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A B S T R A C T   

Mechanical bistable structures have two stable equilibria and can transit between them under 
external stimuli. Due to their unique behaviors such as snap-through and substantial shape 
changes, bistable structures exhibit unprecedented properties compared to conventional struc
tures and thus have found applications in various fields such as soft robots, morphing wings and 
logic units. To quantitatively predict the performance of bistable structures in these applications, 
it is desirable to acquire information about the minimum energy barrier and an energy-efficient 
transition path between the two stable states. However, there is still a general lack of efficient 
methodologies to obtain this information, particularly for elastic continua with complicated, 
unintuitive transition paths. To overcome this challenge, here we integrate energy landscape 
exploration algorithms into finite element method (FEM). We first utilize the binary image 
transition state search (BITSS) method to identify the saddle point and then perform nudged 
elastic band (NEB) calculations with an initial guess based on the BITSS results to find the 
minimum energy path (MEP). This integrated strategy greatly helps the convergence of MEP 
calculations, which are highly nonlinear. Two representative cases are studied, including bistable 
buckled beams and a bistable unit of mechanical metamaterials, and the numerical results agree 
well with the previous works. Importantly, we numerically predict the complicated MEP of an 
asymmetric bistable unit of mechanical metamaterials and use experiments to demonstrate that 
following this MEP leads to successful transition between stable states while intuitive uniaxial 
compression fails to do so. Our work provides an effective numerical platform for identifying the 
minimum energy barrier and energy-efficient transition path of a bistable continuum, which can 
offer valuable guidance to the design of actuators, damping structures, energy harvesters, and 
mechanical metamaterials.   
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1. Introduction 

Mechanical bistable structures are abound in biological and artificial systems. For instance, Venus flytrap snaps from an “open” to a 
“closed” state to capture the prey (Forterre et al., 2005). A thin spherical cap can stay stable if flipped over (Holmes and Crosby, 2007; 
Taffetani et al., 2018; Wan et al., 2021). A laminate composite can bend towards two opposite sides caused by differential thermal 
strain between fibers and matrix (Daynes et al., 2008). Slender elastic structures can exhibit more than one stable shape owing to 
specific geometry or connection (Huang et al., 2022; Yu et al., 2021; Lu et al., 2023b, 2023a). The existence of two stable equilibria and 
the ability to transit between them driven by external stimuli endow bistable structures with distinguished static or dynamic properties 
and therefore make them potential candidates in various applications. To name a few, bistable structures can transform into new stable 
shapes that require no continuing energy input to maintain, thus being promising for many applications including energy-efficient 
morphing wings in aircraft (Arrieta et al., 2014; Boston et al., 2022; Diaconu et al., 2008; Mattioni et al., 2008; Rivas-Padilla et al., 
2023), switches (Gomez et al., 2017a; Hou et al., 2018), logic units (Jiang et al., 2019; Meng et al., 2021; Pal and Sitti, 2023; Yan et al., 
2023), grippers (Li et al., 2021; Power et al., 2023; Zhang et al., 2022), robots (Li et al., 2021b), micro-electronics (Fu et al., 2018), 
origami-based structures (Dai et al., 2023; Faber et al., 2018; Fang et al., 2017; Li and Pellegrino, 2020; Liu et al., 2019; Lu et al., 2023c; 
Melancon et al., 2021; Silverberg et al., 2015; Yasuda and Yang, 2015) and valves (Preston et al., 2019; Qiao et al., 2021; Rothemund 
et al., 2018). By exploiting the conversion of stored potential energy to kinetic energy during snap-through instability, bistable designs 
increase the force output of actuators (Gorissen et al., 2020; Tian et al., 2021; Wang et al., 2023) and make unidirectional, 
self-supported wave propagation possible in mechanical metamaterials (Meaud and Che, 2017; Vasios et al., 2021; Xiu et al., 2022; 
Yasuda et al., 2020). In addition, when subjected to external impact, the transition from a lower energy state to the other stable state 
with higher energy can effectively absorb the energy of the impact, thereby reducing the peak force of the impact (Ghavidelnia et al., 
2023; Restrepo et al., 2015; Shan et al., 2015). Furthermore, the inter-well vibration (periodic transition between two stable states) can 
broaden the working frequency of energy harvesters if bistable structures are combined with piezoelectric materials (Arrieta et al., 
2013; Harne and Wang, 2013; Li et al., 2015). 

To quantitatively evaluate the performance of bistable structures in these aforementioned applications, it is desired to survey their 
energy landscapes. Among various parameters, it is of particular importance to know the location of the saddle point and minimum 
energy path (MEP). Here, a saddle point, also known as transition state, is an equilibrium state that is unstable along certain directions 
(Wales, 2004). It is located at the “ridge” that separates two “valleys”, and these two "valleys" represent two locally stable states in the 
energy landscape. For the minimum energy path, it is a transition path that connects two stable states and passes through the saddle 
point. It is defined as the path whose tangent vector always keeps parallel to the gradient of the energy landscape and therefore serves 
as an energy-efficient transition route. Along this MEP, the saddle point corresponds to the highest energy state. However, this 
maximum energy along the MEP is lower than the highest energy along any other transition path. Therefore, the energy difference 
between the saddle point and locally stable state is the minimum energy barrier, which is the minimally required energy to complete 
the transition from one state to the other. In some mechanical systems (Kusumaatmaja and Majumdar, 2015; Taffetani et al., 2018), 
there could be more than one saddle point between two stable states. Therefore, multiple MEPs can exist, and each includes one saddle 
point and represents a locally energy efficient transition pathway. 

The saddle point and the associated MEP that connects two stable states are paramount in estimating the performance of bistable 
structures in several aspects. For example, the minimum energy barrier can be used to characterize the stability and load-bearing 
capacity of each stable shape. The higher the barrier is, the more stable the state will be. Such a concept has already been adopted 
in analyzing the so-called “shock sensitivity” of a cylindrical shell subjected to buckling instability (Horák et al., 2006; Marthelot et al., 
2017; Panter et al., 2019; Thompson et al., 2017; Virot et al., 2017). The calculated energy barrier also determines the energy output of 
actuators (Chi et al., 2022; Tang et al., 2020) and wave propagation speed in metamaterials (Deng et al., 2020; Jin et al., 2020; Vasios 
et al., 2021) when snap-through is utilized. In addition, the energy barrier decides the smallest amplitude of the external input to excite 
the inter-well vibration so that the bistable energy harvesters can have broadband collecting frequency (Arrieta et al., 2010; Liu et al., 
2013; Pan et al., 2017). At the same time, since MEP always follows the gradient of the energy landscape, one could use its tangent 
vector to derive the necessary, general external force along the transition path, providing valuable guidance to shape transformation of 
bistable structures. Therefore, establishing a general and efficient method to search for the saddle point and MEP will be beneficial to 
not only academic interests but also practical purposes. 

Intensive studies have been reported on the energy landscape analysis of bi-stable elastic structures. For example, arc-length 
methods have been widely used for snap-through instability analysis and shown to successfully capture the saddle point along 
certain chosen loading path and keep track of an unstable branch (Champneys et al., 2019; Crisfield, 1981; Eriksson, 1998; Groh et al., 
2018; Liu et al., 2017; Liu et al., 2019; Riks, 1979; Wan et al., 2021). However, the path identified by this method is associated with the 
prescribed forms of external force and thus may not be the MEP. In recent years, there have been efforts in integrating numerical 
methods in the fields of physics and chemistry, traditionally used to study chemical reaction, phase transition, nucleation, and other 
rare events (Garrido Torres et al., 2019; Henkelman et al., 2000; Henkelman and Jónsson, 2000), into mechanical modeling to capture 
the saddle point and MEP. To name a few, Panter, et al. (Panter et al., 2019) combined the string method with the triangulated lattice 
model to search for the saddle point and the minimum energy path (MEP) of a cylindrical shell under axial loading to control its 
buckling behaviors. Zhou, et al. (Zhou et al., 2023) used the nudged elastic band (NEB) method together with the truss-based approach 
to find the efficient transition path of origami panels. Song, et al. (Song et al., 2023) employed the conjugate peak refinement method 
to search for the transition path of multi-stable tensegrity structures. Avis, et al. (Avis et al., 2022) developed a binary image transition 
state search (BITSS) algorithm to efficiently capture the saddle point of a buckling cylindrical shell based on the triangulated lattice 
model. This was initially used by Li et al. (2021a) who integrated this BITSS method together with the string method into a discretized 
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shell model to find the saddle point and MEP of a multi-stable ferromagnetic meso‑structures. Although great process has been made, 
the previous works on the elastic continua mostly adopted certain mechanical models such as shell model that target slender structures, 
whereas the application of these energy landscape exploration methods on bistable elastic continua based on a more general me
chanical framework has not been explored. 

