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ABSTRACT:

Most deep learning (DL) methods that are not end-to-end use several multi-scale and multi-type hand-crafted features that make the
network challenging, more computationally intensive and vulnerable to overfitting. Furthermore, reliance on empirically-based feature
dimensionality reduction may lead to misclassification. In contrast, efficient feature management can reduce storage and computational
complexities, builds better classifiers, and improves overall performance. Principal Component Analysis (PCA) is a well-known
dimension reduction technique that has been used for feature extraction. This paper presents a two-step PCA based feature extraction
algorithm that employs a variant of feature-based PointNet (Qi et al., 2017a) for point cloud classification. This paper extends the
PointNet framework for use on large-scale aerial LIDAR data, and contributes by (i) developing a new feature extraction algorithm,
(i) exploring the impact of dimensionality reduction in feature extraction, and (iii) introducing a non-end-to-end PointNet variant for
per point classification in point clouds. This is demonstrated on aerial laser scanning (ALS) point clouds. The algorithm successfully
reduces the dimension of the feature space without sacrificing performance, as benchmarked against the original PointNet algorithm.
When tested on the well-known Vaihingen data set, the proposed algorithm achieves an Overall Accuracy (OA) of 74.64% by using 9
input vectors and 14 shape features, whereas with the same 9 input vectors and only SPCs (principal components built by the 14 shape

features) it actually achieves a higher OA of 75.36% which demonstrates the effect of efficient dimensionality reduction.

1. INTRODUCTION

Feature extraction is crucial in pattern recognition and machine
learning (ML) that has been used for object detection,
classification, and segmentation (Bishop et al., 2006; Murphy,
2012). Recently, deep learning (DL) has drawn a remarkable
attention as a top ML technique for point cloud classification and
segmentation (Qi et al., 2017a; Hu et al., 2020; Zou et al., 2021).
Some DL algorithms for classification are considered end-to-end
as they use point coordinates, normalized coordinates and/or a
few features such as intensity and colors (Qi et al., 2017a, b;
Thomas et al., 2019; Hu et al., 2020), but many are not (Hsu and
Zhuang, 2020; Nurunnabi et al., 2021a) and rely upon using
hand-crafted features such as point normal and curvatures as
inputs, instead of just points. Many of the latter feature-based DL
algorithms use multi-scale (Thomas et al., 2018; Cabo et al.,
2019; Atik et al., 2021) and/or multi-type (Blomely et al., 2016;
Weinmann and Weinmann, 2019) features to improve
classification performance. Laser scanning based point clouds
are challenging to classify as they are usually unstructured,
having highly variable point density and irregular data format,
and are typically capturing sharp features (e.g., edges and
corners) and arbitrary surface shapes. Multi-scale and multi-type
neighborhood-based features can describe the points’ local
structure with more detail and help to understand their
correspondence with neighboring objects. However, the variable
and unstructured nature of point clouds makes the different
scales and different types of hand-crafted feature-based network
heavy, complex and challenging. The main advantage of a hand-
crafted feature-based DL approach is that it involves less training
data. It is frequently the case that many candidate features are
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unnecessary and redundant to the learning process, which hinder
the performance of the learning model and can lead to
overfitting. Therefore, clear knowledge about the features and
their relation to the underlying problem is needed (Nurunnabi et
al., 2021a). Besides feature extraction, feature selection methods
are used to increase learning capability and to better generalize
supervised models, both of which can reduce computational
complexity and required storage. Zebari et al. (2020) noted that
feature extraction is less influenced by overfitting and achieves
better accuracy for the classification tasks compared to feature
selection methods. Thus, this paper concentrates on feature
extraction.

