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Abstract

MicroRNAs (miRNAs) play crucial roles in gene regulation. Most studies focus on mature

miRNAs, which leaves many unknowns about primary miRNAs (pri-miRNAs). To fill the

gap, we attempted to model the expression of pri-miRNAs in 1829 primary cell types, cell

lines, and tissues in this study. We demonstrated that the expression of pri-miRNAs can be

modeled well by the expression of specific sets of mRNAs, which we termed their associ-

ated mRNAs. These associated mRNAs differ from their corresponding target mRNAs and

are enriched with specific functions. Most associated mRNAs of a miRNA are shared across

conditions, while on average, about one-fifth of the associated mRNAs are condition-spe-

cific. Our study shed new light on understanding miRNA biogenesis and general gene tran-

scriptional regulation.

Introduction

It is important to study the expression of primary microRNAs (pri-miRNAs). MiRNAs are

short endogenous non-coding RNAs. Their biogenesis starts from the transcription of pri-

miRNAs, which are processed into precursor miRNAs and eventually become mature miR-

NAs of ~22 nucleotides (nt) long [1, 2]. Mature miRNAs, usually referred to as miRNAs, bind

to their target mRNAs to regulate the target gene expression by degrading the target mRNAs

or preventing them from being translated into proteins. The pri-miRNAs are thus the first

product of the miRNA biogenesis, which affect the production of the mature miRNAs and the

activity of the majority of protein-coding genes the mature miRNAs regulate. Moreover, the

expression of pri-miRNA is known to be quite different from that of the corresponding mature

miRNAs due to several steps in miRNA biogenesis that process pri-miRNAs to mature miR-

NAs [3–7]. In fact, previous studies showed that the expression of mature miRNAs did not

correlate well with that of precursor miRNAs, and even the mature miRNAs generated from

the same primary miRNA transcript had different expression levels [3, 4]. To understand

miRNA-involved gene regulation, it is thus indispensable to study the expression of pri-

miRNAs.

Most studies focus on mature miRNAs [1, 8–21]. The expression of mature miRNAs is rou-

tinely measured by small RNA-seq experiments [12]. The co-measurement strategy, which
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profiles the expression of both mRNAs and miRNAs under related conditions, is commonly

employed to pinpoint miRNA target genes [9, 22, 23]. The large-scale analysis of miRNAs and

mRNAs gene expression is widely used to define miRNA targets, miRNA modules, miRNA-

mRNA co-expression networks, miRNA-transcription factor regulatory networks, etc. [10–12,

15, 22–28]. These studies show that mature miRNA expression often correlates well with their

target mRNAs expression under specific conditions.

Despite many studies on miRNAs, the study of pri-miRNA expression is scarce. This scar-

city is largely because rarely are the pri-miRNAs known, especially their transcriptional start

sites (TSSs) [29]. The TSS of a miRNA gene can be tens or hundreds of thousand base pairs

away from the location of the precursor and mature miRNAs [29–33]. Despite over a decade

of computational and experimental identification of pri-miRNA TSSs and several collections

of pri-miRNA TSS annotation through high-throughput experimental studies, the annotated

pri-miRNA TSSs were not consistent across studies [29, 31, 32]. To make it even more chal-

lenging, pri-miRNAs usually have low and condition-specific expression, short life span, alter-

native TSSs under different physiological conditions, etc. Thus, it is no wonder that only a few

studies have profiled primary miRNA gene expression so far, and it is unclear whether the pro-

filed expression is truly the pri-miRNA expression [4, 31, 32].

To fill this gap in miRNA studies, we studied the expression of pri-miRNA in 1829 samples

measured by the Cap Analysis of Gene Expression (CAGE) experiments [34]. We modeled

pri-miRNA expression with the CAGE data, since a CAGE experiment can measure the

expression level of pri-miRNAs and mRNAs simultaneously, which alleviates the experimental

noises from different experiments. Because pri-miRNA TSSs are largely unknown and incon-

sistent between different experimental and computational studies, we focus on ~330 pri-

miRNA TSSs that are consistent in at least four of fourteen studies [29, 32]. We found that the

expression of a pri-miRNA could reliably be modeled by the expression of a set of mRNAs.

