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Abstract. In community first responder (CFR) systems, traditional emergency service 
response is augmented by a network of trained volunteers who are dispatched via an app. 
A central application of such systems is out-of-hospital cardiac arrest (OHCA), where a very 
fast response is crucial. For a target performance level, how many volunteers are needed, and 
from which locations should they be recruited? We model the presence of volunteers 
throughout a region as a Poisson point process, which permits the computation of the 
response-time distribution of the first-arriving volunteer. Combining this with known 
survival-rate functions, we deduce survival probabilities in the cardiac arrest setting. We then 
use convex optimization to compute a location distribution of volunteers across the region 
that optimizes either the fraction of incidents with a fast response (a common measure in the 
industry) or patient survival in the case of OHCA. The optimal location distribution provides 
a bound on the best possible performance with a given number of volunteers. This can be 
used to determine whether introducing a CFR system in a new region is worthwhile or can 
serve as a guide for additional recruitment in existing systems. Effective target areas for 
recruitment are not always obvious because volunteers recruited from one area may be found 
in various areas across the city depending on the time of day; we explicitly capture this issue. 
We demonstrate these methods through an extended case study of Auckland, New Zealand.
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1. Introduction
Certain medical emergencies require such a fast 
response that it can be helpful to supplement traditional 
ambulance services with community first responders 
(CFRs). CFRs are volunteers available to be dispatched 
by an ambulance control center and can be members of 
the public who have received training or off-duty medi
cal professionals.

The predominant application is out-of-hospital car
diac arrest (OHCA) for which, in Europe alone, 19 of 29 
countries have a CFR system in place (Oving et al. 2019). 
OHCA is a major cause of mortality around the world, 
and the probability of survival significantly improves 
if patients have early access to treatment such as car
diopulmonary resuscitation (CPR) (Nichol et al. 1999, 
Berdowski et al. 2010). Alternative applications where 
CFRs are dispatched to general medical emergencies are 

surveyed in Phung et al. (2017) and include Lives, NHS 
North West Ambulance Service, and Northern Ireland 
Ambulance Service Health and Social Care Trust.

CFR systems are activated by an ambulance control 
center in parallel with traditional emergency medical 
services (EMS). In the past, CFRs were dispatched based 
on their self-reported home and work addresses (Hart
slagNu 2020), whereas in recent years, an increase in 
smartphone usage has enabled applications (apps) that 
alert CFRs based on their real-time GPS location. Such 
systems include PulsePoint in the United States (Pulse
Point 2020) and GoodSAM in several countries, includ
ing the United Kingdom, Australia, and New Zealand 
(Smith et al. 2017, GoodSAM Platform 2020). These sys
tems monitor the real-time location of CFRs who have 
the app running on their smartphones, though these 
data are not logged for privacy reasons. CFRs near an 
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incident are alerted, and some random subset of them 
accept the alert and proceed to the scene. CFRs typically 
do not have trouble accessing the patient, as the person 
who made the emergency phone call is informed about 
their dispatch. The CFR provides first aid to the level 
that their training allows until the ambulance crew, 
which is dispatched independently, takes over.

The central goal of this paper is to determine how the 
availability of CFRs and their distribution throughout 
the city affect response times. Faster responses are often 
equated with better care, and consequently, response 
times are commonly used as a proxy for a system’s effec
tiveness. The response time largely depends on the CFR 
density, which, in turn, depends on the number of regis
tered CFRs and their distribution over the city. The num
ber of registered CFRs ranges from 0.1% of the 
population in a newly introduced system in New Zea
land (Global Resuscitation Alliance 2019) to more than 
1% in a mature system in the Netherlands (Wikipedia 
2020). Another major factor is the acceptance probability 
of CFRs; Brooks et al. (2016) found that PulsePoint CFRs 
accepted, on average, 23% of the alerts they receive, 
though this value varies considerably from one city to 
another. One might be concerned that CFRs could 
receive simultaneous alerts, leading to queueing effects, 
but the rate at which CFRs receive alerts is typically very 
low; for example, Pijls et al. (2019) report an average of 
1.3 alerts per CFR per year.

One might attempt to understand CFR response by 
looking at how recorded CFR response times differ as a 
function of location. Doing so is unlikely to give good 
results because of data sparsity. Indeed, the number of 
incidents per location is very small, leading to few obser
vations even after collecting years of data. Even if such 
data were sufficient to accurately estimate how the num
ber of incidents differs from location to location, much 
more data would be needed for predicting the distribu
tion of response times.

In contrast with these retrospective approaches, we 
offer a prospective method by estimating the perfor
mance of CFR systems using a stochastic model. Besides 
being less sensitive to statistical error, an additional ben
efit of this method is that it can be applied to either exist
ing or prospective CFR systems. The model we propose 
uses a Poisson point process to estimate response-time 
distributions based on CFR densities and is combined 
with traditional EMS response and survival functions 
from literature. The Poisson point process model enables 
the use of convex optimization to obtain bounds on the 
potential performance of various CFR deployments. We 
can then answer the following questions: 

1. In what areas is introducing a CFR app an efficient 
way to reach certain response-time targets? (Section 6.1)

2. What is the benefit of introducing a CFR app for a 
base of already trained volunteers, with known home 
addresses? (Section 6.2)

3. What is the benefit of a CFR app with a given 
number of registered volunteers when you do not 
know where they live or spend their time? (Section 6.3)

4. Where should one recruit additional CFRs for an 
existing app with a known current CFR base? (Section 
6.4)

All of these questions arose in real-life use cases. Ques
tion 1 was of interest to the Fire Department of Amster
dam, which adopted a moonshot goal of having a 
CFR app and a large CFR base by 2030 (Brandweer 
Amsterdam-Amstelland 2021, p. 6). Question 2 was 
posed by a national Red Cross organization that consid
ered extending the use of its existing volunteer base via 
an app. Both of these parties executed a case study based 
on the models in a preliminary version of this paper. 
Questions 3 and 4 are relevant to the St. John Ambulance 
Service that operates GoodSAM in Auckland, and we 
performed corresponding calculations that are partially 
included in this paper.

We view the primary contributions of this work to be 
(1) the introduction of a new class of CFR problems to 
the operations research community, and (2) the selection 
of, and interplay between, Poisson point processes to 
model volunteers and convex optimization to perform 
spatial optimization. The combination of these techni
ques enables powerful and transparent analyses that can 
inform, and have informed, decisions that save lives.

The remainder of this paper is structured as follows. 
Section 2 reviews the existing literature, and Section 3
introduces our model that quantifies the impact of a 
given CFR base. Building upon this model, Section 4
introduces optimization models to determine the ideal 
geographical distribution of CFRs. We demonstrate our 
methods within the city of Auckland, New Zealand, in 
Sections 5 and 6. We conclude by answering the four 
questions given and discussing the managerial implica
tions of this work in Section 7. An Online Appendix pro
vides supporting details.

2. Literature
We discuss performance metrics for CFR systems in Sec
tion 2.1 and review studies that evaluate the effective
ness of such systems in Section 2.2. Section 2.3
summarizes CFR literature that is specific for OHCA 
patients, and Section 2.4 reviews studies on first- 
responder dispatching. Section 2.5 places our work in a 
broader context.

2.1. Performance Metrics
As an essential goal of CFR systems is to reach patients 
quickly, their performance can be measured in terms of 
response times: the duration between the moment a call 
arrives in the emergency call center and the moment the 
first responder arrives on scene. The same is true for 
EMS providers, who often have targets that are a 
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function of response times, phrased as service-level 
agreements (responding to x percent of all calls in y 
minutes).

