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Abstract

Recordings of animal sounds enable a wide range of observational inquiries into animal
communication, behavior, and diversity. Automated labeling of sound events in such record-
ings can improve both throughput and reproducibility of analysis. Here, we describe our soft-
ware package for labeling elements in recordings of animal sounds, and demonstrate its
utility on recordings of beetle courtships and whale songs. The software, DISCO, computes
sensible confidence estimates and produces labels with high precision and accuracy. In
addition to the core labeling software, it provides a simple tool for labeling training data, and
a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it
works with standard file formats, and it presents a low barrier of entry to use.

1 Introduction

Animals produce an astonishing diversity of sounds, ranging from alarm calls and courtship
songs to echolocating sonar [1-3]. For example, male field crickets (Teleogryllus oceanicus)
produce acoustic signals using specialized structures on their wings, which can attract both
conspecific females and deadly parasitic flies [4]. Biologists have documented dramatic and
rapid changes to this signal, including the complete loss of the song [5] and the origin of an
entirely new song that “purrs” rather than “chirps” [6]. Studies such as this require biologists
to analyze field recordings of animal sounds, and to isolate the elements associated with the
signal—chirps or purrs, for example —from background sounds also included in the recording.
Decades of animal communication research have refined methods for recording and analyzing
animal sounds [7-10], but current methods have significant limitations [11-13]. Animal
sound analysis typically relies on a necessary pre-processing step that involves the segmenta-
tion of recordings to delineate classes of sound events. Traditionally, this process has relied on
manual annotation of sound events guided by a visual representation (i.e. spectrogram) of the
recordings. Along with being time-consuming, manual sound annotation introduces errors
due to variability in the recording conditions (e.g., background noise [3, 14]) subjectively
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selected brightness and contrast settings when observing the spectrogram [3] and, especially,
inconsistency in observer judgment [3, 8, 11, 12]. More recently, computational methods, par-
ticularly in machine learning contexts, have set the path towards improved automation and
classification of diverse acoustic signals. Examples of recent machine learning tools intended
to automate acoustic signal labeling include SongExplorer [15] and DeepSqueak [16]. DeepS-
queak relies on Fast Region-based Convolutional Networks [17] to classify mouse ultrasonic
vocalizations, treating spectrograms as images. SongExplorer uses a small Convolutional Neu-
ral Network (CNN) with pooling to classify individual fruit fly sound pulses, tiling subsequent
predictions to get dense sequences of labels.

Although existing computational methods remove the burden of manual annotation and
reduce inconsistencies in the classification of sound events, model training remains challeng-
ing, and existing methods fail to produce uncertainty estimations for those classifications.
Here, we present DISCO (DISCO Implements Sound Classification Obediently), software
that simplifies model training, automates the process of classifying sound events, and provide
accurate estimations of classification uncertainty. DISCO combines the properties of state-
of-the-art semantic segmentation methods (U-Net, [18]), model ensembling [19, 20], uncer-
tainty quantification, and hidden Markov model post-hoc analysis to improve the precision
and accuracy of automated signal labeling. Specifically, the incorporation of a model ensem-
ble and a smoothing hidden Markov model (HMM) improves robustness to outliers and
noise.

DISCO includes a tool for efficient manual labeling of training data, and it maintains for-
mat compatibility with the RAVEN .csv format [21] to provide functionality throughout the
sound event annotation process. DISCO can be installed via pip, and is released under an
open source license to promote its integration with biological analysis pipelines and encourage
feature enhancement from the community.

To demonstrate the utility of DISCO, we primarily apply our method to a novel dataset of
recordings of Japanese rhinoceros beetle (Trypoxylus dichotomus) chirps. We also demon-
strate the general nature of the tool by labeling snippets of Right whale song recordings. Due
to its user-friendly model training interface and accurate sound event classification with mean-
ingful uncertainty estimates, we anticipate that DISCO will enable improved and simplified
automated classification of sound events within recordings of animal sounds.