This set of mRNAs, which we termed the associated mRNAs of this pri-miRNA, were not the

target genes of its mature miRNA. For a pri-miRNA, its associated mRNAs were mostly con-

served across samples, although a small fraction was condition-specific. Our study shed new

light on the expression of pri-miRNAs.

Material and methods

1829 CAGE samples for expression analysis

We downloaded the gene expression data measured by CAGE experiments in 1829 primary

cell types, cell lines, and tissues from the FANTOM 5 project [34, 35] (https://fantom.gsc.

riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_tpm_

ann.osc.txt.gz). We considered CAGE data instead of other TSS-seq data because of the

large number of CAGE samples from the same study, which avoided unexpected discrepan-

cies among samples from different labs. Moreover, the CAGE data can measure the expres-

sion level of pri-miRNAs and mRNAs in the same experiments, which alleviates the

experimental noise in comparing expression data from different experiments. These CAGE

data were normalized by previous studies [34, 35]. To determine the expression level of a

pri-miRNA or mRNA, we used the normalized CAGE expression from all peaks located in

the neighborhood of the corresponding TSS region. When multiple CAGE peaks occurred

in a TSS region, we used the expression of the peak with the maximum expression value to

represent the expression value of this TSS region. Alternatively, we tried to use the sum or

average of the expression of multiple peaks in a TSS region, which gave a similar model and

expression prediction.
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The robust set of miRNA TSSs

We previously collected the annotated pri-miRNA TSSs of 330 miRNAs from fourteen studies

[29]. These TSSs were consistently annotated in at least four of the fourteen studies. Since one

miRNA may have multiple annotated TSSs, we considered each annotated TSS as a different

miRNA and thus considered 369 miRNAs. We then calculated the expression of the 369 miR-

NAs in the above 1829 CAGE samples. We filtered miRNAs with zero expression in more

than 80% of the CAGE samples, since these miRNAs were not active in the majority of sam-

ples. In this way, 195 miRNAs remained in our analysis (S1 Table). Among these miRNAs, 69

miRNAs were annotated consistently between miRBase and miRGeneDB [36, 37].

The consistent set of mRNAs

Since we model pri-miRNA gene expression with mRNA expression in CAGE samples, we

hope that the expression of pri-miRNAs we model in CAGE experiments can approximate the

expression we normally observe in the corresponding RNA-seq experiments. In other words,

the expression of mRNAs that can be used to model pri-miRNA expression in CAGE samples

must be consistent between RNA-seq experiments and the CAGE experiments.

To define such a consistent set of mRNAs to model the pri-miRNA expression in CAGE

experiments, we used the 22 tissue samples where both RNA-seq and CAGE data were gener-

ated (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1733/samples/?s_page=1&s_

pagesize=500) [38]. The CAGE data and the RNA-seq were processed as previously [38] to

obtain the gene expression levels for all 27,493 GENCODE annotated mRNA transcripts. We

then calculated Spearman’s correlation coefficient for all transcripts across the 22 samples. The

transcripts with a correlation larger than 0.75 were chosen as the consistent mRNAs (p-

value<2.92E-5, False discovery rate (FDR) <1). For a gene with multiple consistent tran-

scripts, we chose the transcript with the largest correlation to represent this gene and filtered

all other transcripts. In this way, we obtained 2312 mRNA transcripts (S2 Table). These

mRNAs, together with their annotated TSSs, were used to model the expression of pri-

miRNAs.