One way of translating response times into a medical 
outcome–based metric is to convert them to a survival 
probability through a so-called survival function. This is 
highly dependent on the medical condition of the 
patient. Survival functions have been used in work on 
ambulance operations in the absence of volunteer 
schemes; see Erkut et al. (2008), McLay (2009), Bandara 
et al. (2012), and Zaffar et al. (2016).

2.2. Retrospective Studies on Effectiveness
In contrast to our work, existing literature focuses on ret
rospective analysis of data to determine the impact of 
CFR systems.

Early work from Sweden (Ringh et al. 2011) analyzed 
the impact of a CFR app using both a physical experi
ment and a small retrospective study in which volun
teers arrived before ambulances approximately half the 
time. For a Dutch text-based volunteer CFR system, Zijl
stra et al. (2014) compared response times in a system 
with volunteers to a system with ambulances only, 
reporting a reduction of 159 seconds in the time to defi
brillation. Pijls et al. (2016) focused on survival rates: the 
survival rate for OHCA increased from 16% to 27% 
when at least one volunteer responded.

Several studies specifically investigated the impact of 
volunteer density. Both Jansma (2014) and Stieglis et al. 
(2020) investigated how density relates to response 
times via an empirical study and computer simulation, 
respectively. Pijls et al. (2019) show a positive correlation 
between the fraction of inhabitants registered as volun
teers and patient survival.

2.3. CFR for OHCA
Some CFR systems are designed explicitly for OHCA 
patients, perhaps because OHCA survival is known to 
significantly improve with early CPR administered by 
trained individuals (Nichol et al. 1999, Sasson et al. 2010, 
Yan et al. 2020). This relationship between time to CPR 
and survival has been made explicit in multiple studies 
that have followed a group of patients for which the 
time to CPR has been recorded, for example, Valenzuela 
et al. (1997), Waalewijn et al. (2001), and De Maio et al. 
(2003).

Cardiac arrest patients are known to benefit from 
receiving defibrillation by automated external defibrilla
tors (AEDs). CFR systems are therefore often designed 
to include information on AED locations. The optimiza
tion of AED placement is explored in Folke et al. (2009) 
and Chan et al. (2016, 2018); however, they treat this 
question without explicitly incorporating the dynamics 
of a CFR system. Like those studies, we view as out of 
scope the detailed modeling of AED-CFR dispatch coor
dination, such as when one CFR is sent directly to the 

patient while another is sent to retrieve the nearest AED. 
Whereas such considerations are important for an indi
vidual OHCA, such detailed modeling seems unneces
sary for the high-level questions of recruitment that we 
consider here.

2.4. Dispatching
At the time of an incident, real-time decisions must be 
made on which volunteers are dispatched by sending a 
push notification to their phones. This decision is typi
cally based on the observed locations of nearby volun
teers and should balance overburdening volunteers 
with response-time benefits (Henderson et al. 2022).

Advanced dispatch methods may vary the number 
and time of alerts and may consider a range of tasks, for 
example, picking up medical equipment (Nazarian 
2018, Matinrad et al. 2019). In this context, Matinrad et al. 
(2021) discuss uncertain task compliance.

A recent trend is to have medical supplies delivered 
by drones, for example, AEDs (Boutilier et al. 2017, Chu 
et al. 2021, Boutilier and Chan 2022) or blood (Nisin
gizwe et al. 2022). Such a design disconnects equipment 
delivery decisions from CFR coordination, hence further 
confirming our choice to leave such questions out of 
scope of this paper.

Recent unpublished work (Liu et al. 2022, Shin et al. 
2022) considers AED drone management under ambu
lance as well as bystander response. Both papers model 
bystander availability through a Bernoulli distribution, 
and the bystanders’ response time does not depend on 
the number of available responders. This work, besides 
evincing very recent interest in the topic, highlights the 
unavailability of a detailed CFR response model, a gap 
that we aim to fill here.

2.5. Time-Sensitive Volunteers
More broadly, our work relates to the literature on time- 
sensitive volunteers and crowdsourcing, for example, 
Ata et al. (2019), McElfresh et al. (2020), and Manshadi 
and Rodilitz (2022). The key differences with our work 
are that, in that setting, (1) requests that are relevant for 
any fixed volunteer are likely to be more frequent, (2) 
volunteer disengagement is a central consideration and 
is modeled in a variety of ways, and (3) the proximity of 
volunteers is relevant but not critical, as in our setting. 
There is a slight resemblance between our work and the 
literature on matching and crowdsourcing, for example, 
Özkan and Ward (2020), Tafreshian et al. (2020), and 
Johari et al. (2021); queueing, pricing, and learning are 
central in this literature but not in our work. The use of 
spatial Poisson processes to model the location of servers 
(CFRs in our setting) could potentially be relevant in 
many applications, including the modeling of available 
drivers in ride hailing; see, for example, Qin et al. (2020).
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3. Modeling CFR Response
In this section, we argue that CFR locations are well 
modeled by a Poisson point process and thereby derive 
the distribution of their response times. This distribu
tion, particularly when complemented with the distribu
tion of EMS response times, can be translated to an 
expected health gain in the population because of CFRs.

Throughout the paper, we use the term “city” to refer 
to the overall area in which the CFR response is mod
eled. However, our modeling approach applies whether 
the area under consideration is a city, a county, a state, or 
even a nation, at least in principle.

3.1. Using a Poisson Point Process
We say that CFRs are available if they are present in the 
city, have the app running on their phone, and will 
accept a notification should it be sent to them. We 
assume that available CFRs are distributed throughout 
the city according to a spatial Poisson point process. We 
assume that the set of available CFRs does not depend 
on call volume, which is reasonable because, typically, 
CFRs are called out on the order of once per year (Pijls 
et al. 2019), at least in the context of OHCA.

Modeling available CFRs as a spatial Poisson point 
process is reasonable because of results that justify 
approximating certain spatial point processes by Pois
son point processes. For a general introduction to Pois
son point processes, including theoretical results that 
justify Poisson point process modeling in applications in 
great generality; see Kingman (1993) and Barbour et al. 
(1992). We justify the Poisson point process assumption 
with Proposition 1 in Online Appendix 1, which shows 
that a Poisson point process arises in a regime where the 
number of CFRs n is large. That result is not the most 
general result possible, nor will it be surprising to those 
versed in point process theory, but we provide it to sup
port our contention that the Poisson point process model 
is a good one in our setting. This assertion is further sup
ported by the prevalence of Poisson point process 
modeling in related settings; see Larson and Odoni 
(1981), for example.

Proposition 1 shows that even when CFRs have a 
unique availability probability and location distribution, 
the location of available CFRs is well modeled by a Pois
son point process with a certain mean measure µ. Thus, 
it is not necessary to assume CFRs are a homogeneous 
group: responders may have their own probability of 
accepting alerts and own distribution of time spent in 
each part of the city. The exact way in which individual 
CFRs contribute to the aggregate mean measure µ is not 
important for our analysis; the overall measure µ is what 
is important.

It is therefore sufficient to henceforth assume that 
µ � nαν, where n indicates the overall number of CFRs 
who have the same availability probability α ∈ (0, 1) and 

the same location probability distribution ν, conditional 
on being available.

3.2. Response-Time Distribution
The response time to an incident is the minimum of the 
time until a CFR or ambulance arrives at the scene, with 
these intervals measured from the moment the call to 
EMS is initiated.

As is common in CFR apps (Smith et al. 2017), we 
assume that the closest available CFR is dispatched to an 
incident as long as the CFR is within a given maximal 
distance from the patient. We are interested in the distri
bution of the response time of this closest CFR, which 
depends on two components: (1) the response delay, 
and (2) walking time. The response delay is the time that 
passes between the call initiation and the responder 
starting to travel. This consists of the interval between 
the time the call is made and the time a CFR is dis
patched (triage and dispatch delay) and the interval 
between the CFR dispatch and the time a CFR starts 
walking (CFR acceptance delay). For simplicity, the total 
response delay for a CFR is assumed to be constant and 
is denoted by κ. For any location x, define the ball B(x, t) 
as the area surrounding x within which a CFR can reach 
the location within t minutes, including response delay.

