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ABSTRACT: 
 
Most deep learning (DL) methods that are not end-to-end use several multi-scale and multi-type hand-crafted features that make the 
network challenging, more computationally intensive and vulnerable to overfitting. Furthermore, reliance on empirically-based feature 
dimensionality reduction may lead to misclassification. In contrast, efficient feature management can reduce storage and computational 
complexities, builds better classifiers, and improves overall performance. Principal Component Analysis (PCA) is a well-known 
dimension reduction technique that has been used for feature extraction. This paper presents a two-step PCA based feature extraction 
algorithm that employs a variant of feature-based PointNet (Qi et al., 2017a) for point cloud classification. This paper extends the 
PointNet framework for use on large-scale aerial LiDAR data, and contributes by (i) developing a new feature extraction algorithm, 
(ii) exploring the impact of dimensionality reduction in feature extraction, and (iii) introducing a non-end-to-end PointNet variant for 
per point classification in point clouds. This is demonstrated on aerial laser scanning (ALS) point clouds. The algorithm successfully 
reduces the dimension of the feature space without sacrificing performance, as benchmarked against the original PointNet algorithm. 
When tested on the well-known Vaihingen data set, the proposed algorithm achieves an Overall Accuracy (OA) of 74.64% by using 9 
input vectors and 14 shape features, whereas with the same 9 input vectors and only 5PCs (principal components built by the 14 shape 
features) it actually achieves a higher OA of 75.36% which demonstrates the effect of efficient dimensionality reduction.  
 
 

1. INTRODUCTION 

Feature extraction is crucial in pattern recognition and machine 
learning (ML) that has been used for object detection, 
classification, and segmentation (Bishop et al., 2006; Murphy, 
2012). Recently, deep learning (DL) has drawn a remarkable 
attention as a top ML technique for point cloud classification and 
segmentation (Qi et al., 2017a; Hu et al., 2020; Zou et al., 2021). 
Some DL algorithms for classification are considered end-to-end 
as they use point coordinates, normalized coordinates and/or a 
few features such as intensity and colors (Qi et al., 2017a, b; 
Thomas et al., 2019; Hu et al., 2020), but many are not (Hsu and 
Zhuang, 2020; Nurunnabi et al., 2021a) and rely upon using 
hand-crafted features such as point normal and curvatures as 
inputs, instead of just points. Many of the latter feature-based DL 
algorithms use multi-scale (Thomas et al., 2018; Cabo et al., 
2019; Atik et al., 2021) and/or multi-type (Blomely et al., 2016; 
Weinmann and Weinmann, 2019) features to improve 
classification performance. Laser scanning based point clouds 
are challenging to classify as they are usually unstructured, 
having highly variable point density and irregular data format, 
and are typically capturing sharp features (e.g., edges and 
corners) and arbitrary surface shapes. Multi-scale and multi-type 
neighborhood-based features can describe the points’ local 
structure with more detail and help to understand their 
correspondence with neighboring objects. However, the variable 
and unstructured nature of point clouds makes the different 
scales and different types of hand-crafted feature-based network 
heavy, complex and challenging. The main advantage of a hand-
crafted feature-based DL approach is that it involves less training 
data. It is frequently the case that many candidate features are 

unnecessary and redundant to the learning process, which hinder 
the performance of the learning model and can lead to 
overfitting. Therefore, clear knowledge about the features and 
their relation to the underlying problem is needed (Nurunnabi et 
al., 2021a).  Besides feature extraction, feature selection methods 
are used to increase learning capability and to better generalize 
supervised models, both of which can reduce computational 
complexity and required storage. Zebari et al. (2020) noted that 
feature extraction is less influenced by overfitting and achieves 
better accuracy for the classification tasks compared to feature 
selection methods. Thus, this paper concentrates on feature 
extraction.  
 
