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The coupled-monomers model is built as an adaptation of the Hickel MO theory based on a self-consistent density-matrix
DOI: 10.1039/x0xx00000x formalism. The distinguishing feature of the model is its reliance on variable bond and Coulomb integrals that depend on
the elements of the density matrix: the bond orders and partial charges, respectively. Here the model is used to describe
electron reactivity in weak covalent networks Xﬁ, where X is a closed-shell monomer. Viewing the electron as the simplest
chemical reagent, the model provides insight into charge sharing and localisation in chains of such identical monomers.
Data-driven modelling improves the results by training the model to experimental or ab initio data. Among key outcomes is
the prediction that the charge in X% clusters tends to localise on a few (2-3) monomers. This is confirmed by the properties
of several known cluster families, including He;\, Arjf, (glyoxal),,, and (biacetyl) .. Since this prediction is obtained in a purely
coherent covalent regime without any thermal excitation, it implies that charge localisation does not require non-covalent
perturbations (such as solvation), decoherence, or free-energy effects. Instead, charge localisation is an intrinsic feature of
weak covalent networks arising from their geometry relaxation and is ultimately attributed to the correlation between
covalent bond orders and equilibrium bond integrals.

been ubiquitous in the literature.?’*° True to its predecessors’
1 Introduction spirit, our straightforward model emphasises physical insight
over the precision and complexity of higher-level ab initio the-
ory.**4! The presented model is intended to be highly trainable,
to borrow a term from machine learning,** meaning its perfor-

The electron is the simplest chemical reagent. Chemistry can be
initiated in a variety of ways, but ultimately it is electron move-

ments that make or break chemical bonds. Electron reactivity is, o B > B :
mance can be significantly improved using either experimental

or ab initio data. The objective of the training process is not just
to match known data but to provide a translation of results into
their physical meaning in terms of common chemical concepts.
The aspirational value of this approach is similar to that of the
original Hiickel theory, which remains relevant today, in the age

therefore, central to understanding the molecular universe.

Here we consider the interactions of electrons with ensembles
of closed-shell atoms or molecules. These interactions may rely
on a variety of covalent or non-covalent'’ forces, but in this
work we examine charge capture by valence orbitals only. The
injection of a single electron or electron hole leads to radicalisa-
tion of monomers that were non-reactive in the neutral state. The
resulting reactivity leads to an important issue in both chemistry
and physics: that of coherent charge sharing versus localisation.

Charge sharing is responsible for covalent bonding. We set
out to investigate how many identical closed-shell monomers can
bind a single bonding agent (an electron or hole) in their valence
orbitals in a perturbation- and excitation-free regime. We are
especially interested in the physical factors that control if the
charge is localised on a few monomers or shared by many moie-

of computers and high-accuracy ab initio calculations.

We first turn to the classic dimer anion of CO2,* the core of
certain (COz2); clusters.***¥ In this dimer, the excess electron
resides in an inter-monomer orbital (IMO), which is a bonding
superposition of the lowest vacant orbitals of two CO2 moieties,
each distorted by the partial negative charge into a bent geome-
try.** An unpaired electron populating the IMO creates an inter-
monomer (IM) bond with a nominal order of 1/2 joining the two
CO2 moieties in a weakly bonded “'?(02C)--(CO2) 2 structure.
ties,#10 perhaps resembling (in size only) the diffuse non-valence . Similar anionic dimers can form from other closed-shell. spe-
11-19 cies. For example, the recent photoelectron spectra of the biace-
tyl (ba) cluster anions suggested the existence of covalent bond-
ing between the two ba moieties in the ba; dimer anions,* simi-
lar to the bonding motif in (CO,)3. This conclusion was sup-
ported by theory calculations indicating that the IM bonding in
ba, is the result of an electron entering an IMO comprised of the

low-lying 1 LUMOs of the monomers. A similar structure was
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states of solvated electrons.

We approach charge sharing using an extension of the classic
Hiickel molecular orbital (MO) theory?*-?> combined with the
correlation between bond energy and bond order?® that has long
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Dimer examples also exist for positive ions, starting with the
rare-gas dimer cations HeZ, NeJ, and Ar}, and others.50-5 As
predicted by the basic MO theory, the bonding in these species
is due to an electron removed from the respective anti-bonding
IMOs defined as superpositions of s (for He) or p (for others)
monomer orbitals (MMO). An anti-bonding electron orbital be-
comes bonding if populated by holes, and vice versa. Therefore,
the bond formation in these dimers can be described as removal
of an order-of-1/2 anti-bond, creating an equivalent 1/2-bond.

Also of note are the dimer cations of benzene,”’ uracil,>®
adenine, and thymine® studied by Krylov, Bradforth, and co-
authors. In these systems, an IM bond is similarly created by re-
moving an electron from an anti-bonding cluster orbital de-
scribed as a superposition of benzene HOMOs (MMOs, using
the above abbreviation). The authors fittingly referred to these
cluster orbitals as dimer molecular orbitals,’” and it is only be-
cause our discussion extends beyond dimers that we use the more
general term defined above, the inter-monomer orbital (IMO).

All the examples so far have basic bonding features in com-
mon. Each possesses an order-of-1/2 covalent bond between the
monomers due to a single bonding agent (an electron for anions
or a hole for cations) populating a cluster IMO described as a
superposition of appropriate MMOs. There is, however, an im-
portant distinction between the LUMO of CO:2 and all other
MMOs mentioned. COz stands out because the bending upon ad-
dition of negative charge®®%-%4 gives its MMO a predominantly
monodirectional C sp? character. It works well for a head-to-head
overlap in the (CO,)3 structure*? but is not conducive to effec-
tive electron sharing among more than two monomers.?

In contrast, the bidirectional (mt, p) or spherical (s) nature of
all other MMO examples is amendable to stacking into longer
chain structures, and trimer ions do exist among the already men-
tioned Hej;, Ney;, Ary;, gl , and bay, cluster families.®50:51:55.5065-
% All have been subjects of high-level studies, and in all cases
the most stable trimer structures correspond to covalently bonded
X;—r chains, where X is a closed-shell neutral monomer. For
example, the Hed and Ari IMOs (specifically, the Hartree-Fock
B-spin LUMOs computed in QChem’® for CCSD/aug-cc-pVTZ
optimised structures) are plotted in Fig. 1(a) and (b), respec-
tively. Comparing them to their constituent 1s or 3p MMOs
(same figure, left), makes it clear that these trimer orbitals can
indeed be described in terms of stacked MMOs. Similar side
views of the g™ vs. gl and ba™ vs. baz structures along with the
respective MMOs and IMOs (the Kohn-Sham a-HOMOs)%%4°
are shown in Fig. 1(c) and (d). Interestingly, no evidence of cova-
lent trimer cations has been reported for benzene or other similar
organics.”’>° Although 7 stacked trimer structures can be easily
envisaged for these monomers, their stability is another matter.

All trimer structures in Fig. 1 have similar overall properties.
The monomers in each case are arranged in a linear (not triangu-
lar) (X-X-X)* geometry. For HeZ, the linear structure is pre-
dicted by a simple Hiickel calculation, while for the others it is
dictated by the MMO shapes. In the Lewis structures of these
trimers, each IM bond has a nominal order of 1/4 (one bonding
electron or hole shared between two bonds). That said, the nomi-
nal bond orders should not be confused with the Hiickel (or
Coulson) mobile bond orders,>’! and it is the latter that this
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Fig. 1. Left: the monomer orbitals (MMOs) of X = (a) He, (b) Ar, (c) glyoxal (gl),
and (d) biacetyl (ba). Right: the inter-monomer orbitals (IMOs) of the respec-
tive X% trimer ions. The orbitals shown in the bottom half of each panel are
from ab initio or density-functional calculations referenced in the text. The
top sketches are schematic depictions of these orbitals, emphasising the
essential s, p, or 7 (p-like) characters and parity along the interaction axis.

work relies upon.

