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covalent networks 
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The coupled‐monomers model is built as an adaptation of the Hückel MO theory based on a self‐consistent density‐matrix 

formalism. The distinguishing feature of the model is its reliance on variable bond and Coulomb integrals that depend on 

the elements of the density matrix: the bond orders and partial charges, respectively. Here the model is used to describe 

electron reactivity in weak covalent networks X௡
േ, where X is a closed‐shell monomer. Viewing the electron as the simplest 

chemical reagent,  the model provides  insight  into charge sharing and  localisation  in chains of such  identical monomers. 

Data‐driven modelling improves the results by training the model to experimental or ab initio data. Among key outcomes is 

the prediction that the charge in X௡
േ clusters tends to localise on a few (2‐3) monomers. This is confirmed by the properties 

of several known cluster families, including He௡
ା, Ar௡

ା, (glyoxal)௡
ି, and (biacetyl)௡

ି. Since this prediction is obtained in a purely 

coherent covalent regime without any thermal excitation, it implies that charge localisation does not require non‐covalent 

perturbations (such as solvation), decoherence, or free‐energy effects. Instead, charge localisation is an intrinsic feature of 

weak covalent networks arising  from  their geometry  relaxation and  is ultimately attributed  to  the correlation between 

covalent bond orders and equilibrium bond integrals. 

 

1  Introduction 

The electron is the simplest chemical reagent. Chemistry can be 
initiated in a variety of ways, but ultimately it is electron move-
ments that make or break chemical bonds. Electron reactivity is, 
therefore, central to understanding the molecular universe.  

Here we consider the interactions of electrons with ensembles 
of closed-shell atoms or molecules. These interactions may rely 
on a variety of covalent or non-covalent1-7 forces, but in this 
work we examine charge capture by valence orbitals only. The 
injection of a single electron or electron hole leads to radicalisa-
tion of monomers that were non-reactive in the neutral state. The 
resulting reactivity leads to an important issue in both chemistry 
and physics: that of coherent charge sharing versus localisation.  

Charge sharing is responsible for covalent bonding. We set 
out to investigate how many identical closed-shell monomers can 
bind a single bonding agent (an electron or hole) in their valence 
orbitals in a perturbation- and excitation-free regime. We are 
especially interested in the physical factors that control if the 
charge is localised on a few monomers or shared by many moie-
ties,8-10 perhaps resembling (in size only) the diffuse non-valence 
states of solvated electrons.11-19 

We approach charge sharing using an extension of the classic 
Hückel molecular orbital (MO) theory20-25 combined with the 
correlation between bond energy and bond order26 that has long 

been ubiquitous in the literature.27-39 True to its predecessors’ 
spirit, our straightforward model emphasises physical insight 
over the precision and complexity of higher-level ab initio the-
ory.40,41 The presented model is intended to be highly trainable, 
to borrow a term from machine learning,42 meaning its perfor-
mance can be significantly improved using either experimental 
or ab initio data. The objective of the training process is not just 
to match known data but to provide a translation of results into 
their physical meaning in terms of common chemical concepts. 
The aspirational value of this approach is similar to that of the 
original Hückel theory, which remains relevant today, in the age 
of computers and high-accuracy ab initio calculations. 

We first turn to the classic dimer anion of CO2,43 the core of 
certain ሺCO2ሻ௡ି clusters.44-48 In this dimer, the excess electron 
resides in an inter-monomer orbital (IMO), which is a bonding 
superposition of the lowest vacant orbitals of two CO2 moieties, 
each distorted by the partial negative charge into a bent geome-
try.43 An unpaired electron populating the IMO creates an inter-
monomer (IM) bond with a nominal order of 1/2 joining the two 
CO2 moieties in a weakly bonded -1/2(O2C)--(CO2)-1/2 structure. 

Similar anionic dimers can form from other closed-shell spe-
cies. For example, the recent photoelectron spectra of the biace-
tyl (ba) cluster anions suggested the existence of covalent bond-
ing between the two ba moieties in the baଶ

ି dimer anions,49 simi-
lar to the bonding motif in ሺCOଶሻଶ

ି. This conclusion was sup-
ported by theory calculations indicating that the IM bonding in 
baଶ

ି is the result of an electron entering an IMO comprised of the 
low-lying  LUMOs of the monomers. A similar structure was 
also predicted for the dimer anion of glyoxal (gl).9 
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Dimer examples also exist for positive ions, starting with the 
rare-gas dimer cations Heଶ

ା, Neଶ
ା, and Arଶ

ା, and others.50-56 As 
predicted by the basic MO theory, the bonding in these species 
is due to an electron removed from the respective anti-bonding 
IMOs defined as superpositions of s (for He) or p (for others) 
monomer orbitals (MMO). An anti-bonding electron orbital be-
comes bonding if populated by holes, and vice versa. Therefore, 
the bond formation in these dimers can be described as removal 
of an order-of-1/2 anti-bond, creating an equivalent 1/2-bond. 

Also of note are the dimer cations of benzene,57 uracil,58 
adenine, and thymine59 studied by Krylov, Bradforth, and co-
authors. In these systems, an IM bond is similarly created by re-
moving an electron from an anti-bonding cluster orbital de-
scribed as a superposition of benzene HOMOs (MMOs, using 
the above abbreviation). The authors fittingly referred to these 
cluster orbitals as dimer molecular orbitals,57 and it is only be-
cause our discussion extends beyond dimers that we use the more 
general term defined above, the inter-monomer orbital (IMO). 

All the examples so far have basic bonding features in com-
mon. Each possesses an order-of-1/2 covalent bond between the 
monomers due to a single bonding agent (an electron for anions 
or a hole for cations) populating a cluster IMO described as a 
superposition of appropriate MMOs. There is, however, an im-
portant distinction between the LUMO of CO2 and all other 
MMOs mentioned. CO2 stands out because the bending upon ad-
dition of negative charge6,60-64 gives its MMO a predominantly 
monodirectional C sp2 character. It works well for a head-to-head 
overlap in the ሺCOଶሻଶ

ି structure43 but is not conducive to effec-
tive electron sharing among more than two monomers.8 

In contrast, the bidirectional (, p) or spherical (s) nature of 
all other MMO examples is amendable to stacking into longer 
chain structures, and trimer ions do exist among the already men-
tioned He௡

ା, Ne௡
ା, Ar௡

ା, gl௡
ି, and ba௡

ି cluster families.9,50,51,55,56,65-

69 All have been subjects of high-level studies, and in all cases 
the most stable trimer structures correspond to covalently bonded 
Xଷ
േ chains, where X is a closed-shell neutral monomer. For 

example, the Heଷ
ା and Arଷ

ା IMOs (specifically, the Hartree-Fock 
-spin LUMOs computed in QChem70 for CCSD/aug-cc-pVTZ 
optimised structures) are plotted in Fig. 1(a) and (b), respec-
tively. Comparing them to their constituent 1s or 3p MMOs 
(same figure, left), makes it clear that these trimer orbitals can 
indeed be described in terms of stacked MMOs. Similar side 
views of the gl vs. glଷ

ି and ba vs. baଷ
ି structures along with the 

respective MMOs and IMOs (the Kohn-Sham -HOMOs)8,9,49 
are shown in Fig. 1(c) and (d). Interestingly, no evidence of cova-
lent trimer cations has been reported for benzene or other similar 
organics.57-59 Although  stacked trimer structures can be easily 
envisaged for these monomers, their stability is another matter. 

All trimer structures in Fig. 1 have similar overall properties. 
The monomers in each case are arranged in a linear (not triangu-
lar) (X-X-X) geometry. For Heଷ

ା, the linear structure is pre-
dicted by a simple Hückel calculation, while for the others it is 
dictated by the MMO shapes. In the Lewis structures of these 
trimers, each IM bond has a nominal order of 1/4 (one bonding 
electron or hole shared between two bonds). That said, the nomi-
nal bond orders should not be confused with the Hückel (or 
Coulson) mobile bond orders,25,71 and it is the latter that this 

work relies upon.  
The question arises: is it possible for an electron or hole to be 

shared by the valence orbitals of a larger number of monomers? 
It seems that MMO stackability should enable the formation of 
electronically coherent X௡

േ chains held together by one delocal-
ised bonding agent. Coherence implies a fixed phase relationship 
between the MMOs, which is a prerequisite for the IMO defini-
tion and covalent bonding. Without outside perturbations (such 
as solvation, vibronic couplings, or thermal effects), long X௡

േ 
chains would present fantastic case studies of electronic coher-
ence and quantum wires.72 Alas, while all MMO in Fig. 1 are in 
principle infinitely stackable along the interaction axis, cova-
lently bonded X௡

േ ions larger than trimers, with few exceptions,51 
are not observed in X = He, Ar, gl, ba, and others similar cluster 
families. He௡

ା and Ar௡
ା with 𝑛 > 3 predominantly contain trimer-

 

Fig. 1. Left: the monomer orbitals (MMOs) of X = (a) He, (b) Ar, (c) glyoxal (gl),

and (d) biacetyl (ba). Right: the inter‐monomer orbitals (IMOs) of the respec‐
tive Xଷ

േ trimer ions. The orbitals shown in the bottom half of each panel are

from ab  initio or density‐functional calculations referenced  in the text. The

top  sketches  are  schematic  depictions  of  these  orbitals,  emphasising  the
essential s, p, or  (p‐like) characters and parity along the interaction axis.
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ion cores. For X = gl and ba, stable tetramer chain structures can 
be created by computational methods, but only under a symmetry 
constraint.9 If unconstrained, the charge in Xସ

േ tends to localise 
on a trimer core, with an additional mostly neutral monomer sol-
vating the core ion. In sum, the dominant structures of X௡

േ, 𝑛 ≥ 3 
clusters, where X is a closed-shell monomer with a stackable 
MMO, are described as X௞

േX௡ି௞, where 𝑘  3.
Since the empirical trimer limit appears to be applicable to 

both negative and positive ions and to monomers with varying 
properties, its existence suggests a commonality of electron/hole 
reactivity that transcends the intrinsic chemistry of the mono-
mers. It must reflect the general features of inter-monomer net-
working. Hence one of the questions we aim to answer: what is 
special about trimers?  