Several common feature extraction techniques are Principal 
Component Analysis (PCA), Linear Discriminant Analysis 
(LDA), Partial Least Squares (PLS), PLS Discriminant Analysis 
(PLS-DA), Independent Component Analysis (ICA), Canonical 
Correlation Analysis (CCA), kernel PCA (KPCA) and kernel 
LDA (KLDA, Scholkopf et al., 1998; Mika et al., 1999; Hastie 
et al., 2017; Wang et al., 2019). These methods can be grouped 
into linear (e.g., PCA, PLS-DA) and non-linear approaches (e.g., 
KPCA and KLDA). Both groups employ dimension reduction 
and are frequently used in medical image processing, data 
visualization, text categorization, bioinformatics, chemometrics 
and astronomy (Wang and Paliwal, 2003; Thomas et al., 2014; 
Liu et al., 2021). The most popular two feature extraction 
methods are PCA and LDA. Both optimize through a 
transformation matrix. PCA optimizes the transformation matrix 
by maximizing the variance in the projected space, on the other 
hand, LDA searches the largest ratio of between-class variation 
and within-class variation, when projecting the given variables 
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to a subspace (Wang and Paliwal, 2003). Reddy et al. (2020) 
intensively analysed PCA and LDA as dimension reduction 
techniques with several ML algorithms that showed most of the 
cases PCA outperforms LDA. However, usage of the above 
techniques has been either in supervised approaches or deployed 
in computationally intensive ways, and thus, poorly suited for 
feature-based DL algorithms for point cloud classification. To 
the best of our knowledge, to date a DL approach has not been 
employed that combines both dimension reduction and feature 
extraction for point cloud classification.  
 
This paper integrates feature extraction and dimension reduction 
to improve a DL framework for per point classification of large-
scale aerial LiDAR point clouds. Scientific contributions of this 
paper are: (i) developing a two-step feature extraction algorithm, 
(ii) understanding the impact of dimension reduction in feature 
extraction, and (iii) developing a PointNet variant for 
classification in point clouds that is not end-to-end. The 
performance of the proposed algorithm is demonstrated on aerial 
laser scanning (ALS) point clouds. The new PCA based 
algorithm is intended to reduce the dimensionality of the feature 
space and improves the performance of the original PointNet 
algorithm for large-scale point cloud classification.    
 
The remainder of the paper is organized as follows. Section 2 
includes a brief discussion on dimensionality reduction, feature 
extraction, PCA, and PointNet. Section 3 introduces the 
proposed algorithm. Section 4 demonstrates the newly developed 
algorithm through two experiments on large-scale ALS point 
clouds. Concluding remarks are given in Section 5.    
 
 
2. RELATED METHODS AND PRINCIPLES USED IN 

THE PRPOSED ALGORITHM  

This section presents a short discussion about the basics of 
feature extraction, feature selection, dimension reduction, PCA, 
and the PointNet algorithm.  
 
2.1 Dimension reduction, feature extraction and feature 
selection  

The number of variables (features) in a data set is referred to as 
its dimensionality. Dimension reduction is a widely used process 
of reducing the number of variables under consideration. This 
approach is widely applied in areas such as statistics, information 
theory, and machine learning (ML) and related artificial 
intelligence techniques. Within ML type approaches, 
dimensionality reduction is used for both feature extraction and 
feature selection (Jorgensen et al., 2019). Feature extraction is a 
process of creating new features based on the original input 
feature (variable) set to reduce the dimensionality of the feature 
space. In contrast, feature selection refers to the selection of a 
small group of features that maximizes relevance to the target 
(e.g., class labels in classification) and minimize redundancy 
between the features (Kotsiantis, 2011). In many algorithms, 
feature extraction, feature selection and dimension reduction are 
used together for feature optimization and to improve 
classification accuracy (Jorgensen et al., 2019; Liu et al., 2021). 
 