2 Sound data and labeling
2.1 A general introduction to sound data

Sound data consists of records of the amplitude and frequency of noise. These noises can be
manufactured or captured in natural environments with a microphone. Classification of
sound fragments typically first involves computing a spectrogram from the sound data,
achieved through application of a Fast Fourier Transform (FFT) [22]. The result is a 2-dimen-
sional matrix, with each column corresponding to a time point, each row corresponding to a
frequency, and the value at a given cell in the matrix corresponding to the amplitude of a cer-
tain frequency at a certain time. This can be visualized as an image, examples of which are
shown in Fig 1. Computing a spectrogram requires parameterization of FFT window size and
overlap (for details, see [23]); defaults in DISCO are expected to perform well across near-audi-
ble frequencies, but may be adjusted through a configuration file. Fig 1 shows spectrograms
formed from three different biological sounds: one of the male authors saying “hello”, a bird
song (Western Meadowlark, sound data downloaded from [24]), and a Japanese rhinoceros
beetle chirping. The spectrograms were computed with the same window size and overlap and
a log base 2 was applied after spectrogram computation for visualization. Each subplot in Fig 1
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Fig 1. Spectrograms formed from three recordings: A voice saying “hello”, a bird singing, and a beetle chirping (our dataset). Equal image size
does not indicate equal recording length: “hello” is 1.7s, the Western Meadowlark song 2.5s, and the beetle chirp 0.52s. In each spectrogram, values are
reported with time increasing on the horizontal axis, and frequencies increasing up the vertical axis. Intensity of sound is presented at each time/
frequency pairing, with low intensity presented as black, and high intensity as bright green.

https://doi.org/10.1371/journal.pone.0288172.9001

is a different length: “hello” is 1.7s, the Western Meadowlark song 2.5s, and the beetle chirp
0.52s. We consider a dataset of beetle chirps in this analysis. Each of the subplots in Fig 1
shows unique events localized in time through the spectrogram, surrounded by “background”
noise, which is noise that is not the main subject of the recording. Each type of sound is
unique: the “hello” is spread out across a large frequency range. The bird call jumps between
frequencies quickly, and the beetle chirp (due to the physical mechanism of generation) con-
tains relatively uniform frequency content in a unique temporal pattern. Annotating where,
and for how long, different sound events (noises) occur is a primary goal of many sound analy-
sis tools, and effective analysis requires considering the temporal patterns and frequency con-
tent of the sound. For example, a user might want to label the location of all of the occurrences
of “hello” in their recording, or similarly all beetle chirps of a given type. Analyzing temporal
patterns of noises in recordings can provide insight into behavior, such as response to stimu-
lus, or animal robustness.
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2.2 Beetle sound data—Acquisition and processing

The initial motivation for developing DISCO was to annotate chirps of Japanese rhinoceros
beetle (Trypoxylus dichotomus) courtship songs. Beetles were recorded in 4’ x 4’ x 4’ boxes
lined with anechoic studiofoam wedges to insulate the animals from ambient sounds like
ceiling fans. They were recorded with a Sennheiser ME62 omnidirectional microphone and
K6 power module. Recordings were single-channel and had a sample rate of 48Khz. Females
were placed on upright logs inside the boxes with a 1” diameter x 1” deep hole drilled in the
side and filled with jello. After females were settled and feeding, males were introduced to
the base of the tree trunk in the arena and they crawled up to the female and (usually)
climbed onto her back and began a series of trembling dances and stridulatory songs. The
room was kept hot (about 30 C) since beetles were most active at these temperatures. Strings
of red-filtered LED lights provided illumination for the researchers and emulated night-
time, since Japanese rhinoceros beetles are nocturnal and cannot see red light. Despite best
efforts at noise canceling, there was generally ambient sound picked up in each recording,
e.g. a humming air conditioner (A/C), or the sounds of researchers shifting positions or talk-
ing in the background.

The dataset contains two kinds of T. dichotomus chirps: the A chirp and B chirp. The A
chirp is generated by retracting and extending the abdomen in a front-to-back motion. The B
chirp is a result of side-to-side and back-and-forth sweeps of the abdomen against each elytral
tip in alternation. Several chirps of a single kind will appear in a row during courtship, called
“runs” throughout the rest of this paper. DISCO’s focus was to annotate and classify each
occurrence of a chirp (referred to as a “chirp”, “event”, or “sound event”) in the recordings.
The dataset also contains “background” or “X” sounds. This refers to anything not classified as
an A or a B chirp—A/C hum, doors opening and closing, human voices, and the lack of a spe-
cific sound event.

The first step of DISCO analysis is computation of a Mel-transformed spectrogram. The
perceptual difference between 500 and 1000 Hz is much larger than the difference between
9,000 and 9,500 Hz [25]. The Mel scale [26] is a map that seeks to solve the perceptual differ-
ences in human hearing: Mel units are equally spaced apart in pitch, which means differences
in the Mel scale are magnitude-independent. The Mel-transformed spectrogram is used as the
DISCO default spectrogram as it was observed to increase accuracy. DISCO also applies a
high-pass filter to the sound data to remove low-frequency background noise. By default, this
is performed by removing the first 20 frequency components from the Mel spectrogram, effec-
tively truncating the height of each spectrogram; this setting can be controlled by DISCO con-
figuration file.