We use this question as a test case for the coupled-monomers 
model described in this work. The results show that under a wide 
range of realistic assumptions, X௡

േ chains are unstable beyond 
the trimer. And for a rather simple reason, which has nothing to 
do with decoherence, solvation, or entropic contributions to free 
energy. To be sure, the competition between covalent bonding 
and solvation often favours certain ion core structures and is 
responsible for core-switching in several known cluster famili-
es.44,45,73-90 But it does not control the above trimer limit. To 
prove this, we will demonstrate this limit in a perfectly coherent, 
excitation-less regime excluding any non-covalent forces. Its 
true origin, rooted in the energetics of weak covalent interac-
tions, will become apparent as an analysis outcome. 

To examine the limits of charge sharing in weak covalent in-
teractions, let us first consider what we call the Hückel reference. 

Its definition is given in Sec. 2, but briefly it refers to a chain of 
identical closed-shell monomers X interacting with a single 
bonding agent under the approximations of the original Hückel 
MO theory.  

The key feature of the Hückel reference is the unobstructed 
charge delocalization over the entire X௡

േ chain. This is illustrated 
in Fig. 2 on the example of an 𝑛 = 9 chain defined in (a). The 
filled blue symbols in (b) represent the amplitudes |𝑐௜| of the 
monomers’ contributions to the X௡

േ ground state obtained by dia-
gonalising the Hückel Hamiltonian matrix with constant bond 
integrals 𝐻௜,௜ାଵ = 𝛽 for all nearest neighbours and zeros for 

others. The discrete Hückel solution overlaps with the continu-
ous wave function of the particle-in-a-box ground state, shown 
by the dashed curve in the same figure. 

The above IMO amplitudes result in absolute Hückel bond 
orders25,71 𝜒௜,௜േଵ = |𝑐௜

∗𝑐௜േଵ| which decrease toward the ends of 

the chain. They are indicated at the top of Fig. 2(a) in blue font. 
In a real molecular chain, the variable bond orders will result in 
variable bond lengths: the weaker the bond, the longer it is. The 
lengthening of the bonds toward the ends of the chain is not con-
sidered in the Hückel model, but in the real world it will cause 
decreasing magnitudes of the corresponding bond integrals.  

For a simple illustration, consider now a similar Xଽ
േ chain but 

with the bond integrals progressively scaled by 1/2 for each bond 
toward either end of the chain. That is, instead of all 𝐻௜,௜േଵ = 𝛽, 
we will now assume scaled 𝐻௜,௜േଵ values of 𝛽/8, 𝛽/4, 𝛽/2, 𝛽, 𝛽, 
𝛽/2, 𝛽/4, 𝛽/8, as shown below the model chain in Fig. 2(a) using 
red font. The IMO amplitudes corresponding to the lowest eigen-
value of the resulting H matrix are plotted using red open circles 
in Fig. 2(b). This solution represents a significant narrowing of 
the charge distribution compared to the Hückel reference. Speci-
fically, 94% of the charge is now localised on the three middle 
monomers, compared to Hückel reference’s 56%. 

The scaling of the bond integrals in the above example was 
chosen arbitrarily. In the rest of this work, we hypothesise a 
quantitative relationship between bond integrals and the corre-
sponding bond orders. We then calibrate this hypothesis using 
data for real chemical systems. It should be noted that our main 
qualitative conclusion is already apparent in Fig. 2, where charge 
localisation to a small subset of monomers is traced to the clus-
ter’s geometric response to bond-order variation.  

Table 1  summarises the data for four X௡
േ families that we 

will use to guide the model training: X = He,50,55,66,67 Ar,50,56,68 
gl,9 ba9. Included are the vertical monomerization energies 
(VME) of the dimer and trimer ions. Under the Hückel approxi-
mations, the trimer VME must be √2 = 1.41 times larger than the 
corresponding dimer bond energy.8 Yet in most cases, X = ba 
notwithstanding (vide infra), the dimer-to-trimer VME increase 
is smaller than the Hückel prediction. Consistent with Fig. 2, this 

 

Fig. 2.  (a) Two model X௡
േ, 𝑛 = 9,  chains. Shown at  the  top  in blue are  the

constant bond  integrals 𝐻௜,௜േଵ = 𝛽 and  the resulting ground‐state absolute
bond orders  (𝜒௜,௜േଵ) of  the Hückel  reference. Below,  in  red, are  the  scaled

bond  integrals and bond orders of the second, non‐Hückel model.  (b) Blue

and red symbols: the lowest‐energy IMO amplitudes obtained by diagonalis‐
ing the Hückel and scaled (non‐Hückel) Hamiltonian matrices for the respec‐

tive chains defined  in (a). Dashed curve: the continuous ground‐state wave
function of the particle in a box representing the chain. 

Table 1. Vertical monomerization energies of Xଶ
േ and Xଷ

േ clusters, VME(2) and 

VME(3), respectively, X = He and Ar for cations, X = glyoxal (gl) and biacetyl

(ba) for anions, compared to the Hückel reference. 

X =  He  Ar  gl  Hückel  ba 

VME(2) / eV 
VME(2) / d.u. 

2.448 
1 

1.366 
1 

1.088 
1 

 
1 

1.020 
1 

VME(3) / eV 
VME(3) / d.u. 

2.598 
1.061 

1.567 
1.147 

1.324 
1.217 

 
1.414 

1.583 
1.552 
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is because the sharing of a single bonding agent between two 
trimer bonds results in a weakening and thus lengthening of these 
bonds, which in turn dampens the bond integrals.  

As we seek a description of IM couplings in X௡
േ chains, the 

desired theory must include the geometry and (consequently) 
bond-integral relaxation in response to variable bond orders. 
This requirement makes the original Hückel MO theory not suit-
able for the task but does not imply that a rigorous application of 
the full MO theory is the only answer. The IM bonds resulting 
from a single bonding agent all have bond orders of 1/2, leading 
to relatively large equilibrium bond lengths. In this regime, sig-
nificant simplifications of the MO theory are possible, giving rise 
to the model formalism described in the next section. 

2   The coupled‐monomers model 

The presented model is a version of the general MO theory adap-
ted to the requirements of weakly-bonded networks. Although 
many of the assumptions are the same as in the Hückel theory, 
our model features additional adaptivity with regard to the bond 
and Coulomb integrals. The flexible treatment of these parame-
ters allows the model to be trained to describe the properties of 
specific systems. In this section, we spell out both the parallels 
and distinctions between the coupled-monomers model and the 
original Hückel MO theory. 

2.1 Model assumptions and formalism 

Approximation 1: Separation of IM interactions from intra-
monomer bonding. We adopt a hierarchical approach that treats 
the IM interactions as perturbations of the monomers. Under this 
approximation, the intermonomer orbitals are described as linear 
combinations of unmodified monomer orbitals, one MMO per 
monomer. The MMOs used are the lowest-energy orbitals with 
a vacancy for an electron or hole, as appropriate.8,9  

Formally, in a system of 𝑛 identical closed-shell monomers 
X, let 𝜓௜ be the normalised MMO of Xሺ௜ሻ, 𝑖 = 1, …, 𝑛. The set 
of n MMOs {𝜓௜} serves as a minimal basis for describing the IM 
interactions in X௡ upon the addition of an electron or hole. 

Approximation 2: The model Hamiltonian. An electron/hole 
added to the IMO system spanned by the {𝜓௜} basis is described 
by an effective Hamiltonian Ĥ, which incorporates the effects of 
all other electrons and the nuclei in an averaged way.25 Like in 
the Hückel method, we will avoid expressing the Hamiltonian in 
an explicit operator form and are not concerned with its details. 

The IMOs 𝜙௞ ൌ ∑ 𝑐௜
ሺ௞ሻ𝜓௜௜  and their energies 𝐸௞, 𝑘 ൌ 1, … ,𝑛 are 

obtained from the secular equation for the H matrix representing 
Ĥ in the {𝜓௜} basis. As in the LCAO-MO theory,25 the solutions 
generally depend on the H matrix elements, 𝐻௜,௝ ൌ ൻ𝜓௜ห𝐻෡ห𝜓௝ൿ, 
and the overlap integrals 𝑆௜,௝ ൌ ൻ𝜓௜ห𝜓௝ൿ.  

Approximation 3: Basis set orthogonality. Like the Hückel 
method,20-25 we will treat the MMO basis as orthonormal by 
setting 𝑆௜,௝ ൌ 𝛿௜,௝ (Kronecker’s delta).  