The question arises: is it possible for an electron or hole to be
shared by the valence orbitals of a larger number of monomers?
It seems that MMO stackability should enable the formation of
electronically coherent X% chains held together by one delocal-
ised bonding agent. Coherence implies a fixed phase relationship
between the MMOs, which is a prerequisite for the IMO defini-
tion and covalent bonding. Without outside perturbations (such
as solvation, vibronic couplings, or thermal effects), long X5
chains would present fantastic case studies of electronic coher-
ence and quantum wires.”? Alas, while all MMO in Fig. 1 are in
principle infinitely stackable along the interaction axis, cova-
lently bonded X2 ions larger than trimers, with few exceptions,>!
are not observed in X = He, Ar, gl, ba, and others similar cluster
families. He;; and Ar;; with n > 3 predominantly contain trimer-

This journal is © The Royal Society of Chemistry 2023
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Fig. 2. (a) Two model X, n = 9, chains. Shown at the top in blue are the
constant bond integrals H;;4; = B and the resulting ground-state absolute
bond orders (y;;+1) of the Hiickel reference. Below, in red, are the scaled
bond integrals and bond orders of the second, non-Huckel model. (b) Blue
and red symbols: the lowest-energy IMO amplitudes obtained by diagonalis-
ing the Hiickel and scaled (non-Hiickel) Hamiltonian matrices for the respec-
tive chains defined in (a). Dashed curve: the continuous ground-state wave
function of the particle in a box representing the chain.

ion cores. For X = gl and ba, stable tetramer chain structures can
be created by computational methods, but only under a symmetry
constraint.? If unconstrained, the charge in X+ tends to localise
on a trimer core, with an additional mostly neutral monomer sol-
vating the core ion. In sum, the dominant structures of X%, n>3
clusters, where X is a closed-shell monomer with a stackable
MMO, are described as X%-Xn_k, where k < 3.

Since the empirical trimer limit appears to be applicable to
both negative and positive ions and to monomers with varying
properties, its existence suggests a commonality of electron/hole
reactivity that transcends the intrinsic chemistry of the mono-
mers. It must reflect the general features of inter-monomer net-
working. Hence one of the questions we aim to answer: what is
special about trimers?

We use this question as a test case for the coupled-monomers
model described in this work. The results show that under a wide
range of realistic assumptions, X3 chains are unstable beyond
the trimer. And for a rather simple reason, which has nothing to
do with decoherence, solvation, or entropic contributions to free
energy. To be sure, the competition between covalent bonding
and solvation often favours certain ion core structures and is
responsible for core-switching in several known cluster famili-
es. 4445739 Byt it does not control the above trimer limit. To
prove this, we will demonstrate this limit in a perfectly coherent,
excitation-less regime excluding any non-covalent forces. Its
true origin, rooted in the energetics of weak covalent interac-
tions, will become apparent as an analysis outcome.

To examine the limits of charge sharing in weak covalent in-
teractions, let us first consider what we call the Hiickel reference.

This journal is © The Royal Society of Chemistry 2023

Its definition is given in Sec. 2, but briefly it refers to a chain of
identical closed-shell monomers X interacting with a single
bonding agent under the approximations of the original Hiickel
MO theory.

The key feature of the Hiickel reference is the unobstructed
charge delocalization over the entire X3 chain. This is illustrated
in Fig. 2 on the example of an n = 9 chain defined in (a). The
filled blue symbols in (b) represent the amplitudes |c;| of the
monomers’ contributions to the X& ground state obtained by dia-
gonalising the Hiickel Hamiltonian matrix with constant bond
integrals H;;.; = p for all nearest neighbours and zeros for
others. The discrete Hiickel solution overlaps with the continu-
ous wave function of the particle-in-a-box ground state, shown
by the dashed curve in the same figure.

The above IMO amplitudes result in absolute Hiickel bond
orders®>”! x; ;41 = |¢/c;j41| which decrease toward the ends of
the chain. They are indicated at the top of Fig. 2(a) in blue font.
In a real molecular chain, the variable bond orders will result in
variable bond lengths: the weaker the bond, the longer it is. The
lengthening of the bonds toward the ends of the chain is not con-
sidered in the Hiickel model, but in the real world it will cause
decreasing magnitudes of the corresponding bond integrals.

For a simple illustration, consider now a similar X% chain but
with the bond integrals progressively scaled by 1/2 for each bond
toward either end of the chain. That is, instead of all H; ;41 = f3,
we will now assume scaled H; ;. values of /8, B/4, /2, 8, 8,
B/2, B/4, B/8, as shown below the model chain in Fig. 2(a) using
red font. The IMO amplitudes corresponding to the lowest eigen-
value of the resulting H matrix are plotted using red open circles
in Fig. 2(b). This solution represents a significant narrowing of
the charge distribution compared to the Hiickel reference. Speci-
fically, 94% of the charge is now localised on the three middle
monomers, compared to Hiickel reference’s 56%.

The scaling of the bond integrals in the above example was
chosen arbitrarily. In the rest of this work, we hypothesise a
quantitative relationship between bond integrals and the corre-
sponding bond orders. We then calibrate this hypothesis using
data for real chemical systems. It should be noted that our main
qualitative conclusion is already apparent in Fig. 2, where charge
localisation to a small subset of monomers is traced to the clus-
ter’s geometric response to bond-order variation.

Table 1 summarises the data for four X% families that we
will use to guide the model training: X = He,3%-53:66:67 Ay 50.56.68
gl,” ba’. Included are the vertical monomerization energies
(VME) of the dimer and trimer ions. Under the Hiickel approxi-
mations, the trimer VME must be \/Z = 1.41 times larger than the
corresponding dimer bond energy.® Yet in most cases, X = ba
notwithstanding (vide infra), the dimer-to-trimer VME increase
is smaller than the Hiickel prediction. Consistent with Fig. 2, this

Table 1. Vertical monomerization energies of X% and X§ clusters, VME(2) and
VME(3), respectively, X = He and Ar for cations, X = glyoxal (gl) and biacetyl
(ba) for anions, compared to the Hickel reference.

X= He Ar gl Huckel ba
VME(2) / eV 2.448 1.366 1.088 1.020
VME(2) / d.u. 1 1 1 1 1
VME(3) / eV 2.598 1.567 1.324 1.583
VME(3) / d.u. 1.061 1.147 1.217 1.414 1.552
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is because the sharing of a single bonding agent between two
trimer bonds results in a weakening and thus lengthening of these
bonds, which in turn dampens the bond integrals.

As we seek a description of IM couplings in XZ chains, the
desired theory must include the geometry and (consequently)
bond-integral relaxation in response to variable bond orders.
This requirement makes the original Hiickel MO theory not suit-
able for the task but does not imply that a rigorous application of
the full MO theory is the only answer. The IM bonds resulting
from a single bonding agent all have bond orders of <1/2, leading
to relatively large equilibrium bond lengths. In this regime, sig-
nificant simplifications of the MO theory are possible, giving rise
to the model formalism described in the next section.

2 The coupled-monomers model

The presented model is a version of the general MO theory adap-
ted to the requirements of weakly-bonded networks. Although
many of the assumptions are the same as in the Hiickel theory,
our model features additional adaptivity with regard to the bond
and Coulomb integrals. The flexible treatment of these parame-
ters allows the model to be trained to describe the properties of
specific systems. In this section, we spell out both the parallels
and distinctions between the coupled-monomers model and the
original Hiickel MO theory.

2.1 Model assumptions and formalism

Approximation 1: Separation of IM interactions from intra-
monomer bonding. We adopt a hierarchical approach that treats
the IM interactions as perturbations of the monomers. Under this
approximation, the intermonomer orbitals are described as linear
combinations of unmodified monomer orbitals, one MMO per
monomer. The MMOs used are the lowest-energy orbitals with
a vacancy for an electron or hole, as appropriate.®?