Several common feature extraction techniques are Principal
Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Partial Least Squares (PLS), PLS Discriminant Analysis
(PLS-DA), Independent Component Analysis (ICA), Canonical
Correlation Analysis (CCA), kernel PCA (KPCA) and kernel
LDA (KLDA, Scholkopf et al., 1998; Mika et al., 1999; Hastie
et al., 2017; Wang et al., 2019). These methods can be grouped
into linear (e.g., PCA, PLS-DA) and non-linear approaches (e.g.,
KPCA and KLDA). Both groups employ dimension reduction
and are frequently used in medical image processing, data
visualization, text categorization, bioinformatics, chemometrics
and astronomy (Wang and Paliwal, 2003; Thomas et al., 2014;
Liu et al.,, 2021). The most popular two feature extraction
methods are PCA and LDA. Both optimize through a
transformation matrix. PCA optimizes the transformation matrix
by maximizing the variance in the projected space, on the other
hand, LDA searches the largest ratio of between-class variation
and within-class variation, when projecting the given variables
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to a subspace (Wang and Paliwal, 2003). Reddy et al. (2020)
intensively analysed PCA and LDA as dimension reduction
techniques with several ML algorithms that showed most of the
cases PCA outperforms LDA. However, usage of the above
techniques has been either in supervised approaches or deployed
in computationally intensive ways, and thus, poorly suited for
feature-based DL algorithms for point cloud classification. To
the best of our knowledge, to date a DL approach has not been
employed that combines both dimension reduction and feature
extraction for point cloud classification.

This paper integrates feature extraction and dimension reduction
to improve a DL framework for per point classification of large-
scale aerial LIDAR point clouds. Scientific contributions of this
paper are: (i) developing a two-step feature extraction algorithm,
(ii) understanding the impact of dimension reduction in feature
extraction, and (iii) developing a PointNet variant for
classification in point clouds that is not end-to-end. The
performance of the proposed algorithm is demonstrated on aerial
laser scanning (ALS) point clouds. The new PCA based
algorithm is intended to reduce the dimensionality of the feature
space and improves the performance of the original PointNet
algorithm for large-scale point cloud classification.

The remainder of the paper is organized as follows. Section 2
includes a brief discussion on dimensionality reduction, feature
extraction, PCA, and PointNet. Section 3 introduces the
proposed algorithm. Section 4 demonstrates the newly developed
algorithm through two experiments on large-scale ALS point
clouds. Concluding remarks are given in Section 5.

2. RELATED METHODS AND PRINCIPLES USED IN
THE PRPOSED ALGORITHM

This section presents a short discussion about the basics of
feature extraction, feature selection, dimension reduction, PCA,
and the PointNet algorithm.

2.1 Dimension reduction, feature extraction and feature
selection

The number of variables (features) in a data set is referred to as
its dimensionality. Dimension reduction is a widely used process
of reducing the number of variables under consideration. This
approach is widely applied in areas such as statistics, information
theory, and machine learning (ML) and related artificial
intelligence techniques. Within ML type approaches,
dimensionality reduction is used for both feature extraction and
feature selection (Jorgensen et al., 2019). Feature extraction is a
process of creating new features based on the original input
feature (variable) set to reduce the dimensionality of the feature
space. In contrast, feature selection refers to the selection of a
small group of features that maximizes relevance to the target
(e.g., class labels in classification) and minimize redundancy
between the features (Kotsiantis, 2011). In many algorithms,
feature extraction, feature selection and dimension reduction are
used together for feature optimization and to improve
classification accuracy (Jorgensen et al., 2019; Liu et al., 2021).

2.2 Principal component analysis

PCA is one of the most classic statistical techniques, frequently
used for point cloud processing, and is employed in feature
extraction, outlier detection, regression and classification, as
well as dimension reduction (Jolliffe, 2002; Nurunnabi et al.,
2012; 2015; Hastie et al., 2017; Grilli et al., 2021). PCA aims to

transform a set of possibly correlated variables into a set of
uncorrelated variables that can be considered as a set of
orthogonal linear combinations of variables that maximize the
variance of each combination in rank. These uncorrelated
variables, representing the reduced dimensions are called
Principal Components (PCs). PCs can be computed by using the
well-known Singular Value Decomposition (SVD) to the
covariance matrix, C,

