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ABSTRACT:

This study investigates the inability of two popular data splitting techniques: train/test split and k-fold cross-validation that are to create
training and validation data sets, and to achieve sufficient generality for supervised deep learning (DL) methods. This failure is mainly
caused by their limited ability of new data creation. In response, the bootstrap is a computer based statistical resampling method that
has been used efficiently for estimating the distribution of a sample estimator and to assess a model without having knowledge about
the population. This paper couples cross-validation and bootstrap to have their respective advantages in view of data generation strategy
and to achieve better generalization of a DL model. This paper contributes by: (i) developing an algorithm for better selection of
training and validation data sets, (ii) exploring the potential of bootstrap for drawing statistical inference on the necessary performance
metrics (e.g., mean square error), and (iii) introducing a method that can assess and improve the efficiency of a DL model. The
proposed method is applied for semantic segmentation and is demonstrated via a DL based classification algorithm, PointNet, through

aerial laser scanning point cloud data.

1. INTRODUCTION

Supervised deep learning (DL) is a non-linear machine learning
(ML) approach that has been shown to successfully learn very
complex patterns and rules used in many areas that include image
understanding, point cloud classification, speech recognition,
and natural language processing (Bishop, 2006; Goodfellow et
al., 2016; Montavon et al., 2018). This technique constructs a
deep artificial Neural Network (NN) architecture, and develops
a model based on a given set of examples (data) associated with
inputs and outputs. Usually, a model developer splits the given
data mainly into two parts: training and validation. The required
model is developed based on the training set and is evaluated on
the validation set that is used for tuning the model hyper-
parameters. The final step involves learning the pattern of the
hold out test data (if available) and/or the data to be available in
future. The efficacy of such models is highly hampered by an
absence of statistical considerations regarding the resulting
hyper-parameters and evaluation metrics used in developing the
model (Taylor, 2005; Montavon et al., 2018). Recent works
show that selection process of training and validation data has a
significant impact on the model performance (Majgaonkar et al.,
2021; Weidner and Walton, 2021). A first choice of getting
training and validation sets is the split-and-training (train/test
split) approach, but this approach results in only a single training
and validation set pair, which hinders the initial learning and
cannot achieve sufficient generalization power (Harrington et al.,
2017; Nurunnabi and Teferle, 2022). A popular workaround of
this problem for ML/DL approaches is the k-fold Cross-
Validation (¢<CV) approach, which selects a group of training and
validation sets. A common belief is that since kCV splits the data
several times, the model generality can be improved as the final
model is the average of using multiple pairs training and
validation data sets (Wainer and Cawley, 2021). Many

*Corresponding author

interesting works comprehensively discuss the prospects and
problems of using cross validation (CV; Daszykowskio et al.
2002; Puzyn et al., 2011). In this paper, we investigate that both
the train/test split and kCV fail to achieve sufficient generality
for the test (and future) data. Another often overlooked issue is
the proper evaluation of the developed model performance from
the different training sets (Tuia et al., 2016; Becker et al., 2018;
Nurunnabi and Teferle, 2022). Understanding the efficiency of a
supervised DL model is vital for not only tuning the model
hyper-parameters but also to estimate its generalization capacity.
However, this task is complex and challenging mainly due to the
black box nature of DL approaches (Taylor, 2005; Montavon et
al., 2018).