We assume that ambulance bases are given and 
ambulances respond from their bases and not from the 
road. This is an approximation that is reasonable when 
the ambulances are not too heavily loaded. Thus, ambu
lances incur the first two components of the response 
delay along with a potentially different (from CFR) 
delay from dispatch to the time they begin traveling. As 
in many standard models of ambulance operations, for 
example, Daskin (1983), we assume that each ambulance 
is busy with probability q ∈ (0, 1) and that ambulances 
are busy or not, independent of one another. We also 
assume that ambulance locations and availabilities are 
independent of those for CFRs. For any given call loca
tion x, let y(x, t) denote the number of ambulances that 
can reach the location x within t minutes of the incident 
when stationed at their base.

The response time, including response delay, of the 
closest responder, whether CFR or ambulance, to a 
patient at location x is a random variable, which we 
denote T(x). The number of CFRs that are available 
within t minutes from a patient at location x is, because 
of the Poisson point process assumption, Poisson distrib
uted with mean µ(B(x, t)) � nαν(B(x, t)). As is standard 
for Poisson point processes, the probability P(T(x) > t)
that the response time of the closest responder is greater 
than t is then

P(T(x) > t) � qy(x, t)exp(�µ(B(x, t))): (1) 

Here, we used the fact that the response time is greater 
than t if and only if all ambulances stationed at nearby 
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bases are busy and there are no CFRs in the set B(x, t). The 
number of CFRs in the set B(x, t) is a Poisson-distributed 
random variable, Z say, with mean γ � µ(B(x, t)), and for 
such random variables, P(Z � 0) � e�γ.

To illustrate how one might perform these calcula
tions, suppose a CFR walks with a constant pace of w 
km/min, and let dt be the distance in kilometers for 
which the response delay plus walking time equals t for 
t ≥ κ. We can convert response times t ≥ κ to distances 
using dt � w(t � κ). We further assume that t is so small 
that the CFR density may be assumed to be constant 
throughout the ball B(x, t). Letting ω denote the value of 
the assumed-constant available CFR density in the ball 
B(x, t), we get

P(T(x) ≤ t) � 1 � qy(x, t)exp(�µ(B(x, t)))

� 1 � qy(x, t)exp(�ωπd2
t ): (2) 

The number of sufficiently close ambulances y(x, t) is 
readily computed for any fixed x and t given determinis
tic travel time models. Online Appendix 2 shows the 
CFR response time distributions (not counting ambu
lances) that follow from our model.

Our discussion thus far assumes a fixed call location x. 
The unconditional response time, T say, is a mixture of 
the call location–specific response-time random vari
ables. Assume that calls arise over the city according to a 
probability distribution Λ, where Λ(B) is the probability 
that a given call arises within the ball B. Then, 
P(T ≤ t) �

R
P(T(x) ≤ t)Λ(dx).

For computational convenience, we subdivide the city 
into a finite number of regions indexed by l ∈ L �

{1, 2, : : : , ℓ}. The location of a generic call lies in region l 
with probability λl, l ∈ L, so that 

P
l∈Lλl � 1. For all call 

locations x within region l, we assume that response 
times T(x) are identically distributed as in (2), with distri
bution function P(T(x) ≤ t) � 1 � qz(l, t) exp(�µlπd2

t ). 
Here, z(l, t) is the location-discrete equivalent of y(x, t) 
and yields a region-specific number of nearby ambu
lances, and µl is a region-specific CFR density. Thus, 
P(T ≤ t) � 1 �

P
l∈Lλlqz(l, t)exp(�µlπd2

t ).
This model for the CFR response assumes that the 

density of CFRs and the number of nearby ambulances 
are constant within each region l ∈ L and that the 
response-time distribution does not vary, as the call loca
tion varies within the region. This is an imperfection in 
the model because calls that arise close to the boundary 
of a region may receive a CFR response from a neighbor
ing region where the CFR density is different, but this 
effect is not captured. This model is therefore plausible 
when regions are large enough that CFRs outside the 
region are unlikely to materially impact survival rates 
within the region or in the situation when neighboring 
regions have similar CFR densities. Online Appendix 3 
numerically checks the effect of the constant density 
assumption on our case study and concludes that, 

overall, it is minor. A similar discretization effect occurs 
for the modeling of the ambulance response, in line with 
existing literature modeling ambulance response.

4. The Ideal CFR Distribution
In view of (1), it is clear that for any fixed ball B, we want 
µ(B) to be as large as possible. Recall that µ(B) � nαν(B), 
where n is the number of CFRs, α is the probability that a 
CFR is available, and ν(B) is the conditional probability 
that a given CFR can be found in the ball B given that the 
CFR is available. Accordingly, to make µ(B) large, we 
can increase the number of CFRs n, we can increase the 
probability α that a given CFR is available, or we can 
influence the probability distribution ν that describes 
where a given available CFR is found across the city. We 
assume that α is exogenous to our model, though reality 
is potentially more complicated.

The probability distribution ν is not under our direct 
control. Nevertheless, it is worth identifying the choice of 
probability distribution ν that is most beneficial for two 
reasons: 

1. An optimal CFR distribution can guide efforts in 
recruiting new volunteers by indicating populations of 
potential CFRs that are likely to have a large impact.

2. The performance of an optimal CFR distribution 
can be used to determine a lower bound on the number 
n of volunteers needed to reach response-time goals.

With these reasons in mind, we now identify the opti
mal probability distribution ν for a given demand distri
bution λ.

First, we investigate the ideal CFR distribution across 
the city, where regions in the city are linked only 
through a bound on the total CFR mass to be allocated. 
Then, we incorporate the reality that an individual 
recruited from region l has a region-specific profile, that 
is, a contribution of its CFR mass to all regions across the 
city.

As in Section 3, we assume that the locations in a city 
are partitioned into a finite list of neighborhoods or 
regions indexed by l ∈ L as earlier, with λl denoting the 
conditional probability that a call originates within 
region l, given that a call arises. Rather than optimizing 
over all possible probability measures ν, which is an 
infinite-dimensional optimization problem, we restrict 
attention to probability distributions ν that are uniform 
within a region so that they can be parameterized by the 
probability mass νl associated with region l, with 
P

l∈Lνl � 1. This greatly reduces the complexity of deter
mining an optimal probability distribution because the 
calculation becomes finite dimensional. This is also rea
sonable in practice because our goals relate to the overall 
distribution of CFRs across a city and not to the small- 
scale detail of exactly how they are distributed within 
small areas. To quantify the impact of dividing CFRs 
into a finite set of homogeneous regions, we compare 
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our results with those of a more common approach: a 
very fine-grained but discrete network. This analysis in 
Online Appendix 3 confirms that our approach is 
reasonable.

We consider the contribution of CFRs to both (1) cov
erage with respect to a fixed response-time threshold, 
and (2) a function of the full response-time distribution. 
The first is a standard objective in EMS; the second is 
more general and can capture, for example, the average 
response time and the probability of patient survival 
(under the assumption that it is known how survival 
declines with response time). The details for the first 
objective are more straightforward, so we begin there. 
Moreover, insights obtained from the structure of the 
solution based on the first objective can help explain the 
solutions with respect to more complex objectives. 
Henceforth, when we discuss or illustrate the second 
type of objective, we will phrase it as “survival,” 
although those analyses have a broader applicability 
and can be performed for essentially any monotone 
function of the response time, including the mean.