2.2 Principal component analysis 

PCA is one of the most classic statistical techniques, frequently 
used for point cloud processing, and is employed in feature 
extraction, outlier detection, regression and classification, as 
well as dimension reduction (Jolliffe, 2002; Nurunnabi et al., 
2012; 2015; Hastie et al., 2017; Grilli et al., 2021). PCA aims to 

transform a set of possibly correlated variables into a set of 
uncorrelated variables that can be considered as a set of 
orthogonal linear combinations of variables that maximize the 
variance of each combination in rank. These uncorrelated 
variables, representing the reduced dimensions are called 
Principal Components (PCs). PCs can be computed by using the 
well-known Singular Value Decomposition (SVD) to the 
covariance matrix, C, 

                               𝐶 =  
1

𝑛
𝑋𝑇𝑋                                     () 

where X is the mean centered data matrix, having n observations 
and m variables, 𝑋 =  𝑥𝑖 − 𝑐; (i = 1, 2, …, n),  𝑥𝑖 is the ith row 
of the matrix X, and c is the centre (mean) of n observations. PCs 
are usually sorted into descending order of the non-negative 
eigenvalues.  The 1st PC describes the largest proportion of the 
data variance. The 2nd PC explains the majority portion of the 
remaining variance, and the following PCs successively explain 
the highest variance possible under the orthogonality conditions. 
Hence, from the beginning, a small number of PCs may explain 
a sufficient portion of the variance in a data set without losing 
data information. Thus, PCA has been applied as a successful 
dimension reduction technique. Besides classical PCA, there are 
many variants (e.g., Hubert et al., 2005; Nurunnabi et al, 2014). 
Some produce robust PCs in the presence of outliers. For 
example, Hubert et al. (2005, 2012) developed robust PCA, 
ROBPCA that employed a robust covariance matrix together 
with projection pursuit (PP) to get robust PCs. Nurunnabi et al. 
(2013, 2014, 2015) showed the advantages of using outlier 
diagnostic approaches before performing classical PCA to 
achieve robust results in the presence of outliers and noise. The 
authors (Nurunnabi et al., 2014; 2015) also showed that the 
diagnostic PCA was significantly faster than the robust PCA. 
Additionally, the approach of Kernel Principal Component 
Analysis (KPCA) is a non-linear PCA has also been used for 
dimension reduction (Scholkopf et al., 1998; Sidhu et al., 2012). 
KPCA uses kernel methods to project the data in a higher 
dimensional space, and then perform PCA on that higher space.  
 
2.3 PointNet, and deep learning in point cloud 

PointNet (Qi et al., 2017a) was the first end-to-end DL algorithm 
that feeds point cloud of irregular data format directly into the 
network, and offers a simple and computationally efficient 
means for indoor point cloud classification. It provides a unified 
architecture applied for part segmentation, object classification, 
and scene-based semantic parsing. This deep neural network 
processes raw points in a point cloud P that can be arranged in a 
matrix of order 𝑛 × 𝑑, where n is the number of points and d is 
the number of features (variables).  For a LiDAR based 3D 
(three-dimensional) point cloud, the common features are the 
three respective point coordinates (x, y and z). In PointNet, these 
x, y, and z are used as a basic setting with the choice of using 
additional features e.g., colors (R, G, B), intensity (I), and Return 
Number (RN). PointNet learns a spatial encoding of per point 
features using shared multi-layer perceptrons (MLPs) followed 
by a global max-pooling function. Shared MLPs transform 
features from lower dimensions (d = 3) to the higher dimension 
(d = 1024), and share their parameters among all the points of 
each layer. The max-pooling is computed as the global signature 
of the maximal response among all the points. To make the 
semantic labelling invariant to certain geometric transformation, 
this algorithm joins T-Net (a spatial transformer network; 
Jaderberg et al., 2015) in two stages. Thus, PointNet combines 
three modules: a symmetry function, local and global 
information aggregation, and two joint alignment networks to 
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align input points and the point features. However, PointNet 
ignores a point’s local spatial structure which limits the learning 
of in-depth patterns in a complex scene. 
   