Formally, in a system of n identical closed-shell monomers
X, let ¥; be the normalised MMO of X(i), i=1,...,n. The set
of n MMOs {;} serves as a minimal basis for describing the IM
interactions in X,, upon the addition of an electron or hole.

Approximation 2: The model Hamiltonian. An electron/hole
added to the IMO system spanned by the {1;} basis is described
by an effective Hamiltonian A, which incorporates the effects of
all other electrons and the nuclei in an averaged way.? Like in
the Hiickel method, we will avoid expressing the Hamiltonian in
an explicit operator form and are not concerned with its details.
The IMOs ¢, = ; Ci(k)ll)i and their energies Ey, k = 1, ...,n are
obtained from the secular equation for the H matrix representing
H in the {1;} basis. As in the LCAO-MO theory,?’ the solutions
generally depend on the H matrix elements, H; ; = (y;|H|y;),
and the overlap integrals S; ; = (; ;).

Approximation 3: Basis set orthogonality. Like the Hiickel
method,?*> we will treat the MMO basis as orthonormal by
setting S; ; = §; ; (Kronecker’s delta).

The relative weakness of the covalent couplings considered
here results in large equilibrium bond lengths, making this as-
sumption more robust than in a typical Hiickel case. The secular
equation then simplifies to an eigenvalue problem for H (only).
It yields n eigenvalues Ej and the corresponding eigenvectors
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|¢r) that contain the ¢y = Y; Cl—(k)l,bi coefficients (k = 1, ..., n).
Focusing on the most stable state, we select the lowest-energy
IMO, ¢ = ¢, and hereafter drop index k = 1 for brevity. The
energy of ¢ = Y; c;; is its eigenvalue E. Alternatively, it can
be calculated from the density matrix p = |¢p)(¢| as follows:

E = (g|A]g) =D pisHy ()
i

where p; j = ¢/ c; are the density matrix elements. Each diagonal
element p; ; is the electron (hole) density on X® | j.c., the abso-
lute partial charge of the monomer: p;; = q;. The off-diagonal
elements p; ;, i # j are the Hiickel (Coulson) bond orders.?*
Separating the individual monomer contributions from pair-
wise interactions and counting the IM bonds rather than distinct
i,j and j, i exchange pairs, it is convenient to rewrite eqn (1) as:

E= Z piiHi; + Z 2p;H; Q)
7

i<j
The first term in eqn (2) is a sum of monomer energies, excluding
the IM interactions. Each Coulomb integral H;; represents the
energy of the electron (hole) if it were fully localised on X®_ For
a given solution, this quantity is weighted H;; by the monomer’s
actual population: E; = p;;H; ;. The second term in eqn (2) is a
sum of pairwise interactions, with the bond integrals H; j, i # j
serving as coupling constants. Each bond’s energy (including the
i,j and j, i exchange terms) is given by E;; = c;¢;H; j + ¢; c;Hj;
=2p; ;H; j, i <j (for real H; ;). Therefore, each H, j, i < j coupl-
ing constant is activated by the addition of an electron (hole),
with a twice-the-bond-order (2p; ;) weight.

Approximation 4.0: Constant Coulomb integrals. Following
Hiickel,20-% here we treat all Coulomb integrals H; ; as constants,
which are the same for all identical monomers: H;; = a. A con-
stant a does not affect the bond energies (see below) and can be
set arbitrarily to zero.

The effect of IM interactions in X2 is conveniently expressed
in terms of vertical monomerization energy (VME), which is de-
fined as the energy change in the Xf — X* + (n — 1)X process,
excluding any internal monomer relaxation (hence ‘vertical”).®°
Bonding and anti-bonding interactions contribute to VME with
positive and negative signs, respectively, and it is positive overall
for a bound system.

The VME of X% is obtained by subtracting the IMO energy
from that of the charge localised on an isolated monomer, i.c.,
the Coulomb integral:

VME=a — E 3)

where E is the IMO eigenvalue, alternatively given by eqn (2).
Under approximation 4.0, the first sum in eqn (2) simplifies to
a,;pi; = a,since }; p;; = 2.; q; = 1. Substituting the simplified
eqn (2) into eqn (3), we get:®

i<j

It follows that covalent stabilization energy is independent of a.
The Hiickel-like assumption of a = const is oversimplistic in
many chemical scenarios, and in a follow-up paper we will

This journal is © The Royal Society of Chemistry 2023



replace the a constant with a variable a function, a(q), where q
is the absolute charge of the monomer, q; = p;;. That is, H;; =
a(q;). We will refer to the assumption of an a-function instead
of an a-constant as approximation 4.1. One of its immediate con-
sequences is that it invalidates eqn (4).

The Hiickel reference. The Hiickel model for any X3 struc-
ture is obtained by setting all Coulomb integrals to a constant a
and all bond integrals to a constant § for connected monomers
and to zero for all remote pairs.?> In this work, we refer to any
XF structure described in these terms as the Hiickel reference.

A discussion of the Hiickel reference for anionic arrays in one
to three dimensions was presented elsewhere.® Importantly, the
Hiickel structures exhibit a particle-in-a-box-type charge deloc-
alisation.®%2° Stabilisation due to one electron (hole) entering the
lowest-energy IMO is given by VME(2) = || for the dimer and
VME(@3) = v2|B| for the trimer. For n > 3, VME(n) continues to
increase but saturates at VME(n) — 2|8]| for n — 0.8 This limit
is also due to the particle-in-a-box behaviour. As the chain (box)
length increases, the ground-state eigenvalue E decreases but
remains bounded from below by the bottom of the box. Per eqn
(3), this restriction puts an upper bound on VME(n).

The assumption of constant bond integrals works well in the
Hiickel theory’s original domain where & electrons are added to
a framework of ¢ bonds in conjugated hydrocarbons. Although
the o bonds are not part of Hiickel’s original formalism, they dic-
tate a robust structure within which the © bond integrals are de-
fined. The constant § assumption is also acceptable for systems
with other types of equivalent bonds (e.g., the triangular structure
of H3). However, it becomes problematic if the entirety of the
bonding being considered is due to the added electron (hole) and
the bonds in questions are fundamentally not equivalent.®°

To this point, the IM bonds in clusters like He;; and baj, are
not added to any pre-existing IM bonding framework (excepting
the weak van der Waals forces); they alone define the IM bond-
ing structures. In this scenario, the bond lengths and hence the
bond integrals vary significantly from one bond to another, and
any model keeping them constant will miss essential chemistry.
We are, therefore, compelled to treat H; j, { # j as explicit func-
tions of IM geometry.

Approximation 5: The bonding function. The bond integral
H;; = (z/)i|ﬁ|1/;]-), i # j explicitly depends on the distance bet-
ween the monomers, R; ;. Focusing on the nearest-neighbour in-
teractions only, we express the bond integrals H; ;14 in X¥ chains
using an explicit function of bond length,

Hijr1 = H(Ri41) (5)
All remote integrals H; j, |{ — j| > 1, are set to zero like in the
original Hiickel method.

Equation (5) applies to any bond length, but we are interested
in relaxed ground-state structures. Labelling the equilibrium
R;i+1 as 7; ;41 and the corresponding matrix elements H; ;4q as
h;i+1, the bond integrals in a relaxed structure are defined, per
eqn (5), as hy 11 = H(Ti41)-

The relaxed bond lengths, in turn, depend on the bond orders.
Hence, we postulate 7; ;49 = r(X;,i+1), Where ¥; ;1 is the order
of the bond between adjacent monomers i and i £ 1 and () is
a function. To make this function independent of the basis set
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parity, its argument y = x;;4; is defined as the absolute, not
Hiickel, bond order. “Absolute” as used here does not mean that
x is always positive, but that it is positive for bonding interac-
tions and negative for anti-bonding, independent of the basis set.
Depending on the basis MMOs’ relative phases and the nature of
the bonding particles (electrons or holes), x;;+; may differ in
sign from the Hiickel bond orders p; ;11 = ¢{c;4+1 (more on this
in a future paper). Specifically, for bonding interactions, x;;+; =
|pii+1] > 0and r(x;;+41) is finite, with 7(¥) — oo for y — 0. For
antibonding, x; ;41 = —|p;i+1] <0 and r(x) is infinite for y <0.

