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ABSTRACT: 
 
This study investigates the inability of two popular data splitting techniques: train/test split and k-fold cross-validation that are to create 
training and validation data sets, and to achieve sufficient generality for supervised deep learning (DL) methods. This failure is mainly 
caused by their limited ability of new data creation. In response, the bootstrap is a computer based statistical resampling method that 
has been used efficiently for estimating the distribution of a sample estimator and to assess a model without having knowledge about 
the population. This paper couples cross-validation and bootstrap to have their respective advantages in view of data generation strategy 
and to achieve better generalization of a DL model. This paper contributes by: (i) developing an algorithm for better selection of 
training and validation data sets, (ii) exploring the potential of bootstrap for drawing statistical inference on the necessary performance 
metrics (e.g., mean square error), and (iii) introducing a method that can assess and improve the efficiency of a DL model.  The 
proposed method is applied for semantic segmentation and is demonstrated via a DL based classification algorithm, PointNet, through 
aerial laser scanning point cloud data.    
 
 

1. INTRODUCTION 

Supervised deep learning (DL) is a non-linear machine learning 
(ML) approach that has been shown to successfully learn very 
complex patterns and rules used in many areas that include image 
understanding, point cloud classification, speech recognition, 
and natural language processing (Bishop, 2006; Goodfellow et 
al., 2016; Montavon et al., 2018). This technique constructs a 
deep artificial Neural Network (NN) architecture, and develops 
a model based on a given set of examples (data) associated with 
inputs and outputs. Usually, a model developer splits the given 
data mainly into two parts: training and validation. The required 
model is developed based on the training set and is evaluated on 
the validation set that is used for tuning the model hyper-
parameters. The final step involves learning the pattern of the 
hold out test data (if available) and/or the data to be available in 
future. The efficacy of such models is highly hampered by an 
absence of statistical considerations regarding the resulting 
hyper-parameters and evaluation metrics used in developing the 
model (Taylor, 2005; Montavon et al., 2018). Recent works 
show that selection process of training and validation data has a 
significant impact on the model performance (Majgaonkar et al., 
2021; Weidner and Walton, 2021). A first choice of getting 
training and validation sets is the split-and-training (train/test 
split) approach, but this approach results in only a single training 
and validation set pair, which hinders the initial learning and 
cannot achieve sufficient generalization power (Harrington et al., 
2017; Nurunnabi and Teferle, 2022). A popular workaround of 
this problem for ML/DL approaches is the k-fold Cross-
Validation (kCV) approach, which selects a group of training and 
validation sets. A common belief is that since kCV splits the data 
several times, the model generality can be improved as the final 
model is the average of using multiple pairs training and 
validation data sets (Wainer and Cawley, 2021). Many 

interesting works comprehensively discuss the prospects and 
problems of using cross validation (CV; Daszykowskio et al. 
2002; Puzyn et al., 2011). In this paper, we investigate that both 
the train/test split and kCV fail to achieve sufficient generality 
for the test (and future) data. Another often overlooked issue is 
the proper evaluation of the developed model performance from 
the different training sets (Tuia et al., 2016; Becker et al., 2018; 
Nurunnabi and Teferle, 2022). Understanding the efficiency of a 
supervised DL model is vital for not only tuning the model 
hyper-parameters but also to estimate its generalization capacity. 
However, this task is complex and challenging mainly due to the 
black box nature of DL approaches (Taylor, 2005; Montavon et 
al., 2018).  
 