In this work, by integrating the binary image transition state search (BITSS) and nudged elastic band (NEB) method into finite 
element method (FEM) that is widely used for modeling elastic continua, we introduce a general numerical framework that can 
efficiently capture the saddle point and MEP of bistable elastic continua. Specifically, we first use the BITSS method that manipulates 
only two “images” to locate the saddle point. Here the term “image” refers to a full set of nodal spatial coordinates of the meshed elastic 
structures that satisfies the displacement boundary conditions. Based on the BITSS results, we then employ gradient descent method to 
generate an initial guess for the NEB method that can successfully find the minimum energy path (MEP). The combination of these two 
algorithms greatly improves the convergence of MEP calculations, which are highly nonlinear, with cheap computational cost. The 
proposed computational pipeline has been tested on two representative cases, which are bistable buckled beams and bistable units of 
mechanical metamaterials. Our results are in great agreement with experimental validations of bistable units of mechanical meta
materials and the previous works. It is worth pointing out, as will be presented later in this paper, that our methodology is capable of 
identifying asymmetric transition pathways that are difficult to achieve through intuition. 

The rest of the paper is organized as follows. Section 2 presents BITSS and NEB algorithms using a 2D bistable von-Mises truss 
system as an example and briefly describes their integration into finite element method (FEM) based on 2D plane strain problems. The 
saddle point and MEP of a bistable buckled beam with two rotational ends are discussed in Section 3 in two scenarios: two stable states 
have the same or different elastic energy. Section 4 is dedicated to the analysis of the energy landscape of a bistable unit of mechanical 
metamaterials with a symmetric or asymmetric, unintuitive MEP. Finally, some concluding remarks are given in Section 5. 

2. Illustrations of energy landscape exploration algorithms 

We start with a simple bistable case, a 2D bistable von-Mises truss, to illustrate both BITSS and NEB algorithms. Such a bistable 
mechanism has been broadly employed in metamaterials (Chen et al., 2017; Shan et al., 2015), deployable structures in aerospace 
(Schioler and Pellegrino, 2007), etc. As shown in Fig. 1(a), the von-Mises truss consists of two rigid bars connected by a free hinge A. 
The two bars have lengths l1 and l2, respectively. The other ends of the two bars are located at the same horizontal line (x-axis) and can 

Fig. 1. (a) Schematic illustration of the two stable states S1 and S2 and the transition state T of a von-Mises truss. The parameters are chosen as l1 =

5 mm, l2 = 7 mm, h = 3.5 mm, k1 = 0.1 N/mm, k2 = 0.08 N/mm, kθ,1 = 0.1 J/rad and kθ,2 = 0.08 J/rad. (b) The energy landscape of the von-Mises 
truss. The red (S1) and blue (S2) circles represent the locations of the stable states. The green circle is the location of the saddle point (T). The dash 
pink curve is the MEP while the straight orange line is an indentation path. (c) Comparison of the energy variation along the MEP and the orange 
indentation line. (d) The iterative process of two images during the BITSS algorithm. Triangles represent the locations of the images while the dash 
line is for better visualization. (e) Illustrations of the string of images (brown circles) in the NEB method. (f) Zoom-in of three adjacent images Ri−1, 
Ri and Ri+1 (brown) in (e), in which the tangent vector τi (black), the parallel and perpendicular components of the force F‖ (red) and F⊥ (yellow) 
are illustrated. 
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only slide along the horizontal direction under the constraints of two linear springs with spring stiffnesses k1 and k2 and two torsional 
springs with stiffnesses kθ,1 and kθ,2. The rotational angles of the two bars compared to the horizontal direction are denoted as θ1 and 
θ2. The system has two degrees of freedom (DoF), including the x- and y- position of the point A. Initially, all springs are at their rest and 
point A is located at (0,h). In addition to this stress-free shape that is denoted as S1, the von-Mises truss has another self-stressed, 
inverted shape denoted as S2. The potential energy E and its gradient with respect to the DoF of the system have analytical expres
sions as 

E =
1
2
k1

(
x − l1cosθ1 + l1cosθ1,r

)2
+

1
2
k2

(
− x − l2cosθ2 + l2cosθ2,r

)2
+

1
2
kθ,1

(
θ1 − θ1,r

)2
+

1
2

kθ,2
(
θ2 − θ2,r

)2 (Eq. 2.1)  

∂E
∂x

= k1
(
x − l1cosθ1 + l1cosθ1,r

)
+ k2

(
x + l2cosθ2 − l2cosθ2,r

)

∂E
∂y

=
k1

(
x − l1cosθ1 + l1cosθ1,r

)
l1sinθ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

l2
1 − y2

√ +
k2

(
− x − l2cosθ2 + l2cosθ2,r

)
l2sinθ2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

l2
2 − y2

√ +
kθ,1

(
θ1 − θ1,r

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

l2
1 − y2

√ +
kθ,2

(
θ2 − θ2,r

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√
(Eq. 2.2)  

where θ1,r = arcsin(h/l1) and θ2,r = arcsin(h/l2) are the rotational angles of the two bars when the springs are at rest. In a specific case, 
we choose parameters as l1 = 5 mm, l2 = 7 mm, h = 3.5 mm, k1 = 0.1 N/mm, k2 = 0.08 N/mm, kθ,1 = 0.1 J/rad and kθ,2 = 0.08 J/rad 
and plot the contour of the energy landscape based on Eq. (2.1) & (2.2) (Fig. 1(b)). Two stable states have the elastic energy of ES1 = 0 J 
and ES2 = 0.148 J and sit at the bottom of the “valley”, separated by a mountain “ridge”. The minimum energy path (MEP) connects 
these two states and goes through the saddle point that is located between two “valleys”. The saddle point has an elastic energy of ET =

0.173 J. The energy difference between the saddle point and the stable state is the minimum energy barrier that we seek, which is 
0.025 J if the structure transits from the state S2 to state S1. To highlight its importance, let us suppose a simple transition path that 
directly connects two stable states in the coordinate space (x,y) (line P, Fig. 1(b)), which can be realized by indentation in experiments. 
However, such a simple path will lead to a higher energy barrier as 0.032 J compared to MEP that goes through the saddle point T 
(Fig. 1(c)). 

2.1. Binary image transition state search (BITSS) method 

To efficiently capture the saddle point, we adopt the binary image transition state search (BITSS) method that has recently been 
introduced by Avis et al. (2022). They have shown that BITSS is more reliable compared to other bracketing methods, where two 
images are manipulated until they converge to the saddle point. Compared to double-ended chain-of-states methods that can require a 
chain of more than ten intermediate states, BITSS is computation- and memory-efficient since it only involves two images. In addition, 
BITSS is less sensitive to initialization while an appropriate interpolation is commonly needed as an initial pathway estimate for 
conventional double-ended algorithms. This is particularly an issue for elastic structures where interpolations can lead to a large 
amount of internal stress, which can cause numerical issues such as converging to an incorrect pathway or divergence. Therefore, for a 
bistable elastic body with a complicated transition path, BITSS can be a general and effective method to locate the saddle point. 
Additionally, the amenability of BITSS to adaptive remeshing could allow integration with commonly used adaptive finite element 
methods, however this will not be explored within this work. 