A variety of DL methods for point cloud classification were 
developed that employing PointNet as a cornerstone (Qi et al., 
2017b; Li et al., 2018; Hu et al., 2020). Qi et al. (2017b) 
introduced a method where point features are learned by 
aggregating the spatial structure of the neighbouring points. In 
PointCNN (Li et al., 2018), the approach changes point 
neighbors to a canonical order for enabling typical convolution 
process to a normal role. Thomas et al. (2019) presented a new 
type of spatially deformable kernel point convolution (KPConv) 
that learns to adapt kernel points to local geometry. Hu et al. 
(2020) developed a random point sampling-based algorithm, 
RandLA-Net, for point cloud classification. To avoid the 
possibility of discarding key features (because of random 
sampling) this method successfully incorporates a local feature 
aggregation module to effectively preserve geometric details. Su 
et al. (2022) proposed a learnable attention module-based 
network, DLA-Net, that can be easily implanted into various 
network architectures for point cloud segmentation. More on DL 
based point cloud classification methods is available in Bello et 
al. (2020) and Li et al. (2021). PointNet is employed herein 
because of its simplicity to understand and implement. 
Moreover, it is effective and sufficiently fast to demonstrate our 
method on large-scale point clouds.  
 
 

3. METHODOLOGY 

The proposed method consists of three main steps including two 
steps for feature collection, feature extraction and dimension 
reduction (see proposed workflow in Fig. 1). The third step 
implements PointNet for per point classification.  
 
3.1 Feature collection 

At the beginning of feature extraction, the relevant features are 
collected. In this paper, two types of features are used; one is 
those available from the laser scanner and the resulting point 
cloud. Herein, these are referred to as LiDAR feature (LiF). This 
group includes points coordinates (x,y,z), normalized coordinates 
(xn, yn, zn), return number (RN), intensity (I) and points local 
height zh. The point’s local height, zh is the height difference 
between the z values of the interest point and the lowest point in 
a local neighbourhood. In the absence of RN and I, other features 
such as scan angle could be used (Nurunnabi et al., 2021b).  
 
The second group of features are the local saliency features (e.g., 
normal and curvatures) that are usually derived based on a local 
neighborhood of each point 𝑝𝑖. To get the respective 
neighborhood in three dimensions, the well-known k nearest 
neighbour (kNN) search algorithm is employed, which avoids 
problems with point density variation and lack of adequate 
redundant observations (Nurunnabi et al., 2015). Local saliency 
features are known as shape features (SFs) and describe local 
geometry. SFs for a point of interest are derived from the local 
covariance matrix of the respective neighbors. Here PCA is used 
to generate the SFs. As per Eq. (1), for every point 
(𝑝𝑖; 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) in the point cloud, a covariance matrix C of order 
3 with the point coordinates within their respective neighborhood 
of size k is generated. Then PCA is performed on C to ascertain 
the 3 PCs (PC1, PC2, PC3) with corresponding eigen values 𝜆2, 
𝜆1 and 𝜆0, where 𝜆2 ≥ 𝜆1 ≥ 𝜆0 ≥ 0. The most common SFs are: 
three eigenvalues (𝜆2, 𝜆1, 𝜆0), surface point normal vector (nx, 
ny, nz), curvature (𝜎), linearity (L), planarity (P), scattering (S), 

omnivariance (O), eigentropy (E), plan offset (PO) and 
verticality (𝜃) as defined in Pauly et al. (2002), Weinmann et al. 
(2015), and Nurunnabi et al. (2021a),   

                             curvature, 𝜎 =
𝜆0

𝜆0+𝜆1+𝜆2
 ,                     (2) 

                              linearity, 𝐿 =
𝑒2−𝑒1

𝑒2
 ,                         (3) 

                             planarity, 𝑃 =  
𝑒1−𝑒0

𝑒2
 ,                        (4) 

           scattering, 𝑆𝜆 =  
𝑒0

𝑒2
 ,                           (5) 

                         omnivariance, 𝑂 = √𝑒0𝑒1𝑒2
3  ,                   (6) 