_ Yyt
c=1x7x, M

where X is the mean centered data matrix, having n observations
and m variables, X = x; —¢; (i =1, 2, ..., n), x; is the ith row
of the matrix X, and c is the centre (mean) of n observations. PCs
are usually sorted into descending order of the non-negative
eigenvalues. The 1st PC describes the largest proportion of the
data variance. The 2nd PC explains the majority portion of the
remaining variance, and the following PCs successively explain
the highest variance possible under the orthogonality conditions.
Hence, from the beginning, a small number of PCs may explain
a sufficient portion of the variance in a data set without losing
data information. Thus, PCA has been applied as a successful
dimension reduction technique. Besides classical PCA, there are
many variants (e.g., Hubert et al., 2005; Nurunnabi et al, 2014).
Some produce robust PCs in the presence of outliers. For
example, Hubert et al. (2005, 2012) developed robust PCA,
ROBPCA that employed a robust covariance matrix together
with projection pursuit (PP) to get robust PCs. Nurunnabi et al.
(2013, 2014, 2015) showed the advantages of using outlier
diagnostic approaches before performing classical PCA to
achieve robust results in the presence of outliers and noise. The
authors (Nurunnabi et al., 2014; 2015) also showed that the
diagnostic PCA was significantly faster than the robust PCA.
Additionally, the approach of Kernel Principal Component
Analysis (KPCA) is a non-linear PCA has also been used for
dimension reduction (Scholkopf et al., 1998; Sidhu et al., 2012).
KPCA uses kernel methods to project the data in a higher
dimensional space, and then perform PCA on that higher space.

2.3 PointNet, and deep learning in point cloud

PointNet (Qi et al., 2017a) was the first end-to-end DL algorithm
that feeds point cloud of irregular data format directly into the
network, and offers a simple and computationally efficient
means for indoor point cloud classification. It provides a unified
architecture applied for part segmentation, object classification,
and scene-based semantic parsing. This deep neural network
processes raw points in a point cloud P that can be arranged in a
matrix of order n X d, where n is the number of points and d is
the number of features (variables). For a LiDAR based 3D
(three-dimensional) point cloud, the common features are the
three respective point coordinates (x, y and z). In PointNet, these
x, y, and z are used as a basic setting with the choice of using
additional features e.g., colors (R, G, B), intensity (/), and Return
Number (RN). PointNet learns a spatial encoding of per point
features using shared multi-layer perceptrons (MLPs) followed
by a global max-pooling function. Shared MLPs transform
features from lower dimensions (d = 3) to the higher dimension
(d = 1024), and share their parameters among all the points of
each layer. The max-pooling is computed as the global signature
of the maximal response among all the points. To make the
semantic labelling invariant to certain geometric transformation,
this algorithm joins T-Net (a spatial transformer network;
Jaderberg et al., 2015) in two stages. Thus, PointNet combines
three modules: a symmetry function, local and global
information aggregation, and two joint alignment networks to
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align input points and the point features. However, PointNet
ignores a point’s local spatial structure which limits the learning
of in-depth patterns in a complex scene.

A variety of DL methods for point cloud classification were
developed that employing PointNet as a cornerstone (Qi et al.,
2017b; Li et al., 2018; Hu et al., 2020). Qi et al. (2017b)
introduced a method where point features are learned by
aggregating the spatial structure of the neighbouring points. In
PointCNN (Li et al., 2018), the approach changes point
neighbors to a canonical order for enabling typical convolution
process to a normal role. Thomas et al. (2019) presented a new
type of spatially deformable kernel point convolution (KPConv)
that learns to adapt kernel points to local geometry. Hu et al.
(2020) developed a random point sampling-based algorithm,
RandLA-Net, for point cloud classification. To avoid the
possibility of discarding key features (because of random
sampling) this method successfully incorporates a local feature
aggregation module to effectively preserve geometric details. Su
et al. (2022) proposed a learnable attention module-based
network, DLA-Net, that can be easily implanted into various
network architectures for point cloud segmentation. More on DL
based point cloud classification methods is available in Bello et
al. (2020) and Li et al. (2021). PointNet is employed herein
because of its simplicity to understand and implement.
Moreover, it is effective and sufficiently fast to demonstrate our
method on large-scale point clouds.

3. METHODOLOGY

The proposed method consists of three main steps including two
steps for feature collection, feature extraction and dimension
reduction (see proposed workflow in Fig. 1). The third step
implements PointNet for per point classification.

3.1 Feature collection

At the beginning of feature extraction, the relevant features are
collected. In this paper, two types of features are used; one is
those available from the laser scanner and the resulting point
cloud. Herein, these are referred to as LIDAR feature (LiF). This
group includes points coordinates (x,y,z), normalized coordinates
(Xn, ¥n, zn), return number (RN), intensity (/) and points local
height zx. The point’s local height, z; is the height difference
between the z values of the interest point and the lowest point in
a local neighbourhood. In the absence of RN and /, other features
such as scan angle could be used (Nurunnabi et al., 2021b).