Specifically, we study a mechanical system whose elastic energy E is a scalar function of n DoF as E = E(X), in which X = [x1; x2;

…; xn] is the n-dimensional space of the system. Particularly, in this study, the components of X take the Cartesian coordinates of n/2 
nodes in the two-dimensional (2D) meshed structures. In this n-dimensional space X, the column vectors S1 and S2 represent the two 
stable states while the vector T represents the saddle point (transition state). BITSS is initiated with two images X1 and X2 sitting in two 
basins of attraction that are separated by a “ridge”. As mentioned, each image can represent an arbitrary state in the n-dimensional 
space as long as its components conform to the prescribed boundary conditions. These two images in the initial stage can be chosen as 
stable states S1 and S2, but it is not necessarily required. To make the two images converge to the saddle point, BITSS minimizes the 
total energy of two images together with two constraints on the Euclidean distance between the two images and their energy dif
ference. These constraints ensure that neither image can cross over the “ridge” and slide to one of the local minima. Thus, the total 
energy in BITSS algorithm is written as 

EBITSS(X1, X2) = E1(X1) + E2(X2) + ke[E1(X1) − E2(X2)]
2

+ kd[d(X1, X2) − di]
2 (Eq. 2.3)  

where E1 and E2 are the elastic energy of two states and ke and kd are spring stiffness that measures the strengths of distance and energy 
difference constraints, d is the Euclidean distance between two images d =‖ X1 − X2‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(X1 − X2) ⋅ (X1 − X2)

√
and di is constrained 

distance specified at the i-th iteration. This constrained distance is incrementally reduced as di = (1 − f)di−1, in which 0 < f < 1 is the 
reduction factor. 

In Eq. (2.3), the BITSS energy EBITSS is a scalar function of two images X1 and X2. Therefore, its DoF is twice of the system’s DoF. At 
each iteration, under the specified constrained distance di, we minimize the BITSS energy EBITSS through finding the zeros of its 
gradient ∇EBITSS regarding the column vector [X1; X2] = [x1,1; x1,2; …; x1,n; x2,1; x2,2; …; x2,n] where xi,j is the j-th DoF of the i-th image as 

∇EBITSS = ∇E1 + ∇E2 + 2ke(E1 − E2)(∇E1 − ∇E2) + 2kd(d − di)∇d (Eq. 2.4) 

Specifically, we resort to the root-finding function fsolve in MATLAB to calculate the zeros of the gradient ∇EBITSS. During the 
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minimization, it is desired that the magnitude of each term in Eq. (2.4) is relatively the same to guarantee a successful search. To do 
that, we keep updating the values of ke and kd every three callings of the BITSS energy EBITSS based on the following formula (Avis et al., 
2022) 

ke =
α

2EB
(Eq. 2.5)  

kd = max

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ ∇E1 ‖2 + ‖ ∇E2 ‖2

√

2
̅̅̅
2

√
βdi

,
EB

βd2
i

)

(Eq. 2.6)  

where EB is the estimated energy barrier between two images and α and β are two parameters. The estimated energy barrier EB is 
calculated as the difference between the highest energy along a linear interpolation of two images and the average energy of two 
images. It is worth mentioning here that for mechanical systems with multiple saddle points, minimization of the BITSS energy EBITSS 
typically reaches the saddle point with the lowest energy barrier because the expression (Eq. (2.3)) contains the energies of two images. 

For the bistable von-Mises truss, the two images are initiated at the two stable states, and the parameters are set as f = 0.5, α = 10 
and β = 0.1, as recommended by previous work (Avis et al., 2022). However, as will be shown later, it may be necessary to tune the α 
and β parameters to prohibit the image initiated in the valley with higher energy (hence lower energy barrier) from crossing over the 
ridge. As shown in Fig. 1(d) for the bistable von-Mises truss, the two BITSS images gradually approach each other and successfully 
converge to the saddle point. It is worth mentioning that in this case the trajectories of two images during iterations are close to the 
MEP, however, it is not a general behavior for most cases (Avis et al., 2022), as will be shown later in Fig. 8(d). Therefore, it is necessary 
to employ a new numerical algorithm to find the MEP. 

2.2. Nudged elastic band (NEB) method 

Once we successfully pinpoint the saddle point, we employ the nudged elastic band (NEB) algorithm to search the MEP accordingly. 
NEB is a popular two-ended method that has been widely used in calculating diffusion processes, dislocations, solid-solid trans
formations and chemical reactions (Ásgeirsson et al., 2021; Bohner et al., 2014; Chen et al., 2019; Garrido Torres et al., 2019; Ghasemi 
et al., 2019; Ghasemi and Gao, 2020; Kolsbjerg et al., 2016; Rao et al., 2011; Sheppard et al., 2012; Si et al., 2023; Sobie et al., 2017; 
Xie et al., 2004). Here we give a brief review of the NEB algorithm and refer readers to previous works for the details of the method 
(Henkelman et al., 2000; Henkelman and Jónsson, 2000; Trygubenko and Wales, 2004). In the NEB algorithm, a string of N images 
[R1; R2; …; RN ], in which the column vector Ri denotes to the i-th image with n DoF, is used to represent the transition path in a 
discretized manner, and the two stable states are always the first and last images R1 and RN, respectively. Meanwhile, the rest images 
are allowed to move. Each image is connected to its adjacent two images through an elastic band with spring stiffness kNEB. As the NEB 
algorithm advances, these N images are gradually relaxed from the initial interpolation between two stable states to the MEP through 
reducing the exerted force of each image to zero. On the i-th image Ri, the exerted force can be divided into a parallel and perpendicular 
component based on the tangent direction of this image τi, as shown in Fig. 1(f). Along the parallel direction, the force is provided by 
the elastic band with the equation 

F‖ = kNEB( ‖ Ri − Ri−1‖ − ‖Ri+1 − Ri‖) (Eq. 2.7) 

When the parallel force F‖ is reduced to zero, it guarantees that the images are distributed uniformly along the transition path to 
well represent the MEP. Here, we further utilize the image climbing technique on the image with the highest energy along the string 
Rimax (Henkelman et al., 2000) to capture the saddle point and compare it to the BITSS results for consistency. For this image Rimax , its 
parallel force takes the form of the inverted parallel component of the energy landscape gradient as −∇E(Rimax ) + 2[∇E(Rimax ) ⋅ τimax ]τimax 

instead of Eq. (2.7). Driven by this force, this image will climb uphill to find the saddle point. 
For the perpendicular component F⊥, it comes from the projection of the force −∇E(Ri) along the direction perpendicular to the 

tangent vector τi as −∇E(Ri) + [∇E(Ri) ⋅ τi]τi (Fig. 1(f)). Since the MEP always follows the energy landscape gradient, the reduction of 
the perpendicular component F⊥ to zero ensures that the string of images converges to the MEP. To incrementally decrease the force 
magnitude, we utilize the fsolve function in MATLAB. 

The implementation of NEB relies on an accurate estimation of the tangent vector. Here, for the i-th image Ri, its tangent vector τi is 
estimated based on its two adjacent images as 

ti =
Ri − Ri−1

‖ Ri − Ri−1‖
+

Ri+1 − Ri

‖ Ri+1 − Ri‖

τi =
ti

‖ ti‖

(Eq. 2.8) 

Though powerful, the NEB method may have difficulty in converging especially when the energy landscape is complicated. The 
convergence of the NEB calculation is sensitive to the initial guess of the string of the images. To resolve this issue, we utilize the saddle 
point calculated from BITSS to provide a good initialization (Avis et al., 2022; Li et al., 2021a). Specifically, we apply the gradient 
descent (GD) algorithm twice. Each GD algorithm begins with one image from the BITSS results. As a result, the “slide-down” from the 
saddle point to both stable states can be captured, and the iterative results during the GD algorithm are chosen as the initial guess for 
the NEB method. Following this initialization strategy and choosing the parameters as N = 12 and kNEB = 0.1 N/mm, we successfully 
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capture the MEP of the bistable von-Mises truss as shown in Fig. 1(e), in which the continuous MEP is obtained through the 
spline-interpolation of the images. 