The most common assessment practice for choosing the best 
ML/DL model is the well-known hold-out protocol 
(Tsamardinos et al., 2018). Apart from the training and 
validation sets, this approach holds a portion of the available data 
to serve as an independent test set. Then the performance of the 
models from different pairs of training and validation sets are 
checked with the test set, and finalize the model that is the best 
performing one. Problematically all the available training and 
validation sets are samples, just parts (subsets) of an unknown 
larger data set that can be defined as the population. Hence, 
knowing the performance of the developed model on a or some 
specific subset(s) of the full data set may not be statistically 
representative or reasonable. The statistical way to know about 
the quality of an estimator is to study its sampling distribution. 
Bootstrap is a statistical resampling technique that can estimate 
the parameters of a model and serves as an inference tool for 
characterizing the sampling distributions of estimators of the 
model. It assesses the quality of estimators in terms of their 
means, standard errors, confidence intervals (CIs), etc. (Efron 
and Tibshirani, 1993; Davison and Hinkley, 1997; Basiri et al., 
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2017). Other resampling approaches include randomization, 
jackknife, and Monte Carlo. The reader can see comprehensive 
discussion on the resampling algorithms, and more benefits of 
bootstrap over jackknife and others in the literature (James et al., 
2015; Tsamardinos et al., 2018; Manly, 2020). Wainer and 
Cawley (2021) conducted a comprehensive empirical study of 
different flat and nested cross-validation algorithms. Nurunnabi 
and Teferle (2022) discussed the potential of repeated kCV and 
Monte-Carlo CV in DL based classification. As will be explained 
in the next two sections, this paper introduces kCV-based 
bootstrap (kCV-B) approach for producing multiple validation 
sets to improve the generalization power of a DL model. This is 
done by coupling kCV and bootstrap for better selection of 
training and validation sets and used with the DL algorithm 
PointNet (Qi et al., 2017), which is simple and fast for per point 
classification of large-scale point clouds (Nurunnabi et al., 
2021b). Finally, the bootstrap inferential procedures are used to 
estimate Mean Square Error (MSE) based evaluation metrics 
such as mean, standard error and CIs of MSE, and to assess the 
final model. Scientific contributions of this paper include: (i) a 
study of the potential of bootstrap resampling algorithm to 
generate many validation sets from a given validation set that can 
increase the generalization capability of a DL algorithm used in 
pointwise point cloud classification, (ii) the development of a 
process of appropriate selection of training and validation sets 
for a supervised DL modelling, (iii) devise a new algorithm that 
couples kCV and bootstrap to improve a DL based classification 
algorithm in large-scale outdoor point clouds, and (iv) introduce 
a learning process to improve, select and assess the efficiency of 
a DL model. The remainder of the paper is arranged as follows. 
Section 2 comprises the relevant ideas and principles of train/test 
split, kCV, bootstrap, point cloud and PointNet. Section 3 
proposes the methodology. Section 4 demonstrates the new 
method through the PointNet classification algorithm using 
aerial laser scanning (ALS) point clouds, Section 5 makes a brief 
discussion, and Section 6 concludes the paper.     
 
 

2. RELATED PRINCIPLES AND METHODS  

This section presents a brief discussion about methods and 
principles that are used in the new algorithm and for comparison.  
 
2.1 Train/test split and k-fold cross-validation (kCV)  

The train/test split is a simple and common approach for 
generating training and validation data sets, that behaves like 
random sampling. Usually, first it shuffles the available data, and 
then splits into two parts. One part is separated at the beginning 
as the hold out test set to test the final model that is developed 
based on the other part. The other part is split into two disjoint 
sets: training set and validation set. The training set is used to 
train a model and the validation set is to fix a model, i.e., tuning 
hyper-parameters and validating the trained model.  
 
Unlike the train/test split approach, k-fold cross-validation (kCV) 
splits the available samples (data) into k (user defined) distinct 
groups (folds) of approximately equal size (James et al., 2015; 
Wainer and Cawley, 2021). Before splitting data, they can be 
shuffled or just split into specific spatial regions following some 
arrangement or in a systematic order. For the kCV, each time, a 
training set of k-1 folds is used to train a model, and the model is 
evaluated using the remaining fold. Hence, the kCV based 
models are developed k times, so that each fold can be part of the 
validation sets. Raschka (2020) noted that the main advantage of 
using cross-validation (CV) is that each observation of the given 
data set has the opportunity of appearing in both the training and 

validation. The average performance of the developed k models 
is considered as the performance of the final model. That can also 
be expressed as the generalization power of the final model. This 
paper also demonstrates the insufficiency to generalize a model 
just by evaluation once or few times with a validation set(s).   
 
2.2 Bootstrap   

Bootstrap is a widely used resampling technique for statistical 
decision-making w. r. t. sample estimators, to know the 
distributions of the sample estimators, and for better understating 
about population parameters. It draws B (a data dependent, 
prespecified large number, e.g. 100 or 500) random samples 
(data sets called bootstrap samples) of same size with 
replacement from a given data set. That means samples come 
with equal probability. Bootstrap helps to draw statistical 
inference on the learning model and associated evaluation 
metrics (estimators) based on many bootstrap samples. The basic 
principle that follows nonparametric bootstrap uses bootstrap 
samples to approximate the sampling distributions for estimating 
confidence interval and to test the statistical hypotheses designed 
for an estimator. A major benefit of using bootstrap is that it is 
not reliant on following the Central Limit Theorem (Boos and 
Stefanski, 2013) to understand population. To know more about 
bootstrap, its principles and properties, the reader is referred to 
Efron and Tibshirani (1993) and Davison and Hinkley (1997).    
 