4.1. Optimizing Coverage
Coverage is defined as the fraction of demand that can 
be served within a predefined threshold time τ. For our 
purpose, it is slightly more convenient to work with the 
probability that the response time exceeds τ, conditioning 
on the region l in which the call occurs and using (2). Let 
νl denote the CFR probability mass within region l, and 
let al be the area of region l in square kilometers. Thus, 
within region l, the density of available CFRs is nανl=al. 
Recalling that dτ is the distance within which a CFR can 
reach a call within the time threshold τ and z(l,τ) is the 
number of ambulances that can reach a call in region l 
within time τ, we get

P(T > τ) �
X

l
λl P(T(l) > τ)

�
X

l∈L

λlqz(l,τ)exp(�πd2
τnανl=al): (3) 

Expression (3) is (jointly) convex in the probabilities 
(νl : l ∈ L), yielding

Proposition 1. The probability that the response time is 
greater than any fixed quantity τ is a convex function of 
the probabilities (νl : l ∈ L).

A consequence of Proposition 1 is that we can use con
vex optimization methods to minimize the probability 
that the response time is greater than the time threshold 
τ, P(T > τ), subject to the simplicial constraints that 
P

l∈Lνl � 1 and νl ≥ 0 for all l ∈ L. For notational simplic
ity, let the residual call probability λ̃l � λlqz(l,τ), which is 
the probability a call arises in region l and all nearby 
ambulances are busy, and let θl � πd2

τnα=al for l ∈ L. 

The optimization problem we want to solve is to

min
ν

X

l∈L

λ̃le�θlνl ,

s=t
X

l∈L

νl � 1,

νl ≥ 0, l ∈ L:

The objective function is separable, and each term is con
vex and decreasing in νl. Accordingly, a standard appli
cation of the Karush-Kuhn-Tucker conditions ensures 
that a greedy allocation is optimal. To describe this allo
cation, let us call λ̃l exp(�θlνl) the late rate from region l. 
We define the marginal benefit of adding CFR mass to 
region l to be the absolute value of the derivative of the 
late rate with respect to νl, namely, λ̃lθle�θlνl . Starting 
from νi � 0 for all i, we begin by increasing CFR mass 
across all regions l in the set, I say, of regions having 
maximal marginal benefit. In doing so, the marginal 
increase in CFR mass in region l should be inversely pro
portional to θl, and, in particular, proportional to the 
area al so that the marginal benefit remains equal across 
all regions l ∈ I. In other words, the CFR density in all 
regions l ∈ I increases at the same rate. This continues 
until either the total CFR mass 1 is used up or the maxi
mal marginal benefit is reduced to the point where a 
new region j joins the set I of regions attaining the maxi
mal marginal benefit. A more precise description of the 
algorithm can be found in Online Appendix 4.

The value of νl for each l ∈ I at which a new region 
joins the index set I can be computed in closed form. Let 
j ∈ arg max{λ̃iθi : i ∉ I} be the maximal marginal benefit 
of any region that is yet to receive positive CFR mass, 
and let l ∈ I be arbitrary. We solve λ̃lθle�θlνl � λ̃jθj. 
Using the definition of θl and θj, canceling common 
terms, and solving for νl yields

νl �
1

�θl
ln
λ̃j=aj

λ̃l=al

 !

�
al

πd2
τnα

ln λ̃l=al

λ̃j=aj

 !

: (4) 

A proviso is that we do not reach this new value if we 
“hit” the constraint 

P
l∈Iνl � 1 first. In this case, we do 

not reach the point where νj becomes positive.
Expression (4) yields several insights that are rein

forced in a two-region example in Online Appendix 5. 
First, regions are not guaranteed to receive positive 
probability mass; excluded regions are those with the 
lowest residual call densities λ̃l=al. Second, regions 
receiving positive probability mass do so roughly in pro
portion to the product of their area and the log of their 
residual call densities. Because the density of CFRs is 
proportional to νl=al and thus divided by area, it follows 
that regions receiving positive CFR density do so 
roughly in proportion to the log of their residual call 
densities. We use the term “roughly” because (4) is not 
the precise form of the optimal allocations, as mentioned 
earlier. Third, the expected number of CFRs allocated to 
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a region l that receives positive mass is roughly nνl, 
which, from (4), does not depend on n because νl is pro
portional to n�1, where “roughly” has the same sense as 
before. Finally, the optimal allocations are roughly pro
portional to the inverse of the area, πd2

τ, of the circle 
within which CFRs can respond within time τ. For smal
ler τ (more stringent targets), the optimal allocations are 
thus more concentrated in high-call-density regions.

4.2. Optimizing Survival
The same approach works for more complex perfor
mance metrics, which we illustrate by showing that 
maximizing the probability of survival for OHCA is a 
convex optimization problem in the CFR location proba
bilities (νl, l ∈ L).

Proposition 2. If the probability of death is increasing in 
the response time, then the probability of survival is a con
cave function of the probabilities (νl : l ∈ L).

Proof. We show that the probability of death is con
vex in the CFR location probabilities (νl, l ∈ L). We 
assumed that the death probability is an increasing 
function, f (·) say, of the response time T, which 
includes the response delay κ. Increasing functions 
have at most a countable number of discontinuities, so 
we can adjust f to an increasing, right-continuous 
function f by redefining f in at most a countable num
ber of points. Thus, we now work with the increasing, 
right-continuous function f. Let d � f (κ) ∈ [0, 1] be the 
minimal death probability assuming immediate ambu
lance response. Let d ∈ [0, 1] be the maximal death 
probability assuming response time is infinite. Using 
the fact that the mean of a nonnegative random vari
able Y can be expressed as 

R∞

0 P(Y > u) du, the death 
probability as a function of ν, d(ν) say, is

d(ν) � Ef (T) �

Z 1

0
P(f (T) > u) du

� d +

Z

d

d
P(T > f �1(u)) du, 

where f �1(u) � inf{r : f (r) ≥ u} for u ∈ [0, 1], and the final 
step follows from Serfling (1980, lemma 1.1.4(iii)). 
Hence, conditioning on region l of the call,

d(ν) � d +
X

l∈L

λl

Z d

d
P(T(l) > f �1(u)) du

� d +
X

l∈L

λl

Z

d

d
qz(l, f �1(u)) exp{� |B(l, f �1(u)) |nανl=al} du:

(5) 

The integrand in (5) is convex in νl. w

Thus, we can efficiently maximize the survival proba
bility over probability distributions ν on L. In fact, a 
greedy approach that adds CFRs to regions where they 

yield the highest marginal reduction in death rate gives 
an optimal solution. In contrast to the greedy approach 
for late arrivals, the marginal allocation over the differ
ent regions does not remain constant. Therefore, an 
expression similar to (4) to compute the exact CFR distri
bution does not hold. Instead, we use a discretized step 
size ɛ, which is optimal as ɛ → 0. We implement this 
method and give numerical results in Section 6.

4.3. More Complex Survival Functions for OHCA
So far, we have focused on survival functions that 
depend only on the response time, whether by CFR or 
ambulance. More complex survival functions for OHCA 
patients, such as model 1 in Waalewijn et al. (2001), 
depend on both the time to CPR (tCPR) and the time to 
EMS arrival (tEMS), where tCPR � tEMS when an ambu
lance arrives before volunteers, and tCPR equals the 
response time of the volunteer otherwise. Let f (tCPR, 
tEMS) be the probability of death as a function of the time 
to CPR and the time to EMS arrival. Model 1 of Waale
wijn et al. (2001) uses

f (tCPR, tEMS) � 1 � (1 + e0:04+0:3tCPR+0:14(tEMS�tCPR))
�1

: (6) 

These times are measured from patient collapse instead 
of call initiation. Waalewijn et al. (2001) estimate the dif
ference between these two moments to be one minute 
(median). Recall that z(l,τ) is the number of ambulances 
that can reach region l from their home base within τ 
minutes of cardiac arrest. As before, let d(ν) be the proba
bility of death for a single call as a function of the CFR 
location distribution ν. Let ajl denote the response time 
of the jth closest ambulance to region l when all ambu
lances are available and at their respective bases. Let 
Tv(l) be the (random) response time of the closest volun
teer, the distribution of which can be found by dropping 
the qy(x, t) term in (2). Conditioning on the location of the 
call and the closest available ambulance to region l, we 
get

d(ν) �
X

l∈L

λl Ef (TCPR(l), TEMS(l))

�
X

l∈L

λl

 

qkEf (Tv(l), ∞)

+
Xk

j�1
qj�1(1 � q)Ef (min{Tv(l), ajl}, ajl)

!