It follows that the equilibrium values of bond integrals vary
with absolute bond orders because h;;iq H(riie1) =
H[r(xi;i+1)], or, equivalently,

hiivs = BUii+1) (6)

where f is no longer a Hiickel constant but a function, which we
will call the bonding function. Implicit in its definition is the
assumption that the equilibrium geometry is defined by pairwise
nearest-neighbour interactions only.

Following the convention of the original Hiickel method, we
will assume that the {y;} MMO basis set is defined in such a
way that all nearest-neighbour bond integrals h; ;4 are negative,
corresponding to a bonding overlap of each pair of adjacent basis
functions. In such a basis, per eqn (6), 5(x) is a negative-valued
function like Hiickel’s original  constant.

2.2. Self-consistent solutions

Under the approximations in Sec. 2.1, the Hamiltonian matrix
elements h; ; for a relaxed X chain can be determined from the
density matrix elements p; ;. For that, we need the bonding func-
tion #(x) and the Coulomb-integral constant a (or, more gener-
ally, the a-function). Diagonalizing matrix h yields the IMOs
and their eigenvalues. However, the dependence of h; j on p; ; =
c;cj sets up a circular problem: since c; are the eigenvector coef-
ficients, the problem’s statement (h; ;) depends on its own solu-
tion ({c;}). This difficulty is resolved by an iterative search for a
self-consistent solution using the algorithm shown in Fig. 3.

A calculation is initiated with an arbitrary guess of the initial
state in the |¢) vector space, defined by a set of the initial IMO
coefficients, {c;}. Each iteration includes the following steps:

(1) From the current {c;}, compute the density matrix ele-
ments, p; j = ¢; ¢;. The diagonal elements p; ; are the MMO (1);)
populations, while all others are the i, j bond orders.

(2) (a) Set all Coulomb integrals to the same constant (e.g.,
zero), per approximation 4.0. Alternatively, variable Coulomb

(4] IMO coefficients (1)
{ci}

h eigenvalues Initial guess
& eigenvectors

‘ Coulomb integrals, hi,i}

Density matrix

(3]

Bond integrals, ; ;

Fig. 3. Search for self-consistent solutions. Details in the text.

PCCP, 2023, 00, 1-3 | 5



integrals can be calculated as h; ; = a(p; ;) (approximation 4.1).
(b) Evaluate the nearest-neighbour bond integrals from the bond
orders using eqn (6) with an assumed or otherwise known bond-
ing function (approximation 5). In the X{ ground state, all
nearest-neighbour interactions are bonding, so the absolute bond
orders are obtained from the density matrix as x;;+1 = |pii+1l-
(c) Set all remote integrals H; j, |i — j| > 1, to zero.

(3) Find the eigenvalues and eigenvectors of matrix h from
the previous step.

(4) Calculate VME from the lowest h eigenvalue per eqn (3).
If @ = const, eqn (4) gives the same result. Check for conver-
gence and proceed to the next iteration (Step 1) or exit the loop.

The convergence check included two criteria, both of which
had to be satisfied to complete the calculation. First, the change
in the energy eigenvalue relative to the previous iteration must
be <10 dimer units (Sec.2.3). Second, the norm of the corre-
sponding change of the eigenvector must be <10”7. Depending on
the initial guess, most calculations involved <100 iterations.
Some were <10, but a few required >1000 iterations to converge.
The computing times are generally minimal. The longest calcu-
lation attempted involved 10* monomers (10% matrix elements),
requiring 42 iterations and less than 2 min of wall time to
converge on a modest 2.5 GHz processor with 32 GB of RAM.

2.3. The dimer units

In an X3 system bonded by one electron (hole), the equilibrium
bond integrals h; ; 4, and hence () have the largest magnitude
for y = 0.5, which is the maximum absolute bond order attribu-
table to one electron or hole. This limit is achieved when the
electron (hole) is localized on a single bond, i.e., in an XF dimer.

Therefore, we will refer to y = 0.5 as the dimer limit and
define the corresponding bond energy, VME(2) = |(0.5), as the
dimer unit (d.u.) of energy. It follows that £(0.5) = —1 d.u. by
definition. For example, given that the monomerization energy
of Hej is VME(2) = 2.448 eV, while that of He} is VME(3) =
2.598 eV (Table 1),30-55:6667 it follows that the dimer unit of
energy for the He;, cluster family is 1 d.u. = 2.448 eV and the
total stabilisation energy of the trimer is 1.061 d.u.

So defined, the dimer units are explicitly system (X) depend-
ent, and that is the point. This definition is meant to take the focus
off the differences between monomers and instead facilitate the
comparison of the n dependent trends in various X} families.
The key benefit of this approach is that it allows the presentation
of results in a universal, X-independent language.

2.4. The empirical bonding function

Before exploring the properties of the bonding function, we con-
sider its universal properties.

Boundary conditions. In the ground state of X3, all nearest-
neighbour interactions are bonding and the absolute bond orders
Xi,i+1 span the maximum range from 0 to 1/2. Hence, £ (x) must
be defined for y € [0, 0.5].

The y = 0 boundary corresponds to the non-bonding limit. As
x — 0, we expect the equilibrium bond length to tend to infinity
and the bond integral to vanish. An important deviation from this
expectation due to non-covalent interactions will be discussed in
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Fig. 4. The universal constraints on the bonding function S(x), x € [0, 0.5],
include two boundary conditions, #(0) = O (red circles) and ((0.5) = -1 d.u.
(green circles), in addition to the requirements for it to be continuous, mono-
tonic, and well-behaved.

the future. Here, in the purely covalent limit, the boundary con-
dition for £ () in the non-bonding limit is $(0) = 0, as indicated
by the red dots in each of the schematic graphs in Fig. 4.

At the other extreme, y = 1/2, it follows from the definition
of the dimer unit that £(0.5) = —1 d.u. (Sec. 2.3). This limit is
indicated by the green dots in each panel in Fig. 4.

In addition to the above boundary conditions, we require the
bonding function to be single-valued, monotonic, and well-be-
haved for y € [0, 0.5]. Altogether, we expect S () to connect the
red (0,0) and green (0.5,—1) points in the (y, ) plane in a smooth,
monotonic fashion. As indicated in Fig. 4, this can be accomp-
lished in a linear or non-linear manner (two sample graphs at the
top), but any non-monotonic or discontinuous functions (bottom
graphs) must be excluded from consideration. These general fea-
tures of B (), illustrated schematically in Fig. 4, are dictated by
universal, monomer-independent constraints.

The bonding space. The above conditions are satisfied by
any member of the function space defined as

B(x) =—[1— (1 -2/ (7

for y € [0, 0.5], where by, b, > 0 are parameters. This functional
form is neither special nor unique. It is but a convenient class of
functions that satisfy the model constraints. However, we will
show that it covers most realistic chemical scenarios. To shine
light on its meaning, with b; = b, = 2 eqn (7) defines the third-
quadrant arc of an ellipse centred at (0.5, 0) in the (y, ) plane.

First, given any combination of finite by, b, > 0 values, eqn
(7) satisfies the f(0) = 0 and B(0.5) = —1 d.u. boundary condi-
tions. The by and b, parameters control how the two limits are
connected, but () is always monotonic, single-valued, and
well-behaved. As a limiting case of by, b, = o0, eqn (7) yields
the Hiickel reference: f = —1 for any y > 0.