2.3 Point cloud and PointNet 

Point clouds can be represented as a type of spatial structure 
usually represented by a tuple (a trio of x, y, z) coordinates and 
may include colour, intensity, return number, and other meta 
data. Point clouds can provide geometric detail such as shape, 
size, and orientation of objects at sufficient level of detail for 
various tasks such as surface reconstruction (Nurunnabi et al., 
2012), normal estimation (Nurunnabi et al. 2015), and for 3D 
geometric primitives such as cylinders fitting (Nurunnabi et al., 
2019). However, their inherent 3D complicates the use of DL 
approaches such as Convolutional Neural Networks (CNNs; 
LeCun et al., 1989) that are regularly employed for image 
processing (Krizhevsky et al., 2012). Direct application of such 
CNNs is stymied by a point clouds’ unstructured and irregular 
data format. Any transformation of a point cloud may entail 
losing data information or metadata attributes. PointNet (Qi et 
al., 2017) is the first end-to-end DL algorithm that was successful 
for segmentation and classification of indoor point clouds 
without any transformation of the raw data. Although PointNet 
does not compete to the state-of-the-art DL algorithms (e. g., 
Boulch, 2020; Hu et al., 2020; Su et al., 2022) for point clouds 
classification; many researchers use it as a fast and readily 
available approach (e.g., Nurunnabi et al., 2021b) and many 
others have adopted its basic structure. Nurunnabi et al. (2021b) 
showed that it is promising for large-scale outdoor point clouds 
classification. Excluding, the spatial transformer network, T-Net 
(Jaderberg et al., 2015), the basic PointNet consists of only two 
modules: (1) max pooling (a symmetry function) that makes 
global point cloud features, and (2) local and global aggregation 
that joints local and global point feature information. PointNet 
ingests each point independently and learns points’ features 
using a set of multilayer perceptrons (MLPs) followed by max 
pooling (see Qi et al., 2017 for additional details). 
 
  

3. PROPOSED METHODOLOGY 

This section proposes an algorithm to develop, assess and select 
a DL model that has better generalization power (e.g., reducing 
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the well-known overfitting problem). The new algorithm builds 
on a 4-step sequence for the selection of training and validation 
data sets and for model generation. This paper also proposes a 
means to evaluate its generalization capability for pointwise 
classification (semantic segmentation) in aerial LiDAR point 
clouds.    
 
3.1 Step 1:  Bootstrap couples with kCV 

This paper couples bootstrap with kCV to generate a multiplicity 
of combinations of training and validation sets. To improve 
generalizability of a model, first kCV is employed. This splits the 
available data into k (user defined) distinct folds, and groups k-1 
folds together to make a training set. The remaining set (fold) is 
considered as the validation set. This process repeats for all the 
k folds and, thus, results in k pairs of training and validation sets. 
Next, independent B (user defined number) bootstrap samples 
are drawn from each of the k validation sets generated by kCV 
(see Fig. 1).  This results in k training sets, and B validation sets 
for each of the k training data set. Sizes of the bootstrap samples 
are the same as the respective validation set. Since larger size of 
k and B will take more time for the model building process, we 
fix k = 5, and B = 100 to make a balance between time and 
desired level of performance. Larger size of B is suggested in 
bootstrap literature to obtain more accuracy for estimating 
sampling distributions.   
 

 
 

Figure 1. A schematic diagram: cross-validation couples with 
bootstrap to get B validations sets for each of k training sets. Fi 
is the ith (i =1,2,…,k) fold for a data set having k folds, where k-
1 folds are used as a training set, and B bootstrap validations sets 
are used to validate the model developed by the training set.   
 
3.2 Step 2: Employing PointNet and DL model development  

In step 2, PointNet (Qi et al., 2017) network is employed to 
develop k distinctive DL models based on the training data sets 
generated by the group of k-1 folds. Selection of the PointNet 
hyper-parameters (e.g., the number of hidden layers, activations 
functions for the hidden and output layers, the Adam optimizer 
[Kingma and Ba, 2014]) are fixed as per the original 
implementation (Qi et al., 2017). Then each of the k models are 
tuned via the B bootstrap validation samples and used to 
determine the error metrics, based on the Mean Square Error 
(MSE), as described in Step 3.  
 