: (7) 

The term f (Tv(l), ∞), corresponding to the situation 
where all ambulances are busy, is zero according to 
model 1 of Waalewijn et al. (2001) but, more generally, is 
convex in ν as long as f is increasing in its first argument, 
as we have already established. As to Ef (min{Tv(l), 
ajl}, ajl), as long as f (tCPR, tEMS) is increasing in tCPR for 
any fixed value of tEMS, which we henceforth assume, 
then our previous arguments extend to ensure convexity 
in ν. Thus, we have established
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Proposition 3. Suppose that f (tCPR, tEMS) is increasing in 
tCPR for each fixed tEMS ∈ [0, ∞]. Then, the probability of 
survival is a concave function of the probabilities (νl : l ∈ L), 
even when accounting for the impact of ambulances provid
ing advanced care in addition to CPR.

4.4. Profile Optimization
Until now, we have assumed that CFRs spend all their 
time in a single region, yet in reality, a person likely 
spends one’s time in a few different regions during 
different times of day. Therefore, instead of having one 
specific location probability distribution ν, we have 
time-dependent CFR location distributions ν(t), where t 
is assumed to fall into one of a small number of discrete 
time blocks T , for example, T � (weekday, weeknight, 
weekend day, weekend night). A CFR provides a contri
bution in each time t ∈ T , and, for any fixed t, can con
tribute to several elements of ν(t). We model these 
contributions through time-dependent profiles in which 
people with the same profile are assumed to spend their 
time in the same way, at least probabilistically speaking. 
That is, we focus on the aggregate contribution of all 
CFRs of a certain profile.

Assume CFRs take one of m different profiles. For 
each time block t ∈ T , let P(t) ∈ [0, 1]

|L | ×m denote the 
given CFR profile matrix in which P(t)

li is the probability, 
in time block t, that a CFR with profile i appears in region 
l. We have 

P
l∈LP

(t)
li ≤ 1 for all t ∈ T , with strict inequal

ity when CFRs temporarily leave the city.
Let xi be a decision variable denoting the proportion 

of CFRs recruited with profile i for i � 1, 2, : : : , m such 
that 

Pm
i�1 xi � 1, xi ≥ 0. The resulting CFR location distri

bution per time block can then be calculated as

ν(t) � P(t)x, t ∈ T : (8) 

Our goal is to optimize either coverage or patient sur
vival obtained from this ν(t) with decision variables (xi :

i � 1, 2, : : : , m) and Constraints (8) ensuring the link 
between recruitment and CFR location.

Proposition 4. For both the coverage and survival objec
tives, the optimization problem with profiles remains a con
vex optimization problem under the same conditions stated 
in Proposition 2.

To prove Proposition 4, observe that the objective 
function becomes a weighted sum of (3) or (5) over the 
set of time blocks T , which remain convex. Moreover, 
the constraints we add are linear. Hence, the problem 
remains convex under both objectives.

With profiles, the optimization problems are no lon
ger separable, so a greedy approach is no longer optimal. 
To solve the optimization problem with profiles, we 
implemented a version of the away-step Frank-Wolfe 
algorithm in Bomze et al. (2020) with an adaptive line 
search and a stopping criterion based on the (optimality) 
gap between the objective value of the current iterate 

and a lower bound obtained through a cutting plane 
method that relies on convexity of the objective function. 
See Online Appendix 6 for more details and the pseudo
code of the implemented Frank-Wolfe algorithm.

5. Case Description
Auckland is the largest city in New Zealand, with the 
greater Auckland region having a population of 1.4 mil
lion and an area of 5,000 square kilometers. We focus on 
the most urban area by excluding seven out of 21 local 
boards with a population density of less than 1,000 peo
ple per square kilometer. The resulting area has a popu
lation of 1.1 million, covers 500 square kilometers, and is 
divided into 287 so-called area units, yielding the set of 
regions L. These area units are the second smallest unit 
at which Statistics New Zealand collects data (Stats New 
Zealand Geographic Data Service 2016).

5.1. OHCA Incidence Rates
The St. John Ambulance Service (SJAS) has provided us 
with the time and location of all OHCAs in Auckland 
since 2013. One could use the empirical OHCA rate to 
estimate the demand vector λ, but low counts in some 
area units have very high variability relative to their 
mean. Instead, we estimate the OHCA incident rate by 
combining demographics with socioeconomic factors as 
in Dicker et al. (2019).

Figure 1 shows both the empirical incident rate of dif
ferent area units and a scatter plot of the number of 
OHCA incidents since 2013 versus the number of esti
mated OHCA incidents using Dicker et al. (2019), where 
each point represents one area unit. We see a general lin
ear trend as expected, but the OHCA incident counts are 
dispersed relative to a linear trend. The three area units 
highlighted in Figure 1(b) are two area units covering 
the central business district (CBD) and the area unit con
taining the airport. We replaced the estimated rates in 
these three area units with the empirical counts in SJAS 
data because these area units were extreme outliers in 
the original fit. The input demand rate λ to our model is 
then the normalized estimated OHCA counts after the 
CBD and airport adjustments. More details and discus
sion on this estimation process can be found in Online 
Appendix 7.

5.2. Response Process
We assume that an ambulance always responds and that 
volunteers are alerted if they are close to the incident. Of 
interest is the time it takes for the first responder to arrive 
on site. All reported response times are measured from 
call initiation, meaning that they do not include the time 
between cardiac arrest and call initiation. This is in line 
with classical performance measures for EMS systems 
and is the only time known to dispatchers. A response 
time, whether by ambulance or by volunteer, consists of 
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a response delay and a travel time. We base our esti
mates on GoodSAM data whenever available and reli
able; in other cases, we resort to estimates in the 
literature.

5.2.1. CFR Response. The local CFR app GoodSAM is 
run by the SJAS. We have obtained data from the SJAS 
on CFR operations since the inception of the program in 
December 2017. Between December 2017 and November 
2020, 6,749 CFR alerts were sent out for 2,827 OHCA 
incidents. We provide an exploratory data analysis in 
Online Appendix 8 that suggests that our model is rea
sonably consistent with the very noisy data at hand.

For the probability that a volunteer accepts an alert, 
we use the historical value as observed in the data: α �

0.14. We take this value to be equal for all CFRs rather 
than assuming an individual-specific acceptance proba
bility because our data are insufficient to accurately esti
mate such values. We assume that accepting CFRs 
respond on foot, and we use the most conservative esti
mate of Slaa (2020) in the Netherlands to model their 
speed at six kilometers per hour. We assume a constant 
response delay, which consists of a triage and system 
activation time as well as a delay for CFR acceptance. 
For triage and system activation, we assume 1.5minutes; 
this is in line with Slaa (2020), who estimated this time at 
105seconds before a system update that automates and 
thereby speeds up system activation. For the time it 
takes for a volunteer to accept or reject (CFR acceptance 
delay), we take the mode of the GoodSAM data: 
30seconds. The sum gives a response delay of two min
utes. We further assume that only CFRs within one kilo
meter of the patient are dispatched, in line with current 
practice. This implies that the response time of CFRs, 
conditioned on finding at least one available CFR within 
one kilometer, is between two and 12minutes.