2.3. Integration of BITSS and NEB into FEM 

The proposed computational framework has been verified in a simple bistable case with two degrees of freedom (DoF). To 
demonstrate its capability in capturing the saddle point and MEP in elastic continua with large numbers of DoF, we integrate BITSS and 
NEB algorithms into finite element method (FEM) that is broadly adopted to model the elastic behaviors of solids. For simplicity, we 
focus on 2D plane strain problems in which the elastic domain is discretized into linear triangular meshes. In FEM, the DOF are nodal 
spatial coordinates of triangular meshes. For a total number of nodes nFEM, we assemble the nodal coordinates into a 2nFEM multi- 
dimensional image X as X = [x1; y1; x2; y2; …; xnFEM ; ynFEM ] where xi and yi are the x- and y-coordinate of the i-th node. For the mate
rial property, we assign a hyper-elastic model with its strain energy density U written as 

U =
1
2

μ
[
tr

(
FT F

)
− 2

]
− μln[det(F)] +

1
2

λ{ln[det(F)]}
2 (Eq. 2.9)  

where μ and λ are the shear modulus and Lame constant, respectively, and F is the deformation gradient tensor in plane strain situ
ations. By integrating the strain energy density over one element and assembling the strain energy of all elements together, one can 
calculate the total elastic energy of the structure E(X) and its gradient ∇E(X) with respect to the image X, which are necessary input for 
BITSS and NEB algorithms. For prescribed boundary conditions, special treatment is required for the nodes at these boundaries. Here, 
for simplicity, we only focus on the displacement boundary conditions. For nodal coordinates that are constrained, the components of 
the force −∇E along these DoF are assigned to be zeros so that these nodes do not move along constrained directions as the algorithms 
proceed. 

3. Bistable buckled beam with clamped rotational ends 

In this section, we utilize a bistable buckled beam with two rotational ends to demonstrate the capability of the introduced nu
merical platform. Extensive studies have been performed to investigate the mechanical behaviors of this bistable system such as its 
static behaviors and dynamic snap-through. G. Wan, et al. established the stability diagram of the bistable buckled beam in terms of the 
rotational angles of two clamped ends (Wan et al., 2019). Gomez, et al. studied the effect of the clamped angles on the bifurcation type 
of bistable beams and demonstrated the existence of the critical slowing down phenomenon during the dynamic snap-through when 
the buckled beam undergoes saddle-node bifurcation (Gomez et al., 2017b). Sano, et al. investigated the bistability of the buckled 
beam with frictional contact (Sano et al., 2017) or pinned boundary condition (Sano and Wada, 2018). Abbasi, et al. employed 
arc-length method to study the transition path of a bistable buckled beam that responds to magnetic fields (Abbasi et al., 2023). Wiebe 
and Virgin utilized the dynamic transition between two stable states to capture the saddle point (Wiebe and Virgin, 2016). B. Radisson, 
et al. examined the dynamic snap-through under symmetric boundary condition (Radisson and Kanso, 2023). By controlling the shape 
transition through external stimuli such as magnetic fields, bistable beams can be applied as smart switches in electric circuits (Hou 
et al., 2018) or logic units for information operation (Pal and Sitti, 2023). The results based on these previous investigations make the 
bistable buckled beam an ideal candidate to verify our computational methods. Although existing beam theory (Liu et al., 2021; Zhang 
et al., 2020) or discrete elastic rod method (Huang et al., 2023) can accurately predict behaviors of buckled beams, we use FEM in the 
current paper since it can work for general elastic solids. The integration of BITSS and NEB algorithms into these beam models will be 
explored in future studies. 

As schematically shown in Fig. 2(a), a straight beam with two clamped ends has its thickness t = 2 mm and original length L = 100 
mm. The parameters of the material property are chosen to be μ = 1 MPa, λ = 3 MPa. The geometric domain is discretized into 
triangular meshes. The mesh sizes are 1 mm and 0.5 mm along the length and thickness direction of the beam, respectively. After an 

Fig. 2. (a) Schematic illustration of the geometry of a buckled beam and two stable shapes that bend either upwards (S1, red) or downwards (S2, 
blue). (b) Mirror symmetry of two stable shapes and the corresponding energy landscape when two ends do not rotate (ϕ1 = 0◦, ϕ2 = 0◦). (c) Two 
stable shapes of the buckled beam with asymmetric energy landscape when one end rotates counterclockwise (ϕ1 = 0◦, ϕ2 = 5◦). In (b) and (c), the 
red color denotes to S1 while the blue denotes to S2. 
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axial compression, the distance between two ends becomes l, and the beam becomes bistable by buckling either upwards (S1) or 
downwards (S2). The compressive strain is defined as εc = (L − l)/L. It is the well-known Euler buckling instability. To facilitate the 
analysis, we build a Cartesian coordinate whose origin is located at the center of the un-deformed beam and the x-axis is parallel to the 
centerline of the un-deformed beam. 

If the two clamped ends do not rotate after the compression (ϕ1 = 0◦, ϕ2 = 0◦), the two buckled shapes are mirror symmetry to each 
other with respect to the x-axis (Fig. 2(b)). In addition, if we plot the elastic energy E of the beam versus the y-coordinate of the beam’s 
center yc along the MEP, the energy landscape also contains mirror symmetry and the two shapes have the same elastic energy, since 
two buckling directions are equally preferred (Fig. 2(b)). In this situation, the energy landscape is termed as symmetric. 

To control the bistable behaviors and energy landscape of the buckled beam, one can rotate these clamped ends (Wan et al., 2019). 
For instance, as shown in Fig. 2(c), by rotating the right end clockwise and keeping the left end unchanged (ϕ1 = 0◦, ϕ2 = 5◦), the 
elastic energy of the upwards shape (S1) decreases while the energy of the downwards shape (S2) increases, breaking the mirror 
symmetry of both configurations and energy landscape. Due to the end rotation, the state S1 is energetically preferred with a lower 
energy level and a higher energy barrier while the state S2 becomes “metastable” with a higher energy level and a lower energy barrier. 
Accordingly, the energy landscape becomes asymmetric. Both symmetric and asymmetric energy landscapes will be examined through 
our exploration algorithms. 

3.1. Symmetric energy landscape 

3.1.1. Asymmetric transition path 
We first explore the energy landscape of a bistable buckled beam when its two ends do not rotate after compression. The 

compressive strain εc is set as 1%. In this situation, the two stable shapes are symmetric with respect to both x- and y-axes. To pinpoint 
the saddle point, the BITSS algorithm is first employed whose initiation is chosen as the two stable states. In the simulation, we set the 
distance rescaling parameter f = 5% and the algorithm stops when the distance between two images d is below 5% of its initial value. 
The values of two parameters α and β are chosen as α = 10, β = 0.1. 