The most common assessment practice for choosing the best
ML/DL  model is the well-known hold-out protocol
(Tsamardinos et al., 2018). Apart from the training and
validation sets, this approach holds a portion of the available data
to serve as an independent test set. Then the performance of the
models from different pairs of training and validation sets are
checked with the test set, and finalize the model that is the best
performing one. Problematically all the available training and
validation sets are samples, just parts (subsets) of an unknown
larger data set that can be defined as the population. Hence,
knowing the performance of the developed model on a or some
specific subset(s) of the full data set may not be statistically
representative or reasonable. The statistical way to know about
the quality of an estimator is to study its sampling distribution.
Bootstrap is a statistical resampling technique that can estimate
the parameters of a model and serves as an inference tool for
characterizing the sampling distributions of estimators of the
model. It assesses the quality of estimators in terms of their
means, standard errors, confidence intervals (Cls), etc. (Efron
and Tibshirani, 1993; Davison and Hinkley, 1997; Basiri et al.,
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2017). Other resampling approaches include randomization,
jackknife, and Monte Carlo. The reader can see comprehensive
discussion on the resampling algorithms, and more benefits of
bootstrap over jackknife and others in the literature (James et al.,
2015; Tsamardinos et al., 2018; Manly, 2020). Wainer and
Cawley (2021) conducted a comprehensive empirical study of
different flat and nested cross-validation algorithms. Nurunnabi
and Teferle (2022) discussed the potential of repeated kCV and
Monte-Carlo CV in DL based classification. As will be explained
in the next two sections, this paper introduces AkCV-based
bootstrap (kCV-B) approach for producing multiple validation
sets to improve the generalization power of a DL model. This is
done by coupling kCV and bootstrap for better selection of
training and validation sets and used with the DL algorithm
PointNet (Qi et al., 2017), which is simple and fast for per point
classification of large-scale point clouds (Nurunnabi et al.,
2021b). Finally, the bootstrap inferential procedures are used to
estimate Mean Square Error (MSE) based evaluation metrics
such as mean, standard error and CIs of MSE, and to assess the
final model. Scientific contributions of this paper include: (i) a
study of the potential of bootstrap resampling algorithm to
generate many validation sets from a given validation set that can
increase the generalization capability of a DL algorithm used in
pointwise point cloud classification, (ii) the development of a
process of appropriate selection of training and validation sets
for a supervised DL modelling, (iii) devise a new algorithm that
couples kCV and bootstrap to improve a DL based classification
algorithm in large-scale outdoor point clouds, and (iv) introduce
a learning process to improve, select and assess the efficiency of
a DL model. The remainder of the paper is arranged as follows.
Section 2 comprises the relevant ideas and principles of train/test
split, kCV, bootstrap, point cloud and PointNet. Section 3
proposes the methodology. Section 4 demonstrates the new
method through the PointNet classification algorithm using
aerial laser scanning (ALS) point clouds, Section 5 makes a brief
discussion, and Section 6 concludes the paper.

2. RELATED PRINCIPLES AND METHODS

This section presents a brief discussion about methods and
principles that are used in the new algorithm and for comparison.

2.1 Train/test split and k-fold cross-validation (kCV)

The train/test split is a simple and common approach for
generating training and validation data sets, that behaves like
random sampling. Usually, first it shuffles the available data, and
then splits into two parts. One part is separated at the beginning
as the hold out test set to test the final model that is developed
based on the other part. The other part is split into two disjoint
sets: training set and validation set. The training set is used to
train a model and the validation set is to fix a model, i.e., tuning
hyper-parameters and validating the trained model.

Unlike the train/test split approach, k-fold cross-validation (kCV)
splits the available samples (data) into k (user defined) distinct
groups (folds) of approximately equal size (James et al., 2015;
Wainer and Cawley, 2021). Before splitting data, they can be
shuffled or just split into specific spatial regions following some
arrangement or in a systematic order. For the kCV, each time, a
training set of k-1 folds is used to train a model, and the model is
evaluated using the remaining fold. Hence, the ACV based
models are developed £ times, so that each fold can be part of the
validation sets. Raschka (2020) noted that the main advantage of
using cross-validation (CV) is that each observation of the given
data set has the opportunity of appearing in both the training and

validation. The average performance of the developed & models
is considered as the performance of the final model. That can also
be expressed as the generalization power of the final model. This
paper also demonstrates the insufficiency to generalize a model
just by evaluation once or few times with a validation set(s).

2.2 Bootstrap

Bootstrap is a widely used resampling technique for statistical
decision-making w. r. t. sample estimators, to know the
distributions of the sample estimators, and for better understating
about population parameters. It draws B (a data dependent,
prespecified large number, e.g. 100 or 500) random samples
(data sets called bootstrap samples) of same size with
replacement from a given data set. That means samples come
with equal probability. Bootstrap helps to draw statistical
inference on the learning model and associated evaluation
metrics (estimators) based on many bootstrap samples. The basic
principle that follows nonparametric bootstrap uses bootstrap
samples to approximate the sampling distributions for estimating
confidence interval and to test the statistical hypotheses designed
for an estimator. A major benefit of using bootstrap is that it is
not reliant on following the Central Limit Theorem (Boos and
Stefanski, 2013) to understand population. To know more about
bootstrap, its principles and properties, the reader is referred to
Efron and Tibshirani (1993) and Davison and Hinkley (1997).