3.3 Step 3: Calculation of evaluation and decision metrics 

Step 3 defines the evaluation and decision metrics need to assess 
the models developed in Step 2. MSE was selected, as it is easily 
defined as the mean that reasonably satisfies the necessary 
statistical conditions to be a consistent estimator. Moreover, it 
behaves asymptotically normal following the Central Limit 
Theorem (Boos and Stefanski, 2013). Nurunnabi and Teferle 
(2022) demonstrated MSE as a statistically consistent estimator, 
and showed its potential in DL model evaluation in large-scale 

point clouds. MSE is used as the cost function for the model 
building process, and its related functions as the model 
evaluation metrics. The error metrics: mean (MMSE), standard 
error (SEMSE), and the 95% confidence intervals (CIMSE 95%) of 
the MSE are calculated to evaluate the developed models. These 
most common estimators of signifying statistical accuracy are 
calculated following the standard procedures of nonparametric 
bootstrap (c.f., Efron and Tibshirani, 1993), where 

       𝑆𝐸𝑀𝑆𝐸(𝑏𝑡) = √
1

𝐵−1
∑ (𝑀𝑆𝐸𝑏 − 𝑀𝑀𝑆𝐸)2𝐵

𝑏=1           () 

where 𝑆𝐸𝑀𝑆𝐸(𝑏𝑡) and 𝑀𝑆𝐸𝑏 are the standard error of MSE for 
the B bootstrap samples, and the MSE for the bth bootstrap 
sample, respectively. The terms MSE (∙) and MMSE are defined as 
Eqs. 2 and 3, respectively: 

                   𝑀𝑆𝐸𝑏(𝜃̂) =  
1

𝐵
∑ (𝜃̂ − 𝜃)2𝐵

𝑏=1                     () 

where 𝜃 is an estimator (error metric); estimated from the 
empirical distributions based on the B independent bootstrap 
samples, and  

                         𝑀𝑀𝑆𝐸 =
1

𝐵
∑ 𝑀𝑆𝐸𝑏

𝐵
𝑏=1                          () 

There are several ways to estimate bootstrap CI (e.g., Thomas 
and Efron, 1996). The 95% CI of the bootstrap MSE is 
determined statistically based on percentile values. The B 
bootstrap MSE values are arranged in an ascending order to find 
the 2.5th and 97.5th percentiles. The 95% bootstrap CI 
(𝐶𝐼𝑀𝑆𝐸𝐵

95%) can be defined as Eq. 4.  

𝑀𝑆𝐸𝑏
(0.025×𝐵)

≤ 𝑀𝑆𝐸𝑏  ≤  𝑀𝑆𝐸𝑏
(0.975×𝐵)

 b=1, 2, …, B () 

3.4 Step 4: Model assessment and selection 

In step 4, the apparently best model is selected and then assessed 
for the available test data. Selection is based on the model with 
the least MMSE and/or SEMSE alternative to the highest Mean of 
Overall Accuracy (MOA,) among the k models. The goal is to find 
the bootstrap validation set corresponding to the model having 

Algorithm: kCV-B 
Step Input: point cloud. Output: a DL model. 
1. Define a DL (PointNet) network with its regular hyper- 

parameters 
2. Split the data into k-folds (see Fig. 1) 
3.  for i = 1, …. , k do 
4.      Train the DL model without the ith fold 
5.      Draw B bootstrap validation data sets from the ith fold 

of same size with replacement  
6.      for b = 1, … , B do 
7.          Evaluate the model from Step 4 with the validation 

set b  
8.            Store MSEb  
9.      Store the validation set b with the least MSEb  
10.      Calculate MMSE, SEMSE and 𝐶𝐼𝑀𝑆𝐸𝐵

95%  
11. Find the best training set for which MMSE and/or SEMSE, 

are the least, and best validation set for which MSEb is the 
least among the others corresponds to the best training 
set.  

12. Retrain the DL model using the best training set and the 
best validation set from Step 11. 

13. The final kCV-B based DL model derived from Step 12. 
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the least error. Next, the DL algorithm is retrained using the 
previously determined best training and best validation sets. 
Finally, the well-known F1-score and OA metrics (Nurunnabi et 
al., 2021a, b) are used to evaluate the DL classification model. 
The pseudocode for the proposed algorithm kCV-B is defined in 
Algorithm kCV-B. 
 