The shapes of two images as the algorithm proceeds are shown in Fig. 3(a), in which the solid red and blue beams represent the two 
stable states S1 and S2 while the purple and orange shapes with meshes are two images during this iterative process. Initially, the two 
images hold the mirror symmetry as the measured distance between two images is close to the distance between two stable states after 
five iterations. However, as the iteration continues and the distance between the two images is shortened, the mirror symmetry is 
broken, and the two images become sinusoidal. This behavior agrees with the previous experimental and numerical efforts on point 

Fig. 3. The asymmetric transition path for a buckled beam with εc = 1%, ϕ1 = ϕ2 = 0◦. (a) The shapes of the two images during iterations in the 
BITSS method. (b) The variation of the energy of the two images every five iterations in the BITSS method. (c) The variation of the spring stiffness ke 

and kd in the BITSS method every three iterations. (d) The shapes of five images during iterations in the NEB method with spring stiffness kNEB = 1 ×
10−5 N/mm. (e) The shapes of 9 images when the NEB method converges, different colors are assigned for images for better visualization. (f) The 
MEP based on a spline-interpolation of 17 images from the NEB results in terms of yc and E. In all figures, the red and blue color represent S1 and S2, 
respectively. The green asterisk is the saddle point by averaging the two images of the last iteration in the BITSS method. The purple and orange 
color denote to the two images in the BITSS method. The black curve is the MEP, and the orange dash line is from mechanical indentation. 
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indentations of a buckled beam (Harvey and Virgin, 2015). In the end, the distance between two images will be below 5% of the initial 
distance and we take the average of the two images as approximation of the saddle point. The saddle point takes a sinusoidal shape 
with its center located at (0,0). Intuitively, the system is invariant under the mirror reflection based on y-axis, suggesting that there 
should be another saddle point that is symmetric to the current one regarding y-axis. However, the current triangular mesh introduces 
numerical bias to the ideally mirror symmetry so that two images do not converge to the other saddle point. To converge to such a 
saddle point, one could simply reverse the stacking direction of triangular meshes. 

In addition to shapes, we also show the variation of the energy of two images during the iterative process and compare them with 
the true MEP. The MEP is obtained from NEB results with more than ten images (see below). Specifically, we choose the y-coordinate of 
the beam’s center yc and the total elastic energy of the beam E to present the iterative results. As shown in Fig. 3(b), two images 
gradually climb uphill in the energy landscape and approach the saddle point as the BITSS algorithm proceeds. By averaging two 
images in the last step, we find the saddle point (green asterisk) at the highest location along the MEP, demonstrating the accuracy of 
the BITSS method. In Fig. 3(c), we output the variation of two spring stiffness values ke and kd in the BITSS method as the iteration 
proceeds to better understand the BITSS method. As the algorithm continues, ke keeps increasing and spans multiple orders of 
magnitude since the estimated energy barrier between two images becomes smaller when the two images approach the saddle point 
(Eq. (2.5)). At the same time, kd undergoes a non-monotonic change within the same order of magnitude, because the energy gradient 
also lowers as the distance between two images decreases, effectively cancelling out changes to kd (Eq. (2.6)). 

After finding the saddle point using the BITSS method, we apply the gradient descent (GD) algorithm to initiate the NEB calcu
lation. To accelerate the calculation, we start with a low number of images (N = 5) and the spring stiffness kNEB is set as kNEB = 1 × 10−5 

N/mm. As shown in Fig. 3(d), the string of five images in NEB gradually moves and converges to the MEP. We then increase the number 
of images by linearly interpolating the current results as the initial guess for NEB calculation. Specifically, we add a new image between 
each pair of adjacent images, and the value of this new image is the average of these two existing images. For instance, using NEB 
results with 5 images, we can add 4 more new images and construct an initial guess for NEB algorithm with 9 images based on this 
interpolation technique, and the results are shown in Fig. 3(e), where the images are sequentially arranged from top (S1) to bottom 
(S2). Following the MEP, the bistable buckled beam breaks its mirror symmetry and becomes sinusoidal, similar to the point inden
tation process (Harvey and Virgin, 2015). Finally, we increase the number of images N to 17 by constructing the initial guess through 
the same interpolation method and display the MEP in terms of the y-coordinate of the beam’s center yc and the elastic energy E in 

Fig. 4. The symmetric transition path for a buckled beam with εc = 1%, ϕ1 = ϕ2 = 0◦. (a) The shapes of the two images during iterations in the 
BITSS method. (b) The variation of the energy E of two images every five iterations in the BITSS method. (c) The shapes of 7 images in the NEB 
method with spring stiffness kNEB = 5 × 10−4 N/mm, different colors are assigned for images for better visualization. (d) The MEP based on a spline- 
interpolation of 13 images (circles) from the NEB results. In all figures, the red and blue color represent S1 and S2, respectively. The green asterisk is 
the saddle point by averaging the two images of the last iteration in the BITSS method. The purple and orange color denote to the two images in the 
BITSS method. The black curve is the MEP, and the orange dash line is from mechanical indentation. 
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Fig. 3(f). The image with the highest energy overlaps with the saddle point from the BITSS calculation, suggesting that the NEB and 
BITSS algorithms converge to the same saddle point. Apart from the MEP, we also apply a mechanical indentation on the beam’s center 
through displacement control and compare it with the MEP. As shown in Fig. 3f, the indentation passes through the saddle point, yet it 
is slightly different from the MEP. Based on the obtained MEP, the stable states S1 and S2 have the same energy of ES1 = ES2 = 0.0113 
mJ while the saddle point T has the energy of ET = 0.0204 mJ, leading to an energy barrier of 0.0091 mJ. 

3.1.2. Symmetric transition path 
Apart from the asymmetric transition path in which the buckled beam becomes sinusoidal, the buckled beam can also follow a 

symmetric transition path passing through a saddle point with symmetric configuration. Such a symmetric transition path can be 
revealed in experiments by indenting a clamped beam with symmetric constraint (Neville et al., 2020, 2018) or with axial strain that is 
close to the Euler’s buckling strain (Pandey et al., 2014). To prove the versatility of the proposed numerical framework, we also capture 
this symmetric transition path. In this situation, this symmetric saddle point contains higher elastic energy than the sinusoidal saddle 
point and hence a direct implementation of BITSS algorithm does not find such a symmetric configuration. Therefore, we prevent the 
middle section of the beam (x = 0) from any displacement along x-direction to force the beam to stay in mirror symmetry with respect 
to y-axis during the transition. 

Under the symmetric constraint, the iterative process of BITSS is shown in Fig. 4(a). Initially, as the distance between two images 
decreases, two images contain mirror symmetry to each other regarding the x-axis. However, near the end of the iterations, the image 
that starts from the state S2 (bottom, orange) flips from bending downwards to upwards. This change is also clearly shown in the 
energy variation of two images during iterations. As shown in Fig. 4(b), when two images get close to the saddle point (green asterisk), 
one image deviates from the MEP slightly while the other image still follows the MEP as the iteration proceeds. This behavior is caused 
by the fact that the saddle point in this situation is cosine-like rather than being straight – the beam favors bending instead of an axial 
compression to lower its elastic energy even under the symmetric constraint (Fig. 4(a)). Therefore, the mirror symmetry between two 
images with respect to the x=axis initially needs to be broken near the end of the iterations. 

The NEB results with 7 images are shown in Fig. 4(c). Along the MEP from the stable shape that bends upwards (S1, red) to 
downwards (S2, blue), the buckled beam keeps its bending direction in its middle part yet flips its bending direction near two ends 

Fig. 5. The transition path for a buckled beam with εc = 1%, ϕ1 = 0◦, ϕ2 = 5◦ (a) The shapes of the two images during iterations in the BITSS 
method. (b) The variation of the energy E of two images every five iterations in the BITSS method. (c) The shapes of 9 images in the NEB method 
with spring stiffness kNEB = 1 × 10−5 N/mm, different colors are assigned for images for better visualization. (d) The MEP based on a spline- 
interpolation of 17 images (circles) from the NEB results. In all figures, the red and blue color represent S1 and S2, respectively. The purple and 
orange color denote to the two images in the BITSS method. The green asterisk is the saddle point by averaging the two images of the last iteration in 
the BITSS method, and the black curve is the MEP. 
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before reaching the saddle point. However, after passing the saddle point, the buckled beam begins to flip the curving direction in this 
middle part to release the elastic energy until it meets another stable shape (S2). By linearly interpolating these 7 images to 13 images 
through the same technique and using them as initial guess for NEB, we can capture the MEP more accurately by increasing the image’s 
number along this pathway. As shown in Fig. 4(d), the MEP with 13 images is plotted in terms of yc and E, which is also close to the 
indentation through displacement control. Based on this result, the energy barrier of this symmetric transition path is 0.0193 mJ, 
which is higher than that of the asymmetric transition path. 