2.3 Point cloud and PointNet

Point clouds can be represented as a type of spatial structure
usually represented by a tuple (a trio of x, y, z) coordinates and
may include colour, intensity, return number, and other meta
data. Point clouds can provide geometric detail such as shape,
size, and orientation of objects at sufficient level of detail for
various tasks such as surface reconstruction (Nurunnabi et al.,
2012), normal estimation (Nurunnabi et al. 2015), and for 3D
geometric primitives such as cylinders fitting (Nurunnabi et al.,
2019). However, their inherent 3D complicates the use of DL
approaches such as Convolutional Neural Networks (CNNs;
LeCun et al., 1989) that are regularly employed for image
processing (Krizhevsky et al., 2012). Direct application of such
CNNss is stymied by a point clouds’ unstructured and irregular
data format. Any transformation of a point cloud may entail
losing data information or metadata attributes. PointNet (Qi et
al., 2017) is the first end-to-end DL algorithm that was successful
for segmentation and classification of indoor point clouds
without any transformation of the raw data. Although PointNet
does not compete to the state-of-the-art DL algorithms (e. g.,
Boulch, 2020; Hu et al., 2020; Su et al., 2022) for point clouds
classification; many researchers use it as a fast and readily
available approach (e.g., Nurunnabi et al., 2021b) and many
others have adopted its basic structure. Nurunnabi et al. (2021b)
showed that it is promising for large-scale outdoor point clouds
classification. Excluding, the spatial transformer network, T-Net
(Jaderberg et al., 2015), the basic PointNet consists of only two
modules: (1) max pooling (a symmetry function) that makes
global point cloud features, and (2) local and global aggregation
that joints local and global point feature information. PointNet
ingests each point independently and learns points’ features
using a set of multilayer perceptrons (MLPs) followed by max
pooling (see Qi et al., 2017 for additional details).

3. PROPOSED METHODOLOGY

This section proposes an algorithm to develop, assess and select
a DL model that has better generalization power (e.g., reducing
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the well-known overfitting problem). The new algorithm builds
on a 4-step sequence for the selection of training and validation
data sets and for model generation. This paper also proposes a
means to evaluate its generalization capability for pointwise
classification (semantic segmentation) in aerial LiDAR point
clouds.

3.1 Step 1: Bootstrap couples with kACV

This paper couples bootstrap with k<CV to generate a multiplicity
of combinations of training and validation sets. To improve
generalizability of a model, first k<CV is employed. This splits the
available data into & (user defined) distinct folds, and groups 4-1
folds together to make a training set. The remaining set (fold) is
considered as the validation set. This process repeats for all the
k folds and, thus, results in & pairs of training and validation sets.
Next, independent B (user defined number) bootstrap samples
are drawn from each of the £ validation sets generated by A<CV
(see Fig. 1). This results in & training sets, and B validation sets
for each of the £ training data set. Sizes of the bootstrap samples
are the same as the respective validation set. Since larger size of
k and B will take more time for the model building process, we
fix k=5, and B = 100 to make a balance between time and
desired level of performance. Larger size of B is suggested in
bootstrap literature to obtain more accuracy for estimating
sampling distributions.

Training set Validation set
A
- ~ /

IF'_ IF: IF; I IFk-lIFk

Data

Hiaa|=la
%—/

Bootstrap samples
(1.e. bootstrap validation sets)

Figure 1. A schematic diagram: cross-validation couples with
bootstrap to get B validations sets for each of £ training sets. Fi
is the ith (i =1,2,...,k) fold for a data set having & folds, where k-
1 folds are used as a training set, and B bootstrap validations sets
are used to validate the model developed by the training set.