DISCO relies on the transformed spectrogram for a variety of tasks, including users gener-
ating labels. A software tool for labeling sound elements is contained within DISCO (see next
section), and was used to annotate A, B, and background sound events. An example in spectro-
gram space of A and B chirps is shown in Fig 2. Each subplot displays 6.25s of recording and
contains runs of chirps of each type. The same audio recording contained both runs of chirps.
B chirps tend to be longer than A chirps, with a mean length of 0.42 seconds compared to 0.14
seconds.

2.3 A simple tool for labeling sound elements

DISCO contains a lightweight and customizable tool for labeling sound elements. Alternative
sound labeling tools often require multiple clicks to save an annotated example—for example,
selecting a region and then selecting a tick box, and clicking a “save” button. DISCO instead
relies on keypresses and mouse actions. To annotate a region of a recording, a user clicks-and-
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Fig 2. A and B sample chirps. Each subplot is 6.25s long and shows a run of the same type of chirps.

https://doi.org/10.1371/journal.pone.0288172.9g002

drags a box on the desired region. A zoom-in of the box is shown in a separate panel for quality
assurance. The user then presses a key specified in a configuration file to save the annotated
region as a specific class. Users can easily specify their own key mappings through a python
dictionary. The labeling app can accommodate an arbitrary number of sound classes. A screen
capture of the app is shown in Fig 3.

3 Design and implementation
3.1 Core model architecture

At its heart, DISCO is a tool for temporal segmentation of noises in spectrograms, and employs
a U-Net based architecture [18] as its base model architecture. U-Nets are a class of convolu-
tional neural networks designed for high-resolution multi-class image segmentation. The clas-
sical 2-dimensional (2-D) U-Net combines a downsampling and upsampling path to perform
image segmentation. The combination of paths allows for high- and low-level concepts to be
passed through the network with minimal information loss. A spectrogram is effectively a 2-D
image, so a 2-D U-net seems to be a natural choice for segmentation. However, using a 2-D U-
net with conventional 3x3 kernels would force the 2-D model to learn that signals along the
frequency axis are related for a given timepoint. In contrast, a 1-D U-net allows direct enforce-
ment of the fact that a given timepoint is associated with a long vector of frequency
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Fig 3. A screenshot of the labeling app. In the top spectrogram, the user is in the middle of a click-and-drag action around time points 90-180,
resulting in the blue bounding box in that region. The bottom spectrogram shows a zoomed-in representation of that selected region.

https://doi.org/10.1371/journal.pone.0288172.9003

information. As such, a 1-D U-net is a better match for temporal segmentation, and serves as
the basis of segmentation in DISCO. The design of the 2-D U-net easily translates to segmenta-
tion of 1-D temporal signals, and DISCO implements a 1-D variant by replacing all 2-D convo-
lutions with 1-D convolutions. DISCO by default uses a version of the U-Net with 1M
parameters by reducing the number of convolutional filters in each layer relative to the imple-
mentation in [18].

Many applications of convolutional neural networks to sound data treat the spectrogram
explicitly as a 2D image. In contrast, each DISCO 1-D U-Net treats a spectrogram as a
sequence of time-oriented observations, and applies convolutions along the time axis. A large
convolutional kernel is used along the frequency axis of the spectrogram in order to simulta-
neously combine all frequency information. Consider, for example, the differences in A and B
beetle chirps; distinguishing between chirps does not require vertical spatial information—the
most telling difference between A and B chirps is the temporal pattern of multi-frequency
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pulses. Though this pattern holds for some sound data, other sound data (like bird song) can
occupy unique frequency bands, so that localization in both time and frequency is important
for classification. To support labeling of such data, DISCO also implements a 2-D U-Net,
which can be enacted through configuration settings.

The beetle dataset consists of three sound types: A, B, and background. The U-Net architec-
ture has a final three-way softmax layer, designed to assign each time point to one of those
three classes. The softmax layer produces three floating point numbers that sum to one for
each time point in the spectrogram. Softmax values for a given point can be interpreted as the
probability the model assigns to the time point as belonging to each specific class. The number
of classes (and accordingly the size of the softmax layer) can be controlled via a configuration
file.

3.2 An ensemble of classification models

Sound recordings are often noisy and can contain anomalous sounds, leading to a level of
error and uncertainty. Though softmax values serve as a form of labeling confidence, better
calibrated estimates of predictive uncertainty are produced by aggregating the results of an
ensemble of models [19, 20]. Moreover, the collective decision produced by an ensemble is less
likely to be in error than the decision made by any of the individual networks [27, 28].