3.2. Asymmetric energy landscape 

The two stable states of a buckled beam can have different elastic energies if we rotate one clamped end. Here we study a 
representative case where the left end of the beam does not rotate ϕ1 = 0◦ while the right end rotates clockwise with ϕ1 = 5◦. The 
compressive strain εc is also set as 1%. Two asymmetric stable buckling configurations can be identified, which are shown in red and 
blue in Fig. 5(a). 

The iterations of the BITSS method are shown in Fig. 5(a). In this case, the mirror symmetry is lost for both stable states, and there is 
only one sinusoidal saddle point that exists – its mirror reflection disappears when the boundary symmetry is lost. The energy vari
ations of two images during the iterations are shown in Fig. 5(b) together with the MEP in terms of yc and E. The MEP is now 
asymmetric with the state S1 containing lower elastic energy and a higher energy barrier while the state S2 having higher elastic energy 
and a lower energy barrier. Accordingly, the image that starts from S1 has larger change between adjacent iterations compared to the 
other image, and two images successfully converge to the saddle point. The NEB results based on 9 images are displayed in Fig. 5(c) to 
illustrate the shape change of the buckled beam along the MEP of this asymmetric energy landscape. Starting from the state S1, the 
deflection occurs mainly near the left end when approaching the saddle point. After reaching the saddle point, the buckled beam 
deflects downwards near its right end to decrease the elastic energy until it becomes the other stable shape (S2). Apart from the shape 
change, the energy variation of the buckled beam along the MEP is shown in Fig. 5(d) based on the NEB calculation with 17 images. 
The stable state S1 has elastic energy of ES1 = 0.0084 mJ while the stable state S2 has energy of ES2 = 0.0144 mJ. The saddle point has 
an energy of ET = 0.0171 mJ, leading to an energy barrier of 0.0087 mJ for S1 and 0.0027 mJ for S2. 

We would like to point out here that, for asymmetric energy landscape where the two stable states have different energies and thus 
energy barriers, the parameters α and β used in the BITSS algorithm sometimes need to be adjusted so that two images can converge to 
the saddle point. The recommended values α = 10, β = 0.1 work well for many cases as demonstrated by the previous work (Avis et al., 
2022) and all examples mentioned above. However, when the difference between energy barriers becomes significant, the image that 

Fig. 6. The transition path for a buckled beam with εc = 5%, ϕ1 = 17◦, ϕ2 = 0◦. The shapes and energy of the two images during iterations in the 
BITSS method are shown in (a) and (b) when α = 10, β = 0.1, in (c) and (d) when α = 20, β = 0.1, respectively. In all figures, the red and blue colors 
denote to S1 and S2 states while the purple and orange colors denote to two images in the BITSS method, respectively. The black curve is the MEP, 
and the green asterisk is the saddle point captured by the BITSS method. 
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initiates from the meta-stable state will cross over the energy barrier if these recommended values are chosen. For instance, for the 
same straight beam, when we axially compress it with strain εc = 5% and rotate its left end clockwise with ϕ1 = 17◦ (Fig. 6(a)), its two 
stable states have different energy levels of ES1 = 0.0391 mJ and ES2 = 0.0878 mJ. In this case, the captured saddle point through a 
successful implementation of the BITSS method has energy of ET = 0.0957 mJ. Here the energy barriers for the states S1 and S2 are 
0.0566 mJ and 0.0079 mJ, respectively, and the difference in energy barriers is 0.0487 mJ, which is 7 times higher than that of the 
previous example (0.006 mJ). As shown in Fig. 6(a)-(b), the image that starts from S2 will get over the energy barrier and converge to 
the stable state S1 with the other image under the recommended values of α and β in the BITSS algorithm. 

To resolve this issue, we increase the magnitude of the energy penalty term ke(E1 − E2)
2 in the total energy in BITSS to ensure that 

the two images are located at different sides of the saddle point during iterations. Since the spring stiffness ke is linearly related to the 
parameter α (Eq. (2.4)), we choose a larger value as α = 20 instead of the recommended value. As shown in Fig. 6(c)-(d), with the 
adjusted parameters, the two images stay at two sides of the saddle point as the BITSS algorithm proceeds and converge to the saddle 
point in the end, suggesting that this parameter adjustment technique can be utilized in the future if one image slides off the “ridge”. It 
is also worth noting that, while the BITSS parameters may need some adjustments depending on the systems of interest, the method 
itself is robust. Typically, a reasonable range of choices for the parameter values will converge to the same result. 

4. Bistable unit of mechanical metamaterials 

In this section, we focus on another type of 2D bistable structure that features two tilted straight beams with clamped ends (Fig. 7 
(a)). In addition to the stress-free configuration (S1), this structure has another stable shape when two beams are compressed and 
sheared at one end (S2, Fig. 7(a)), which can be obtained through a vertical indentation of the structure’s top edge. Such a bistable 
design serves as a building unit for multi-stable mechanical metamaterials that have very promising potentials in applications of 
impact absorption (Shan et al., 2015), logic operation (Jiang et al., 2019; Wu and Pasini, 2023), etc., and the information of energy 
barrier is significant in determining the performance of metamaterials in these applications. Therefore, we employ the BITSS and NEB 
algorithms to seek the saddle point and MEP of this type of structure. The previous study has demonstrated that the bistable behavior 
depends heavily on the geometry (Shan et al., 2015), and here we investigate two situations with qualitatively different geometric 
features. In the first situation, the two elastic beams have the same geometric parameters including the thickness w and the tilting angle 
ψ . As a result, the structure contains mirror symmetry, and the two beams are under the same deformation along the MEP, similar to 
the indentation process in the previous report (Shan et al., 2015). In the second situation, we break the mirror symmetry by assigning 
two beams with different width and tilting angles. This situation has a complicated energy landscape and an unintuitive transition path 
that will be shown later, which cannot simply be reproduced through the conventional mechanical indentation. 

Fig. 7. The symmetric transition path for a bistable unit. (a) Illustration of the geometric parameters and two stable shapes of a bistable unit with 
symmetric geometry (ψ1 = 40◦, ψ2 = 40◦). (b) The shapes of one tilted beam of two images during iterations of the BITSS method when α = 10 and 
β = 0.1. (c) The energy E of two images every three iterations in the BITSS method along with the MEP. (d) The shapes of 5 images out of 9 images in 
the NEB method with spring stiffness kNEB = 1 × 10−3 N/mm. (e) The MEP based on a spline-interpolation of 17 images (circle) from the NEB results. 
In all figures, the red and blue color represent the stress-free and self-stressed shapes, respectively. The green asterisk is the saddle point by 
averaging the two images of the last iteration in the BITSS method. The purple and orange color denote to the two images in the BITSS method. The 
black curve is the MEP, and the orange dash line is the mechanical indentation. 
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4.1. Symmetric transition path 

We first study the case when the two beams have the same geometry. To generate the bistable behaviors, the width w1, w2 and the 
tilting angles ψ1, ψ2 are chosen as w1 = w2 = 0.58 mm, ψ1 = ψ2 = 40◦. The height of the beam is H = 3.2 mm. For simplicity, the two 
beams have the same material property as μ = 1 MPa, λ = 3 MPa. The bottom edges of the beams are clamped while the top ends are 
connected to a rigid block with material property μ = 38.5 MPa, λ = 57.7 MPa. The geometric domain is discretized into triangular 
meshes. For the beams, the mesh sizes are 0.1 mm and 0.2 mm along the length and width directions, respectively. For the top block, 
the size of the meshes is roughly 0.3 mm. We set up a top block that is far more rigid than the beams, ensuring that the boundary 
condition of the top end is close to being clamped. We build a Cartesian coordinate whose origin is located with equal distance to the 
centers of the beam’s bottom edges. At the same time, the x-axis is built along the bottom edge while the y-axis is along the vertical 
direction. 