3.2 Step 2: Employing PointNet and DL model development

In step 2, PointNet (Qi et al., 2017) network is employed to
develop £ distinctive DL models based on the training data sets
generated by the group of 4-1 folds. Selection of the PointNet
hyper-parameters (e.g., the number of hidden layers, activations
functions for the hidden and output layers, the Adam optimizer
[Kingma and Ba, 2014]) are fixed as per the original
implementation (Qi et al., 2017). Then each of the £ models are
tuned via the B bootstrap validation samples and used to
determine the error metrics, based on the Mean Square Error
(MSE), as described in Step 3.

3.3 Step 3: Calculation of evaluation and decision metrics

Step 3 defines the evaluation and decision metrics need to assess
the models developed in Step 2. MSE was selected, as it is easily
defined as the mean that reasonably satisfies the necessary
statistical conditions to be a consistent estimator. Moreover, it
behaves asymptotically normal following the Central Limit
Theorem (Boos and Stefanski, 2013). Nurunnabi and Teferle
(2022) demonstrated MSE as a statistically consistent estimator,
and showed its potential in DL model evaluation in large-scale

point clouds. MSE is used as the cost function for the model
building process, and its related functions as the model
evaluation metrics. The error metrics: mean (Muse), standard
error (SEusk), and the 95% confidence intervals (Cluse 95%) of
the MSE are calculated to evaluate the developed models. These
most common estimators of signifying statistical accuracy are
calculated following the standard procedures of nonparametric
bootstrap (c.f., Efron and Tibshirani, 1993), where

1
SEysp(bt) = EZ?:l(MSEb — Mysg)?, (1)

where SEyse (bt) and MSE), are the standard error of MSE for
the B bootstrap samples, and the MSE for the bth bootstrap
sample, respectively. The terms MSE (-) and Muse are defined as
Eqgs. 2 and 3, respectively:

MSE,(8) = $35,(8 - 6)%, )

where 6 is an estimator (error metric); estimated from the
empirical distributions based on the B independent bootstrap
samples, and

1
Mysg = EZ?:l MSE,. 3

There are several ways to estimate bootstrap CI (e.g., Thomas
and Efron, 1996). The 95% CI of the bootstrap MSE is
determined statistically based on percentile values. The B
bootstrap MSE values are arranged in an ascending order to find
the 2.5th and 97.5th percentiles. The 95% bootstrap CI
(Clysg,95%) can be defined as Eq. 4.

MSE" ") < MSE, < MSEL®); p=1,2, ..., B. (4)
3.4 Step 4: Model assessment and selection

In step 4, the apparently best model is selected and then assessed
for the available test data. Selection is based on the model with
the least Mwmse and/or SEuse alternative to the highest Mean of
Overall Accuracy (Mo4,) among the k models. The goal is to find
the bootstrap validation set corresponding to the model having

Algorithm: £kCV-B
Step|Input: point cloud. Output: a DL model.

1. |Define a DL (PointNet) network with its regular hyper-
parameters

2. |Split the data into k-folds (see Fig. 1)

3. |fori=1,....,kdo

4. Train the DL model without the ith fold

5. Draw B bootstrap validation data sets from the ith fold
of same size with replacement

6. forb=1,...,Bdo

7. Evaluate the model from Step 4 with the validation

set b
8. Store MSEb
9. Store the validation set b with the least MSE»

10. Calculate Mwvse, SEmse and Clysp,95%

11. |Find the best training set for which Mwse and/or SEwmsE,
are the least, and best validation set for which MSEy is the
least among the others corresponds to the best training
set.

12. |Retrain the DL model using the best training set and the
best validation set from Step 11.

13. |The final k<CV-B based DL model derived from Step 12.
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the least error. Next, the DL algorithm is retrained using the
previously determined best training and best validation sets.
Finally, the well-known Fi-score and OA metrics (Nurunnabi et
al., 2021a, b) are used to evaluate the DL classification model.
The pseudocode for the proposed algorithm ACV-B is defined in
Algorithm kCV-B.