Nine examples of specific functions defined by eqn (7) are
shown in Fig. 5, A-I. Each function shown corresponds to one of
the red points in the (b;, b,) parameter space shown in the same
figure, top left. Beyond these nine examples, every point in the
(b1, by) space maps onto a unique bonding function. As cases A-
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I illustrate, b; controls the 8 (x) behaviour near the non-bonding
limit (¥ = 0), while b, affects the dimer limit (y = 0.5). Case E,
in particular, with (b;, b,) = (1, 1), corresponds to the linear
function § = —2y shown in panel E on the right.

We hypothesise that any given Xi family can be described
by a bonding function represented by a point in the (by, b,)
space. While we do not know a priori what specific (b, b;)
values describe each system, we expect that most common che-
mical scenario fall well within the by, b, € [0.6, 1.7] range shown
in Fig. 5. The following analysis will confirm this hypothesis.

We will now examine the mapping of the bonding space to
specific core ion structures and compare the results to the known
properties of real cluster systems.

3. Initial Results

In this section, we test the model using various assumed £ (x)
functions. The initial analysis applies to an unspecified X3 sys-
tem. Behind such a sweeping approach is the expectation that X
clusters have common features attributable to the physics of IM
networking rather than the specific chemistry of the monomers.
This expectation is rooted in part in the knowledge that in most
known cases the excess charge is shared by, at most, three mono-
mers. We show that even the least sophisticated implementation
of the model explains this behaviour in a purely coherent regime,
without invoking non-covalent interactions or thermal excita-
tions. Section 4 will tune these findings to real chemical systems.

3.1. Model convergence

The progress of a typical calculation toward a self-consistent so-
lution is illustrated in Fig. 6 on the example of a nine-membered

This journal is © The Royal Society of Chemistry 2023

chain, X¥. There is nothing special about n = 9; this number of
monomers is chosen arbitrarily as large enough to illustrate the
networking behaviour yet small enough to show details. Similar
results can be obtained for shorter or longer chains, and some
examples will be given along the way. The Coulomb integrals
are set to zero here (in Fig. 6) and throughout (approximation
4.0), while the bond integrals are defined by the bonding function
in eqn (7) with b; = 1.0 and b, = 1.7. These values correspond
to point B in Fig. 5, also shown in the top left of Fig. 6.

The green asterisks in each panel represent the initial {c;}
guess used in this calculation. To emphasize the divergence of
the model from the Hiickel reference, the guess was chosen to
coincide with the Hiickel solution. That is, it corresponds to the
ground state of the particle in a box discretised to nine mono-
mers. For reference, the continuous form of this wave function
(half a period of a sin wave) is shown as a dashed grey curve in
each panel of Fig. 6. A similar format indicating the initial guess
and the Hiickel reference is also used in many subsequent fig-
ures. The red symbols in Fig. 6 indicate the IMO coefficients
after (a) 1, (b) 2, (¢) 3, (d) 5, and (e) 40 iterations. This particular
calculation required 40 iterations to converge, so the red symbols
in (e) represent the final self-consistent solution.

The monomerization energies determined at each iteration
via eqn (3) or, equivalently, eqn (4) are indicated in the figure.
The converged solution corresponds to a VME = 1.239 d.u.,
which is smaller than 1.902 d.u. for the X& Hiickel reference with
a constant § =—1 d.u. This distinction is key: our model accounts
for geometry relaxation in response to varying bond orders. That
results in varying 3. Since the equilibrium |3| values are on aver-
age smaller than in Hiickel’s limit, the result is reduced stability.

Most significantly, Fig. 6 shows that the IMO, which is initi-
ally delocalised over the entire chain in a particle-in-a-box-like
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Fig. 6. Progress of a typical calculation toward a self-consistent solution on
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iteration. The non-zero partial charges of the monomers are given for the final
solution in (e).

fashion, collapses to just three neighbouring monomers with a
0.25|0.50]0.25 charge distribution. In contrast to the Hiickel
reference, charge localisation has a stabilising effect in this case
because it allows the largest-magnitude bond integrals to receive
the most charge. Per eqn (4), this benefits IM bonding. Review
the VME progress from the delocalised initial guess to the more
localised final solution in Fig. 6 for more detail.

Charge localisation on three monomers can be conveniently
expressed in terms of absolute trimer charge Q3 = Y3 q;, where
q; = |c;|? and the sum (33) is taken over three adjoining mono-
mers with the largest combined charge. For the final solution in
Fig. 6(e), Q3 = 1. It implies that the cluster consists of a cova-
lently bonded trimer-ion core, with the other six monomers in a
neutral state, not bonded to the core or to each other: X;—r-XG. We
will refer to trimer ions with Q3 = 1 as “pure” trimers or trimers
of 100% purity. We shall see that pure trimers are a common
phenomenon in the coupled-monomers model, not limited to X;—r
or the exact numerical assumptions used to generate Fig. 6.

Charge sharing can be quantified for any system (not limited
to trimers) using the standard deviation (o) of the charge
distribution. The distribution is defined by P; = |¢;|? = p;;, and
(i%) — (i)?. We
will refer to it as charge-sharing o. Its values after each iteration

the standard deviation of i is calculated as ¢ =
are included in Fig. 6. For comparison, the X& Hiickel reference

and the initial guess in Fig. 6 are described by ¢ = 1.807, while
for the final solution in Fig. 6(d) o = 0.707 (1/7/2).
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Fig. 7. (a)-(c) Distinct but degenerate X%s solutions for bonding case F. In each
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3.2. Local solutions

Final solutions generally depend on the initial guess and this is
particularly important for longer chains. For illustration, Fig. 7
presents three distinct solutions (a)-(c) for X35 using the bonding
function defined by point F in the (b1, b,) space. The solutions
obtained from distinct sets of initial {c;} coefficients differ in
their placement along the chain, but their key properties are iden-
tical, including the VMEs and charge distributions within the
core ion. In each case, 96.8% of the charge is localised on three
core monomers (Q3 = 0.968), only the specific monomer trio
capturing the charge differs. The reduced trimer purity sets case
F in Fig. 7 apart from case B in Fig. 6(¢) (Q3 = 1). The reduction
is due to a faster increase in || near y = 0 evident in Fig. 5, F
vs. B. The faster increase in F is in turn due to a larger b, .

The degenerate solutions in Fig. 7 are local in the n-dimen-
sional vector space |¢) and localised to a small number of mono-
mers. Since monomers with zero ¢; coefficients do not contribute
to covalent bonding, we can add or remove any such inactive
monomers without affecting the core-anion properties. This
means changing the dimensionality of the |¢) vector space out-
side the active subspace describing the core. Physically, it
implies adding or removing spectator monomers that do not
interact with the bulk of the cluster. For example, the core
properties of the solutions in Fig. 7 (VME, o, and Q3) would not
be affected if the chain were expanded or shrunk to any n > 5.

3.3. Ground-state structures

The above realisation can be used to facilitate a global search for
lowest-energy self-consistent solutions. To ensure that a given
solution describes a relaxed ground-state structure we must gene-
rally perform an exhaustive search in the |¢) vector space. That
requires calculations starting from a multitude of initial states to
sample various regions of the n-dimensional space. This is im-
practical for more than a few monomers. Instead, we take advan-
tage of the fact that as long as edge effects are avoided, the con-
verged solutions always contain symmetric core ions: a
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Fig. 8. Top to bottom: the final solutions for bonding cases H, E, B, and C from
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monomer, dimer, trimer, etc. Meanwhile, any number of specta-
tor monomers with ¢; = 0 can be added or removed at will for
computational convenience without affecting the core solution.