Specifically, a model ensemble is a collection of models that each produce an independent
prediction for a given set of data. Each member of the ensemble learns a unique representa-
tion of signals in the dataset during training. Low-quality or noisy signals will be handled dif-
ferently by each member of the ensemble, as each has been trained with differently initialized
weights and/or a slightly different subset of the dataset. Uncertainty can be estimated by
comparing the predictions of each member—high-fidelity signals will have concordant pre-
dictions while low-fidelity or uncertain predictions will differ between members of the
ensemble.

For this reason, DISCO evaluates a sound recording with an ensemble of models, rather
than applying a single trained U-net model. Two alternative ensembling techniques are
implemented in DISCO: bootstrap aggregation (bagging) and a technique that we call “ran-
dom initialization”. Bagging [20] trains multiple models on different parts of the same data-
set. Each model is trained with a subset of the dataset computed by sampling from the
original dataset randomly with replacement until the size of the original dataset is reached.
We call models trained with this ensembling technique “bootstrap” models, and each boot-
strapped model uses a different initial set of randomly initialized weights. “Random initiali-
zation” (random init hereafter) relies simply on the random initialization and non-linear
training of neural network weights to encode different biases [19]—each random init model
is initialized with a different random seed and trained on the full training dataset. In bag-
ging, each model is exposed to different facets of the entire dataset and may learn different
labeling rules due to the unique biases encoded in the subsampled set. In random init, differ-
ences in ensemble members are entirely due to the stochastic nature of initialization and
training. To gain insight into the utility of these alternative ensemble training strategies, we
test six different ensembles: random init and bootstrap, testing each with member count of
2, 10, and 30.

3.2.1 Classification and uncertainty quantification with the ensemble. For each time
point, DISCO aggregates softmax values from ensemble models in two ways: it computes
both a median softmax value and a measure of softmax variability. To arrive at a class predic-
tion for a given point, DISCO computes the median softmax value over the members in the
ensemble, and the class with the highest median softmax is used as the prediction of the
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ensemble. Uncertainty is estimated from the collection of softmax predictions via the com-
putation of inter-quartile range (IQR), which computes the difference in softmax value
between the 75 percentile softmax value among ensemble members and the 25 percentile
softmax value. IQR effectively encodes different situations of ensemble predictions—an
ensemble of 10 members in which 8 share very similar softmax values will have high certainty
even if the remaining two members have discordant predictions. Each time point has three
IQRs, one for each class. The IQR of a time point is the one for the predicted class. If IQR is
above the given threshold, then the time point defaults to a background classification. The
incorporation of IQR allows DISCO users to base predictions on an uncertainty threshold.
Desired precision/recall trade-offs can be reached via IQR tuning. IQR ranges from 0 to 1 as
do the softmax values.

3.2.2 Evaluation of spectrograms. DISCO can ingest and predict arbitrarily long
sequence. Instead of predicting long sound recordings in one forward pass DISCO splits up
the input of novel sound files to ease computational burden. Seamless predictions for the test
files are computed using a 1-D version of the overlap-tile strategy proposed in [18].

3.3 Analysis setup

For beetle chirp labeling experiments, train and validation labels were collected differently
from test labels. For train/validation data, spectrograms of beetle recordings were labeled by
multiple different annotators using a combination of DISCO’s labeling tool and the RAVEN
software suite. The train and validation labels contained a considerable amount of label noise
due to differences in annotator precision. In particular, the beginnings and ends of chirps are
often difficult to precisely identify since they may look like background noise or degraded ver-
sions of the true chirp. Different annotators may have included or excluded low-confidence
parts of chirps, effectively extending or truncating the chirp in time.

Because recordings may have had different background sound conditions or beetle chirp
volume, annotation of training/validation data was collected across multiple recordings, so
that the training set included a diverse range of sounds. The resulting annotations were split
into train and validation sets by randomly partitioning the labeled sounds into two sets con-
taining 88% and 12% of total. Model weights were trained with the Adam [29] optimizer for
100 epochs. Some hyperparameters—the number of FFTs in the spectrogram calculation,
high-pass filter frequency, and learning rate—were optimized using an in-house implementa-
tion of the Hyperband [30] algorithm. These hyperparameters were only selected once, and
then set as defaults during model training. The model’s performance on the validation set was
computed at the end of each epoch, and a snapshot of model weights was saved. At the end of
the 100 epochs, the set of model weights that had the highest validation performance was kept
as a set of weights used in the ensemble. This process was repeated once for each desired
ensemble member.