4. EXPERIMENTS, ANALYSIS AND EVALUATION

This section demonstrates the new algorithm (kCV-B) through
two real world ALS data sets, and compares the outputs to those
achieved with three existing methods: (1) train/test split, (2)
bootstrap, and (3) kCV.

4.1 Experiments on the DALES data set

For the first experiment, the large-scale aerial LiDAR data sets
DALES (Dayton Annotated LiDAR Earth Scan; Varney et al.,
2020) is used. These data are of the city of Surrey in British
Columbia, Canada and were acquired by a Riegl Q1560 dual
channel LiDAR system from the flying height of 1,300m. They
are arranged in 40 tiles, each of 500mx500m with a point density
around 50/m?. The data were labelled with 9 groups: ground,
vegetation (Veg.), car, truck, power line (PL), fence, pole,
building, and unclassified (uC). The data covered semi-urban
and urban areas. Prior to usage, this data set was denoised by a
robust statistical method as was proposed in Nurunnabi et al.
(2015). We randomly select 5 parts of data sets of almost equal
size from five different tiles for training and validation that have
6,070,267 points. Three more data sets are taken from 3 different
tiles as the three hold out test sets.

Next, the PointNet algorithm was applied with its regular hyper-
parameters for all the concerned data and applied to all four
methods: train/test split, bootstrap, k<CV and AkCV-B. The input
attributes included the tuple of point coordinates (x, y, z), return
number, point height, scan angle and normalized x, y and z values
(Nurunnabi et al., 2021b). A block size of 10mx10m having
2,048 points per block was selected. A batch size of 32 was
selected, and MSE was used as the loss function instead of the
cross entropy used in the original PointNet. The DL model is
trained with 100 epochs. To perform train/test split and
bootstrap, 80% of the points were randomly selected for training,

and the remaining 20% were left for validation. The model was
developed and evaluated excluding three test sets that were
reserved for later testing and compare to the other methods. For
kCV, 5 folds (k= 5) were used for training and validation, which
are taken from 5 different tiles. For the new method, k<CV-B, 100
(B) bootstrap samples were drawn from each of the & validation
sets of same size. Train/test split, k<CV, bootstrap and k<CV-B
were evaluated 1, 5 (k), 100, and 500 (kX B) times, respectively
with the corresponding validation sets. Hence, the proposed
kCV-B are evaluated with the maximum number of validation
data sets.

We calculate MSE values for every model w. r. t. the respective
validation sets, and estimate Mase, SEmse, and Clysg, 95%, these
are available for the bootstrap, ACV and k<CV-B. We find the fold
of validation sets for which the values of Muse and/or SEusk are
minimum. Next the best bootstrap validation set was established
for which MSEy is the least among the others corresponds to the
best training set. The final ACV-B model was selected based on
the best bootstrap validation set and the respective training set.
The same process is then done with and without shuffle before
splitting (folding) them to get training and validation sets. Table
1 presents the results obtained during both the model building
process and the final model tested on three reserved (previously
unused) data sets. Fig. 2 plots the line diagram for the MSE
values for the bootstrap samples (with and without shuffle)
corresponding to different validation sets (for folds: i, ii, iii, iv
and v) for k<CV-B.

Results in Table 1 (Columns 3-5) and plots a, b in Fig. 2 explore
that in most cases; the shuffled data produce better results (lower
MSE values) than the unshuffled data. With the shuffled data,
kCV-B is able to achieved the overall minimum of Muse
(0.02553) and SEwmse (0.00007). This was achieved with fold v
(kCV-B v) as the validation fold. When retrained ACV-B (final)
was able to achieve an OA of 87.1% and 83.4% for the given
data set with and without shuffle, respectively. In Fig. 2, Plot ¢
shows that 95% of CI (red vertical lines) that holds the mean of
MSE (cyan vertical line) values for kCV-B. Note that, bootstrap
and train/test split approaches are typically applied to shuffled
data. So, testing with those two approaches was not done for
unshuftled data (Table 1). Final models were assessed on the
three reserved test sets (Test 1, Test 2, and Test 3).