The relative weakness of the covalent couplings considered 
here results in large equilibrium bond lengths, making this as-
sumption more robust than in a typical Hückel case. The secular 
equation then simplifies to an eigenvalue problem for H (only). 
It yields 𝑛 eigenvalues 𝐸௞ and the corresponding eigenvectors 

|𝜙௞ that contain the 𝜙௞ ൌ ∑ 𝑐௜
ሺ௞ሻ𝜓௜௜  coefficients (𝑘 = 1, …, 𝑛). 

Focusing on the most stable state, we select the lowest-energy 
IMO, 𝜙 ൌ 𝜙ଵ, and hereafter drop index 𝑘 = 1 for brevity. The 
energy of 𝜙 ൌ ∑ 𝑐௜𝜓௜௜  is its eigenvalue E. Alternatively, it can 
be calculated from the density matrix 𝛒 ൌ |𝜙⟩⟨𝜙| as follows: 

 𝐸 ൌ ൻ𝜙ห𝐻෡ห𝜙ൿ ൌ෍𝜌𝑖 ,𝑗 𝐻𝑖 ,𝑗
𝑖 ,𝑗

   (1) 

where 𝜌௜,௝ ൌ 𝑐௜
∗𝑐௝ are the density matrix elements. Each diagonal 

element 𝜌௜,௜ is the electron (hole) density on Xሺ௜ሻ, i.e., the abso-
lute partial charge of the monomer: 𝜌௜,௜ = 𝑞௜. The off-diagonal 
elements 𝜌௜,௝, 𝑖 ് 𝑗 are the Hückel (Coulson) bond orders.25 

Separating the individual monomer contributions from pair-
wise interactions and counting the IM bonds rather than distinct 
𝑖, 𝑗 and 𝑗, 𝑖 exchange pairs, it is convenient to rewrite eqn (1) as: 

 𝐸 ൌ෍𝜌𝑖 ,𝑖𝐻𝑖 ,𝑖
𝑖

൅෍2𝜌𝑖,𝑗 𝐻𝑖 ,𝑗
𝑖൏𝑗

   (2) 

The first term in eqn (2) is a sum of monomer energies, excluding 
the IM interactions. Each Coulomb integral 𝐻௜,௜ represents the 

energy of the electron (hole) if it were fully localised on Xሺ௜ሻ. For 
a given solution, this quantity is weighted 𝐻௜,௜ by the monomer’s 
actual population: 𝐸௜ ൌ 𝜌௜,௜𝐻௜,௜. The second term in eqn (2) is a 
sum of pairwise interactions, with the bond integrals 𝐻௜,௝, 𝑖 ് 𝑗 

serving as coupling constants. Each bond’s energy (including the 
𝑖, 𝑗 and 𝑗, 𝑖 exchange terms) is given by 𝐸௜௝ = 𝑐௜

∗𝑐௝𝐻௜,௝ + 𝑐௝
∗𝑐௜𝐻௝,௜ 

= 2𝜌௜,௝𝐻௜,௝, 𝑖 < 𝑗 (for real 𝐻௜,௝). Therefore, each 𝐻௜,௝, 𝑖 < 𝑗 coupl-

ing constant is activated by the addition of an electron (hole), 
with a twice-the-bond-order (2𝜌௜,௝) weight. 

Approximation 4.0: Constant Coulomb integrals. Following 
Hückel,20-25 here we treat all Coulomb integrals 𝐻௜,௜ as constants, 
which are the same for all identical monomers: 𝐻௜,௜ ൌ 𝛼. A con-

stant 𝛼 does not affect the bond energies (see below) and can be 
set arbitrarily to zero. 

The effect of IM interactions in X௡
േ is conveniently expressed 

in terms of vertical monomerization energy (VME), which is de-
fined as the energy change in the X௡

േ → Xേ + (𝑛  1)X process, 
excluding any internal monomer relaxation (hence ‘vertical’).8,9 
Bonding and anti-bonding interactions contribute to VME with 
positive and negative signs, respectively, and it is positive overall 
for a bound system. 

The VME of X௡
േ is obtained by subtracting the IMO energy 

from that of the charge localised on an isolated monomer, i.e., 
the Coulomb integral:  

 VME = 𝛼 െ 𝐸 (3) 

where E is the IMO eigenvalue, alternatively given by eqn (2). 
Under approximation 4.0, the first sum in eqn (2) simplifies to 
𝛼∑ 𝜌௜,௜௜ ൌ 𝛼, since ∑ 𝜌௜,௜௜  = ∑ 𝑞௜௜  = 1. Substituting the simplified 

eqn (2) into eqn (3), we get:8 

 VME ൌ െ෍ 2𝜌𝑖 ,𝑗𝐻𝑖 ,𝑗
𝑖൏𝑗

   (4) 

It follows that covalent stabilization energy is independent of 𝛼. 
The Hückel-like assumption of 𝛼 = const is oversimplistic in 

many chemical scenarios, and in a follow-up paper we will 
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replace the 𝛼 constant with a variable 𝛼 function, 𝛼ሺ𝑞ሻ, where 𝑞 
is the absolute charge of the monomer, 𝑞௜ ൌ 𝜌௜,௜. That is, 𝐻௜,௜ = 

𝛼ሺ𝑞௜ሻ. We will refer to the assumption of an 𝛼-function instead 
of an 𝛼-constant as approximation 4.1. One of its immediate con-
sequences is that it invalidates eqn (4). 

The Hückel reference. The Hückel model for any X௡
േ struc-

ture is obtained by setting all Coulomb integrals to a constant 𝛼 
and all bond integrals to a constant 𝛽 for connected monomers 
and to zero for all remote pairs.25 In this work, we refer to any 
X௡
േ structure described in these terms as the Hückel reference. 

A discussion of the Hückel reference for anionic arrays in one 
to three dimensions was presented elsewhere.8 Importantly, the 
Hückel structures exhibit a particle-in-a-box-type charge deloc-
alisation.8,9,25 Stabilisation due to one electron (hole) entering the 
lowest-energy IMO is given by VME(2) ൌ |𝛽| for the dimer and 
VME(3) = √2|𝛽| for the trimer. For n > 3, VME(𝑛) continues to 
increase but saturates at VME(𝑛) → 2|𝛽| for 𝑛 → ∞.8 This limit 
is also due to the particle-in-a-box behaviour. As the chain (box) 
length increases, the ground-state eigenvalue E decreases but 
remains bounded from below by the bottom of the box. Per eqn 
(3), this restriction puts an upper bound on VME(𝑛). 

The assumption of constant bond integrals works well in the 
Hückel theory’s original domain where  electrons are added to 
a framework of  bonds in conjugated hydrocarbons. Although 
the  bonds are not part of Hückel’s original formalism, they dic-
tate a robust structure within which the  bond integrals are de-
fined. The constant 𝛽 assumption is also acceptable for systems 
with other types of equivalent bonds (e.g., the triangular structure 
of Hଷ

ା). However, it becomes problematic if the entirety of the 
bonding being considered is due to the added electron (hole) and 
the bonds in questions are fundamentally not equivalent.8,9 

To this point, the IM bonds in clusters like He௡
ା and ba௡

ି are 
not added to any pre-existing IM bonding framework (excepting 
the weak van der Waals forces); they alone define the IM bond-
ing structures. In this scenario, the bond lengths and hence the 
bond integrals vary significantly from one bond to another, and 
any model keeping them constant will miss essential chemistry. 
We are, therefore, compelled to treat 𝐻௜,௝, 𝑖 ് 𝑗 as explicit func-

tions of IM geometry. 
Approximation 5: The bonding function. The bond integral 

𝐻௜,௝ = ൻ𝜓௜ห𝐻෡ห𝜓௝ൿ, 𝑖 ് 𝑗 explicitly depends on the distance bet-
ween the monomers, 𝑅௜,௝. Focusing on the nearest-neighbour in-

teractions only, we express the bond integrals 𝐻௜,௜േଵ in X௡
േ chains 

using an explicit function of bond length, 

 𝐻௜,௜േଵ ൌ 𝐻ሺ𝑅௜,௜േଵሻ (5) 

All remote integrals 𝐻௜,௝, |𝑖 െ 𝑗| ൐ 1, are set to zero like in the 

original Hückel method. 
Equation (5) applies to any bond length, but we are interested 

in relaxed ground-state structures. Labelling the equilibrium 
𝑅௜,௜േଵ as 𝑟௜,௜േଵ and the corresponding matrix elements 𝐻௜,௜േଵ as 
ℎ௜,௜േଵ, the bond integrals in a relaxed structure are defined, per 
eqn (5), as ℎ௜,௜േଵ = 𝐻ሺ𝑟௜,௜േଵሻ.  

The relaxed bond lengths, in turn, depend on the bond orders. 
Hence, we postulate 𝑟௜,௜േଵ ൌ 𝑟ሺ𝜒௜,௜േଵሻ, where 𝜒௜,௜േଵ is the order 

of the bond between adjacent monomers 𝑖 and 𝑖 ± 1 and 𝑟ሺ𝜒ሻ is 
a function. To make this function independent of the basis set 

parity, its argument 𝜒 = 𝜒௜,௜േଵ is defined as the absolute, not 

Hückel, bond order. “Absolute” as used here does not mean that 
𝜒 is always positive, but that it is positive for bonding interac-
tions and negative for anti-bonding, independent of the basis set. 
Depending on the basis MMOs’ relative phases and the nature of 
the bonding particles (electrons or holes), 𝜒௜,௜േଵ may differ in 
sign from the Hückel bond orders 𝜌௜,௜േଵ = 𝑐௜

∗𝑐௜േଵ  (more on this 
in a future paper). Specifically, for bonding interactions, 𝜒௜,௜േଵ = 
|𝜌௜,௜േଵ| > 0 and 𝑟ሺ𝜒௜,௜േଵሻ is finite, with 𝑟ሺ𝜒ሻ   for 𝜒  0. For 
antibonding, 𝜒௜,௜േଵ = െ|𝜌௜,௜േଵ| < 0 and 𝑟ሺ𝜒ሻ is infinite for 𝜒  0.   