378 samples with both CAGE data and small RNA-seq data

A previous study measured mature miRNA expression with small RNA-seq experiments and

pri-miRNA expression with CAGE experiments in 399 of the above 1829 samples [32]. We

managed to identify 378 of these 399 samples based on the FANTOM 5 sample ID [34, 35]. By

further manual examination, we could not identify additional samples. We thus focused on

these 378 samples. The aforementioned study claimed that the expression of pri-miRNAs cor-

relates well with that of mature miRNAs [32], which contradicts the conclusions in several pre-

vious studies [3–7]. We thus investigated how different the expression of mature miRNAs was

from that of pri-miRNAs in these 378 samples. We downloaded the expression of the mature

miRNAs from https://fantom.gsc.riken.jp/5/suppl/De_Rie_et_al_2017/ (S3 Table) and

obtained the pri-miRNA expression in these 378 samples as described above (S1 Table). Here

we considered all 175 of the above 195 pri-miRNAs with non-zero gene expression in more

than 80% of the 378 samples [29].

The least absolute shrinkage and selection operator (LASSO) regression

We model the pri-miRNA expression by LASSO. LASSO is widely used to model gene expres-

sion and select variables previously [39–42]. We use the LASSO tool from the scikit-learn
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package (https://scikit-learn.org/0.24/, version 0.24.2). The goal of LASSO is to minimize:

Xn

i¼1

ðyi �
Xm

j¼1

xijwjÞ
2
þ a

Xm

j¼1

jwjj

Here the expression of pri-miRNAs in the i-th sample was considered as the dependent var-

iable yi, which was a vector of 195 dimensions (S1 Table). The expression of the j-th mRNA in

the i-th sample was considered as the independent variables xij (S2 Table). The wj was the coef-

ficient vector of 195 dimensions to describe the importance of the j-th mRNA to the pri-miR-

NAs. The LASSO method tried to minimize the above function by making certain wj to be

zero and by choosing the remaining mRNAs as the associated mRNAs. Both the values of the

dependent and independent variables were normalized to have a mean zero and standard devi-

ation one before the LASSO regression was applied. Note that for seventeen pri-miRNAs, their

TSSs were within 100 base pairs of the TSSs of one and only one of the above 2312 mRNAs.

We removed these close mRNAs before training the LASSO model to predict the expression of

each of these pri-miRNAs.

We considered three neighborhood sizes, 100, 300, and 500 base pairs, around each TSS to

measure the expression of the corresponding pri-miRNA or mRNA. For a given neighborhood

size, the expression of a pri-miRNA or mRNA was calculated as the normalized expression of

the CAGE peak located in the corresponding neighborhood. If multiple CAGE peaks were in

the neighborhood of a TSS, we used the largest expression value of these peaks after testing sev-

eral alternatives and achieving similar model performance. We then applied the LASSO regres-

sion to the data for a given neighborhood size. Because the neighborhood size did not affect

the model much, we presented the results from the neighborhood size of 100 base pairs.

To measure how well the expression of pri-miRNAs was modeled, we calculated the corre-

lation coefficient of the predicted expression of a pri-miRNA with its actual expression. We

calculated both Pearson’s correlation and Spearman’s correlation per miRNA and per sample.

For the per miRNA correlation, we considered the two vectors of expression values across

1829 samples for a miRNA. For the per sample correlation, we considered the two vectors of

expression values across 195 miRNAs for a sample. The significance of a correlation r was

approximated by the t-test p-values t ¼ r
ffiffiffiffiffiffi
n� 2
p

ffiffiffiffiffiffiffi
1� r2
p , which asymptotically follows a t-distribution

with the degree of freedom of n-2, with n = 195 for the per-sample correlations and n = 1829
for the per-gene correlations.

The GO analysis

We inferred the enriched GO terms for the associated mRNAs of every miRNA. The gene

symbols of the 2312 consistent mRNAs were considered the population of all genes for this

enrichment analysis. We then searched for the enriched GO terms in the associated genes

using the GOrilla tool [43]. We recorded the number of GO terms identified by GOrilla with

the FDR cutoff 0.1 for each miRNA (S4 Table).