Methods Muse SEumsE Clysgz95%  OA or Moa| OA (Test 1) OA (Test2) OA (Test3)  Moa
kCV-B i 0.02800 0.00014 0.0277, 0.0283 83.9 81.8 83.1 83.0 —
é) kCV-B ii 0.04933 0.00021 0.0489, 0.0498 68.5 81.5 84.5 81.8 —
2 |kCV-Biii 0.04693 0.00027 0.0464, 0.0475 69.7 70.7 75.2 68.5 —
; kCV-B iv 0.11242 0.00033 0.1118, 0.1130 36.5 82.6 81.9 81.7 —
é’ kCV-B v 0.04392 0.00023 0.0435, 0.0444 72.4 80.1 82.5 82.0 —
Z | kCV-B (final) 0.03137 — — 83.4 82.8 83.8 84.6 83.7
kCV 0.08247 0.07544 62.2 79.6 80.2 79.2 79.6
kCV-B i 0.03033 0.00009 0.0302, 0.0305 81.9 79.3 79.9 77.8 —
kCV-B ii 0.02856 0.00008 0.0284, 0.0288 82.6 81.6 81.1 81.1 —
o |KCV-Biii 0.02857 0.00008 0.0284, 0.0287 82.6 81.8 80.6 82.9 —
E: kCV-B iv 0.02691 0.00009 0.0267, 0.0271 83.7 81.9 81.5 81.1 —
% |kCV-Bv 0.02553 0.00007 0.0254, 0.0256 84.8 81.9 81.5 83.9 —
£ [kCV-B (final) 0.02230 — — 87.1 82.6 82.8 85.4 83.6
= kCV 0.02700 0.00105 — 83.8 81.3 81.4 80.4 81.0
Bootstrap 0.02794 0.00009 0.0277,0.0281 83.1 81.7 79.2 80.8 80.6
Train/test split 0.03167 — — 80.5 81.1 77.2 79.8 79.4

Table 1. Results of different methods for the validation data sets from different folds, and 3 test data sets. A<CV-B (.) mentions k<CV-B

method when (.) is the fold used for validation.
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Figure 2. Exploration of the MSE values for the bootstrap samples from different folds and validation sets: (a) line diagrams for the
shuffled data, (b) line diagrams for the unshuffled data, (c) histograms for the MSE values for the vth fold ACV-B v with 95% CI (red
vertical line) and the mean (cyan vertical line).

® uC
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(d)

Figure 3. Classification results (misclassified points are in yellow) for the DALES Test 3 data set: (a) ground-truth, (b) train/test split,
(c) bootstrap, (d) kCV, and (e) k<CV-B. uC, Veg and PL define unclassified, vegetation and power line, respectively.

. The kCV-B (final) achieved the highest OA in all cases, and
T test Boot- >
Training| Test rain/test Boo kCV kCV-B overall, Mos was 83.6% versus 81% for ACV, 80.6% for

lit t
Class points | points SI}; ! s ;ap F F bootstrap and 79.4 % for train/test split. Results clearly show that
! ! ! ! kCV-B achieves better generalization power than the existing
uC 38,124 1,613 00.0 00.0 03.0 04.1 methods.
Ground (2,693,961/485,011]  88.8 89.7 933 932
Veg 1,612,293/196,347]  59.6 551 568 66.6 Table 2 shows thq per class classification performance.: for. the
Car 121,440 18,819  04.5 151 222 328 Test 3 data set in terms of an Fi-score (Fi), which is a

combination of precision and recall. For most of the classes k<CV-

Trucks 17,116 1,350/ 00.0 151 053 0738 B performed better than the others. For example, in the category

PL 17,042 3,866 00.0 11.5 532 515 of building, kCV-B identified points at an Fi-score of 83.6%,
Fence 29,824 13,040, 00.0 000 061 114 whereas, kCV, bootstrap and train/test split achieved only 68.2%,
Poles 6489 2211 000 000 166 184 77.2% and 72.9%, respectively. Table 2 also presents the number

of points per class. In classes with significantly lower numbers

Building | 1,533,978226,369  72.9 772 682 83.6 of points (e.g, PL and poles), the two non-kCV approaches

Mean Fi 25.1 293 36.1 41.0 performed very poorly. Critically, the two ACV-based
approaches were much less sensitive to this well-known problem
Table 2. Classification results of DALES Test 3 data set. of imbalanced data (Nurunnabi et al., 2021b). Fig. 3 visualizes

this clearly for the powerlines. Not only does this point to a better
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robustness in this class of solutions but may be also indicative of
the need for less training data. While not the focus of this paper,
the topic of data size selection has been clearly established as an
open question for point cloud data (Majgaonkar et al. 2021).