It follows that the equilibrium values of bond integrals vary 
with absolute bond orders because ℎ௜,௜േଵ = 𝐻ሺ𝑟௜,௜േଵሻ = 
𝐻ሾ𝑟ሺ𝜒௜,௜േଵሻሿ, or, equivalently,  

 ℎ௜,௜േଵ ൌ 𝛽ሺ𝜒௜,௜േଵሻ (6) 

where 𝛽 is no longer a Hückel constant but a function, which we 
will call the bonding function. Implicit in its definition is the 
assumption that the equilibrium geometry is defined by pairwise 
nearest-neighbour interactions only. 

Following the convention of the original Hückel method, we 
will assume that the {𝜓௜} MMO basis set is defined in such a 
way that all nearest-neighbour bond integrals ℎ௜,௜േଵ are negative, 

corresponding to a bonding overlap of each pair of adjacent basis 
functions. In such a basis, per eqn (6), 𝛽ሺ𝜒ሻ is a negative-valued 
function like Hückel’s original 𝛽 constant. 

2.2. Self‐consistent solutions 

Under the approximations in Sec. 2.1, the Hamiltonian matrix 
elements ℎ௜,௝ for a relaxed X௡

േ chain can be determined from the 
density matrix elements 𝜌௜,௝. For that, we need the bonding func-

tion 𝛽ሺ𝜒ሻ and the Coulomb-integral constant 𝛼 (or, more gener-
ally, the 𝛼-function). Diagonalizing matrix h yields the IMOs 
and their eigenvalues. However, the dependence of ℎ௜,௝ on 𝜌௜,௝ ൌ
𝑐௜
∗𝑐௝ sets up a circular problem: since 𝑐௜ are the eigenvector coef-

ficients, the problem’s statement (ℎ௜,௝) depends on its own solu-

tion ({𝑐௜}). This difficulty is resolved by an iterative search for a 
self-consistent solution using the algorithm shown in Fig. 3.  

A calculation is initiated with an arbitrary guess of the initial 
state in the |𝜙⟩ vector space, defined by a set of the initial IMO 
coefficients, {𝑐௜}. Each iteration includes the following steps: 

(1) From the current {𝑐௜}, compute the density matrix ele-
ments, 𝜌௜,௝ = 𝑐௜

∗𝑐௝. The diagonal elements 𝜌௜,௜ are the MMO (𝜓௜ሻ 

populations, while all others are the 𝑖, 𝑗 bond orders. 
(2) (a) Set all Coulomb integrals to the same constant (e.g., 

zero), per approximation 4.0. Alternatively, variable Coulomb 

 

Fig. 3. Search for self‐consistent solutions. Details in the text. 
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integrals can be calculated as ℎ௜,௜ ൌ 𝛼ሺ𝜌௜,௜ሻ (approximation 4.1). 

(b) Evaluate the nearest-neighbour bond integrals from the bond 
orders using eqn (6) with an assumed or otherwise known bond-
ing function (approximation 5). In the X௡

േ ground state, all 
nearest-neighbour interactions are bonding, so the absolute bond 
orders are obtained from the density matrix as 𝜒௜,௜േଵ = |𝜌௜,௜േଵ|. 
(c) Set all remote integrals 𝐻௜,௝, |𝑖 െ 𝑗| ൐ 1, to zero. 

(3) Find the eigenvalues and eigenvectors of matrix h from 
the previous step.  

(4) Calculate VME from the lowest h eigenvalue per eqn (3). 
If 𝛼 = const, eqn (4) gives the same result. Check for conver-
gence and proceed to the next iteration (Step 1) or exit the loop.  

The convergence check included two criteria, both of which 
had to be satisfied to complete the calculation. First, the change 
in the energy eigenvalue relative to the previous iteration must 
be <10-6 dimer units (Sec.2.3). Second, the norm of the corre-
sponding change of the eigenvector must be <10-7. Depending on 
the initial guess, most calculations involved <100 iterations. 
Some were <10, but a few required >1000 iterations to converge. 
The computing times are generally minimal. The longest calcu-
lation attempted involved 104 monomers (108 matrix elements), 
requiring 42 iterations and less than 2 min of wall time to 
converge on a modest 2.5 GHz processor with 32 GB of RAM. 

2.3. The dimer units 

In an X௡
േ system bonded by one electron (hole), the equilibrium 

bond integrals ℎ௜,௜േଵ and hence 𝛽ሺ𝜒ሻ have the largest magnitude 

for 𝜒 ൌ 0.5, which is the maximum absolute bond order attribu-
table to one electron or hole. This limit is achieved when the 
electron (hole) is localized on a single bond, i.e., in an X2

േ dimer.  
Therefore, we will refer to 𝜒 ൌ 0.5 as the dimer limit and 

define the corresponding bond energy, VME(2) = |𝛽(0.5)|, as the 
dimer unit (d.u.) of energy. It follows that 𝛽(0.5) = 1 d.u. by 
definition. For example, given that the monomerization energy 
of He2

+ is VME(2) = 2.448 eV, while that of He3
+ is VME(3) = 

2.598 eV (Table 1),50,55,66,67 it follows that the dimer unit of 
energy for the He௡

ା cluster family is 1 d.u. = 2.448 eV and the 
total stabilisation energy of the trimer is 1.061 d.u.

So defined, the dimer units are explicitly system (X) depend-
ent, and that is the point. This definition is meant to take the focus 
off the differences between monomers and instead facilitate the 
comparison of the 𝑛 dependent trends in various X௡

േ families. 
The key benefit of this approach is that it allows the presentation 
of results in a universal, X-independent language.  

2.4. The empirical bonding function 

Before exploring the properties of the bonding function, we con-
sider its universal properties. 

Boundary conditions. In the ground state of X௡
േ, all nearest-

neighbour interactions are bonding and the absolute bond orders 
𝜒௜,௜േଵ span the maximum range from 0 to 1/2. Hence, 𝛽ሺ𝜒ሻ must 

be defined for 𝜒 ∈ [0, 0.5]. 
The 𝜒 = 0 boundary corresponds to the non-bonding limit. As 

𝜒  0, we expect the equilibrium bond length to tend to infinity 
and the bond integral to vanish. An important deviation from this 
expectation due to non-covalent interactions will be discussed in 

the future. Here, in the purely covalent limit, the boundary con-
dition for 𝛽ሺ𝜒ሻ in the non-bonding limit is 𝛽(0) = 0, as indicated 
by the red dots in each of the schematic graphs in Fig. 4.  

At the other extreme, 𝜒 = 1/2, it follows from the definition 
of the dimer unit that 𝛽(0.5) = 1 d.u. (Sec. 2.3). This limit is 
indicated by the green dots in each panel in Fig. 4. 

In addition to the above boundary conditions, we require the 
bonding function to be single-valued, monotonic, and well-be-
haved for 𝜒 ∈ [0, 0.5]. Altogether, we expect 𝛽ሺ𝜒ሻ to connect the 
red (0,0) and green (0.5,1) points in the (𝜒, 𝛽) plane in a smooth, 
monotonic fashion. As indicated in Fig. 4, this can be accomp-
lished in a linear or non-linear manner (two sample graphs at the 
top), but any non-monotonic or discontinuous functions (bottom 
graphs) must be excluded from consideration. These general fea-
tures of 𝛽ሺ𝜒ሻ, illustrated schematically in Fig. 4, are dictated by 
universal, monomer-independent constraints. 

The bonding space. The above conditions are satisfied by 
any member of the function space defined as 

 𝛽ሺ𝜒ሻ ൌ െሾ1 െ ሺ1 െ 2𝜒ሻ௕మሿଵ/௕భ (7) 

for 𝜒 ∈ [0, 0.5], where 𝑏ଵ, 𝑏ଶ > 0 are parameters. This functional 
form is neither special nor unique. It is but a convenient class of 
functions that satisfy the model constraints. However, we will 
show that it covers most realistic chemical scenarios. To shine 
light on its meaning, with 𝑏ଵ = 𝑏ଶ = 2 eqn (7) defines the third-
quadrant arc of an ellipse centred at (0.5, 0) in the (𝜒, 𝛽) plane.  

First, given any combination of finite 𝑏ଵ, 𝑏ଶ > 0 values, eqn 
(7) satisfies the 𝛽(0) = 0 and 𝛽(0.5) = 1 d.u. boundary condi-
tions. The 𝑏ଵ and 𝑏ଶ parameters control how the two limits are 
connected, but 𝛽ሺ𝜒ሻ is always monotonic, single-valued, and 
well-behaved. As a limiting case of 𝑏ଵ, 𝑏ଶ → ∞, eqn (7) yields 
the Hückel reference: 𝛽 ൌ 1 for any 𝜒 > 0.  