The second group of features are the local saliency features (e.g.,
normal and curvatures) that are usually derived based on a local
neighborhood of each point p;. To get the respective
neighborhood in three dimensions, the well-known k nearest
neighbour (ANN) search algorithm is employed, which avoids
problems with point density variation and lack of adequate
redundant observations (Nurunnabi et al., 2015). Local saliency
features are known as shape features (SFs) and describe local
geometry. SFs for a point of interest are derived from the local
covariance matrix of the respective neighbors. Here PCA is used
to generate the SFs. As per Eq. (1), for every point
(pis Px, Py» D7) in the point cloud, a covariance matrix C of order
3 with the point coordinates within their respective neighborhood
of size k is generated. Then PCA is performed on C to ascertain
the 3 PCs (PC1, PC2, PC3) with corresponding eigen values 4,,
A1 and Ay, where 4, = A; = Ay = 0. The most common SFs are:
three eigenvalues (4,, 41, Ay), surface point normal vector (7,
ny, nz), curvature (o), linearity (L), planarity (P), scattering (S),

omnivariance (O), eigentropy (E), plan offset (PO) and
verticality (0) as defined in Pauly et al. (2002), Weinmann et al.
(2015), and Nurunnabi et al. (2021a),

curvature, 0 = )M)-F;# ) )
linearity, L = 274 , (3)
€2

planarity, P = % s “)
scattering, S3 = Z—Z , )
omnivariance, 0 = 3/eqe e, , (6)
eigentropy, E = — Y.7_, e;In(e;), @)
plane offset, PO = ¥'X 7, , and (3
verticality, 8 = arccos|a.b]| 9)

where, the eigenvalues 4; (i = 0, 1, 2) are normalized as e; =
Ai/X3 A, 1, is the ith residual distance of the interest point and
to the fitted plane, and a and b are the normals of the fitted plane
based on the local neighborhood and the x-y plane, respectively.

3.2 Dimension reduction

In this section, PCA is again used — this time to reduce the
dimension of the feature space. Now the PCs (linear
combinations of SFs) are used as the new features derived by the
SFs matrix of the 14 columns involved in all of 12 SFs mentioned
in Section 3.1. Following the basic principle of PCA, the
orthogonal linear combinations (principal components) of the
correlated variables in the feature space are sought. For this the
LiFs are excluded as they are mutually uncorrelated to each
other, whereas, local neighborhood based SFs should have
correlation to each other. The number of required PCs is
established by investigating the maximal variance, as explained
by the PCs. The user can define the number of PCs based on their
data and the variance explained by the PCs.

3.3 Implementation of DL, PointNet, algorithm

This last (i.e., third) step implements the PointNet architecture
modified to be feature based. Unlike the classic PointNet, with
the point coordinates (x, y, z), here normalized coordinates (x»,
Vn, Zn), RN, I, z; and hand-crafted SFs based PCs are used as the
input vectors. PointNet is implemented in four configurations
using only (i) the three coordinates of each point, (ii) the LiFs,
(iii) the LiFs and SFs, and (iv) the LiFs and different groups of
PCs. In this paper, the standard structure of PointNet is followed.
PointNet uses the Rectified Linear Unit (ReLU) and the Softmax
activation functions for the hidden layers and the output layer,
respectively. Multiple cross entropy is used as the loss function,
and a stochastic optimizer (4dam) is used to train the model. To
reduce the influence of vanishing and exploding gradients, this
network uses the ‘He initialization’ strategy (He et al., 2015)
with the ReLU activation function, while Batch Normalization
(Ioffe and Szegedy, 2015) is used for all the layers. The reader
can consult Goodfellow et al. (2016) for more technical details
used in DL and PointNet algorithm.
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Input Feature extraction Output
: Feature Feature dimension Implementation of Classified
Point clouds . ] . :
collection reduction DL algorithm points
Figure 1: Workflow of the proposed algorithm.
Input | Group 1 Group 2 (LiFs) Group 3 (LiFs+SFs) Group 4 Group 5 Group 6 Group 7
features X, ¥, 2 | X, ¥, 2, Xn, ¥, Zn, RN, I, ziy | Group 2 + all SFs |Group 2+10PCs |Group 2+ 7PCs|Group 2+ 5PCs|Group 2+ 3PCs

Table 1. Groups of features that are used in the network as the input vectors. Point coordinates (x, y, z), normalized point coordinates
(Xn, ¥, zn), RN (return number), / (intensity), z» (height of the interest point), and NPCs (N: number of PCs).