Hence, for every point sampled in the (b, b,) space we car-
ried out two calculations: one for an even and one for an odd
number of monomers. For computational expediency, while still
avoiding the edge effects, we chose n =9 and 8. In each case, the
Hiickel reference was used as the initial guess. All resulting {c;}
solutions were symmetric with respect to the middle of the chain
(i =5 for n = 9 and halfway between i = 4 and 5 for n = 8),
constraining the ionic core to an odd or even number of mono-
mers, respectively. We then compared the odd- and even-n solu-
tions and designated the core ion within the more stable one as
the equilibrium core structure for that bonding function.

This approach is illustrated in Fig. 8 for bonding cases H, E,
B, and C (all defined in Fig. 5). In case H, the even-numbered
core structure in Fig. 8 (a pure dimer with a VME =1 d.u.) is
more stable than an odd-numbered one (a pure trimer, VME =
0.728 d.u.). Thus, we expect any system with a bonding function
represented by point H (or its vicinity) in the (b;, b,) space to
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have a dimer-ion core.

Case E represent a transition between the dimer and trimer
phases. With (by, b,) = (1, 1), the bonding function in eqn (7)
simplifies to g = —2y. The pure-trimer solution |¢) = (1/2, 1//2,
1/2) includes two IM bonds with y = 1/(2v/2) and B = —2y =
—1/7/2 d.u. each. Each bond’s energy is then, per eqn (4), —28x
=1/2 d.u., for a combined VME =1 d.u. exactly, which is dege-
nerate with the dimer structure.

In case B, trimer-based structures are most favourable. The
even-numbered solution on the left in Fig. 8 in this case is no
longer a pure dimer; it resembles a tetramer instead. Each of the
two middle monomers within the tetramer core has an absolute
charge of q, 3 = 0.412 with q; , = 0.088 localised on the terminal
species. However, this tetramer-based structure is less stable than
its trimer-based counterpart on the right.

The situation is reversed in case C, where the even-numbered
core ion is more stable than its odd-numbered counterpart. We
should recall that of all bonding cases A-I defined in Fig. 5, case
C is closest to the Hiickel limit of § = —1 = const. It is not sur-
prising, therefore, that the solutions obtained in this case have
the widest charge distributions compared to any other case exam-
ined thus far (note the o values in Fig. 8). The most stable core
structure in case C is essentially a tetramer with a 0.119|0.380|
0.380/0.119 charge distribution, but the solution also reveals a
minor (0.2%) charge spillover to each of the monomers immedi-
ately adjacent to the tetramer core. An even greater spillage from
the core is present in the nearly degenerate but slightly less stable
odd-numbered solution for case C, where each of the two mono-
mers adjacent to the trimer core (Q3 = 0.94) captures nearly 3%
of the charge. If we were to continue the journey along the GC
diagonal in the bonding space (Fig. 5) beyond case C, the solu-
tions would get progressively broader, approaching the Hiickel
case (dashed grey curves in Figs. 6-8) in the limit of by, b, — oo.

3.4. Dimers, trimers, and beyond

Figure 9 presents a coarse overview of the bonding space from
Fig. 5, illustrating the effect of varying the bonding function on
the core-ion properties. Each panel A-I in Fig. 9 corresponds to
the respective bonding case in Fig. 5. Unlike Fig. 8, all solutions
in Fig. 9 were obtained for an odd-membered chain X&. How-
ever, the initial guess was varied in each case to obtain both odd
and even-numbered core structures and only the lowest-energy
solutions are presented in figure. In case E, the dimer and trimer-
based solutions are exactly degenerate, with VME = 1 d.u. each,
and only the trimer-based is shown.

While Fig. 9 displays sample solutions on a 3x3 grid in the
(b1, by) bonding space, a more refined picture is presented in Fig.
10. Here, following the methodology from Sec. 3.3, we analysed
the XZ and X% solutions on a 201x201-point (b, b,) grid. The
resulting values of VME(b,,b,) and (by,b,) for the more stable
structures are presented in (a) and (b), respectively, as two-
dimensional contour plots. In (c), the o(b;,b,) data from (b) are
plotted again as a 3-D surface. Since inactive monomers can be
added or removed at will (Sec. 3.3), these results are valid for
any-size X3 chains, as long as edge effects are avoided.

Figure 10 shows that increasing b, and b, generally increases
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the cluster stability (larger VME) and leads to more delocalised
charge distributions (larger ). Both trends are intuitive because
as by, b, = oo the model approaches the particle-in-a-box-like
Hiickel limit. While the energetic trend in (a) is described by a
smooth and continuous VME(b4,b,) dependence, the o(b,,b,)
data show sharp discontinuous transitions reflecting changes in
the ionic core structure.

Considering the charge distributions in detail, c = 0.5 corre-
sponds to a pure dimer-ion cluster core with partial charges q; =
0.5]0.5. A pure trimer (Q3 = 1, g; = 0.25]0.50/0.25) has a ¢ =
1///2 ~ 0.707. Several correlations between Q3 and o are indi-
cated in Fig. 10(b) next to the o colour bar. Using the disconti-
nuities in o and analysing the {c;} solutions, the (b,,b,) space
can be divided into the dimer, trimer, and tetramer (4mer)
regions shown in Fig. 10(a-c). The trimer region can be addition-
ally subdivided into the pure (Q3 = 1 exactly) and impure (Q3 <
1) areas, labelled in (c). Their strict boundary corresponds to the
BE line, but even to the right of it the initial increase in ¢ and the
corresponding decrease in Q3 are very slow at first. Fig. 10(b)
shows white dashed lines corresponding to Q3 = 0.998, 0.99,
0.98, and 0.97, indicated as percentages to the left of the lines.

While the variation of trimer purity is gradual and not asso-
ciated with discontinuities in the charge distribution, the dimer-
trimer, trimer-tetramer, and dimer-tetramer transitions are
defined by sharp boundaries with abrupt discontinuities in charge
sharing. The most drastic change, from o = 0.5 to 0.707, occurs
at the dimer-trimer interface, i.e., the solid red curve in Fig. 10.
This curve terminates at a point where the dimer-trimer boundary
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bifurcates into the dimer-tetramer and trimer-tetramer borders.
Overall, the trimer region encompasses a significant area of
the (b,,b,) space. Importantly, in the future we plan to show that
the bonding properties of many known X3 families fall close to
the BH line within this space (Figs. 5 and 10). The preference for
either dimer or trimer core ions is largely determined by whether
the bonding function for a specific system corresponds to a point
below or above point E on this line, as is clear from Figs. 10(b)
and (c). For example, the existence of the X = He, Ar, gl, and ba
trimer ions?>0-3336.66-68 gy goests that their bonding properties fall
above point E in the (by, b,) space, corresponding to b, > 1.

4. Data-driven modelling

In this section, we use available data for several X3 systems to
determine which of the bonding functions defined in Sec. 3 are
closest to chemical reality.

4.1. General model training

Section 2.4 defined two universal constraints on the bonding
function: the boundary conditions at the non-bonding and dimer
limits, £(0) = 0 and $(0.5) = —1. These boundary conditions are
independent of the nature of the monomers and therefore help
little in identifying the unique bonding properties of specific
systems. This is illustrated in Fig. 11, where a myriad of allowed
bonding functions, 144 in total, are plotted in part (b).