Nine examples of specific functions defined by eqn (7) are 
shown in Fig. 5, A-I. Each function shown corresponds to one of 
the red points in the (𝑏ଵ, 𝑏ଶ) parameter space shown in the same 
figure, top left. Beyond these nine examples, every point in the 
(𝑏ଵ, 𝑏ଶ) space maps onto a unique bonding function. As cases A-

 

Fig. 4. The universal constraints on the bonding function 𝛽ሺ𝜒ሻ, 𝜒 ∈ [0, 0.5], 
include two boundary conditions, 𝛽(0) = 0 (red circles) and  𝛽(0.5) = 1 d.u. 
(green circles), in addition to the requirements for it to be continuous, mono‐
tonic, and well‐behaved. 
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I illustrate, 𝑏ଵ controls the 𝛽ሺ𝜒ሻ behaviour near the non-bonding 
limit (𝜒 = 0), while 𝑏ଶ affects the dimer limit (𝜒 = 0.5). Case E, 
in particular, with (𝑏ଵ, 𝑏ଶ) = (1, 1), corresponds to the linear 
function 𝛽 = െ2𝜒 shown in panel E on the right.  

We hypothesise that any given X௡
േ family can be described 

by a bonding function represented by a point in the (𝑏ଵ, 𝑏ଶ) 
space. While we do not know a priori what specific (𝑏ଵ, 𝑏ଶ) 
values describe each system, we expect that most common che-
mical scenario fall well within the 𝑏ଵ, 𝑏ଶ ∈ [0.6, 1.7] range shown 
in Fig. 5. The following analysis will confirm this hypothesis.  

We will now examine the mapping of the bonding space to 
specific core ion structures and compare the results to the known 
properties of real cluster systems. 

3. Initial Results 

In this section, we test the model using various assumed 𝛽ሺ𝜒ሻ 
functions. The initial analysis applies to an unspecified X௡

േ sys-
tem. Behind such a sweeping approach is the expectation that X௡

േ 
clusters have common features attributable to the physics of IM 
networking rather than the specific chemistry of the monomers. 
This expectation is rooted in part in the knowledge that in most 
known cases the excess charge is shared by, at most, three mono-
mers. We show that even the least sophisticated implementation 
of the model explains this behaviour in a purely coherent regime, 
without invoking non-covalent interactions or thermal excita-
tions. Section 4 will tune these findings to real chemical systems. 

3.1. Model convergence 

The progress of a typical calculation toward a self-consistent so-
lution is illustrated in Fig. 6 on the example of a nine-membered 

chain, Xଽ
േ. There is nothing special about 𝑛 = 9; this number of 

monomers is chosen arbitrarily as large enough to illustrate the 
networking behaviour yet small enough to show details. Similar 
results can be obtained for shorter or longer chains, and some 
examples will be given along the way. The Coulomb integrals 
are set to zero here (in Fig. 6) and throughout (approximation 
4.0), while the bond integrals are defined by the bonding function 
in eqn (7) with 𝑏ଵ = 1.0 and 𝑏ଶ = 1.7. These values correspond 
to point B in Fig. 5, also shown in the top left of Fig. 6.  

The green asterisks in each panel represent the initial {𝑐௜} 
guess used in this calculation. To emphasize the divergence of 
the model from the Hückel reference, the guess was chosen to 
coincide with the Hückel solution. That is, it corresponds to the 
ground state of the particle in a box discretised to nine mono-
mers. For reference, the continuous form of this wave function 
(half a period of a sin wave) is shown as a dashed grey curve in 
each panel of Fig. 6. A similar format indicating the initial guess 
and the Hückel reference is also used in many subsequent fig-
ures. The red symbols in Fig. 6 indicate the IMO coefficients 
after (a) 1, (b) 2, (c) 3, (d) 5, and (e) 40 iterations. This particular 
calculation required 40 iterations to converge, so the red symbols 
in (e) represent the final self-consistent solution. 

The monomerization energies determined at each iteration 
via eqn (3) or, equivalently, eqn (4) are indicated in the figure. 
The converged solution corresponds to a VME = 1.239 d.u., 
which is smaller than 1.902 d.u. for the Xଽ

േ Hückel reference with 
a constant 𝛽 = 1 d.u. This distinction is key: our model accounts 
for geometry relaxation in response to varying bond orders. That 
results in varying 𝛽. Since the equilibrium |𝛽| values are on aver-
age smaller than in Hückel’s limit, the result is reduced stability.  

Most significantly, Fig. 6 shows that the IMO, which is initi-
ally delocalised over the entire chain in a particle-in-a-box-like 

 

Fig. 5. Top left: the (𝑏ଵ, 𝑏ଶ) parameter space (“the bonding space”), with boundaries 𝑏ଵ, 𝑏ଶ ∈ [0.6, 1.7]. Using eqn (7), each point in this space defines a unique 
bonding function 𝛽ሺ𝜒ሻ. Red circles A‐I indicate nine chosen bonding cases, with the corresponding (𝑏ଵ, 𝑏ଶ) coordinates indicated below. The corresponding 

𝛽ሺ𝜒ሻ are plotted on the right. For reference, of points A‐I, C is closest to the Hückel limit (𝑏ଵ, 𝑏ଶ  ∞). The direction towards this limit in the (𝑏ଵ, 𝑏ଶ) space is 
indicated by the green arrow next to point C. 
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fashion, collapses to just three neighbouring monomers with a 
0.25|0.50|0.25 charge distribution. In contrast to the Hückel 
reference, charge localisation has a stabilising effect in this case 
because it allows the largest-magnitude bond integrals to receive 
the most charge. Per eqn (4), this benefits IM bonding. Review 
the VME progress from the delocalised initial guess to the more 
localised final solution in Fig. 6 for more detail.

Charge localisation on three monomers can be conveniently 
expressed in terms of absolute trimer charge Q3 = ∑ 𝑞௜3 , where 
𝑞௜ = |𝑐௜|ଶ and the sum ሺ∑ ሻଷ  is taken over three adjoining mono-
mers with the largest combined charge. For the final solution in 
Fig. 6(e), Q3 = 1. It implies that the cluster consists of a cova-
lently bonded trimer-ion core, with the other six monomers in a 
neutral state, not bonded to the core or to each other: Xଷ

േX଺. We 
will refer to trimer ions with Q3 = 1 as “pure” trimers or trimers 
of 100% purity. We shall see that pure trimers are a common 
phenomenon in the coupled-monomers model, not limited to Xଽ

േ 
or the exact numerical assumptions used to generate Fig. 6.  

Charge sharing can be quantified for any system (not limited 
to trimers) using the standard deviation () of the charge 
distribution. The distribution is defined by 𝑃௜ ൌ |𝑐௜|ଶ ൌ 𝜌௜,௜, and 

the standard deviation of 𝑖 is calculated as  = ඥ〈𝑖ଶ〉 െ 〈𝑖〉ଶ. We 
will refer to it as charge-sharing . Its values after each iteration 
are included in Fig. 6. For comparison, the Xଽ

േ Hückel reference 
and the initial guess in Fig. 6 are described by  = 1.807, while 
for the final solution in Fig. 6(d)  = 0.707 (1/√2). 

3.2. Local solutions 

Final solutions generally depend on the initial guess and this is 
particularly important for longer chains. For illustration, Fig. 7 
presents three distinct solutions (a)-(c) for Xଶହ

േ  using the bonding 
function defined by point F in the (𝑏ଵ, 𝑏ଶ) space. The solutions 
obtained from distinct sets of initial {𝑐௜} coefficients differ in 
their placement along the chain, but their key properties are iden-
tical, including the VMEs and charge distributions within the 
core ion. In each case, 96.8% of the charge is localised on three 
core monomers (Q3 = 0.968), only the specific monomer trio 
capturing the charge differs. The reduced trimer purity sets case 
F in Fig. 7 apart from case B in Fig. 6(e) (Q3 = 1). The reduction 
is due to a faster increase in |𝛽| near 𝜒 = 0 evident in Fig. 5, F 
vs. B. The faster increase in F is in turn due to a larger 𝑏ଵ. 

The degenerate solutions in Fig. 7 are local in the 𝑛-dimen-
sional vector space |𝜙⟩ and localised to a small number of mono-
mers. Since monomers with zero 𝑐௜ coefficients do not contribute 
to covalent bonding, we can add or remove any such inactive 
monomers without affecting the core-anion properties. This 
means changing the dimensionality of the |𝜙⟩ vector space out-
side the active subspace describing the core. Physically, it 
implies adding or removing spectator monomers that do not 
interact with the bulk of the cluster. For example, the core 
properties of the solutions in Fig. 7 (VME, , and Q3) would not 
be affected if the chain were expanded or shrunk to any 𝑛  5. 

3.3. Ground‐state structures 

The above realisation can be used to facilitate a global search for 
lowest-energy self-consistent solutions. To ensure that a given 
solution describes a relaxed ground-state structure we must gene-
rally perform an exhaustive search in the |𝜙⟩ vector space. That 
requires calculations starting from a multitude of initial states to 
sample various regions of the 𝑛-dimensional space. This is im-
practical for more than a few monomers. Instead, we take advan-
tage of the fact that as long as edge effects are avoided, the con-
verged solutions always contain symmetric core ions: a 

Fig. 6. Progress of a typical calculation toward a self‐consistent solution on

the example of Xଽ
േ. The calculation was carried out for bonding case B, defined

in the top left. The green asterisks in (a)‐(e) represent the initial guess, which

coincides with the ground state of the particle in a box (dashed grey curves).

The red symbols are the IMO coefficients after (a) 1, (b) 2, (c) 3, (d) 5, and (e)
40 iterations. Also shown are the VMEs and charge‐sharing sigmas after each

iteration. The non‐zero partial charges of the monomers are given for the final
solution in (e). 