                        eigentropy, 𝐸 = − ∑ 𝑒𝑖𝑙𝑛(𝑒𝑖)
2
𝑖=0 ,               (7) 

 plane offset, 𝑃𝑂 = ∑ 𝑟𝑖
𝑘
𝑖=0  , and                     (8) 

                      verticality,  𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠|𝑎. 𝑏|                  (9) 

where, the eigenvalues 𝜆𝑖  ( i = 0, 1, 2) are normalized as 𝑒𝑖 =

𝜆𝑖 ∑ 𝜆𝑖
2
0⁄ , 𝑟𝑖 is the ith residual distance of the interest point and 

to the fitted plane, and a and b are the normals of the fitted plane 
based on the local neighborhood and the x-y plane, respectively.  
 
3.2 Dimension reduction 

In this section, PCA is again used – this time to reduce the 
dimension of the feature space. Now the PCs (linear 
combinations of SFs) are used as the new features derived by the 
SFs matrix of the 14 columns involved in all of 12 SFs mentioned 
in Section 3.1. Following the basic principle of PCA, the 
orthogonal linear combinations (principal components) of the 
correlated variables in the feature space are sought. For this the 
LiFs are excluded as they are mutually uncorrelated to each 
other, whereas, local neighborhood based SFs should have 
correlation to each other. The number of required PCs is 
established by investigating the maximal variance, as explained 
by the PCs. The user can define the number of PCs based on their 
data and the variance explained by the PCs.  
 
3.3 Implementation of DL, PointNet, algorithm 

This last (i.e., third) step implements the PointNet architecture 
modified to be feature based. Unlike the classic PointNet, with 
the point coordinates (x, y, z), here normalized coordinates (xn, 
yn, zn), RN, I, zh and hand-crafted SFs based PCs are used as the 
input vectors. PointNet is implemented in four configurations 
using only (i) the three coordinates of each point, (ii) the LiFs, 
(iii) the LiFs and SFs, and (iv) the LiFs and different groups of 
PCs. In this paper, the standard structure of PointNet is followed. 
PointNet uses the Rectified Linear Unit (ReLU) and the Softmax 
activation functions for the hidden layers and the output layer, 
respectively. Multiple cross entropy is used as the loss function, 
and a stochastic optimizer (Adam) is used to train the model. To 
reduce the influence of vanishing and exploding gradients, this 
network uses the ‘He initialization’ strategy (He et al., 2015) 
with the ReLU activation function, while Batch Normalization 
(Ioffe and Szegedy, 2015) is used for all the layers. The reader 
can consult Goodfellow et al. (2016) for more technical details 
used in DL and PointNet algorithm.  
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Figure 1: Workflow of the proposed algorithm.  
 

Input 
features 

Group 1 Group 2 (LiFs) Group 3 (LiFs+SFs) Group 4 Group 5 Group 6 Group 7 
x, y, z x, y, z, xn, yn, zn, RN, I, zh  Group 2 + all SFs Group 2+10PCs Group 2+ 7PCs Group 2+ 5PCs Group 2+ 3PCs 

 
Table 1. Groups of features that are used in the network as the input vectors. Point coordinates (x, y, z), normalized point coordinates 
(xn, yn, zn), RN (return number), I (intensity), zh (height of the interest point), and NPCs (N: number of PCs). 
 

4. EXPERIMENTS, RESULTS AND EVALUATION  

Two real world ALS point cloud data sets were used for per point 
classification. The results of the classifiers are presented here in 
brief based on standard evaluation metrics of F1-score (F1), mean 
F1 (mF1), Intersection over Union (IoU), mean IoU (mIoU), and 
the Overall Accuracy (OA), c.f., Hsu et al. (2020) and Zou et al. 
(2021), 

                                  𝐹1𝑖
=

2𝑇𝑃𝑖

2𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
                           () 

                                     𝑚𝐹1 =
∑ 𝐹1𝑖

𝐶
𝑖=1

𝐶
,                                (11)   