 

4. EXPERIMENTS, ANALYSIS AND EVALUATION  

This section demonstrates the new algorithm (kCV-B) through 
two real world ALS data sets, and compares the outputs to those 
achieved with three existing methods: (1) train/test split, (2) 
bootstrap, and (3) kCV.  
 
4.1 Experiments on the DALES data set 

For the first experiment, the large-scale aerial LiDAR data sets 
DALES (Dayton Annotated LiDAR Earth Scan; Varney et al., 
2020) is used. These data are of the city of Surrey in British 
Columbia, Canada and were acquired by a Riegl Q1560 dual 
channel LiDAR system from the flying height of 1,300m. They 
are arranged in 40 tiles, each of 500m×500m with a point density 
around 50/m2. The data were labelled with 9 groups: ground, 
vegetation (Veg.), car, truck, power line (PL), fence, pole, 
building, and unclassified (uC). The data covered semi-urban 
and urban areas. Prior to usage, this data set was denoised by a 
robust statistical method as was proposed in Nurunnabi et al. 
(2015). We randomly select 5 parts of data sets of almost equal 
size from five different tiles for training and validation that have 
6,070,267 points. Three more data sets are taken from 3 different 
tiles as the three hold out test sets.  
 
Next, the PointNet algorithm was applied with its regular hyper-
parameters for all the concerned data and applied to all four 
methods: train/test split, bootstrap, kCV and kCV-B. The input 
attributes included the tuple of point coordinates (x, y, z), return 
number, point height, scan angle and normalized x, y and z values 
(Nurunnabi et al., 2021b). A block size of 10m×10m having 
2,048 points per block was selected. A batch size of 32 was 
selected, and MSE was used as the loss function instead of the 
cross entropy used in the original PointNet. The DL model is 
trained with 100 epochs. To perform train/test split and 
bootstrap, 80% of the points were randomly selected for training, 
 

and the remaining 20% were left for validation. The model was 
developed and evaluated excluding three test sets that were 
reserved for later testing and compare to the other methods. For 
kCV, 5 folds (k = 5) were used for training and validation, which 
are taken from 5 different tiles. For the new method, kCV-B, 100 
(B) bootstrap samples were drawn from each of the k validation 
sets of same size. Train/test split, kCV, bootstrap and kCV-B 
were evaluated 1, 5 (k), 100, and 500 (k×B) times, respectively 
with the corresponding validation sets. Hence, the proposed 
kCV-B are evaluated with the maximum number of validation 
data sets.  
  
We calculate MSE values for every model w. r. t. the respective 
validation sets, and estimate MMSE, SEMSE, and 𝐶𝐼𝑀𝑆𝐸𝐵

95%, these 
are available for the bootstrap, kCV and kCV-B. We find the fold 
of validation sets for which the values of MMSE and/or SEMSE are 
minimum. Next the best bootstrap validation set was established 
for which MSEb is the least among the others corresponds to the 
best training set. The final kCV-B model was selected based on 
the best bootstrap validation set and the respective training set. 
The same process is then done with and without shuffle before 
splitting (folding) them to get training and validation sets. Table 
1 presents the results obtained during both the model building 
process and the final model tested on three reserved (previously 
unused) data sets. Fig. 2 plots the line diagram for the MSE 
values for the bootstrap samples (with and without shuffle) 
corresponding to different validation sets (for folds: i, ii, iii, iv 
and v) for kCV-B.  
 
Results in Table 1 (Columns 3-5) and plots a, b in Fig. 2 explore 
that in most cases; the shuffled data produce better results (lower 
MSE values) than the unshuffled data. With the shuffled data, 
kCV-B is able to achieved the overall minimum of MMSE 
(0.02553) and SEMSE (0.00007). This was achieved with fold v 
(kCV-B v) as the validation fold. When retrained kCV-B (final) 
was able to achieve an OA of 87.1% and 83.4% for the given 
data set with and without shuffle, respectively. In Fig. 2, Plot c 
shows that 95% of CI (red vertical lines) that holds the mean of 
MSE (cyan vertical line) values for kCV-B. Note that, bootstrap 
and train/test split approaches are typically applied to shuffled 
data. So, testing with those two approaches was not done for 
unshuffled data (Table 1). Final models were assessed on the 
three reserved test sets (Test 1, Test 2, and Test 3).  
 