The calculation of FDR

We calculated FDR in this study with the standard Benjamini Hochberg algorithm [44]. For

instance, when we selected pri-miRNAs that had their expression significantly correlated with

their mature miRNA expression under the cutoff of FDR 0.01, first, we calculated the p-values

of the expression correlation based on the aforementioned t-distribution for each pri-miRNA.

Next, we ranked pri-miRNAs with the calculated p-values, from the smallest one to the largest

one. Finally, we found the smallest i so that the sum of the p-values from the first pri-miRNA
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to the i-th pri-miRNA was no smaller than 0.01, and reported all pri-miRNAs ranked before

the i-th pri-miRNA as the significantly correlated pri-miRNAs.

Results

The expression of the pri-miRNAs was reliably predicted

We modeled the expression of pri-miRNA in 1829 primary cell types and tissues (Material and

Methods). In brief, we considered the TSSs of a miRNA consistently annotated in at least four

of fourteen previous studies as the TSS of this pri-miRNA [29]. We then measured the expres-

sion of this miRNA by the log normalized counts of reads mapped to the neighborhood of the

TSS in the CAGE experiments [34]. Finally, we modeled the expression of the pri-miRNAs

with the expression of mRNAs in these 1829 CAGE experiments by the LASSO regression

[45]. LASSO selected a subset of mRNAs for each pri-miRNA. We called these selected

mRNAs for a pri-miRNA as its associated mRNAs (S5 Table).

We found that the expression of the associated mRNAs could reliably model the expression

of pri-miRNAs. We calculated the correlation of the predicted pri-miRNA expression value by

the LASSO model with the true pri-miRNA expression value measured by CAGE. The mini-

mum, mean, and median Pearson’s correlation per miRNA was 0.79, 0.91 and 0.92, respec-

tively (p-value = 0 for all correlations, S6 Table). Similar, the minimum, mean and median

Spearman’s correlation per miRNA was 0.27, 0.82 and 0.83, respectively (p-value = 0 for all

correlations, S6 Table). If we measured the similarity of the predicted expression in every sam-

ple, the minimum, mean, and median Pearson’s correlation per sample was 0.48, 0.88 and

0.90, respectively (p-value <1.79e-13 for all correlations, S7 Table). Correspondingly, the min-

imum, mean and median Spearman’s correlation per sample was 0.42, 0.84 and 0.86, respec-

tively (p-value < 4.91e-10 for all correlations, S7 Table). The significant correlation suggested

that the expression of the associated mRNAs could reliably model the pri-miRNA expression.

We further examined the miRNAs with their expression accurately predicted (Pearson’s

correlation>0.90) and the miRNAs with the expression not predicted so well (Pearson’s corre-

lation< = 0.90) (Table 1). Note that the correlation was larger than 0.79 for all miRNAs. We

found that the miRNAs with their expression accurately predicted were pri-miRNAs with

much higher expression levels and much larger expression variation. On the contrary, miR-

NAs that were not modeled so well were pri-miRNAs with low expression and low expression

variation. For instance, the miRNAs modeled well had a median expression value and a stan-

dard deviation of 22.31 and 62.57, while the miRNAs modeled not so well had the correspond-

ing value as 8.80 and 14.64, respectively. In fact, for every miRNA modeled not so well, they

had zero expression in at least 82.39% of the samples. In other words, these miRNAs were not

modeled so well because they were not so related to the experimental conditions these samples

considered. If we excluded the miRNAs with their expression standard deviation smaller than

3 in these 1829 samples, the Pearson’s correlation of the predicted expression with the true

Table 1. The minimum, maximum, and median of Pearson’s correlation coefficient of three groups of miRNAs.

Group Min correlation Max correlation Median correlation Min expression Max expression Median expression

High 0.90 1.00 0.94 2.67 313.48 62.57

Low 0.79 0.90 0.87 1.45 96.21 8.80

Active 0.83 1.00 0.92 2.26 313.48 18.39

The miRNAs in the high group had a correlation > 0.9. The miRNAs in the low group had a correlation < = 0.9. The miRNAs in the active group had the standard

deviation of expression larger than three.

https://doi.org/10.1371/journal.pone.0290768.t001
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expression was larger than 0.83 for each of the remaining 188 miRNAs (p-value = 0). The good

modeling of the expression of the 188 pri-miRNAs suggested that the expression of almost all

pri-miRNAs could be predicted well by their associated mRNAs with enough samples.