                           𝐼𝑜𝑈𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
,                           (12) 

                            𝑚𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈𝑖

𝐶
𝑖=1

𝐶
, and                          (13) 

                       𝑂𝐴 = ∑
𝑇𝑃𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝐶
𝑖=1 ,                       (14) 

where True Positive (TP) is the number of predicted values 
correctly predicted as actual positive, False Positive (FP) means 
the number of negative values predicted as positive, if predicted 
values correctly predicted as an actual negative, we call it True 
Negative (TN), and False Negative (FN) is the number of 
positive values predicted as negative. ( . )𝒊 means the results are 
for the ith class. C refers to the total number of classes.  

4.1 Experiment 1: Vaihingen data set 

The first experiment employed the ISPRS (International Society 
for Photogrammetry and Remote Sensing) benchmark 
Vaihingen data (Cramer, 2010; Niemeyer et al., 2014). This open 
access data set was collected in Vaihingen, Germany using a 
Leica ALS50 system with a scanning height of 500m having a 
field of view 45o. It has been frequently used for per point 
labelling (Blomley et al., 2016; Atik et al., 2021). This data set 
has point densities of 4-6/m2. It is divided into training and test 
sets, these consist of 753,876 points and 411,722 points, 
respectively. Along with the coordinates (x, y, z), each point has 
I, RN, and the number of returns. The training area is 
predominantly residential with small multi-story buildings that 
covers a 399m×421m area. In contrast, the test area that consists 
of two scenes is in a city centre comprises high-rise, dense and 
complex buildings, and covers a 389m×419m area. The points 
are labelled power lines (PL), low vegetation (LV), impervious 
surface (IS), car, fence, roof, facade, shrub, and tree. This dataset 
has an uneven number of points in the groups. The groups of PL, 

car, and fence have significantly fewer points than the other 
groups such as tree and IS. To avoid the possible missing of 
sample points from the classes with fewer points, a stratified 
sampling approach was employed. First, 20% points of the 
training set were taken for the validation set. Then the PointNet 
architecture was run on the training set with a block size of 10m 
×10m, a batch size of 32, and 2,048 points sampled per block. 
Other parameters were remained the same. The network fed the 
LiFs and SFs of the points, as the input vectors generated by the 
formulas defined in Section 3.1 with respective neighborhood of 
size k =15. The network was trained using the above-mentioned 
hyper-parameters for 100 epochs.   
 
The model with the highest accuracy for the validation set was 
used to label the test data. Next, PCA was performed on the SFs 
to find PCs with their respective explained variance. Variances 
and cumulative variances (in percentage, %) explained by the 
PCs are portrayed by the bar and line diagrams, respectively in 
Fig. 2. The figure shows that 3PCs, 5PCs, 7PCs and 10PCs 
explain variance of 90.9%, 97.0%, 99.6% and 100%, 
respectively. The user can choose the desired level of variance 
and fix the number of PCs. The performance metrics (Eqs. 10-
14) were then estimated. The algorithm is assessed through seven 
groups of features (defined in Table 1). The results are presented 
in Table 2 and Fig. 3. In Table 2, Group 4 with LiFs and 10PCs 
achieves the best overall accuracy (OA: 75.65%).  Even Group 
7, which considers LiFs and only 3PCs produces an OA of 
73.52%, and Group 3 with all LiFs and SFs produces OA of 
74.64%. While the original PointNet gets results only of OA = 
53.74% and 66.78% using Group 1 (x, y, z) and Group 2 (LiFs), 
respectively. The reader can see that relatively similar 
performance is achieved by the other performance metrics of F1, 
mF1, IoU and mIoU.   
 

 
 
Figure 2. Bar diagram of explained variance versus PCs, and line 
diagram of cumulative variance of the groups of PCs for the 
Vaihingen test data set. 
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Figure 3: Vaihingen test data set, (a) ground-truth; classification results for the inputs (b) Group 1; (c) Group 2; (d) Group 3; (e) Group 
4; (f) Group 6. Results in the black rectangle in (b) show that many points of the impervious surface, fence and low vegetation are 
misclassified (red). Misclassifications for the same part are almost similar in the figures (e) and (f), but significantly better than (b).  