Fig. 7. (a)‐(c) Distinct but degenerate Xଶହ
േ  solutions for bonding case F. In each

case, the initial {𝑐௜} guess is indicated by green asterisks. 
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monomer, dimer, trimer, etc. Meanwhile, any number of specta-
tor monomers with 𝑐௜ = 0 can be added or removed at will for 
computational convenience without affecting the core solution. 

Hence, for every point sampled in the (𝑏ଵ, 𝑏ଶ) space we car-
ried out two calculations: one for an even and one for an odd 
number of monomers. For computational expediency, while still 
avoiding the edge effects, we chose 𝑛 = 9 and 8. In each case, the 
Hückel reference was used as the initial guess. All resulting {𝑐௜} 
solutions were symmetric with respect to the middle of the chain 
(𝑖 = 5 for 𝑛 = 9 and halfway between 𝑖 = 4 and 5 for 𝑛 = 8), 
constraining the ionic core to an odd or even number of mono-
mers, respectively. We then compared the odd- and even-𝑛 solu-
tions and designated the core ion within the more stable one as 
the equilibrium core structure for that bonding function. 

This approach is illustrated in Fig. 8 for bonding cases H, E, 
B, and C (all defined in Fig. 5). In case H, the even-numbered 
core structure in Fig. 8 (a pure dimer with a VME = 1 d.u.) is 
more stable than an odd-numbered one (a pure trimer, VME = 
0.728 d.u.). Thus, we expect any system with a bonding function 
represented by point H (or its vicinity) in the (𝑏ଵ, 𝑏ଶ) space to 

have a dimer-ion core. 
Case E represent a transition between the dimer and trimer 

phases. With (𝑏ଵ, 𝑏ଶ) = (1, 1), the bonding function in eqn (7) 
simplifies to 𝛽 = െ2𝜒. The pure-trimer solution |𝜙⟩ = (1/2, 1/√2, 
1/2) includes two IM bonds with 𝜒 = 1/(2√2) and 𝛽 = െ2𝜒 = 
1/√2 d.u. each. Each bond’s energy is then, per eqn (4), െ2𝛽𝜒 
= 1/2 d.u., for a combined VME = 1 d.u. exactly, which is dege-
nerate with the dimer structure. 

In case B, trimer-based structures are most favourable. The 
even-numbered solution on the left in Fig. 8 in this case is no 
longer a pure dimer; it resembles a tetramer instead. Each of the 
two middle monomers within the tetramer core has an absolute 
charge of 𝑞ଶ,ଷ = 0.412 with 𝑞ଵ,ସ = 0.088 localised on the terminal 

species. However, this tetramer-based structure is less stable than 
its trimer-based counterpart on the right.  

The situation is reversed in case C, where the even-numbered 
core ion is more stable than its odd-numbered counterpart. We 
should recall that of all bonding cases A-I defined in Fig. 5, case 
C is closest to the Hückel limit of 𝛽 = 1 = const. It is not sur-
prising, therefore, that the solutions obtained in this case have 
the widest charge distributions compared to any other case exam-
ined thus far (note the  values in Fig. 8). The most stable core 
structure in case C is essentially a tetramer with a 0.119|0.380|
0.380|0.119 charge distribution, but the solution also reveals a 
minor (0.2%) charge spillover to each of the monomers immedi-
ately adjacent to the tetramer core. An even greater spillage from 
the core is present in the nearly degenerate but slightly less stable 
odd-numbered solution for case C, where each of the two mono-
mers adjacent to the trimer core (Q3 = 0.94) captures nearly 3% 
of the charge. If we were to continue the journey along the GC 
diagonal in the bonding space (Fig. 5) beyond case C, the solu-
tions would get progressively broader, approaching the Hückel 
case (dashed grey curves in Figs. 6-8) in the limit of 𝑏ଵ, 𝑏ଶ → ∞.

3.4. Dimers, trimers, and beyond 

Figure 9 presents a coarse overview of the bonding space from 
Fig. 5, illustrating the effect of varying the bonding function on 
the core-ion properties. Each panel A-I in Fig. 9 corresponds to 
the respective bonding case in Fig. 5. Unlike Fig. 8, all solutions 
in Fig. 9 were obtained for an odd-membered chain Xଽ

േ. How-
ever, the initial guess was varied in each case to obtain both odd 
and even-numbered core structures and only the lowest-energy 
solutions are presented in figure. In case E, the dimer and trimer-
based solutions are exactly degenerate, with VME = 1 d.u. each, 
and only the trimer-based is shown.  

While Fig. 9 displays sample solutions on a 3×3 grid in the 
(𝑏ଵ, 𝑏ଶ) bonding space, a more refined picture is presented in Fig. 
10. Here, following the methodology from Sec. 3.3, we analysed 
the X଼

േ and Xଽ
േ solutions on a 201×201-point (𝑏ଵ, 𝑏ଶ) grid. The 

resulting values of VME(𝑏ଵ,𝑏ଶ) and (𝑏ଵ,𝑏ଶ) for the more stable 
structures are presented in (a) and (b), respectively, as two-
dimensional contour plots. In (c), the (𝑏ଵ,𝑏ଶ) data from (b) are 
plotted again as a 3-D surface. Since inactive monomers can be 
added or removed at will (Sec. 3.3), these results are valid for 
any-size X௡

േ chains, as long as edge effects are avoided.  
Figure 10 shows that increasing 𝑏ଵ and 𝑏ଶ generally increases 

 

Fig. 8. Top to bottom: the final solutions for bonding cases H, E, B, and C from
Fig. 5. Left and right columns correspond to the even‐ (𝑛 = 8) and odd‐ (𝑛 = 9)
numbered X௡

േ chains. Each calculation used the respective Hückel reference

as the initial guess and was thus constrained to even‐ or odd‐numbered core
type. Check and cross marks  indicate  the more and  less  stable  structures,

respectively, for each bonding case. In case E, the even‐ and odd‐numbered
structures are degenerate (both have checkmarks). 
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the cluster stability (larger VME) and leads to more delocalised 
charge distributions (larger ). Both trends are intuitive because 
as 𝑏ଵ, 𝑏ଶ → ∞ the model approaches the particle-in-a-box-like 
Hückel limit. While the energetic trend in (a) is described by a 
smooth and continuous VME(𝑏ଵ,𝑏ଶ) dependence, the (𝑏ଵ,𝑏ଶ) 
data show sharp discontinuous transitions reflecting changes in 
the ionic core structure. 

Considering the charge distributions in detail,  = 0.5 corre-
sponds to a pure dimer-ion cluster core with partial charges 𝑞௜ = 
0.5|0.5. A pure trimer (Q3 = 1, 𝑞௜ = 0.25|0.50|0.25) has a  = 
1/√2  0.707. Several correlations between Q3 and  are indi-
cated in Fig. 10(b) next to the  colour bar. Using the disconti-
nuities in  and analysing the {𝑐௜} solutions, the (𝑏ଵ,𝑏ଶ) space 
can be divided into the dimer, trimer, and tetramer (4mer) 
regions shown in Fig. 10(a-c). The trimer region can be addition-
ally subdivided into the pure (Q3 = 1 exactly) and impure (Q3 < 
1) areas, labelled in (c). Their strict boundary corresponds to the 
BE line, but even to the right of it the initial increase in  and the 
corresponding decrease in Q3 are very slow at first. Fig. 10(b) 
shows white dashed lines corresponding to Q3 = 0.998, 0.99, 
0.98, and 0.97, indicated as percentages to the left of the lines. 

While the variation of trimer purity is gradual and not asso-
ciated with discontinuities in the charge distribution, the dimer-
trimer, trimer-tetramer, and dimer-tetramer transitions are 
defined by sharp boundaries with abrupt discontinuities in charge 
sharing. The most drastic change, from  = 0.5 to 0.707, occurs 
at the dimer-trimer interface, i.e., the solid red curve in Fig. 10. 
This curve terminates at a point where the dimer-trimer boundary 

bifurcates into the dimer-tetramer and trimer-tetramer borders. 
Overall, the trimer region encompasses a significant area of 

the (𝑏ଵ,𝑏ଶ) space. Importantly, in the future we plan to show that 
the bonding properties of many known X௡

േ families fall close to 
the BH line within this space (Figs. 5 and 10). The preference for 
either dimer or trimer core ions is largely determined by whether 
the bonding function for a specific system corresponds to a point 
below or above point E on this line, as is clear from Figs. 10(b) 
and (c). For example, the existence of the X = He, Ar, gl, and ba 
trimer ions9,50,55,56,66-68 suggests that their bonding properties fall 
above point E in the (𝑏ଵ, 𝑏ଶ) space, corresponding to 𝑏ଶ > 1. 

4. Data‐driven modelling 

In this section, we use available data for several X௡
േ systems to 

determine which of the bonding functions defined in Sec. 3 are 
closest to chemical reality. 

4.1. General model training 

Section 2.4 defined two universal constraints on the bonding 
function: the boundary conditions at the non-bonding and dimer 
limits, 𝛽(0) = 0 and 𝛽(0.5) = 1. These boundary conditions are 
independent of the nature of the monomers and therefore help 
little in identifying the unique bonding properties of specific 
systems. This is illustrated in Fig. 11, where a myriad of allowed 
bonding functions, 144 in total, are plotted in part (b). 