The assumed 30-second CFR acceptance delay is not 
perfect because volunteers may accept an alert but not 
initiate their departure immediately, or they may accept 
the alert after they start traveling. To see the impact of a 
shorter or longer acceptance delay, one can refer to adja
cent columns in Table 1.

5.2.2. Ambulance Response. The SJAS operates 15 
bases from which they could realistically respond to the 
part of the city that we analyze. We model the ambu
lance pretrip delay as two minutes; Ridler et al. (2022) 
estimate this value to be 2.1 minutes in Auckland. We 
used driving times for EMS vehicles between each base 
and the centroid of each area unit as obtained from an 
open-source ambulance simulation package (Ridler 
2020); see also Ridler et al. (2017, 2022).

Because OHCA patients only constitute a small por
tion of all the requests served by SJAS, it is not reason
able to assume the ambulances are placed optimally 
with respect to OHCA response targets. Instead, we 
assume that ambulances are placed to meet the SJAS tar
get of responding within 12 minutes for at least 95% of 
their patients (Ministry of Health 2020). We obtained the 
corresponding ambulance locations as follows. We 
assume that each ambulance has a utilization of 0.44, as 
used in Ridler et al. (2022), and distribute ambulances 
across the existing bases according to the optimal solu
tion of MEXCLP (Daskin 1983). We use 25 ambulances, 
which is just sufficient to achieve the mentioned target 
(95% within 12 minutes, including a pretrip delay of two 
minutes).

5.3. CFR Profiles
For the optimization that includes CFR movement 
as introduced in Section 4.4, we need data on profiles. 
These profiles within a given time block can be interpreted 

Figure 1. (Color online) OHCA Incidence for Auckland, New Zealand 

(a) Empirical Incident Rate (b) Empirical vs Estimated Incidents

Notes. (a) The empirical incident rate per area unit in Auckland, New Zealand. (b) Scatter plot of the actual and estimated number of cardiac 
arrests between 2013 and 2020 over all area units.
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as giving the probability that a certain CFR appears in a 
given area unit in that time block. We introduce a profile 
for each area unit and assign potential CFRs a profile based 
on their home address. We distinguish two time blocks: 
working hours (weekdays from 8 a.m. until 10 p.m.) and 
all hours outside of that, which we will refer to as “nights 
and weekends.” Thus, the interpretation of P(t)

li is the prob
ability that a CFR living in area unit i appears in area unit l 
in time block t. Although we defined profiles per area unit, 
it is also possible to have more—or fewer—profiles than 
area units, for example, based on other location aggrega
tion levels, for example, people who work at the airport or 
other properties on which one can distinguish recruitment, 
for example, students.

To obtain profile data for working hours, we combine 
the population of age 15 years or older from the 2013 
census (Stats New Zealand Geographic Data Service 
2015) with the commuting routes for the resident popu
lation (Stats New Zealand Geographic Data Service 
2020). These data give the work location of residents 
from each area unit in New Zealand. We then assume 
that working potential CFRs spend their time in the area 
unit of their work location and nonworking potential 
CFRs spend their time in the area unit in which they live. 
The resulting profiles have, on average, 62% of people 
on the diagonal, so a CFR recruited from a certain area 
unit will, on average, contribute to another part of the 
city for 38% of the “working hours” time block. For the 
profiles during nights and weekends, we assume that 
everyone stays in the area unit where they live.

This fitting process is not perfect, but we consider the 
approach sufficiently realistic to illustrate our models. 
Indeed, a closely related approach was used in Cont et al. 
(2021) to model population mobility in a study of 
intervention policies during the COVID-19 pandemic. 
Alternative sources were infeasible for this case study 
because they either were not sufficiently fine-grained 
(Facebook Data For Good 2021) or were not available for 
Auckland (Safegraph 2021). We discuss profile estima
tion impact on performance and provide a sensitivity 
analysis in Online Appendix 9.

5.4. Performance Metrics
To measure late arrivals, we consider the two response- 
time targets under which the SJAS operates: 95% of their 
incidents should be reached within 12 minutes, and 50% 

should be reached within six minutes (Ministry of 
Health 2020). The other metric we consider is patient 
survival, which we quantify using (6). This function was 
fitted on data where both ambulances and volunteers 
responded and volunteers did not carry a defibrillator. 
This function takes as input tCPR and tEMS, which are 
measured from patient collapse, unlike response time, 
which is measured from call initiation. In line with Waa
lewijn et al. (2001)’s estimate, we add one minute 
(median time to call initiation) to account for this 
difference.

6. Numerical Results
In this section, we answer the four questions posed in 
the introduction: (1) in what areas is introducing a CFR 
app an efficient way to reach certain response-time tar
gets? (Section 6.1); (2) what is the benefit of introducing a 
CFR app for a base of already trained volunteers, with 
known home addresses? (Section 6.2); (3) what is the 
benefit of a CFR app with a given number of registered 
volunteers when you do not know where they live or 
spend their time? (Section 6.3); and (4) where to recruit 
additional CFRs for an existing app with a known cur
rent CFR base? (Section 6.4). The first two questions are 
answered using the models from Section 3; the last two 
questions relate to the optimization models presented in 
Section 4. For clarity, ambulances are omitted in Section 6.1. 
The results in all other sections incorporate ambulance 
response as outlined in Section 5.2.2. We illustrate our 
calculations with data from the case study described in 
Section 5.

6.1. CFR Density Requirements
We next analyze the response-time distributions derived 
in Equation (2) and, for clarity, omit ambulances. The 
CFR response-time distributions are plotted in Figure 1
in Online Appendix 2. These allow us to calculate the 
required CFR density to reach a given response-time tar
get in closed form. This can be used to investigate in 
what areas introducing a CFR app would be an efficient 
way to meet a certain target. Table 1 gives the required 
density of CFRs to meet a target that is defined by a com
bination of a time limit and a compliance level.

The results presented in Table 1 are generic in the 
sense that they apply to any location. They assume a 
fixed walking speed and pretrip delay. The table gives 

Table 1. Required Density of Available CFRs (per Square Kilometer) to Meet a Range of Response-Time Targets, Assuming 
a Two-Minute Pretrip Delay and a Walking Speed of Six Kilometers per Hour

Coverage

Response-time target (minutes)

3 4 5 6 7 8 9 10 11 12

0.5 22.06 5.52 2.45 1.38 0.88 0.61 0.45 0.34 0.27 0.22
0.7 38.32 9.58 4.26 2.40 1.53 1.06 0.78 0.60 0.47 0.38
0.9 73.29 18.32 8.14 4.58 2.93 2.04 1.50 1.15 0.90 0.73
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the required density of available CFRs; the required num
ber of registered CFRs can be obtained by dividing the 
given density by the acceptance probability α.

We illustrate the application of these results for the 
city of Auckland, where the observed value of α is 
0.14. For each area unit, we can compute the fraction 
of the area-unit population that needs to be registered 
in order to satisfy the response-time requirements. 
We take both requirements (90% in 12 minutes and 
50% in six minutes) and observe that the latter 
requires more CFRs: reaching this target requires a 
density of 1.38/0.14 � 9.19 registered CFRs per square 
kilometer.