 

Class 
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 
PL 07.35 03.82 27.88 16.19 52.79 35.86 59.65 42.50 58.50 41.34 54.65 37.60 49.09 32.49 
LV 46.42 30.22 69.70 53.49 73.67 58.32 73.38 57.95 73.24 57.77 73.55 58.17 72.23 56.53 
IS 59.71 42.57 87.66 78.04 88.64 79.59 89.31 80.68 88.87 80.10 88.92 80.05 88.04 78.63 
Car 09.41 49.39 37.45 23.03 36.34 22.20 45.36 29.34 37.38 22.99 42.37 26.88 41.17 25.92 
Fence 08.80 04.60 09.45 04.96 09.95 05.23 16.72 09.13 11.54 06.12 10.73 05.67 11.32 06.00 
Roof 71.28 53.37 71.20 55.28 83.98 72.39 84.74 73.52 86.02 75.48 85.73 75.02 83.52 71.71 
Facade 15.71 08.52 15.12 08.18 30.61 18.07 34.45 20.81 32.89 19.68 28.91 16.90 28.81 16.83 
Shrub 19.71 10.93 19.34 10.71 29.35 17.20 31.36 18.60 26.79 15.47 25.72 14.76 24.90 14.22 
Tree 51.75 34.91 54.92 37.8 67.47 50.91 68.61 52.21 66.83 50.19 67.01 50.39 63.33 46.34 
mF1, mIOU 32.24 21.76 43.64 32.10 52.53 39.97 55.95 42.75 53.56 40.99 53.07 40.60 51.38 38.74 

OA 53.74 66.78 74.64 75.65 75.43 75.36 73.52 
 
Table 2. Classification results (in percentage, %) of the proposed algorithm for the Vaihingen test (Scenes 1, 2) data set. The 
performance metrics are F1-score (F1), mean F1 (mF1), Intersection over Union (IoU), mean IoU (mIoU), and Overall Accuracy (OA).
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Figure 4: AHN test data set, (a) ground-truth, classification results for the inputs (b) Group 1, (c) Group 2, (d) Group 3, (e) Group 4, 
and (f) Group 7. 
 

Class 
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 
Vegetation 60.13 43.10 72.27 56.59 82.10 69.63 83.45 71.60 81.68 69.03 81.43 68.67 81.67 69.02 
Ground 92.95 86.83 91.56 84.43 96.32 92.90 95.28 90.98 95.58 91.54 95.50 91.39 95.36 91.13 
Building 78.54 64.66 88.10 78.73 93.16 87.20 92.14 85.42 92.17 85.47 92.17 85.47 91.91 85.04 
mF1, mIOU 77.21 64.82 83.98 73.25 90.53 83.25 90.29 82.67 89.81 82.01 89.7 81.85 89.65 81.73 

OA 80.53 87.00 92.59 91.87 91.77 91.71 91.57 
 
Table 3. Classification results (in percentage %) of the proposed algorithm for the AHN test data set. The performance metrics are F1-
score (F1), mean F1 (mF1), Intersection over Union (IoU), mean IoU (mIoU), and Overall Accuracy (OA). 
 
4.2 Experiment 2: AHN data set 

A second experiment was done using the widely used, publicly 
available Actueel Hoogtebestand Nederland (AHN) data. These 
data cover the whole of The Nederland (see AHN). This data set 
has a point density of around 20/m2, and with up to five returns. 
Data points are labelled in five different classes: ground, 
vegetation, building, water, and bridge. These data are arranged 
into 500m × 500m tiles.  
 