This part of the figure is messy by design and not intended to 
be analysed in detail. Although all functions shown satisfy the 

 

Fig. 9. Most stable final solutions identified for bonding cases A‐I. All solutions were obtained for an odd‐membered chain Xଽ
േ but the initial guess was varied 

to identify both odd and even‐numbered core structures, and only the most stable solutions are presented in figure. In case E, the dimer and trimer‐based 

solutions are exactly degenerate, with VME = 1 d.u. each, but only the trimer‐based is shown. 
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boundary conditions, altogether they represent an overwhelming 
range of possible bonding scenarios, most of which are of little 
use for real chemistry. This changes with the introduction of just 

one additional constraint. In general terms, we define it as 𝛽(𝜒଴) 
= 𝛽଴, requiring the bond integrals to have a specific value 𝛽଴ ∈ 
(1, 0) for a chosen bond order 𝜒଴ ∈ (0, 0.5). We will refer to 
(𝜒଴, 𝛽଴) as the training point and will shortly show how it relates 
to specific chemical properties. 

Requiring the bonding function to pass through a specific 
training point drastically contracts the space of acceptable 𝛽(𝜒), 
as evident in Fig. 11(c). In detail, the bonding functions in Fig. 
11(b) are all defined by eqn (7) on a 12×12 grid in the (𝑏ଵ, 𝑏ଶ) 
parameter space. The grid is indicated by small black squares in 
Fig. 11(a). It represents an expansion of the original 3×3 grid A-
I from Fig. 5, reproduced in Fig. 11(a) for reference (large grey 
circles). Among the myriad of curves in Fig. 11(b), the lowest 
and the topmost represent respective cases C and G, respectively. 

Now we consider an arbitrary (𝜒଴, 𝛽଴) constraint. Rearrang-
ing eqn (7), 

 𝑏ଶ ൌ logሺଵିଶఞబሻሾ1 െ ሺെ𝛽଴ሻ௕భሿ  (8) 

This constrained relationship between 𝑏ଵ and 𝑏ଶ reduces the (𝑏ଵ, 
𝑏ଶ) plane to a 𝑏ଶ = 𝑏ଶ(𝑏ଵ) curve. Together with physically mean-
ingful (𝜒଴, 𝛽଴) constraints, eqn (8) can be used to train the model 
to describe specific systems (Sec. 4.3). But first we will use it to 
define the dimer-trimer interface in the bonding space.  

4.2. The dimer‐trimer boundary 

The dimer-trimer boundary is defined by an Xଶ
േ and Xଷ

േ degene-
racy. Since the dimer bond energy is 1 d.u. by definition, the 
degeneracy requires each bond in the trimer to be exactly 1/2 d.u. 
On the other hand, the energy of a bond is given, per eqn (4), by 
2𝜒𝛽. From the normalised IMO coefficients 𝑐௜ = (1/2, 1/√2, 
1/2), the order of each bond in linear Xଷ

േ is 𝜒 = 1/(2√2). It follows 
that the dimer-trimer degeneracy is defined by 𝛽 = 1/√2 and the 
dimer-trimer transition in the bonding space occurs when 𝛽 = 
1/√2 d.u. for 𝜒 = 1/(2√2). 

With (𝜒଴, 𝛽଴) = (1/(2√2), 1/√2) as the training point, eqn 
(8) yields an analytic relationship between 𝑏ଵ and 𝑏ଶ, which de-
fines the dimer-trimer boundary in the bonding space. It is shown 
by red solid curves in Figs. 10(a-c) and 11(a), marked ‘i’ in 11(a). 
The 𝑏ଶ = 𝑏ଶ(𝑏ଵ) boundary curve can be calculated for the entire 
range of 𝑏ଵ, but for 𝑏ଵ ≳ 1.2 it bifurcates into dimer-tetramer and 
trimer-tetramer transitions, shown as dotted magenta curves in 
each Fig. 10(a-c) and 11(a). The dimer-trimer interface then loses 
significance, passing through a tetramer region where both 
dimers and trimers are metastable structures. The continuation of 
the dimer-trimer curve in the tetramer region is nonetheless 
shown in Fig. 11(a) (red dashed curve with red open symbols). 
For clarity, the tetramer regions are shaded in orange, the dimer 
region is in light blue, while the trimer region is unshaded.  

Each point on curve ‘i’ in Fig. 11(a) defines a unique function 
𝛽(𝜒) passing through the above training point and satisfying the 
dimer-trimer degeneracy. The training point itself is represented 
by a red symbol in Fig. 11(c). The trained 𝛽(𝜒) curves in the 
same figure [only seven total, compared to 144 untrained curves 
in (b)], represent the filled red (𝑏ଵ, 𝑏ଶ) symbols on the dimer-
trimer boundary in (a). The red block arrows in Figs. 11(a) and 
(c) indicate the direction of 𝛽(𝜒) variation along this boundary. 
Moving to the right along curve ‘i’ in (a) causes the 𝛽(𝜒) curves 

 

Fig. 10. The (a) VME and (b)‐(c) charge‐sharing  plots calculated on a 201×
201‐point grid in the bonding space (𝑏ଵ, 𝑏ଶ) ∈ [0.6, 1.7]. The same (𝑏ଵ,𝑏ଶ) 
dataset is shown in (b) and (c) using two different formats. All data represent
the most  stable  core  structures  identified  for  each  bonding  case  and  the

resulting dimer, trimer, and tetramer (“4mer”) regions are  labelled  in each

plot. Points A‐I  indicate  the bonding  cases defined  in Fig. 5. The  red  solid
curves indicate the boundary between the dimer and trimer regions. The top

and bottom red curves  in  (c) are  the same boundary, plotted twice, at the

dimer  and  trimer    levels.  The  dotted magenta  curves  represent  similar
dimer‐tetramer and trimer‐tetramer boundaries. The white dashed  lines  in
(b) correspond to (left to right) 99.8%, 99%, 98%, and 97% trimer purity.  
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in (c) to change in the downward direction to the left of the train-
ing point and in the upward direction to the right of (𝜒଴, 𝛽଴).  

The trained bonding curves from Fig. 11(a) are reproduced in 
Fig. 12(a) next to a sample of odd-numbered (Xଽ

േ) IMO solutions 
in Fig. 12(b). There are 7 overlapping solutions shown, one for 
each of the solid-red (𝑏ଵ, 𝑏ଶ) points along curve ‘i’ in Fig. 11(a). 
They are indistinguishable from each other, each possessing a 
pure-trimer core (Q3 = 1), with a VME = 1.000 d.u. (degenerate 
with dimer-core structures). 

4.3. Model training for specific systems 

Many specific cluster families exhibit a propensity for trimer-ion 
cores. For trimer-based structures, not all parts of the bonding 
function are equally important to the model performance, since 
only a small part of 𝛽ሺ𝜒ሻ in the vicinity of 𝜒଴ = 1/(2√2)  0.354 
plays a defining role in the final solutions. 

This may seem like an invitation to replace 𝛽(𝜒), 𝜒  ∈ [0, 
0.5], with a single value, 𝛽଴ = 𝛽(𝜒଴), but that would be a mistake. 
A model limited to a single bond order is not able to access other 
X௡
േ configurations, including the dimer- or tetramer-based struc-

tures. The trimer core then ceases being a prediction and be-
comes the only achievable outcome. To claim that a particular 
configuration is preferable to others, the model must sample a 
broad range of configuration space, which requires 𝜒 to vary. It 
is nonetheless possible to emphasise the region around 𝜒 = 𝜒଴ 
while treating other parts of 𝛽ሺ𝜒ሻ in a less precise fashion.  

This is done by training the model to reproduce the known 
monomerization energies of Xଷ

േ, VME(3), using a single (𝜒଴, 𝛽଴) 
training point for each cluster type. The important role of the 
trimer ions suggests that VME(3) is both a convenient and criti-
cal measure for calibrating and assessing the model performance. 
The mathematical essence of the training process is a reduction 
of the space of all bonding functions defined by eqn (7) to a 
subspace that accurately describes the bonding in a specific X௡

േ 
system. This objective is achieved using the (𝜒଴, 𝛽଴) training data 
and eqn (7) in a manner similar to the analysis of the dimer-

trimer boundary in Sec. 4.2. 
Per eqn (4), for linear Xଷ

േ, VME(3) = 2×2𝜒଴𝛽଴, where 𝜒଴ = 
1/(2√2)  0.354 is the trimer bond order from Sec. 4.2. This 
yields 𝛽଴ = VME(3)/(4𝜒଴) for the trimer bond integral. The 
known VME(3) values in Table 1 therefore allow us to determine 
the (𝜒଴, 𝛽଴) training points for each of the specific systems 
considered. They correspond to 𝛽଴ = 0.750, 0.811, and 0.861 
d.u. for X = He, Ar, and gl. In the same way, 𝛽଴ = 1 d.u. for the 
Hückel reference and 𝛽଴ = 1.10 d.u. for X = ba (vide infra). 

The training points for X = He, Ar, and gl are indicated by 
symbols ‘ii’, ‘iii’, and ‘iv’ in Fig. 11(c), under the training point 
for the dimer-trimer boundary marked ‘i’. Sec. 4.2 discussed that 
training point ‘i’ reduced the (𝑏ଵ, 𝑏ଶ) bonding space to a one-
dimensional subspace ‘i’ shown by a red curve in Fig. 11(a). 
Similarly, training points ‘ii’, ‘iii’, and ‘iv’ in Fig. 11(c) reduce 
the permissible bonding space to the respectively marked blue 
curves in Fig. 11(a). Similar to ‘i’ (Sec. 4.2), the rightmost (dot-
ted) part of curve ‘ii’ is excluded from consideration, because 
trimer-based training should not be used in the tetramer region. 