Looking at the population density of Auckland, we 
see that this density translates to 0.42% of the population 
registered as CFRs. However, the population density 
fluctuates over the city, so we need different registration 
rates in different parts of the city. A uniform registration 
rate of 0.42% of the population would meet the target 
only in 217 out of 287 area units. The required registra
tion rate per area unit fluctuates between 0.08% and 
130% of the population. Under the assumption that reg
istration rates will not exceed 1% (a number currently 
achieved in countries with high participation), at least 23 
area units (covering 3.7% of the population) will not be 
able to meet the specified target. Thus, even in an urban 
area like Auckland, the population density is not suffi
ciently consistent to obtain good response times 
throughout. Given that organizations are evaluated 
based on aggregate performance, one might observe dif
ferent CFR densities in different area units that, together, 
do achieve an overall response-time requirement, which 
we explore next.

6.2. Quantifying the Benefit of a Given CFR Base
Next, we quantify the benefit of introducing an alert app 
in a scenario with a known base of already trained CFRs 

and a given ambulance distribution. As already noted, 
we have been contacted by a party facing exactly this 
question. They have a base of trained CFRs that is nor
mally used at events such as festivals or parades, and 
they are considering introducing an alert system to 
expand CFR impact.

When we say a given CFR base is known, we mean 
that n and ν are known, for example, because CFRs regis
tered their home and/or work address or because they 
allow GPS tracking. We quantify how such a known 
CFR base would contribute to the fraction of late arrivals 
and the survival probability, and we explore how this 
depends on the acceptance rate α ∈ [0, 0:5]. We vary α 
because it is, to some extent, controllable, and there is 
uncertainty about its true value. This range covers 
values that seem plausible given Auckland data and 
conversations with app developers.

As the party that raised this question wants to remain 
anonymous, we illustrate our calculations for Auckland. 
We consider the case where 1% of the population of Auck
land are trained CFRs and a probability measure ν that is 
proportional to the estimated demand. In contrast to the 
results from Table 1 for which it was sufficient to consider 
every area unit separately, this question requires us to 
look at the entire city with varying CFR and incident den
sities, aggregating results over the city of Auckland.

Figure 2(a) shows that bringing down response times 
that exceed the 12-minute target from 4.8% (without 
using CFRs) to 1% requires an α of 9% (1,000 available 
CFRs). Although not depicted in the figure, to satisfy the 
requirement of reaching 50% of the incidents within six 
minutes, α ≈ 2.7% suffices. In Figure 2(b), we see that 
even for low values of α, CFRs contribute substantially 
to survival. Convergence to the upper limit of survival is 
very slow and cannot be achieved by only increasing α. 
Additional recruitment would be needed, which we dis
cuss later.

Figure 2. (Color online) Impact of Increasing the CFR Availability α on Fraction of Late Arrivals and Survival, Assuming 1% of 
the Population Is Signed Up as CFRs, Distributed over the Area Units Proportionally to Demand 

(a) (b)

Notes. (a) Late arrivals. (b) Survival.
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6.3. Quantifying the Impact of CFRs’ 
Geographical Spread

In the previous section, we assumed that the CFR distri
bution ν was known; in contrast, we now investigate the 
scenario in which it is unknown where CFRs spend their 
time. Practitioners in Auckland are facing this scenario 
and would like to quantify the benefit of their app along
side the existing ambulance response. Whereas a retro
spective study is possible, this is difficult for recently 
introduced CFR systems, as they have limited data avail
able, and accurately estimating the response-time distri
bution requires many data points per area unit.

First, we consider two scenarios: one where CFRs are 
uniformly distributed over the city and another where 
CFRs are distributed proportionally to demand. The 
uniform distribution serves as a useful reference, 
whereas the proportional distribution is plausible. Sec
ond, we bound the performance of a CFR base of given 
size, using the optimization models from Section 4. 
These result in a lower bound for the fraction of late arri
vals and an upper bound for the survival probability 
with a given total number of CFRs.

For a city that operates a CFR app, the values of n and 
α are likely known. However, to provide more insight, 
we perform this case study for different values of nα, the 
expected number of available CFRs. As we shall see, differ
ent values result in different optimal CFR allocations to 
area units, requiring us to solve the optimization prob
lem separately for each value of nα. We run our calcula
tions up to 5,000 available CFRs, which, with the 
observed α of 0.14, corresponds to approximately 3.2% 
of the overall population of 1.1 million.

Recall that for both objectives—late arrivals and 
patient survival—a greedy approach is optimal. When 
optimizing late arrivals, an exact implementation (up to 
numerical precision) of the greedy method exists, using 
Equation (4). In contrast, when optimizing patient sur
vival, the greedy method requires a step size ɛ, which 
we set to 1/10,000. This means that we allocate the total 

number of CFRs in portions of size n/10,000 to the area 
unit where they would most improve the objective.

Figure 3 depicts the performance of the three CFR dis
tributions for two different objectives. Figure 3 shows 
that the impact of the system depends on the geographi
cal distribution of the CFRs. For example, in Figure 3(a), 
we can see that to bring the late arrivals down to 10%, 
one needs either 1,400 optimally distributed CFRs, 1,900 
uniformly distributed CFRs, or 1,800 proportionally dis
tributed CFRs. In particular, in this part of the graph, the 
proportional distribution outperforms the uniform dis
tribution. In contrast, for a large number of CFRs, the 
uniform distribution outperforms the proportional one 
and approaches the optimal performance. This observa
tion is even more apparent in the case with a homoge
neous ambulance response, for which the results are 
given in Online Appendix 10. Not only is the perfor
mance similar but the optimal volunteer distribution 
also closely resembles the uniform distribution, as 
illustrated in Figure 4. This figure compares the geo
graphical distribution of an optimal ν for both a limited 
number of CFRs (nα � 500) and a larger number of CFRs 
(nα � 5,000). Distinguishing two objectives (late arrivals 
and patient survival) yields four scenarios. In particular, 
Figure 4(c) shows a distribution of CFRs that resembles a 
uniform distribution, only distorted by the ambulances. 
This is in line with our earlier observations regarding the 
greedy algorithm. Figure 4(a) shows that for a limited 
number of CFRs, area units with a low call density do 
not receive any CFR mass.

For survival (Figure 4, (b) and (d)), the uniform dis
tribution does not emerge as nα grows; it remains opti
mal to focus on high-demand areas even with 5,000 
available CFRs, in accord with the close-to-optimal 
performance seen in Figure 3 for the proportional dis
tribution. For a high number of CFRs, low-demand areas 
receive slightly more CFRs than a proportional allocation 
would assign to them, as is further detailed in Online 
Appendix 11.

Figure 3. (Color online) Impact of Increasing Number of Available CFRs (nα) for Different CFR Distributions (ν) on the Fraction 
of Late Arrivals (τ � 6min) and the Survival Probability 

(a) (b)

Notes. The optimal lines are each formed by the solution of 50 optimization problems. (a) Late arrivals τ � 6 min. (b) Survival.
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6.4. Optimal Recruitment Efforts
Next, we investigate efficient recruitment strategies 
while taking into account the current ambulance bases. 
We explore profile recruitment, where we take into 
account CFR presence across the city depending on 
where they live. In the previous upper bound calcula
tions, we optimized for the available CFR location distri
bution ν, which, in a scenario without profiles, is equal 
to x. When CFR locations are driven by profiles, the 

relationship between x and ν is described by Equation 
(8). Not every desired CFR probability mass ν is attain
able by adjusting recruitment mass x per area unit. To 
find the optimal recruitment strategy, we use the formu
lation given in Section 4.4 and the method for obtaining 
profiles described in Section 5.3.

The impact of profiles on the optimal recruitment 
strategy can best be illustrated when we consider a 
homogeneous ambulance response throughout the city. 