Methods MMSE SEMSE 𝐶𝐼𝑀𝑆𝐸𝐵
95% OA or MOA OA (Test 1) OA (Test 2) OA (Test 3) MOA 

W
ith

ou
t s

hu
ffl

e 

 kCV-B i 0.02800 0.00014 0.0277, 0.0283 83.9 81.8 83.1 83.0 — 
 kCV-B ii 0.04933 0.00021 0.0489, 0.0498 68.5 81.5 84.5 81.8 — 
 kCV-B iii 0.04693 0.00027 0.0464, 0.0475 69.7 70.7 75.2 68.5 — 
 kCV-B iv 0.11242 0.00033 0.1118, 0.1130 36.5 82.6 81.9 81.7 — 
 kCV-B v 0.04392 0.00023 0.0435, 0.0444 72.4 80.1 82.5 82.0 — 
 kCV-B (final) 0.03137 — — 83.4 82.8 83.8 84.6 83.7 
 kCV 0.08247 0.07544  62.2 79.6 80.2 79.2 79.6 

W
ith

 sh
uf

fle
 

 kCV-B i 0.03033 0.00009 0.0302, 0.0305 81.9 79.3 79.9 77.8 — 
 kCV-B ii 0.02856 0.00008 0.0284, 0.0288 82.6 81.6 81.1 81.1 — 
 kCV-B iii 0.02857 0.00008 0.0284, 0.0287 82.6 81.8 80.6 82.9 — 
 kCV-B iv 0.02691 0.00009 0.0267, 0.0271 83.7 81.9 81.5 81.1 — 
 kCV-B v 0.02553 0.00007 0.0254, 0.0256 84.8 81.9 81.5 83.9 — 
 kCV-B (final) 0.02230 — — 87.1 82.6 82.8 85.4 83.6 
 kCV 0.02700 0.00105 — 83.8 81.3 81.4 80.4 81.0 
 Bootstrap 0.02794 0.00009 0.0277, 0.0281 83.1 81.7 79.2 80.8 80.6 
 Train/test split 0.03167 — — 80.5 81.1 77.2 79.8 79.4 

Table 1. Results of different methods for the validation data sets from different folds, and 3 test data sets. kCV-B (.) mentions kCV-B 
method when (.) is the fold used for validation.  
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Figure 2. Exploration of the MSE values for the bootstrap samples from different folds and validation sets: (a) line diagrams for the 
shuffled data, (b) line diagrams for the unshuffled data, (c) histograms for the MSE values for the vth fold kCV-B v with 95% CI (red 
vertical line) and the mean (cyan vertical line).  
  

 
 

Figure 3. Classification results (misclassified points are in yellow) for the DALES Test 3 data set: (a) ground-truth, (b) train/test split, 
(c) bootstrap, (d) kCV, and (e) kCV-B. uC, Veg and PL define unclassified, vegetation and power line, respectively.  

 
 

Class Training 
points 

Test 
points 

Train/test 
split 

Boot-
strap kCV  kCV-B  

F1 F1 F1 F1 
uC  38,124  1,613 00.0 00.0 03.0 04.1 
Ground  2,693,961 485,011 88.8 89.7 93.3 93.2 
Veg  1,612,293  196,347 59.6 55.1 56.8 66.6 
Car   121,440   18,819 04.5 15.1 22.2 32.8 
Trucks  17,116  1,350  00.0 15.1 05.3 07.8 
PL  17,042 3,866 00.0 11.5 53.2 51.5 
Fence  29,824 13,040 00.0 00.0 06.1 11.4 
Poles    6,489  2,211 00.0 00.0 16.6 18.4 
Building  1,533,978  226,369 72.9 77.2 68.2 83.6 
Mean F1   25.1 29.3 36.1 41.0 

Table 2. Classification results of DALES Test 3 data set.  

The kCV-B (final) achieved the highest OA in all cases, and 
overall, MOA was 83.6% versus 81% for kCV, 80.6% for 
bootstrap and 79.4 % for train/test split. Results clearly show that 
kCV-B achieves better generalization power than the existing 
methods. 
 