4.2 Experiments on the AHN data set

In the second experiment, aerial LiDAR data from Actueel
Hoogtebestand Nederland version 3 (AHN3) were used. These
data cover the entirety of The Netherlands and managed into
500m x 500m tiles. The point density is less than half of the
previous data set at around 20pt/m2. Most tiles were pre-labelled
with 5 classes: ground, vegetation, building, water, and bridges.
For this study, they were relabelled into only three classes:
ground, building and unclassified (uC includes vegetation,
vehicles and others). This was done to reduce the imbalance in
number of points per class. Common ways to reduce the effects
of imbalanced data include use of oversampling and adding noise
(Xie et al., 2019). Point distributions for AHN data set are in
Table 4.

For the initial training and validation data, five tiles were selected
to cover landscape variations of urban and semi-urban areas
consisting of different objects (e.g., big and small buildings,
vegetation and vehicles). Data were also selected from one
additional tile and held in reserve. The five tiles used for training
and validation contained 5,472,556 points in total. The reserve
tile for test contained 3,276,800 points.

We perform the PointNet algorithm for the same data splitting
procedures with network inputs: point coordinates (x, y, z),
intensity, return number, point height, and normalized x, y and z
values. The hyper-parameters were used as described for the first
experiment. In this experiment, we investigate our objectives
with shuffled data. We see that results of Muse (0.02596) and

SEuse (0.00015) are the lowest for kCV-B ii. That means, for the
fold-ii, bootstrap produces better samples for validation sets that
produce corresponding OA of 94.9%, which is better than any
other of the rest of the four folds. We search for the best
validation set among the 100 bootstrap validation samples of
fold-ii that produces ACV-B of OA = 95.4%, whereas train/test
split, bootstrap and ACV produce OA of 95.3%, 94.7%, 93.9%,
respectively. Now, we use the final XCV-B based model for the
test data set that achieves OA of 91.3%. Interesting finding is
that although train/test split produces competitive results for the
existing validation set with OA of 95.3%, but for the test data it
gets only OA of 81.6% which is because of its low generalization
capability, as it evaluates the developed model against only one
validation set. Classification results of the AHN test data set for
all four methods are plotted in Fig. 4.

OA
Methods | Muse ~ SEmse  Clysg,95% OA/Moa (Test)
kCV-Bi1 (0.02699 0.00017 0.0267,0.0274 94.7 89.3

kCV-Bii |0.02596 0.00015 0.0256,0.0262 94.9 | 90.1
kCV-Biii |0.02619 0.00019 0.0258,0.0265 94.8 | 72.9
kCV-Biv |0.03100 0.00015 0.0307,0.0313 939 | 91.7
kCV-Bv [0.04616 0.00023 0.0458,0.0465 90.9 | 60.3
kCV-B  |0.02417 — — 954 | 91.3
kCV 0.03093 0.00626 0.0257,0.0416  93.9 89.2
Bootstrap (0.02713 0.00016 0.0268,0.0274 94.7 | 83.5

Train/test
split

0.02424 — — 95.3 | 81.6

Table 3. Results of different methods for the validation data set
from different folds and one test data set. X<CV-B (.) mentions
kCV-B method when (.)th fold is used for validation.

@ uC
® Ground
@® Building

Error

Figure 4. Classification results (misclassified points in yellow) for the AHN test data set: (a) ground-truth, (b) train/test split, (c)
bootstrap, (d) kCV, and (e) k<CV-B. Many building and ground points are misclassified in red ellipses.
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Fig. 4, plots (e) and (b) portray the best and the worst
classification results that are produced by ACV-B and train/test
split methods respectively. Many building and ground points in
the red ellipses were misclassified for train/test split, bootstrap
and kCV based methods. Plot (e), k<CV-B wrongly classified
some of the points, but these are significantly less in numbers
than the others. One-point worth noting that is clearly visible in
Fig. 4 is that many of the areas in which ACV-B continued to
struggle with the classification are in the areas of low vegetation,
especially when that vegetation is close to a building. This
problem was initially identified by Aljumaily et al. (2015) in the
application of ML techniques to point clouds.