4. EXPERIMENTS, RESULTS AND EVALUATION

Two real world ALS point cloud data sets were used for per point
classification. The results of the classifiers are presented here in
brief based on standard evaluation metrics of Fi-score (F1), mean
Fi (mF)), Intersection over Union (IoU), mean IoU (mloU), and
the Overall Accuracy (OA), c.f., Hsu et al. (2020) and Zou et al.
(2021),

2TP;

By = 2TP;+FP+FN;’ (10)

¢ .
mF, = 2=, (11)
IoU; = — 2 (12)

TPi+FP;+FN;

&, 1oU;

mloU = ==—— and (13)
04 =3¢ o (14)

I=17p 4 TN+FP+FN;’

where True Positive (TP) is the number of predicted values
correctly predicted as actual positive, False Positive (FP) means
the number of negative values predicted as positive, if predicted
values correctly predicted as an actual negative, we call it True
Negative (TN), and False Negative (FN) is the number of
positive values predicted as negative. ( .); means the results are
for the ith class. C refers to the total number of classes.

4.1 Experiment 1: Vaihingen data set

The first experiment employed the ISPRS (International Society
for Photogrammetry and Remote Sensing) benchmark
Vaihingen data (Cramer, 2010; Niemeyer et al., 2014). This open
access data set was collected in Vaihingen, Germany using a
Leica ALS50 system with a scanning height of 500m having a
field of view 45°. It has been frequently used for per point
labelling (Blomley et al., 2016; Atik et al., 2021). This data set
has point densities of 4-6/m?. It is divided into training and test
sets, these consist of 753,876 points and 411,722 points,
respectively. Along with the coordinates (x, y, z), each point has
I, RN, and the number of returns. The training area is
predominantly residential with small multi-story buildings that
covers a 399mx421m area. In contrast, the test area that consists
of two scenes is in a city centre comprises high-rise, dense and
complex buildings, and covers a 389mx419m area. The points
are labelled power lines (PL), low vegetation (LV), impervious
surface (IS), car, fence, roof, facade, shrub, and tree. This dataset
has an uneven number of points in the groups. The groups of PL,

car, and fence have significantly fewer points than the other
groups such as tree and IS. To avoid the possible missing of
sample points from the classes with fewer points, a stratified
sampling approach was employed. First, 20% points of the
training set were taken for the validation set. Then the PointNet
architecture was run on the training set with a block size of 10m
X10m, a batch size of 32, and 2,048 points sampled per block.
Other parameters were remained the same. The network fed the
LiFs and SF's of the points, as the input vectors generated by the
formulas defined in Section 3.1 with respective neighborhood of
size k =15. The network was trained using the above-mentioned
hyper-parameters for 100 epochs.

The model with the highest accuracy for the validation set was
used to label the test data. Next, PCA was performed on the SFs
to find PCs with their respective explained variance. Variances
and cumulative variances (in percentage, %) explained by the
PCs are portrayed by the bar and line diagrams, respectively in
Fig. 2. The figure shows that 3PCs, 5PCs, 7PCs and 10PCs
explain variance of 90.9%, 97.0%, 99.6% and 100%,
respectively. The user can choose the desired level of variance
and fix the number of PCs. The performance metrics (Eqgs. 10-
14) were then estimated. The algorithm is assessed through seven
groups of features (defined in Table 1). The results are presented
in Table 2 and Fig. 3. In Table 2, Group 4 with LiFs and 10PCs
achieves the best overall accuracy (OA: 75.65%). Even Group
7, which considers LiFs and only 3PCs produces an OA of
73.52%, and Group 3 with all LiFs and SFs produces OA of
74.64%. While the original PointNet gets results only of OA =
53.74% and 66.78% using Group 1 (x, y, z) and Group 2 (LiFs),
respectively. The reader can see that relatively similar
performance is achieved by the other performance metrics of Fi,
mF1, IoU and mloU.