To obtain the self-locked shape S2, we first indent the structure at the top edge of the block to a certain distance of 5 mm and then 
relax this displacement boundary condition to let the structure seek its local equilibrium nearby. As shown in Fig. 7(a), two stable 
shapes keep the mirror symmetry with the same deformation for the two tilted beams. Using the BITSS algorithm with parameters α =
10, β = 0.1, we can capture the saddle point, and the shapes of two images during iterations are shown in Fig. 7(b). For clarity, we only 
show the deformation of one tilted beam since the mirror symmetry is kept in the BITSS iterations. As BITSS continues, the image that 
initiates at the stress-free shape bends significantly downwards in its middle part and undergoes larger deformation compared to that 
of the other image. In the meanwhile, the image that starts from the self-stressed state initially bends downwards because the 
constraint applied in the BITSS requires it to maintain a certain distance to the top image. However, it later bends upwards and ap
proaches the saddle point. This shape change can also be clearly seen if we plot the energy of two images during iteration together with 
the MEP in terms of the y coordinate of the center point of the block’s bottom edge ym. As shown in Fig. 7(c), the top image (purple 
dots) keeps climbing uphill towards the saddle point while the bottom image (orange dots) first moves away from the saddle point and 
then approaches the saddle point when the top image is close. 

Fig. 8. The asymmetric transition path for a bistable unit with ψ1 = 40◦, ψ2 = 45◦. (a) The shape of the stress-free and self-stressed shapes of the 
bistable unit. (b) The saddle point (green) captured by the BITSS method when α = 10, β = 0.1, f = 5%. (c) The shapes of 7 images from the NEB 
results with spring stiffness kNEB = 4 × 10−3 N/mm, different colors are assigned for images for better visualization. (d) The MEP (black curve) based 
on a spline-interpolation of 13 images from the NEB results. The purple and orange circles denote to the two images in the BITSS method. The figure 
includes the variation of ym, rotational angle φ and elastic energy E along 13 images in the NEB results and the relationship between E and ym along 
the MEP. In all figures, the red and blue colors denote to the stress-free (S1) and self-stressed states (S2), respectively. 
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The approximated saddle point is used to initiate the NEB method with 9 images, and the results are shown in Fig. 7(d), where one 
tilted beam is displayed because of the mirror symmetry. Following the MEP from the stress-free shape, the beam initially develops a 
bending curvature downwards in its middle part as the top end moves downwards and reaches the saddle point with a sinusoidal-like 
configuration. After passing the saddle point, the beam relaxes itself as the top end continues to move until it becomes the self-stressed 
stable state. The energy variation along the MEP is shown in Fig. 7(e) based on the NEB results using 17 images. The stable states have 
energy of ES1 = 0 mJ and ES2 = 0.2997 mJ while the saddle point contains elastic energy of ET = 0.3049 mJ. Accordingly, the energy 
barriers for the stress-free (S1) and self-stressed (S2) states are 0.3049 mJ and 0.0052 mJ, respectively. 

4.2. Asymmetric transition path 

For a bistable unit with a symmetric configuration as presented in the last subsection, its saddle point and the MEP can also be 
obtained through indenting the top edge of the block since the structure keeps the mirror symmetry along the transition path (Fig. 7 
(e)). The indentation can also be applied to the center of the buckled beam to obtain the saddle point, as shown in Figs. 3(f) and 4(d), 
though the indentation is slightly different from the MEP in these two cases. However, if the bistable structure has asymmetric ge
ometry, its MEP can be complex and un-intuitive and thus cannot be captured through a simple mechanical indention. Such asym
metric configurations and transition path may offer advantages in controllable, directional force output in robots when bistable 
structures act as actuators (Wang et al., 2023). Therefore, it is necessary to call for a robust method instead of indentations in these 
situations to find the saddle point and transition path. 

To demonstrate the capability of our proposed numerical method in asymmetric cases, the bistable unit is designed to have two 
tilted beams with different geometric parameters. Specifically, two beams have different width as w1 = 0.58 mm, w2 = 0.55 mm and 
tilting angles as ψ1 = 40◦, ψ2 = 45◦, respectively. The height H is chosen as H = 3.2 mm. The two beams have the same mesh divisions, 
which are 50 and 4 along the length and width directions, respectively. The mesh size of the top block is around 0.3 mm. To obtain the 
self-stressed equilibrium shape, we first compress the top edge of the structure downwards through displacement control and then 
remove this constraint to relax the structure to a stable shape nearby through static analysis. With such an initial geometry, the two 
beams have different deflections in the self-stressed shape, forming a tilting angle φ = 3.34◦ between the top edge of the rigid block and 
the horizontal direction (Fig. 8(a)). This tilting angle is determined through coordinates of two nodes on the top edge. The two stable 
states have elastic energies of ES1 = 0 mJ and ES2 = 0.307 mJ. 

We initiate the BITSS algorithm with two stable states, and the parameters are chosen as α = 10, β = 0.1, f = 5%. Unlike the previous 
examples, in this case, the two images during the BITSS algorithm do not follow the MEP, as shown in Fig. 8(d). Averaging the two 
images in the last iteration, we obtain the saddle point whose configuration is closer to the self-stressed state with a smaller tilting angle 
φ = 0.33◦ (Fig. 8(b)). The saddle point contains elastic energy of ET = 0.319 mJ, resulting in energy barrier of 0.319 mJ and 0.012 mJ 
for S1 and S2, respectively. Employing the NEB method with 13 images and kNEB = 4 × 10−3 N/mm, we find the MEP based on the 
captured saddle point and reveal the shape change along this transition path in Fig. 8(c). In addition, a quantitative representation of 
this MEP can be found in Fig. 8(d) in which the elastic energy E, the y-coordinate of the center of the block’s bottom edge ym and the 

Fig. 9. Comparison between the NEB results in the introduced numerical framework (unfilled shapes) and the NEB results that are initiated with a 
linear interpolation between two stable states (colored shapes). In both cases, the image number is 7 and the spring stiffness kNEB = 4 × 10−3 N/mm. 
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rotating angle φ of these images are plotted versus the image’s label in a sequential manner. 
Following the MEP from the stress-free shape, the left beam with ψ1 = 40◦ first bends downwards while the right beam with ψ2 =

45◦ bends upwards initially. As a result, the rigid block moves downwards with decreasing ym and rotates counterclockwise with 
increasing angle φ (Fig. 8(d)). The largest rotational angle φ is 31.7◦. As the left beam becomes sinusoidal, the right beam begins to 
bend downwards. During this stage, the rigid block starts to rotate clockwise with decreasing φ as it continues to move downwards 
with decreasing ym. Unlike the non-monotonic variation of the angle φ, the elastic energy E keeps increasing before the structure meets 
its saddle point. After passing the saddle point, the structure decreases its elastic energy E when the rigid block again rotates coun
terclockwise with increasing φ to reach the self-stressed shape. 

The implementation of the NEB algorithm can be highly nonlinear, and a successful search for the MEP depends on good initial 
guess and appropriate choose of the spring stiffness kNEB. In our numerical framework, we exploit the BITSS results to provide good 
initial guess for the NEB method to ensure good convergence. Such a treatment becomes necessary when the MEP deviates significantly 
from a linear interpolation between two stable states. For instance, for the asymmetric bistable unit that is studied in this section, the 
NEB method with 7 images requires only 77 iterations to converge to the MEP based on the BITSS results. However, using the same 
number of images and spring stiffness kNEB, the NEB fails to converge to the MEP after 2000 iterations if a linear interpolation between 
two stable states is chosen as the initial guess (Fig. 9). Considering that the BITSS method only requires two images to capture the 
saddle point, which is cheap in both storage and computational time, our numerical pipeline is more efficient than a direct imple
mentation of the NEB algorithm that is initiated with a linear interpolation between two stable states. 