A total of nine differently sized chunks of data from two different 
tiles were used for training. The training data include urban, 
semi-urban and rural landscapes. The majority of objects were 
residential, commercial, and religious small and high-rise 

buildings with complex roofs, vegetation, and vehicles. The 
training data contain 4,846,707 points. We also select 1 
validation data set and 1 test data set (Fig. 4a) of 927,046 points 
and 440,987 points respectively. Both data sets include churches, 
small houses, complex multi-story buildings and vegetation. 
These were relabelled into three classes:  buildings, ground and 
unclassified (which included vegetation and other objects).   
 
Similar to the previous experiment, to get the SFs, we perform 
PCA on the covariance matrices of all the points with their 
respective neighbors of size k. PCA was performed 2nd time on 
the SFs, and to find PCs. Up to the 10PCs were considered. For 
these the variances and cumulative variances were calculated as 
explained by the PCs. Bar diagram in Fig. 5 depicts that PC1 and 
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PC2 explain the majority of variances, 56.2% and 35.2%, 
respectively. So, these 2 PCs cover 91.4% of cumulative 
variance. The line diagram in the same figure shows that 3PCs, 
5PCs, 7PCs and 10PCs explain total variances of 94.6%, 99.1%, 
99.9% and 99.99%, respectively.  
 
The PointNet network was trained using the training data, and 
evaluated with the validation data. The same hyper-parameters 
as the first experiment were used. After 100 epochs the trained 
model was used to classify the test data (Fig. 4a). PointNet was 
applied again with the same groups as input vectors defined in 
Table 1. We calculate all the performance metrics: F1, mF1, IoU, 
mIoU and OA. The results are available in Table 3, and classified 
labels for different groups of inputs are visualized in different 
colors in Fig. 4. We see, when all the LiFs and SFs (Group 3) 
were considered as the input vectors, the DL algorithm achieved 
an OA of 92.59%. This OA (92.59%) is only 0.72% more than 
the OA of 91.87%, when 10PCs were used instead of all 14 SFs. 
OA of 91.77% and 91.57% were found for the input vectors of 
Group 5 (LiFs+7PCs) and Group 7 (LiFs+3PCs), respectively. If 
we consider the performance in terms of mF1 (mean F1 score), 
90.53%, 89.81% and 89.65% were achieved for the input Group 
3, Group 5 and Group 7, respectively.  
 

 
 
Figure 5. Bar diagram of explained variance versus PCs, and the 
line diagram shows cumulative variances of the groups of PCs 
for the AHN test data set.  
 
 

5. DISCUSSION AND CONCLUSIONS 

The proposed PCA based two-step feature extraction algorithm 
successfully extracted most useful features with reduced 
dimension of the feature space. At the first step, PCA was used 
for point coordinates (x, y, z) based local SFs (e.g., normal and 
curvatures) estimation, and at the second step, PCA was used for 
dimension reduction in SFs space by generating uncorrelated 
PCs (linear combinations of reasonably correlated SFs). Two 
experiments showed that dimension reduction in feature space 
(matrix) is useful for increasing the performance of feature-based 
DL algorithm. Results revealed that use of PCs instead of SFs is 
useful for per point classification as it achieved without 
significant reduction (even better for the Vaihingen data set) in 
classification accuracy. The new non-end-to-end (feature-based) 
DL variant outperforms the original PointNet. The algorithm has 
potential for classification and segmentation in large-scale 
outdoor point clouds. 
 
It is known that in the presence of outliers and noise, classical 
PCA can produce non-robust PCs that can mislead the results of 
SFs based point cloud processing (Nurunnabi et al., 2014; 2015). 
Therefore, further study in this direction is needed to investigate 
the possibilities of robust and/or diagnostic variants of PCA 
(Hubert et al., 2012; Nurunnabi et al., 2015) for SFs estimation, 
dimension reduction in SFs space, and their potential for 

applying within the DL framework. Critically, as robust PCA 
approaches are usually computationally intensive (Nurunnabi et 
al., 2014; 2015), so developing fast and robust variants of PCA 
is useful for efficient DL based per point classification in large-
scale point clouds.  
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