Train/test |Boot-

Class Trai_ning Te_:st split strap kCV |kCV-B
points points
Fi Fi | Fu Fi
uC 1,878,838 | 693,778 85.2 80.3 |84.3| 89.2

Ground | 2,152,235 (1,680,188 81.9 85.5191.1| 93.2
Building| 1,441,483 | 902,834 78.9 82.9 189.9| 89.2
Mean Fi 81.9 82.9 |88.5| 90.5
OA 81.6 83.5(89.2| 91.1

Table 4. Classification results of AHN test data set.

Table 4 contains per class classification performance for the test
data set in terms of Fi-score, Mean F1 (MF1) and OA. For all the
classes kCV-B achieves better OA than the others. The one
exception was for buildings, where kCV achieved 89.9% versus
89.2% for kCV-B. In all other instances and in overall Fi-scores
kCV-B outperformed the other methods.

5. DISCUSSIONS

Using the PointNet architecture the proposed algorithm ACV-B
was applied for per point classification (semantic segmentation)
through two aerial LIDAR point clouds of significant differences
in average point density (20 and 50 pts/m?). Both experiments
showed that the new algorithm, kCV-B classified better than the
existing methods and was either less sensitive to imbalance
classes of training data or potentially needed less data to achieve
reasonable results. When the results of Experiment 1 are plotted
solely as a function of the number of training points (Fig. 5),
potentially further insight is gained as to the minimum number
of training points that may be needed for the various approaches
and for the different classes of object. As no consideration is
given here to average point density per object or per square meter
of object or as to its three-dimensional versus two-dimensional
nature, further generalization would only be speculative, but this
fully establishes further research needs in making ML and DL
approaches more rational in terms of parameter selection
including the size of training data sets. In case of Experiment 1,
for the training data, results were significantly better, when we
did shuffle before splitting the available data to have training and
validation data sets. Although, it was not clearly supportive for
the test data sets, it is reasonable that data shuffling can produce
better generalization power because appearing the validation
set(s) is(are) not limited to any specific part of the data, it can
consider points from every part of training sets. If we do partition
(fold) based on different spatial regions, it is practical that we
may miss certain types of objects and classes that are not present
equally in every region. For example, usually distribution of

o0 ——Trainftest split —&— Bootstrap —&— KCV —&—KCV-B [

Building
)

Ground =

Vegetation

I I I
1,000,000 1,500,000 2,000,000 2,500,000 3,000,000

No. of training points

0 500,000

Figure 5. Experiment 1; Fi-score results plotted solely as a
function of available training data points.

vegetation and buildings are different based on landscape and
location (e.g., urban or rural area). However, ACV-B unshuffled
can run faster than the shuffled k<CV-B.

6. CONCLUSIONS

Supervised learning on point clouds, especially DL, is known to
need vast amounts of labelled data, which is often not feasible.
Data insufficiency is influenced by the problem of overfitting.
As such, this paper investigates the potential use of a bootstrap
resampling algorithm for new data creation for efficiently
generating validation sets to enhance the generalization power of
a DL algorithm for point cloud classification. The proposed
bootstrap coupling with ACV was demonstrated to improve
model quality. The new algorithm, ACV-B needs to optimize the
values of k£ and B. The user can fix the values depending on their
data and study. Using large values of k and B improve the
generality and performance of a model, but there is a trade-off
between generalization, accuracy and time to compete the
process. Reasonably, kCV-B takes more time than the existing
methods, but researcher who needs more accuracy and has
available high-powered computing facilities would be benefited
incorporating bootstrap with CV for more data generation that
can produce higher generalization power for the test and future
data. Further studies will investigate more on different bootstrap
approaches that can be faster, more efficient and robust for new
data generation and effective for large-scale data sets.
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