Figure 4. (Color online) Optimal CFR Distribution (Fraction of CFRs in That Region Divided by Surface Area) 

Notes. (a) and (c) Minimizing late arrivals for τ � 6 min. (b) and (d) Maximizing survival, with nα � 500 or nα � 5,000. Darker colors represent 
higher CFR density. The white circles represent the location of the ambulance bases, and the numbers within them indicate the number of ambu
lances stationed at each base. (a) Late arrival, nα � 500. (b) Survival, nα � 500. (c) Late arrival, nα � 5,000. (d) Survival, nα � 5,000.
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We contrast the difference in recruitment per area unit 
with and without profiles in Online Appendix 12. There, 
we see that some area units require no recruitment 
under profiles because of the influx of CFRs from other 
area units. Some of these area units, most notably the 
CBD, have such a high influx of CFRs that, even without 
recruitment from that area unit, the density of CFRs 
exceeds the optimal density without profiles. Most other 
area units have slightly higher recruitment under pro
files to compensate for the outflux of CFRs.

6.4.1. Time-Dependent Profiles. Thus far, we have 
ignored a time component so we could isolate the impor
tance of capturing CFR movement. Next, we consider the 
more realistic case where profiles have both a time and 
location component, as modeled in Section 5.3. We apply 
the models from Section 4.4 to investigate optimal recruit
ment under these time-dependent profiles. We illustrate 
our results for a survival objective and the equivalent of 
500 available CFRs. Because the value of α is now time 
dependent, we cannot fix the value of nα throughout the 
day but, instead, fix n to n � 500=0:14 � 3, 571.

Figure 5 shows the amount of recruitment as well as 
the resulting CFR density per area unit. The area around 
the CBD is easily recognized as an area with high influx 
(dark blue in Figure 5(b)), so it requires little to no 
recruitment. Only in the CBD itself, a minor recruitment 
effort is still advised because of the disproportionately 
high demand there.

The solution in Figure 5 results in a 24-hour-average 
survival rate of 10.58% city-wide, which breaks down to 
10.74% for day and 10.21% at night. Optimizing for day
time only, the survival rate during the day would be 
10.75%, but this improvement would not outweigh the 
lives sacrificed during the night.

Our case study demonstrates the possibility of captur
ing profiles in recruitment. Ignoring profiles altogether 
(both their time and location component) would lead to 
a minor reduction in survival: 10.56% instead of 10.58%. 
This difference, though small, is unnecessary. To pro
vide some perspective, a survival difference of this mag
nitude is the equivalent of recruiting and training 
approximately 80 extra CFRs (2% of the CFR base).

7. Conclusion and Discussion
We introduced models to quantify the impact of CFR 
systems alongside the existing ambulance response. 
These models were subsequently used to answer four 
questions that are central in practice in Sections 6.1–6.4, 
using data from the city of Auckland, New Zealand. The 
results yield important insights, such as how the perfor
mance depends on the number and location of CFRs. 
Whereas the results and insights are then specific to 
Auckland, the same models and approaches may be 
used to explore the potential impact of such an app in 
new cities or to guide the recruitment of additional CFRs 
in existing systems.

Figure 5. (Color online) Time-Dependent Profile Recruitment That Maximizes Survival for n � 500=0:14 � 3, 571 

Notes. The white circles represent the location of the ambulance bases, and the numbers within them indicate the number of ambulances sta
tioned at each base. (a) Optimal recruitment (xi values). (b) Resulting daytime density (νl2).
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Figures 2 and 3 show the steady improvement in two 
performance metrics (late arrival and patient survival) 
over a wide range of numbers of available CFRs that 
complement the existing ambulance contribution. The 
marginal benefit of additional CFRs remains practically 
important, even beyond optimistic registration rates 
(~1%). Besides increasing the number of CFRs n, one 
may take measures to increase the availability probabil
ity α. The importance of increasing α is underlined by 
the insight that doubling α has the same impact as dou
bling the number of CFRs. Thus, systems must be 
designed to maximize α.

Every additional CFR improves the system-wide 
response time, but where those CFRs spend their time 
matters. Thus, it makes sense to steer recruitment efforts 
to the right areas. These areas can be determined with 
the models from Section 4. An important empirical 
observation from Section 6 is that optimal CFR densities 
heavily depend on the objective. To maximize cardiac 
arrest survival, a volunteer distribution proportional to 
demand is nearly optimal. Conversely, for late arrivals, 
we see clear differences between uniform volunteer den
sities (if the time threshold is loose) and clustered volun
teers (if the time threshold is strict). Thus, the objective 
heavily influences the equity of the final solution. A uni
form distribution is, at least in the absence of ambu
lances, perhaps the most equitable. However, having 
equal volunteer densities everywhere would require an 
impractically high sign-up rate in sparsely populated 
areas. If equity needs to be explicitly captured, our 
model can be extended by specifying a lower bound on 
the performance in each area without overly complicat
ing the solution method.

For OHCA, we consider maximizing survival an 
appropriate objective, and under that assumption, a first 
conclusion appears that incident rates can guide recruit
ment efforts. However, CFRs do not spend all of their 
time in the area unit where they live, and these effects 
typically do not even out. Consequently, even without 
any recruitment from the city center, our daytime sce
nario showed an overresourcing of CFRs in the city cen
ter. We expect similar effects in other cities. The results 
from Section 6.4 show that this indeed makes a signifi
cant difference in terms of where to best recruit. If one 
knows how volunteers tend to move through the city, 
these dynamics can be incorporated in the form of pro
files, and our method remains able to find the optimal 
recruitment. An additional use of the profile concept is 
to quantify the marginal benefit of training a new CFR 
based on that person’s profile, which could inform, for 
example, an organization’s willingness to fund the 
CFR’s training. In this manner, our model allows per
sonalized advice and ensures that a limited training 
budget can be spent in an effective way.

As mentioned in the introduction, the practical value of 
our work has already been demonstrated through studies 

with the Fire Department Amsterdam-Amstelland in the 
Netherlands and a Red Cross organization (anonymous, 
but at a national level). Similar ideas are applicable in set
tings with many uncontrollable servers that can thus be 
modeled as randomly situated throughout an area. One 
of the authors has used these ideas in that manner, but 
confidentiality agreements prevent the disclosure of the 
setting.

There are many important directions for future 
research. First, a detailed analysis of data from CFR 
schemes is needed to understand CFR responses. For 
example, how do acceptance probabilities depend on 
the distance to the patient or personal attributes of the 
CFR such as age or mobile phone specifications? Second, 
how should dispatch strategies be designed, for exam
ple, given the distances of nearby CFRs, which should 
be notified in a first batch of alerts, and what is the bene
fit to retaining notifications for very close CFRs after a 
more distant CFR accepts? Should one avoid overutiliza
tion of CFRs and navigate a trade-off between notifying 
CFRs for the current task and saving them for future 
ones? This question is posed in more detail in Hender
son et al. (2022) and explored in a more general setting in 
Manshadi and Rodilitz (2022).

It may appear that we have ignored the impact of 
bystanders on survival rates. Even though bystanders 
are unlikely to be trained in CPR, De Maio et al. (2003) 
found that most patients who survived received some 
sort of bystander intervention. This bystander help was 
already included in the patient data that was used to 
train survival functions. In the absence of more compre
hensive data, we have tried to incorporate the bystander 
effect to the best of our ability by using survival func
tions that account for bystander involvement.

In the context of OHCA, whether an AED is available 
has a significant impact on survival. For example, what 
is the additional benefit of taxi drivers carrying AEDs in 
their cars and being dispatched to nearby incidents, 
even if they do not have medical training? What survival 
benefits can be expected if an AED gets delivered to the 
scene by a drone? How valuable would it be to provide a 
small fraction of volunteers with their own AED? A mix 
of volunteers carrying AEDs supplemented with drone- 
delivered AEDs could be optimized by extending our 
model. Some of these questions may require a model 
with multiple classes of CFRs, which is an interesting 
direction for future work.
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