970 99.4 99.6 99.8 99.9 100
. 100 1 o0 ¥45 910 e
x 86.6 ;
U 80
c
8
S 60 -
>
g
2 40
o
2204
4.3 3.6
0 Za %2 02 02 01 01

1 2 3 4 5 6 7 8 9
Principal component (PC)

10

Figure 2. Bar diagram of explained variance versus PCs, and line
diagram of cumulative variance of the groups of PCs for the
Vaihingen test data set.
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Figure 3: Vaihingen test data set, (a) ground-truth; classification results for the inputs (b) Group 1; (c) Group 2; (d) Group 3; (e) Group
4; (f) Group 6. Results in the black rectangle in (b) show that many points of the impervious surface, fence and low vegetation are
misclassified (red). Misclassifications for the same part are almost similar in the figures (e) and (f), but significantly better than (b).

Class Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Fi IoU Fi ToU Fi ToU Fi TIoU Fi TIoU Fi TIoU Fi TIoU
PL 07.35 03.82|27.88 16.19 | 52.79 3586| 59.65 4250 58.50 4134 | 54.65 37.60| 49.09 32.49
LV 46.42 30.22| 69.70 53.49 | 73.67 58.32| 73.38 57.95| 7324 57.77| 73.55 58.17| 7223 56.53
IS 59.71 42.57| 87.66 78.04 | 88.64 79.59| 89.31 80.68| 88.87 80.10| 88.92 80.05| 88.04 78.63
Car 0941 4939|3745 23.03| 36.34 2220 4536 2934 3738 2299 | 4237 2688 41.17 2592
Fence 08.80 04.60| 09.45 04.96 | 09.95 05.23| 16.72 09.13| 11.54 06.12| 10.73 05.67| 11.32 06.00
Roof 71.28 5337|7120 55.28 | 83.98 72.39| 84.74 73.52| 86.02 7548 | 85.73 75.02| 83.52 71.71
Facade 15.71 08.52| 15.12 08.18 | 30.61 18.07| 3445 20.81| 32.89 19.68| 2891 1690 | 28.81 16.83
Shrub 19.71 1093| 19.34 10.71 | 2935 17.20| 31.36 18.60| 26.79 1547 | 25.72 14.76 | 2490 14.22
Tree 51.75 3491|5492 378 | 6747 5091 | 68.61 5221 66.83 50.19| 67.01 5039 63.33 46.34
mF, mIOU | 32.24 21.76 | 43.64 32.10 | 52.53 39.97| 5595 42.75| 53.56 40.99| 53.07 40.60| 51.38 38.74

OA 53.74 66.78 74.64 75.65 75.43 75.36 73.52

Table 2. Classification results (in percentage, %) of the proposed algorithm for the Vaihingen test (Scenes 1, 2) data set. The
performance metrics are Fi-score (F1), mean Fi (mF1), Intersection over Union (IoU), mean IoU (mloU), and Overall Accuracy (OA).
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Figure 4: AHN test data set, (a) ground-truth, classification results for the inputs (b) Group 1, (c) Group 2, (d) Group 3, (e) Group 4,

and (f) Group 7.

Class Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
Fi IoU Fi IoU Fi ToU | Fi IoU | Fi ToU Fi IoU Fi IoU
Vegetation 60.13 43.10 |72.27 56.59 |82.10 69.63|83.45 71.60|81.68 69.03 |81.43 68.67 |81.67 69.02
Ground 9295 86.83 |91.56 84.43 |96.32 92.90(95.28 90.98|95.58 91.54 |95.50 91.39 [9536 91.13
Building 78.54 64.66 |88.10 78.73 |93.16 87.20|92.14 85.42(92.17 8547 |92.17 8547 |9191 85.04
mF1, mIOU |77.21 64.82 |83.98 73.25 [90.53 83.25(90.29 82.67(89.81 82.01 |89.7 81.85 |89.65 81.73
OA 80.53 87.00 92.59 91.87 91.77 91.71 91.57

Table 3. Classification results (in percentage %) of the proposed algorithm for the AHN test data set. The performance metrics are Fi-
score (F1), mean Fi (mF1), Intersection over Union (IoU), mean IoU (mloU), and Overall Accuracy (OA).

4.2 Experiment 2: AHN data set

A second experiment was done using the widely used, publicly
available Actueel Hoogtebestand Nederland (AHN) data. These
data cover the whole of The Nederland (see AHN). This data set
has a point density of around 20/m?, and with up to five returns.
Data points are labelled in five different classes: ground,
vegetation, building, water, and bridge. These data are arranged
into 500m X 500m tiles.