The above analysis was based on all 1829 samples. We next did ten experiments with two-

fold validation to see whether the LASSO models trained on a subset of randomly selected

samples could predict pri-miRNA expression in the remaining samples (Fig 1). In each experi-

ment, we randomly separated all 1829 samples into two groups, and then made sure to remove

testing samples that were from the same primary cell types, tissues or cell lines used in training.

On average, the minimum, mean and median Pearson’s correlation per miRNA was 0.10, 0.62

and 0.64, respectively. The minimum, mean and median Spearman’s correlation per miRNA

was 0.14, 0.61 and 0.63, respectively. Correspondingly, the minimum, mean and median Pear-

son’s correlation per sample was -0.2, 0.61, and 0.65, respectively. The minimum, mean and

median Spearman’s correlation per sample was -0.17, 0.59 and 0.63, respectively. Although the

correlation was much smaller than the model trained with all 1829 samples, it was still signifi-

cantly large (p-value of the mean and median correlation was 0), suggesting that the pri-

miRNA expression was reliably predicted. The lower correlation in the cross-validations also

indicated that the regulation of the pri-miRNA expression was sample-specific, and the model

inferred from a specific subset of samples would predict pri-miRNA expression in the remain-

ing samples not so well as the model trained on these remaining samples.

To further justify the significant correlation between the predicted and actual expression of

pri-miRNAs, we compared the above correlation with the correlation of the predicted and

actual expression of pri-miRNAs on two negative control datasets. In each negative dataset, we

kept the original pri-miRNA expression in the 1829 samples while randomly permuted the

expression of mRNAs in these samples. For the first negative control dataset, we randomly per-

muted the expression values of each mRNA across the 1829 samples. For the second negative

Fig 1. The box plot of (A). Pearson’s and (B). Spearman’s correlation coefficient of the predicted and true expression of pri-miRNAs in ten two-fold cross-validation

experiments. For each experiment, the three boxes in order correspond to the original data, the first negative control dataset and the second negative control dataset.

https://doi.org/10.1371/journal.pone.0290768.g001
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control dataset, we randomly permuted the expression values of mRNAs within each of the

1829 samples. We then trained the LASSO models to predict pri-miRNA expression on each

negative control dataset as above. We found that the trained models on the negative control

datasets could not predict pri-miRNA expression well. For instance, in the corresponding two-

fold cross-validation experiments, the correlation from the negative control datasets was much

smaller than that from the original 1829 samples we presented above (Fig 1).

The associated mRNAs were different from target mRNAs

Previous studies correlated mature miRNA expression with the expression of their target mRNAs

[11, 22]. The target mRNAs of a miRNA contain its target sites and can be bound by this miRNA.

We thus compared the associated mRNAs inferred above with the target mRNAs for each

miRNA. The target mRNAs of a miRNA were retrieved from two sources (Material and Methods).

One was the targets computationally predicted by the TargetScan Version 7.2 tool [8]. The other

was the miRNA targets experimentally validated in the miRTarBase Version 8.0 database [46].

We found that the associated miRNAs differed from the target mRNAs for every miRNA.

On average, only 32.58% of the associated mRNAs were the TargetScan mRNAs, while about

0.89% of the TargetScan mRNAs were the associated mRNAs for a miRNA. Similarly, the cor-

responding percentage was 2.24% and 8.05%, respectively, for the miRTarBase mRNAs. The

overlap between the two types of mRNAs suggests the difference between the two types of

mRNAs and the fact that the target mRNAs do not have a correlated expression with their pri-

miRNAs in general.