This part of the figure is messy by design and not intended to
be analysed in detail. Although all functions shown satisfy the

This journal is © The Royal Society of Chemistry 2023

Please do not adjust margins




Please do not adjust margins

PCcpP

135
1.30
: 125
Trimer

1.20
1.15
1.10

dmer | NS

dimer
0.85

080 27

075 %5,

6
0.70 T00%

0.65 trimer

Trimer

100%

0.60

0.55

0.50 <
dimer

Trimer
Trimer
Q3 —

Fig. 10. The (a) VME and (b)-(c) charge-sharing o plots calculated on a 201x
201-point grid in the bonding space (b,, b,) € [0.6, 1.7]. The same o(b,,b,)
dataset is shown in (b) and (c) using two different formats. All data represent
the most stable core structures identified for each bonding case and the
resulting dimer, trimer, and tetramer (“4mer”) regions are labelled in each
plot. Points A-l indicate the bonding cases defined in Fig. 5. The red solid
curves indicate the boundary between the dimer and trimer regions. The top
and bottom red curves in (c) are the same boundary, plotted twice, at the
dimer and trimer o levels. The dotted magenta curves represent similar
dimer-tetramer and trimer-tetramer boundaries. The white dashed lines in
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boundary conditions, altogether they represent an overwhelming
range of possible bonding scenarios, most of which are of little
use for real chemistry. This changes with the introduction of just
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one additional constraint. In general terms, we define it as (o)
= fy, requiring the bond integrals to have a specific value 8, €
(-1, 0) for a chosen bond order y, € (0, 0.5). We will refer to
(Xo-> Bo) as the training point and will shortly show how it relates
to specific chemical properties.

Requiring the bonding function to pass through a specific
training point drastically contracts the space of acceptable S(x),
as evident in Fig. 11(c). In detail, the bonding functions in Fig.
11(b) are all defined by eqn (7) on a 12x12 grid in the (b4, by)
parameter space. The grid is indicated by small black squares in
Fig. 11(a). It represents an expansion of the original 3x3 grid A-
I from Fig. 5, reproduced in Fig. 11(a) for reference (large grey
circles). Among the myriad of curves in Fig. 11(b), the lowest
and the topmost represent respective cases C and G, respectively.

Now we consider an arbitrary (g, fo) constraint. Rearrang-

ing eqn (7),
by =log_y[1— (—Bo)P] )]

This constrained relationship between b, and b, reduces the (b4,
b,) plane to a b, = b,(b,) curve. Together with physically mean-
ingful (x,, o) constraints, eqn (8) can be used to train the model
to describe specific systems (Sec. 4.3). But first we will use it to
define the dimer-trimer interface in the bonding space.

4.2. The dimer-trimer boundary

The dimer-trimer boundary is defined by an X;—r and XQ—L degene-
racy. Since the dimer bond energy is 1 d.u. by definition, the
degeneracy requires each bond in the trimer to be exactly 1/2 d.u.
On the other hand, the energy of a bond is given, per eqn (4), by
—2xB. From the normalised IMO coefficients ¢; = (1/2, 1/v/2,
1/2), the order of each bond in linear X3i is y = 1/(2v/2). 1t follows
that the dimer-trimer degeneracy is defined by 8 =—1/4/2 and the
dimer-trimer transition in the bonding space occurs when f =
—1/4/2 d.u. for y = 1/(2V/2).

With (xo, Bo) = (1/(2v2), —1/4/2) as the training point, eqn
(8) yields an analytic relationship between b; and b,, which de-
fines the dimer-trimer boundary in the bonding space. It is shown
by red solid curves in Figs. 10(a-c) and 11(a), marked ‘i’ in 11(a).
The b, = b,(b;) boundary curve can be calculated for the entire
range of by, but for b; = 1.2 it bifurcates into dimer-tetramer and
trimer-tetramer transitions, shown as dotted magenta curves in
each Fig. 10(a-c) and 11(a). The dimer-trimer interface then loses
significance, passing through a tetramer region where both
dimers and trimers are metastable structures. The continuation of
the dimer-trimer curve in the tetramer region is nonetheless
shown in Fig. 11(a) (red dashed curve with red open symbols).
For clarity, the tetramer regions are shaded in orange, the dimer
region is in light blue, while the trimer region is unshaded.

Each point on curve ‘i’ in Fig. 11(a) defines a unique function
B (x) passing through the above training point and satisfying the
dimer-trimer degeneracy. The training point itself is represented
by a red symbol in Fig. 11(c). The trained B(x) curves in the
same figure [only seven total, compared to 144 untrained curves
in (b)], represent the filled red (b,, b,) symbols on the dimer-
trimer boundary in (a). The red block arrows in Figs. 11(a) and
(c) indicate the direction of () variation along this boundary.
Moving to the right along curve ‘i’ in (a) causes the S() curves
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Fig. 11. An illustration of the bonding function training process. (a) A snapshot of the bonding space including original 3x3 reference points A-I from Fig. 5,
shown here by large grey circles. The dimer region of the bonding space is shaded in blue, tetramer—orange, the trimer region is unshaded. The corresponding
region boundaries are indicated similarly to Fig. 10. These details are overlaid with a finer 12x12 grid of the (b,, b,) parameter values, shown by small black
squares. (b) 144 (= 12x12) bonding functions defined by eqn (7) for the 12x12 grid shown in (a). (c) Seven (instead of 144) distinct B(y) functions defined on
a similar (b4, b,) grid but subject to the dimer/trimer degeneracy constraint, (x,, B,) = (1/(2ﬁ) ) —1/\/5), which is marked ‘i’. Each of the bonding functions
corresponds to one of the solid red symbols along the dimer-trimer boundary (curve ‘i') in (a). Training points ii-iv, with 8, = —0.750, —0.811, and —0.861 d.u.,
(X = He, Ar, gl) similarly correspond to respective curves in (a). See the text for further details.

in (c) to change in the downward direction to the left of the train-
ing point and in the upward direction to the right of (xg, Bo)-

The trained bonding curves from Fig. 11(a) are reproduced in
Fig. 12(a) next to a sample of odd-numbered (XZ) IMO solutions
in Fig. 12(b). There are 7 overlapping solutions shown, one for
each of the solid-red (by, b,) points along curve ‘i’ in Fig. 11(a).
They are indistinguishable from each other, each possessing a
pure-trimer core (Q3 = 1), with a VME = 1.000 d.u. (degenerate
with dimer-core structures).

4.3. Model training for specific systems

Many specific cluster families exhibit a propensity for trimer-ion
cores. For trimer-based structures, not all parts of the bonding
function are equally important to the model performance, since
only a small part of 8() in the vicinity of x, = 1/(2v2) ~ 0.354
plays a defining role in the final solutions.

This may seem like an invitation to replace S(x), x € [O,
0.5], with a single value, Sy = £(xo), but that would be a mistake.
A model limited to a single bond order is not able to access other
X¥ configurations, including the dimer- or tetramer-based struc-
tures. The trimer core then ceases being a prediction and be-
comes the only achievable outcome. To claim that a particular
configuration is preferable to others, the model must sample a
broad range of configuration space, which requires y to vary. It
is nonetheless possible to emphasise the region around y = y,
while treating other parts of f(x) in a less precise fashion.

This is done by training the model to reproduce the known
monomerization energies of X;L, VME(3), using a single (xo, So)
training point for each cluster type. The important role of the
trimer ions suggests that VME(3) is both a convenient and criti-
cal measure for calibrating and assessing the model performance.
The mathematical essence of the training process is a reduction
of the space of all bonding functions defined by eqn (7) to a
subspace that accurately describes the bonding in a specific X3
system. This objective is achieved using the (x,, Bo) training data
and eqn (7) in a manner similar to the analysis of the dimer-
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trimer boundary in Sec. 4.2.

Per eqn (4), for linear X;f, VME(Q3) = -2%2x, By, where xo =
1/(2v/2) = 0.354 is the trimer bond order from Sec. 4.2. This
yields o = =VME(3)/(4x,) for the trimer bond integral. The
known VME(3) values in Table 1 therefore allow us to determine
the (xo, Bo) training points for each of the specific systems
considered. They correspond to 8y =—0.750,-0.811, and —0.861
d.u. for X = He, Ar, and gl. In the same way, f§, = —1 d.u. for the
Hiickel reference and Sy = —1.10 d.u. for X = ba (vide infra).