Training points ii-iv are reproduced in Figs. 12(c), (e) and (g), 
respectively, which also show the bonding functions defined by 
each of the filled symbols on the respective curves in Fig. 11(a). 
Like the analysis of curve ‘i’ bonding functions in Sec. 4.2, the 
block arrows in Figs. 12(c), (e) and (d) indicate the direction of 
𝛽(𝜒) variation along the respective curves in Fig. 11(a). The cor-
responding solutions (specifically, for Xଽ

േ) are shown in Fig. 12 
on the right, one solution for each trained bonding function.  

All solutions for X = He, Ar, and gl in Fig. 12 are consistent 
with the predictions of high-level ab initio and density-functional 
theory.9,50,55,56,66-68 Importantly, they have very similar proper-
ties. These similarities are present both among solutions for each 
specific system and across the systems discussed. There are 
certainly differences in the VMEs imposed by the training points. 
The slight increase in VME across the solutions for the same sys-
tem (e.g., from 1.061 d.u. to 1.064 d.u. for X = He) is due to the 
minor charge spillage off the trimer core. Accordingly, there are 

Fig. 11. An illustration of the bonding function training process. (a) A snapshot of the bonding space including original 3×3 reference points A‐I from Fig. 5, 

shown here by large grey circles. The dimer region of the bonding space is shaded in blue, tetramer—orange, the trimer region is unshaded. The corresponding

region boundaries are indicated similarly to Fig. 10. These details are overlaid with a finer 12×12 grid of the (𝑏ଵ, 𝑏ଶ) parameter values, shown by small black 
squares. (b) 144 (= 12×12) bonding functions defined by eqn (7) for the 12×12 grid shown in (a). (c) Seven (instead of 144) distinct 𝛽(𝜒) functions defined on 
a similar (𝑏ଵ, 𝑏ଶ) grid but subject to the dimer/trimer degeneracy constraint, (𝜒଴, 𝛽଴) = (1/(2√2) , 1/√2), which is marked ‘i’. Each of the bonding functions 

corresponds to one of the solid red symbols along the dimer‐trimer boundary (curve ‘i’) in (a). Training points ii‐iv, with 𝛽଴ = 0.750, 0.811, and 0.861 d.u., 
(X = He, Ar, gl) similarly correspond to respective curves in (a). See the text for further details. 
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slight variations in trimer-core purity (Q3) among solutions for 
the same system. Like VME, timer purity is dependent on speci-
fic bonding functions. It decreases somewhat with increasing 𝑏ଵ, 
as seen in Fig. 10(b) and (c). Naturally, off-the-trimer charge 
spillage and VME variation are only possible in chains with 𝑛 > 
3. In an isolated trimer, Q3 would always be strictly 1 with a 0.25
|0.50|0.25 charge distribution, and VME(3) would be constant 
for any bonding function satisfying a specific training point.  

These small differences aside, the various solutions for all 
systems considered correspond to, essentially, trimer-based clus-
ters, with Q3 ranging from 100% to 98.8% for X = He, 100% to 
96.8% for X = Ar, and 100% to 96.0% for X = gl. To make more 
definitive predictions about core purity, a more in-depth analysis 
of the bonding properties in the small 𝜒 region is required, 
leading to additional training constraints. 

4.4. Limitations and future directions 

Two of the model limitations go beyond the approximate nature 
of the described formalism. The first has to do with the ba௡

ି clus-
ters, the second with charge distributions among core monomers. 

The VME of the trimer anion of biacetyl exceeds that of the 
dimer by 55.2%,9 corresponding to a VME(3) = 1.552 d.u. (Table 

1). From the coupled-monomers perspective, this is an abnorm-
ally large value unlike the other examples discussed, because it 
exceeds the corresponding property of the Hückel reference, 
VME(3) = √2  1.414 d.u.8,25 As determined in Sec. 4.3, a 
VME(3) of 1.552 d.u. requires the trimer bond integral to equal 
1.10 d.u., with the magnitude exceeding that of the equilibrium 
bond integral in the dimer (1 d.u. exactly). This contradicts one 
of our assumptions requiring the 𝛽(𝜒) bonding function to be 
monotonic between the 𝛽(0) = 0 and 𝛽(0.5) = 1 limits (Fig. 4). 

This result becomes less puzzling if instead of interpreting it 
as VME(3) for X = ba being too large, we reframe it as VME(2) 
being too small. The reduced bond strength in relaxed baଶ

ି can 
be attributed to a steric obstruction of the methyl groups prevent-
ing the two ba moieties from being close enough to realise the 
full bonding power of the shared electron. In the trimer, the IM 
distance is larger, and the methyl steric effects are less signifi-
cant. This alone cannot explain the abnormal stability of baଷ

ି: at 
most, it would cause VME(3) for X = ba to approach the Hückel 
limit of 1.414 d.u., not 1.552 d.u. However, there are additional 
factors that have not been considered by the present formulation 
of the model. One of them, the variable Coulomb integrals (ap-
proximation 4.1 in Sec. 2.1), we plan to address in the future. 

Another limitation is also related to variable Coulomb integ-
rals, among other factors. It concerns the charge distributions 
among core monomers. High-level ab initio data show that the 
charge distribution in Heଷ

ା is somewhat broader than 0.25|0.50|
0.25, while the opposite is true for Arଷ

ା.56,68 Our present model 
treats both X = He and X = Ar exactly the same, aside from the 
different energetics which do not affect the charge distributions. 
Therefore, in its present form, the model is incapable of predict-
ing the different behaviours of the He- and Ar-based clusters 
regarding the core charges. 

We will conclude by pointing out two factors that affect the 
partial charges within the cluster core (and its stability): the 
remote interactions between non-adjacent monomers and the 
variable Coulomb integrals. Our future work will incorporate 
both into the coupled-monomers formalism to demonstrate that 
it is the Coulomb integrals, not the remote forces, that control the 
divergent charge distributions in various cluster families. 

Furthermore, in the present work we have made no signifi-
cant distinction between anion and cations, or between electrons 
and holes. This is an important omission because electrons do 
behave differently from holes with respect to some aspects of 
chemical bonding. It will be shown that the very qualitative 
character of remote IM interactions depends not only on the type 
of the bonding agent (electrons or holes) but also the symmetry 
of the MMOs defining the IMO system. In some qualitative 
respects, the gl௡

ି and ba௡
ି cluster anions are more like He௡

ା cluster 

cations than He௡
ା are like Ar௡

ା. 
Finally, in this work we considered the behaviour of only one 

electron (hole). Since radical species tend to react further, the 
one-electron picture will break down in some applications. It is 
therefore a strength of the coupled-monomers model (like the 
original Hückel theory) that it is not inherently limited to one-
particle systems. Here, we started from the extreme of a single 
bonding agent responsible for the entire covalent network, but 
the fundamental model can be developed further. 

 

Fig. 12. Left column: trained bonding curves satisfying the indicated (𝜒଴, 𝛽଴) 
constraints  i‐iv. Curves  in  (a)  for  training point  ‘i’ are reproduced  from Fig.

11(c). Training points ii‐iv correspond to X௡
േ, X = He, Ar, and gl, respectively.

Right column: samples of IMO solutions obtained with the respective bonding
functions shown on the left. 
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5. Summary 

We have described a density-matrix adaptation of the Hückel 
MO theory to weak covalent networks and used the resulting 
model to examine the interactions of electrons (holes) with 
ensembles of identical closed-shell monomers.  

Like the Hückel method, the coupled-monomers model pro-
vides chemically accurate qualitative and semi-quantitative ans-
wers that emphasise physical insight over the precision and com-
plexity of higher-level ab initio theory. The main distinguishing 
feature of the model is the use of variable bond and (in future 
work) Coulomb integrals defined by the density matrix. The 
performance of the model can be significantly improved by 
training it to experimental or ab initio data. 

Quantitative details notwithstanding, the model makes a bold 
prediction: within a wide parameter range, X௡

േ clusters tend to 
have core ions comprised of two or three monomers. The validity 
of this prediction is confirmed by many known cluster families. 
The preponderance of dimer and trimer ions is due to the more 
effective conversion of the bonding power of one electron (hole) 
into bond energy. This occurs via the formation of one or two 
equivalent bonds with large bond orders and, therefore, large-
magnitude bond integrals. 

Various alternative competing mechanisms that favour either 
charge sharing or charge localisation help set this prediction in 
context. While covalent bonding is the main driving force for 
coherent charge sharing, several well-known factors may instead 
favour more localised charge distributions and, therefore, smal-
ler cluster cores. They include: (i) the non-covalent interactions 
favouring smaller ions; (ii) the entropic contribution to free 
energy favouring less-ordered solvated structures; and (iii) the 
loss of electronic coherence due to vibronic and other couplings.  

The coupled-monomers model is formulated here in a strictly 
coherent and covalent regime, without any non-covalent forces 
or thermal excitations. And yet, even in the absence of factors 
(i)-(iii), it still predicts rather localised charge distributions. It 
follows that although charge localisation may benefit from these 
complex mechanisms, it does not have to rely on any of them. It 
is an intrinsic feature of a coherent, purely covalent weakly 
bonded network, arising from geometry relaxation and correla-
tion between bond orders and the relaxed bond integrals. 
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