Since the associated mRNAs modeled the pri-miRNA expression better than the target

mRNAs, we hypothesized that their expression correlated better with the expression of the cor-

responding pri-miRNA than the target mRNAs. We found that for a miRNA, the expression

of most of its associated mRNAs indeed correlated better with its expression than the expres-

sion of its target mRNAs across the 1829 samples, no matter whether the target mRNAs were

defined by targetScan or miRTarBase (Fig 2). When we compared the expression correlation

of the associated mRNAs with the expression correlation of the target mRNAs, we found that

98.46% of miRNAs had a significantly higher correlation with their associated mRNAs than

their target mRNAs (Mann-Whitney p-value < 0.001).

To evaluate whether the miRNA target genes are enriched in the associated genes, we per-

formed the hypergeometric test for miRNA target genes from TargetScan and miRTarBase sepa-

rately (S8 Table). In brief, for a given pri-miRNA, assume it has n associated mRNAs, m of which

are its target genes. Assume there are M of its target genes in the N = 2312 consistent genes we

considered above. Then the p-value of observing at least m target genes in its associated mRNAs is

calculated by the hypergeometric testing as
Pn

k¼m
CðN� M;n� kÞ�CðM;kÞ

CðN;nÞ , where C x; yð Þ ¼ x!

y!ðx� yÞ! for any

non-negative integers x and y. We found that 192 and 178 of the 195 miRNAs had a hypergeo-

metric testing p-value> 0.01 for TargetScan and mirTarBase targets, respectively (10% percentile

of the p-values 0.052 and 0.085, respectively, S8 Table). The large enrichment p-values showed

that the miRNA targets are usually not enriched in the associated mRNAs for almost all miRNAs

we tested. Note that the pri-miRNAs with higher expression and larger expression variation did

not have smaller miRNA target enrichment p-values than other pri-miRNAs.

The expression of the majority of mature miRNAs do not correlate well

with the expression of pri-miRNAs

The difference between the associated mRNAs and the target mRNAs suggests that the expres-

sion of pri-miRNAs is different from that of mature miRNAs. Otherwise, since mature miR-

NAs have a correlated expression pattern with their target mRNAs under specific conditions
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[22, 26], we would have seen more target mRNAs included in the associated mRNAs. This

implication is supported by several previous studies [3–7] while contradicting another study

[32]. We thus studied the miRNA expression in the 378 samples with CAGE data and small

RNA-seq data, which we found were used by this contradicting study.

We found that the expression of pri-miRNAs has a relatively low correlation coefficient

with that of mature miRNAs for at least 101 (57.71%) of the 175 miRNAs we studied (S9

Table, FDR < 0.01). This percentage was based on the Pearson’s correlation coefficient of the

175 miRNAs in the 378 samples and a FDR cutoff of 0.01. Since one pri-miRNA may corre-

spond to multiple mature miRNAs, we chose the largest correlation between a pri-miRNA and

its mature miRNAs as the correlation here. The Pearson’s correlation coefficient ranged from

0 to 0.87, with its 57.71 percentile as 0.1592 (FDR<0.01), suggesting that a large fraction of

pri-miRNAs have a low correlated expression with their mature miRNAs. Note that the calcu-

lated Pearson’s correlation coefficient here was highly similar to that in the contradicting study

[32]. We made a different conclusion because we were considering individual miRNAs while

the other study was considering all miRNAs together. The Spearman’s correlation coefficient

gave a similar but smaller percentage, likely due to its less informative nature with only the

ranks instead of the actual values. We also noticed that the pri-miRNAs with higher expression

and larger expression variation do not have a larger expression correlation with their mature

miRNAs than other pri-miRNAs (S10 Table, two-sided Mann-Whitney p-value = 0.9828).

