we have tried to incorporate the bystander
effect to the best of our ability by using survival func-
tions that account for bystander involvement.

In the context of OHCA, whether an AED is available
has a significant impact on survival. For example, what
is the additional benefit of taxi drivers carrying AEDs in
their cars and being dispatched to nearby incidents,
even if they do not have medical training? What survival
benefits can be expected if an AED gets delivered to the
scene by a drone? How valuable would it be to provide a
small fraction of volunteers with their own AED? A mix
of volunteers carrying AEDs supplemented with drone-
delivered AEDs could be optimized by extending our
model. Some of these questions may require a model
with multiple classes of CFRs, which is an interesting
direction for future work.
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