The training points for X = He, Ar, and gl are indicated by
symbols ‘ii’, ‘iii’, and ‘iv’ in Fig. 11(c), under the training point
for the dimer-trimer boundary marked ‘i’. Sec. 4.2 discussed that
training point ‘i’ reduced the (b;, b,) bonding space to a one-
dimensional subspace ‘i’ shown by a red curve in Fig. 11(a).
Similarly, training points ‘ii’, ‘iii’, and ‘iv’ in Fig. 11(c) reduce
the permissible bonding space to the respectively marked blue
curves in Fig. 11(a). Similar to ‘i’ (Sec. 4.2), the rightmost (dot-
ted) part of curve ‘ii’ is excluded from consideration, because
trimer-based training should not be used in the tetramer region.

Training points ii-iv are reproduced in Figs. 12(c), (¢) and (g),
respectively, which also show the bonding functions defined by
each of the filled symbols on the respective curves in Fig. 11(a).
Like the analysis of curve ‘i’ bonding functions in Sec. 4.2, the
block arrows in Figs. 12(c), (e) and (d) indicate the direction of
B(x) variation along the respective curves in Fig. 11(a). The cor-
responding solutions (specifically, for XZ) are shown in Fig. 12
on the right, one solution for each trained bonding function.

All solutions for X = He, Ar, and gl in Fig. 12 are consistent
with the predictions of high-level ab initio and density-functional
theory.?0.55:36.66-68 Importantly, they have very similar proper-
ties. These similarities are present both among solutions for each
specific system and across the systems discussed. There are
certainly differences in the VMEs imposed by the training points.
The slight increase in VME across the solutions for the same sys-
tem (e.g., from 1.061 d.u. to 1.064 d.u. for X = He) is due to the
minor charge spillage off the trimer core. Accordingly, there are
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Right column: samples of IMO solutions obtained with the respective bonding
functions shown on the left.

slight variations in trimer-core purity (Q3) among solutions for
the same system. Like VME, timer purity is dependent on speci-
fic bonding functions. It decreases somewhat with increasing b,
as seen in Fig. 10(b) and (c). Naturally, off-the-trimer charge
spillage and VME variation are only possible in chains with n >
3. In an isolated trimer, Q3 would always be strictly 1 with a 0.25
|0.50]0.25 charge distribution, and VME(3) would be constant
for any bonding function satisfying a specific training point.

These small differences aside, the various solutions for all
systems considered correspond to, essentially, trimer-based clus-
ters, with Q3 ranging from 100% to 98.8% for X = He, 100% to
96.8% for X = Ar, and 100% to 96.0% for X = gl. To make more
definitive predictions about core purity, a more in-depth analysis
of the bonding properties in the small y region is required,
leading to additional training constraints.

4.4. Limitations and future directions

Two of the model limitations go beyond the approximate nature
of the described formalism. The first has to do with the ba,, clus-
ters, the second with charge distributions among core monomers.

The VME of the trimer anion of biacetyl exceeds that of the
dimer by 55.2%,° corresponding to a VME(3) = 1.552 d.u. (Table
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1). From the coupled-monomers perspective, this is an abnorm-
ally large value unlike the other examples discussed, because it
exceeds the corresponding property of the Hiickel reference,
VME@3) = V2 = 1.414 d.us®* As determined in Sec. 4.3, a
VME(3) of 1.552 d.u. requires the trimer bond integral to equal
—1.10 d.u., with the magnitude exceeding that of the equilibrium
bond integral in the dimer (—1 d.u. exactly). This contradicts one
of our assumptions requiring the () bonding function to be
monotonic between the $(0) =0 and £(0.5) = —1 limits (Fig. 4).

This result becomes less puzzling if instead of interpreting it
as VME(3) for X = ba being too large, we reframe it as VME(2)
being too small. The reduced bond strength in relaxed ba, can
be attributed to a steric obstruction of the methyl groups prevent-
ing the two ba moieties from being close enough to realise the
full bonding power of the shared electron. In the trimer, the IM
distance is larger, and the methyl steric effects are less signifi-
cant. This alone cannot explain the abnormal stability of bag: at
most, it would cause VME(3) for X = ba to approach the Hiickel
limit of 1.414 d.u., not 1.552 d.u. However, there are additional
factors that have not been considered by the present formulation
of the model. One of them, the variable Coulomb integrals (ap-
proximation 4.1 in Sec. 2.1), we plan to address in the future.

Another limitation is also related to variable Coulomb integ-
rals, among other factors. It concerns the charge distributions
among core monomers. High-level ab initio data show that the
charge distribution in He? is somewhat broader than 0.25/0.50)|
0.25, while the opposite is true for Ard 5668 OQur present model
treats both X = He and X = Ar exactly the same, aside from the
different energetics which do not affect the charge distributions.
Therefore, in its present form, the model is incapable of predict-
ing the different behaviours of the He- and Ar-based clusters
regarding the core charges.

We will conclude by pointing out two factors that affect the
partial charges within the cluster core (and its stability): the
remote interactions between non-adjacent monomers and the
variable Coulomb integrals. Our future work will incorporate
both into the coupled-monomers formalism to demonstrate that
it is the Coulomb integrals, not the remote forces, that control the
divergent charge distributions in various cluster families.

Furthermore, in the present work we have made no signifi-
cant distinction between anion and cations, or between electrons
and holes. This is an important omission because electrons do
behave differently from holes with respect to some aspects of
chemical bonding. It will be shown that the very qualitative
character of remote IM interactions depends not only on the type
of the bonding agent (electrons or holes) but also the symmetry
of the MMOs defining the IMO system. In some qualitative
respects, the gl and ba;, cluster anions are more like He;; cluster
cations than He; are like Ar;..

Finally, in this work we considered the behaviour of only one
electron (hole). Since radical species tend to react further, the
one-electron picture will break down in some applications. It is
therefore a strength of the coupled-monomers model (like the
original Hiickel theory) that it is not inherently limited to one-
particle systems. Here, we started from the extreme of a single
bonding agent responsible for the entire covalent network, but
the fundamental model can be developed further.

PCCP, 2023, 00, 1-3 | 13

Please do not adjust margins




5. Summary

We have described a density-matrix adaptation of the Hiickel
MO theory to weak covalent networks and used the resulting
model to examine the interactions of electrons (holes) with
ensembles of identical closed-shell monomers.

Like the Hiickel method, the coupled-monomers model pro-
vides chemically accurate qualitative and semi-quantitative ans-
wers that emphasise physical insight over the precision and com-
plexity of higher-level ab initio theory. The main distinguishing
feature of the model is the use of variable bond and (in future
work) Coulomb integrals defined by the density matrix. The
performance of the model can be significantly improved by
training it to experimental or ab initio data.

Quantitative details notwithstanding, the model makes a bold
prediction: within a wide parameter range, X+ clusters tend to
have core ions comprised of two or three monomers. The validity
of this prediction is confirmed by many known cluster families.
The preponderance of dimer and trimer ions is due to the more
effective conversion of the bonding power of one electron (hole)
into bond energy. This occurs via the formation of one or two
equivalent bonds with large bond orders and, therefore, large-
magnitude bond integrals.

Various alternative competing mechanisms that favour either
charge sharing or charge localisation help set this prediction in
context. While covalent bonding is the main driving force for
coherent charge sharing, several well-known factors may instead
favour more localised charge distributions and, therefore, smal-
ler cluster cores. They include: (i) the non-covalent interactions
favouring smaller ions; (ii) the entropic contribution to free
energy favouring less-ordered solvated structures; and (iii) the
loss of electronic coherence due to vibronic and other couplings.

The coupled-monomers model is formulated here in a strictly
coherent and covalent regime, without any non-covalent forces
or thermal excitations. And yet, even in the absence of factors
(1)-(iii), it still predicts rather localised charge distributions. It
follows that although charge localisation may benefit from these
complex mechanisms, it does not have to rely on any of them. It
is an intrinsic feature of a coherent, purely covalent weakly
bonded network, arising from geometry relaxation and correla-
tion between bond orders and the relaxed bond integrals.
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