The contradicting study measured the expression of pri-miRNAs with their own TSSs,

which were different from what we used here (S3 Table). We thus also repeated the above anal-

ysis with their defined TSSs. This previous study defined TSSs and mature miRNA for 175

Fig 2. The Pearson’s and Spearman’s correlation of pri-miRNAs and their target genes from miTarBase and TargetScan compared with the correlation of

pri-miRNAs and their associated genes.

https://doi.org/10.1371/journal.pone.0290768.g002
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miRNAs we studied here. We found that 102 (58.28%) of the 175 miRNAs had a low correlated

expression between the pri-miRNAs and the mature miRNAs (FDR<0.01). Interestingly, 101

of the 102 miRNAs were also included in the above 101 miRNAs.

The associated mRNAs were biologically sound

The above analysis showed that the associated mRNAs (S5 Table) had a more correlated

expression pattern with the pri-miRNAs than the target mRNAs, implying the functionality of

these associated mRNAs for each miRNA. We further investigated other properties of the asso-

ciated mRNAs and found that most of them were not affected by the neighbor sizes around

miRNA TSSs and different samples used. Moreover, these associated mRNAs for most miR-

NAs had enriched functional annotations.

We checked how different neighborhood sizes might affect the associated mRNAs inferred

for a miRNA (Material and Methods). We considered 100, 300 and 500 base pairs around an

annotated miRNA TSS as the TSS regions to measure the normalized gene expression of miR-

NAs and mRNAs. For the three neighborhood sizes, the median number of associated mRNAs

identified was 172, 171, and 169, respectively. We also studied the correlation of the predicted

and true expression of each pri-miRNA with respect to different TSS neighborhood sizes and

found that the neighborhood sizes had no significant effect on predicting miRNA expression

(Table 2). On average, 71.74% of the associated mRNAs were the same for a pri-miRNA when

different neighborhood sizes were used, suggesting that the associated mRNAs were likely to

be biologically meaningful and intrinsically related to the corresponding miRNAs.

We also studied how different samples may change the associated mRNAs inferred for a

miRNA. For a given miRNA, we compared its associated mRNAs inferred from each fold in

the ten experiments of two-fold cross-validation with the associated mRNAs inferred from all

samples (Fig 3A). Here the neighborhood size was set to be 100 base pairs since different

neighborhood sizes did not change the predictions much. Interestingly, the median number of

the associated mRNAs was slightly fewer, around 140. Moreover, on average, about 50.09% of

the associated mRNAs were shared between every fold and the model from all samples, sug-

gesting that about half of the associated mRNAs are condition-specific. We also found that

33.20% of the associated genes were shared by at least five experiments (Fig 3B). Together with

the above analysis indicated that the subset of samples used will affect how model behave,

potentially due to tissue-specific expression of pri-miRNAs and mRNAs.

With the associated mRNAs for each miRNA, we investigated whether they significantly

shared gene ontology (GO) functions [47]. With the FDR cutoff 0.1, 10.76% pri-miRNAs

indeed had at least one GO term significantly shared by its associated mRNAs. Among these

pri-miRNAs, the median number of significantly shared GO terms was three (S4 Table). The

enriched GO terms are usually consistent with the function of the miRNAs in literature. For

instance, several GO terms including “regulation of cellular biosynthetic process”

(GO:0031326, p-value = 1.75E-5, FDR Q-value = 8.21E-2), “regulation of cellular macromole-

cule biosynthetic process” (GO:2000112, p-value = 3.11E-5, FDR Q-value = 9.69E-2) and “reg-

ulation of macromolecule biosynthetic process” (GO:0010556, p-value = 3.44E-5, FDR Q-

Table 2. The minimum, maximum, mean, and median of Pearson’s correlation coefficient of three different TSS

neighborhood size of miRNAs.