Table 2 shows the per class classification performance for the 
Test 3 data set in terms of an F1-score (F1), which is a 
combination of precision and recall. For most of the classes kCV-
B performed better than the others. For example, in the category 
of building, kCV-B identified points at an F1-score of 83.6%, 
whereas, kCV, bootstrap and train/test split achieved only 68.2%, 
77.2% and 72.9%, respectively. Table 2 also presents the number 
of points per class. In classes with significantly lower numbers 
of points (e.g., PL and poles), the two non-kCV approaches 
performed very poorly. Critically, the two kCV-based 
approaches were much less sensitive to this well-known problem 
of imbalanced data (Nurunnabi et al., 2021b). Fig. 3 visualizes 
this clearly for the powerlines. Not only does this point to a better 
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robustness in this class of solutions but may be also indicative of 
the need for less training data. While not the focus of this paper, 
the topic of data size selection has been clearly established as an 
open question for point cloud data (Majgaonkar et al. 2021). 
 
4.2 Experiments on the AHN data set 

In the second experiment, aerial LiDAR data from Actueel 
Hoogtebestand Nederland version 3 (AHN3) were used. These 
data cover the entirety of The Netherlands and managed into 
500m × 500m tiles. The point density is less than half of the 
previous data set at around 20pt/m2. Most tiles were pre-labelled 
with 5 classes: ground, vegetation, building, water, and bridges. 
For this study, they were relabelled into only three classes: 
ground, building and unclassified (uC includes vegetation, 
vehicles and others). This was done to reduce the imbalance in 
number of points per class. Common ways to reduce the effects 
of imbalanced data include use of oversampling and adding noise 
(Xie et al., 2019). Point distributions for AHN data set are in 
Table 4.  
 
For the initial training and validation data, five tiles were selected 
to cover landscape variations of urban and semi-urban areas 
consisting of different objects (e.g., big and small buildings, 
vegetation and vehicles). Data were also selected from one 
additional tile and held in reserve. The five tiles used for training 
and validation contained 5,472,556 points in total. The reserve 
tile for test contained 3,276,800 points.  
 
We perform the PointNet algorithm for the same data splitting 
procedures with network inputs: point coordinates (x, y, z), 
intensity, return number, point height, and normalized x, y and z 
values. The hyper-parameters were used as described for the first 
experiment. In this experiment, we investigate our objectives 
with shuffled data. We see that results of MMSE (0.02596) and 

SEMSE (0.00015) are the lowest for kCV-B ii. That means, for the 
fold-ii, bootstrap produces better samples for validation sets that 
produce corresponding OA of 94.9%, which is better than any 
other of the rest of the four folds. We search for the best 
validation set among the 100 bootstrap validation samples of 
fold-ii that produces kCV-B of OA = 95.4%, whereas train/test 
split, bootstrap and kCV produce OA of 95.3%, 94.7%, 93.9%, 
respectively. Now, we use the final kCV-B based model for the 
test data set that achieves OA of 91.3%. Interesting finding is 
that although train/test split produces competitive results for the 
existing validation set with OA of 95.3%, but for the test data it 
gets only OA of 81.6% which is because of its low generalization 
capability, as it evaluates the developed model against only one 
validation set. Classification results of the AHN test data set for 
all four methods are plotted in Fig. 4. 
 

  Methods MMSE SEMSE 𝐶𝐼𝑀𝑆𝐸𝐵
95% OA/MOA OA 

(Test) 
kCV-B i 0.02699 0.00017 0.0267, 0.0274 94.7 89.3 
kCV-B ii 0.02596 0.00015 0.0256, 0.0262 94.9 90.1 
kCV-B iii 0.02619 0.00019 0.0258, 0.0265 94.8 72.9 
kCV-B iv 0.03100 0.00015 0.0307, 0.0313 93.9 91.7 
kCV-B v 0.04616 0.00023 0.0458, 0.0465 90.9 60.3 
kCV-B 0.02417 — — 95.4 91.3 
kCV 0.03093 0.00626 0.0257, 0.0416 93.9 89.2 
Bootstrap 0.02713 0.00016 0.0268, 0.0274 94.7 83.5 
Train/test 
split 0.02424 — — 95.3 81.6 

Table 3. Results of different methods for the validation data set 
from different folds and one test data set. kCV-B (.) mentions 
kCV-B method when (.)th fold is used for validation. 