A total of nine differently sized chunks of data from two different
tiles were used for training. The training data include urban,
semi-urban and rural landscapes. The majority of objects were
residential, commercial, and religious small and high-rise

buildings with complex roofs, vegetation, and vehicles. The
training data contain 4,846,707 points. We also select 1
validation data set and 1 test data set (Fig. 4a) of 927,046 points
and 440,987 points respectively. Both data sets include churches,
small houses, complex multi-story buildings and vegetation.
These were relabelled into three classes: buildings, ground and
unclassified (which included vegetation and other objects).

Similar to the previous experiment, to get the SFs, we perform
PCA on the covariance matrices of all the points with their
respective neighbors of size k. PCA was performed 2nd time on
the SFs, and to find PCs. Up to the 10PCs were considered. For
these the variances and cumulative variances were calculated as
explained by the PCs. Bar diagram in Fig. 5 depicts that PC1 and
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PC2 explain the majority of variances, 56.2% and 35.2%,
respectively. So, these 2 PCs cover 91.4% of cumulative
variance. The line diagram in the same figure shows that 3PCs,
5PCs, 7PCs and 10PCs explain total variances of 94.6%, 99.1%,
99.9% and 99.99%, respectively.

The PointNet network was trained using the training data, and
evaluated with the validation data. The same hyper-parameters
as the first experiment were used. After 100 epochs the trained
model was used to classify the test data (Fig. 4a). PointNet was
applied again with the same groups as input vectors defined in
Table 1. We calculate all the performance metrics: Fi, mFi, IoU,
mloU and OA. The results are available in Table 3, and classified
labels for different groups of inputs are visualized in different
colors in Fig. 4. We see, when all the LiFs and SFs (Group 3)
were considered as the input vectors, the DL algorithm achieved
an OA of 92.59%. This OA (92.59%) is only 0.72% more than
the OA of 91.87%, when 10PCs were used instead of all 14 SFs.
OA 0of 91.77% and 91.57% were found for the input vectors of
Group 5 (LiFs+7PCs) and Group 7 (LiFs+3PCs), respectively. If
we consider the performance in terms of mFi (mean F; score),
90.53%, 89.81% and 89.65% were achieved for the input Group
3, Group 5 and Group 7, respectively.

6 99.1 99.7 999 99.95 99.98 99.99

100 1 946 %7

91.4

80 4
60 6-

40

Explained variance (%)

20
3.0

15 06 02 005 003 001

1 2 3 4 5 6 7 8 9 10
Principal component (PC)

Figure 5. Bar diagram of explained variance versus PCs, and the
line diagram shows cumulative variances of the groups of PCs
for the AHN test data set.

5. DISCUSSION AND CONCLUSIONS

The proposed PCA based two-step feature extraction algorithm
successfully extracted most useful features with reduced
dimension of the feature space. At the first step, PCA was used
for point coordinates (x, y, z) based local SFs (e.g., normal and
curvatures) estimation, and at the second step, PCA was used for
dimension reduction in SFs space by generating uncorrelated
PCs (linear combinations of reasonably correlated SFs). Two
experiments showed that dimension reduction in feature space
(matrix) is useful for increasing the performance of feature-based
DL algorithm. Results revealed that use of PCs instead of SFs is
useful for per point classification as it achieved without
significant reduction (even better for the Vaihingen data set) in
classification accuracy. The new non-end-to-end (feature-based)
DL variant outperforms the original PointNet. The algorithm has
potential for classification and segmentation in large-scale
outdoor point clouds.

It is known that in the presence of outliers and noise, classical
PCA can produce non-robust PCs that can mislead the results of
SFs based point cloud processing (Nurunnabi et al., 2014; 2015).
Therefore, further study in this direction is needed to investigate
the possibilities of robust and/or diagnostic variants of PCA
(Hubert et al., 2012; Nurunnabi et al., 2015) for SFs estimation,
dimension reduction in SFs space, and their potential for

applying within the DL framework. Critically, as robust PCA
approaches are usually computationally intensive (Nurunnabi et
al., 2014; 2015), so developing fast and robust variants of PCA
is useful for efficient DL based per point classification in large-
scale point clouds.
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