4.3. Experimental validation 

The predicted saddle point and the MEP will not only offer the energy barrier quantitatively but also point out an efficient pathway 
along which a bistable structure can transition from one stable state to the other. This knowledge becomes even more valuable for 
bistable structures with a complicated, unintuitive MEP. Here, based on the asymmetric bistable unit that is presented in the last 
subsection, we experimentally validate that the MEP acquired through our numerical framework can serve as useful guidance to a 
successful shape transition, which cannot be achieved through an intuitive uniaxial compression. 

Specifically, we fabricate a bistable unit with asymmetric geometry through laser-cutting of cured polydimethylsiloxane (PDMS, 
SYLGARD® 184, synthesized by mixing the base and curing agent at a 10:1 weight ratio; Sigma-Aldrich) films using a CO2 laser (VLS 
2.3, University Laser System, Norman, CT). The bistable PDMS structure contains two tilted beams with the following geometric 
parameters: w1 = w2 = 1 mm, ψ1 = 45◦, ψ2 = 50◦, H = 7 mm, and a uniform thickness of 3 mm. The two beams are connected by a T- 
block and a U-block at their top and bottom ends, respectively. For the shape transition, we place the PDMS structure horizontally on a 
high-density polyethylene (HDPE) substrate with negligible friction to rule out the effect of gravity. Stiff wood bars are used to push the 
top edge to control the deformation of the structure. Please note that we paint the top surface of the PDMS structure using a black 
marker to enhance the contrast for imaging purposes, and we assume that the very thin layer of paint has negligible effect on the shape 
transition. 

In simulation, only a 2D plane strain case with the same geometry is considered for simplicity, and the material property is set as μ 
= 1 MPa and λ = 3 MPa. The bottom edge of the structure is clamped to avoid rigid body motion, and the geometric domain is divided 
into triangular meshes. The two tilted beams have the mesh divisions as 50 and 4 along their length and width directions, respectively, 
whereas the mesh size of the rest domain is around 0.7 mm. To obtain the self-stressed state (S2), we uniaxially compress the top edge 
of the structure with 6 mm through displacement control and then remove this boundary condition to let the structure relax itself to a 

Fig. 10. Experimental validation of the MEP from the proposed numerical framework. (a) The shapes of 7 images along the MEP. The red and blue 
colors denote to the stress-free and self-stressed states, respectively. (b) The successful shape transition in the experiment following the MEP. (c) 
Under a pure compression in the experiment, the bistable unit bounces back to the stress-free shape once the constraint is removed. The scale bar for 
images in (b) and (c) is 10 mm. 
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stable shape nearby through static analysis. In the BITSS algorithm, the parameters are chosen as α = 25, β = 0.1 and f = 5%. In the NEB 
method, we use 7 images, and the spring stiffness is set as kNEB = 3 × 10−5 N/mm. 

Both experimental and simulation results show that the structure has a self-stressed stable shape (vii in Fig. 10(a) and (b)) in 
addition to the stress-free shape (i in Fig. 10(a) and (b)). The MEP obtained in the simulation is shown in Fig. 10(a). Following the MEP, 
the top block of the structure undergoes both translational and rotational motion as the two beams bend downwards sequentially, 
which is similar to the previous example. Guided by this numerical result, we first indent the right half of the top surface of the block 
using one stiff wood bar to rotate the top block clockwise (ii and iii in Fig. 10(b)). Then we use another wood bar to push the left half of 
the top surface to induce counterclockwise rotation of the top block (iv-vi in Fig. 10(b)), while maintaining the force exerted on the 
right half from the wood bar. Finally, we remove the two bars and let the structure relax to the self-stressed state (vii in Fig. 10(b) and 
supplementary Video 1). We run additional experiments to verify that the reconfiguration process is robust, and the self-stressed state 
is stable even after 25 s relaxation (supplementary Video 3). However, if we employ an intuitive strategy by directly compressing the 
top surface without rotating the top block, the structure will bounce back to the initial stress-free state once the bar is withdrawn 
(Fig. 10(c) and supplementary Video 2). Such a failure to complete the shape transition is observed under various compression depth 
and speed, which is also supported by finite element simulation in commercial software ABAQUS based on dynamic analysis (top row 
in Fig. 11). The reason can be attributed to the fact that the pure compression cannot help the structure reach the self-stressed stable 
shape due to the non-equilibrium stress even the structure has crossed the “ridge” and got close to the local minimum in the energy 
landscape. With this specific geometry, the structure has an energy of 0.794 mJ at the meta-stable state (S2). The energy of the 
transition state is 0.838 mJ, leading to an energy barrier of 0.044 mJ. When the structure is compressed at 12 mm, it has an energy of 
0.847 mJ, whose energy difference from S2 (0.053 mJ) is higher than the energy barrier. As a result, once the external constraint is 
lifted, the extra elastic energy compared to the meta-stable state (S2) will convert to kinetic energy and drive the structure to cross over 
the small energy barrier and move to the stress-free state (S1) with a lower elastic energy and higher energy barrier (0.838 mJ). To test 
the kinetic effect in the shape transition, we further run a static simulation using ABAQUS and find the structure will converge to S2 
(bottom row in Fig. 11). The energy barrier of the bistable metamaterials is known to depend on geometries of the structures (Shan 
et al., 2015). Thus, it is of great interest in exploring the geometrical parameter space to optimize the energy barrier for easy and robust 
reconfigurations, which will be conducted in future studies. 

5. Conclusion 

In this work, we introduce a robust computational framework by integrating the BITSS and NEB algorithms into FEM to find the 
saddle point and the associated MEP of bistable elastic continua. In this numerical pipeline, the BITSS algorithm that manipulates two 
images is first employed to pinpoint the saddle point. Then we use gradient descent algorithm based on the captured saddle point to 
initiate the NEB method that relaxes a string of images to converge to the MEP. We successfully verify the performance of the proposed 
framework in two representative cases including bistable buckled beams and bistable units from mechanical metamaterials, under 
both symmetric and asymmetric conditions. The obtained saddle point and MEP can not only provide the information of the energy 
barrier, which offers quantitative evaluation of the performance of bistable structures, but also point out an efficient transition 
pathway that guides the shape transition of bistable structures under either mechanical force in this work or distributed body force 
through external stimuli such as a magnetic field. 

The proposed numerical framework has its advantages in several aspects. First, it is built on FEM that is widely adopted to model 
the mechanical behaviors of solids, suggesting that the proposed method can be broadly applied in analyzing the energy landscape of 
multi-stable structures. Second, previous work has demonstrated that the combination of the BITSS and string method can capture the 
MEP and saddle point of multi-stable slender structures based on a discrete shell model (Y. Li et al., 2021a). Since the string method is 
an efficient double-ended method that converges to the MEP through relaxing a string of images, its similarity to the NEB suggests that 
our method has great potentials in searching for multiple saddle points and MEPs in multi-stable elastic continua. Third, because the 
BITSS method requires only two images to find the saddle point, its implementation together with the NEB algorithm can be more 
computation-efficient in finding the MEP than directly applying the NEB that is initiated with a linear interpolation between two stable 

Fig. 11. Comparison between the dynamic and static simulations. After removal of 12 mm indentation, the bistable unit can snap back to S1 under 
dynamic analysis (top row) or converge to S2 nearby under general static analysis (bottom row). The scale bar is 5 mm. 
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states, particularly for systems with a large number of DoF. 
Only 2D plane strain problems under displacement boundary conditions are considered in this study. However, the introduced 

numerical framework should be seamlessly integrated into 3D finite element modeling under various types of boundary conditions 
such as concentrated or distributed force, greatly expanding the range of applications of our methods. In addition, by integrating 
potential energies associated with other fields, our method should also be capable of solving multi-physics problems where the bistable 
structures are subjected to external stimuli such as magnetic fields (Y. Li et al., 2021a, 2021b) or differential swelling (Li et al., 2023). 
Such a characteristic enables the search for the energy barrier and transition path of bistable structures made of stimuli-responsive 
materials, which can facilitate their applications in controllable shape changes (Ma et al., 2023; Shao et al., 2018; Zhao et al., 
2016), fast actuation (Wani et al., 2017), etc. 
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