TSS neighborhood size min max mean median

100 0.79 1.00 0.92 0.92

300 0.78 1.00 0.92 0.92

500 0.82 1.00 0.92 0.92

https://doi.org/10.1371/journal.pone.0290768.t002
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value = 8.05E-2,) were enriched in the associate mRNAs of hsa-mir-92a, including the associ-

ate genes e74-like factor 4 (ELF4) and the smad family member 6 (SMAD6) (Fig 4). The has-

mir-92a represses the viability and migration of nerve cells in Hirschsprung’s disease by regu-

lating the KLF4/PI3K/AKT pathway [48]. ELF4 is a the transcription factor that controls pro-

liferation and homing of CD8+ T cells via the KLF4 and KLF2 [49]. hsa-mir-92a also inhibits

SMAD6-mediated RUNX2 degradation and promotes osteogenic differentiation of BMSCs

[50]. These enriched GO terms support the implied function of hsa-mir-92a and the biological

significance of the inferred associated mRNAs of hsa-mir-92a. Note that not all miRNAs had

their associated mRNAs significantly shared GO functions, partially due to the imperfect GO

annotation.

Discussion

The study of pri-miRNA expression is still in its infancy. Here we modeled the pri-miRNA

expression in 1829 primary cells and tissues. We demonstrated for the first time that the

expression of the associated mRNAs could reliably predict the expression of the pri-miRNAs.

These associated mRNAs are different from their target mRNAs while having a more corre-

lated expression with the pri-miRNAs than the target mRNAs. For most miRNAs, their associ-

ated mRNAs significantly shared GO functions. The above observations were valid for

miRNAs defined in miRBase and miRGeneDB [36, 37] (S1–S5 Tables). Our study may thus

provide a new way to indirectly measure the expression of pri-miRNAs under different experi-

mental conditions that are challenging to measure directly.

Several studies showed that the pri-miRNA expression is quite different from the corre-

sponding mature miRNA expression [3–7]. However, another study claimed a good expres-

sion correlation of pri-miRNAs and mature miRNAs in 399 samples with both CAGE and

Fig 3. (A) The number and percentage of the associated mRNAs in each experiment shared by the full model with all samples. (B) The number and percentage of

the associated mRNAs in each experiment shared by at least four other experiments.

https://doi.org/10.1371/journal.pone.0290768.g003
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small RNA-seq data. We successfully matched 378 of these 399 samples with 378 of the 1829

samples we used and studied how pri-miRNA expression correlated with mature miRNA

expression in these 378 samples (S9 Table). We found that the majority of mature miRNAs

have a low correlated expression with their pri-miRNAs (FDR<0.01), even with the original

data used in this previous study, suggesting that mature miRNA expression is different from

pri-miRNA expression.

We demonstrated that the expression of almost all pri-miRNAs could be reliably modeled.

In fact, the predicted expression had a correlation >0.82 with the actual expression for all pri-

miRNAs with the standard deviation of the expression larger than three in the 1829 samples

(p-value = 0, Table 1). We showed that the miRNAs modeled not so well were likely to have

low expression and low expression variation. With more samples available in the future, one

could model the expression of more pri-miRNAs.

More than a dozen studies previously predicted or annotated miRNA TSSs [20, 29, 32, 51–

53]. These predicted or annotated TSSs were often inconsistent between different studies [29,

32]. A recent survey identified 369 miRNA TSSs consistent in at least four previous studies for

330 miRNAs [29]. We selected 195 of these 369 miRNA TSSs that showed transcriptional

activities in at least 80% of the 1829 samples in this study. Although we did not consider the

alternative miRNA TSSs, these miRNA TSSs were likely the best set we could have currently

since they were shown to have better qualities previously [29, 32].

In addition to the 195 miRNA TSSs, we considered 2312 mRNAs to model the expression

of pri-miRNAs. Because we measured gene expression through the CAGE data, we narrowed

Fig 4. The enriched biological process GO terms of the associate genes for hsa-miR-92a.

https://doi.org/10.1371/journal.pone.0290768.g004
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our analysis to the 2312 mRNAs with consistent expression patterns in CAGE and RNA-seq

experiments. Moreover, we applied LASSO to model the expression of pri-miRNAs, thus

more likely to capture only linear relationships between the miRNAs and the mRNAs. In the

future, with more accurate annotation of miRNA TSSs and a better understanding of TSS-seq

data, more sophisticated approaches and more comprehensive studies can be carried out to

involve more pri-miRNAs and more mRNAs [54–56].
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