 

 

Figure 4. Classification results (misclassified points in yellow) for the AHN test data set: (a) ground-truth, (b) train/test split, (c) 
bootstrap, (d) kCV, and (e) kCV-B. Many building and ground points are misclassified in red ellipses.
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Fig. 4, plots (e) and (b) portray the best and the worst 
classification results that are produced by kCV-B and train/test 
split methods respectively. Many building and ground points in 
the red ellipses were misclassified for train/test split, bootstrap 
and kCV based methods. Plot (e), kCV-B wrongly classified 
some of the points, but these are significantly less in numbers 
than the others. One-point worth noting that is clearly visible in 
Fig. 4 is that many of the areas in which kCV-B continued to 
struggle with the classification are in the areas of low vegetation, 
especially when that vegetation is close to a building. This 
problem was initially identified by Aljumaily et al. (2015) in the 
application of ML techniques to point clouds. 
 
 

Class Training 
points 

Test 
points 

Train/test 
split 

Boot- 
strap kCV kCV-B 

F1 F1 F1 F1 

uC  1,878,838 693,778 85.2 80.3 84.3 89.2 

Ground  2,152,235 1,680,188 81.9 85.5 91.1 93.2 

Building  1,441,483 902,834 78.9 82.9 89.9 89.2 

Mean F1   81.9 82.9 88.5 90.5 

OA   81.6 83.5 89.2 91.1 
 

Table 4. Classification results of AHN test data set.  
 

Table 4 contains per class classification performance for the test 
data set in terms of F1-score, Mean F1 (MF1) and OA. For all the 
classes kCV-B achieves better OA than the others. The one 
exception was for buildings, where kCV achieved 89.9% versus 
89.2% for kCV-B. In all other instances and in overall F1-scores 
kCV-B outperformed the other methods.  
 
 

5. DISCUSSIONS 

Using the PointNet architecture the proposed algorithm kCV-B 
was applied for per point classification (semantic segmentation) 
through two aerial LiDAR point clouds of significant differences 
in average point density (20 and 50 pts/m2). Both experiments 
showed that the new algorithm, kCV-B classified better than the 
existing methods and was either less sensitive to imbalance 
classes of training data or potentially needed less data to achieve 
reasonable results. When the results of Experiment 1 are plotted 
solely as a function of the number of training points (Fig. 5), 
potentially further insight is gained as to the minimum number 
of training points that may be needed for the various approaches 
and for the different classes of object. As no consideration is 
given here to average point density per object or per square meter 
of object or as to its three-dimensional versus two-dimensional 
nature, further generalization would only be speculative, but this 
fully establishes further research needs in making ML and DL 
approaches more rational in terms of parameter selection 
including the size of training data sets. In case of Experiment 1, 
for the training data, results were significantly better, when we 
did shuffle before splitting the available data to have training and 
validation data sets. Although, it was not clearly supportive for 
the test data sets, it is reasonable that data shuffling can produce 
better generalization power because appearing the validation 
set(s) is(are) not limited to any specific part of the data, it can 
consider points from every part of training sets. If we do partition 
(fold) based on different spatial regions, it is practical that we 
may miss certain types of objects and classes that are not present 
equally in every region. For example, usually distribution of  
 

 
 
Figure 5. Experiment 1; FI-score results plotted solely as a 
function of available training data points.  
 
vegetation and buildings are different based on landscape and 
location (e.g., urban or rural area). However, kCV-B unshuffled 
can run faster than the shuffled kCV-B.   
 
 

6. CONCLUSIONS 

Supervised learning on point clouds, especially DL, is known to 
need vast amounts of labelled data, which is often not feasible. 
Data insufficiency is influenced by the problem of overfitting. 
As such, this paper investigates the potential use of a bootstrap 
resampling algorithm for new data creation for efficiently 
generating validation sets to enhance the generalization power of 
a DL algorithm for point cloud classification. The proposed 
bootstrap coupling with kCV was demonstrated to improve 
model quality. The new algorithm, kCV-B needs to optimize the 
values of k and B. The user can fix the values depending on their 
data and study. Using large values of k and B improve the 
generality and performance of a model, but there is a trade-off 
between generalization, accuracy and time to compete the 
process. Reasonably, kCV-B takes more time than the existing 
methods, but researcher who needs more accuracy and has 
available high-powered computing facilities would be benefited 
incorporating bootstrap with CV for more data generation that 
can produce higher generalization power for the test and future 
data. Further studies will investigate more on different bootstrap 
approaches that can be faster, more efficient and robust for new 
data generation and effective for large-scale data sets.  
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