The test set was labeled by a single annotator with instructions to (1) establish consistent
rules about beginnings and ends of chirps and (2) to only annotate regions of chirps for which
the annotator was certain of the label (this high-confidence labeling was also a guiding princi-
ple for training data). To ensure complete independence between train and test set, the test set
was gathered from three recordings that were not in the train or validation set. It contains
1757 examples—667 A chirps and 1090 B chirps. Though training data consisted of short
sound clips, each test file was a continuous recording of sound, and every time point was
labeled as belonging to one of the three target classes. This replicates the intended use of
DISCO as a tool for annotating long recordings.
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3.4 Label smoothing with a hidden Markov model

The ensemble of CNNs in DISCO is not constrained to output continuous predictions. Despite
being very accurate, the ensemble occasionally produces erroneous predictions—for example,
a long region of “background” prediction punctuated by unrealistic single time point predic-
tions of A or B chirps. The inverse can also occur, in which A or B chirps are split by short
regions of background predictions. DISCO can optionally apply a hidden Markov model
(HMM) to the predictions of the ensemble, to smooth unlikely interruptions in DISCO’s pre-
dictions. The HMM architecture is simple, and controlled by configuration; a template and
example are provided in the documentation.

The HMM used for beetle chirps encodes the transition rules that were observed during
labeling. For example, A and B chirps can never be directly adjacent to one another due to the
physical mechanism of generation. The HMM is shown in Fig 4. The application of the HMM
was observed to aid qualitative performance.

3.5 Software engineering

DISCO is implemented in python3, specific dependencies on the Torchaudio library (for
audio processing), the PyTorch library (for neural networks), and the pomegranate library (for

Fig 4. Diagram of the HMM used to smooth data. The X state corresponds to all background sounds.
https://doi.org/10.1371/journal.pone.0288172.g004
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hidden Markov models). It is accessible via a pip install or github, and comes with six com-
mand-line utilities: disco (label, extract, shuffle, train, infer,
visualize).Inputand output labels of sound recordings are in the format accepted by
Cornell’'s RAVEN software. Thorough documentation on how to use DISCO is available on
github (https://github.com/traviswheelerlab/disco), and DISCO is distributed with a BSD
3-clause license.

4 Results

4.1 Measuring accuracy

4.1.1 Data input, accuracy measure. The three fully-annotated test files contain 1757 A
and B chirps. We consider two metrics to explain performance: point-wise and event-wise
accuracy. Point-wise accuracy is the proportion of all time points that are classified correctly.
It is computed by comparing each labeled time point with the corresponding prediction, and
is analogous to conventional measures of segmentation accuracy.

Event-wise accuracy, in contrast, is a more realistic assessment of DISCO’s performance
from the user’s perspective—it measures the ability of the ensemble to detect individual sound
events, and only considers runs of contiguous time points assigned to the same class. Specifi-
cally, an event was defined as a region of contiguous classifications. Extremely short events
were removed by establishing minimum length threshold for events: 10 spectrogram time
units, or 0.04 seconds (0.04s is 80% of the shortest chirp in the test set). Implementation of
such a threshold is a simple matter of post-processing results from DISCO or any other tool. A
predicted noise event is then considered a true positive if it lies within a labeled region of the
same class and is above the minimum length. False positives are defined as predicted events
that do not reside in a labeled region of the same class.

Both point and event-wise accuracy rely on ensemble predictions for each time point in the
input spectrogram. Each prediction is associated with an IQR value describing uncertainty.
We tested the performance of the ensemble as a function of IQR by considering the full range
of possible IQR thresholds in a precision-recall plot, and converting above-threshold IQR pre-
dictions into the background class. Increasing the IQR threshold causes more suspect time
points to be labeled as A or B, decreasing the precision and increasing recall.

Precision for event-wise accuracy is a measure of the reliability of a predicted label, and is
defined as

true positives

true positives + false positives

while recall is a measure of the model’s ability to identify all instances of a class, and is defined
as

true positives

true positives + false negatives

More restrictive IQR thresholds reduce the number of chirp classifications (both correct and
incorrect), resulting in the observed precision/recall curve. Current analysis tools (like Son-
gExplorer or DeepSqueak [15, 16]) do not provide an option to select classification thresholds
based on uncertainty estimates.

4.1.2 Accuracy in beetle chirp data. 4.1.2.1 Event-wise performance. DISCO’s event-wise
performance on the test set is shown in Fig 5. DISCO was run with default parameters, includ-
ing the default ensemble configuration (random init, 10 member ensemble). The plot was pro-
duced by varying IQR thresholds from 0 to 1—as the threshold is allowed to grow, an
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Fig 5. DISCO’s performance on the test set with default parameters.
https://doi.org/10.1371/journal.pone.0288172.9g005

increasing number of sound events (true and false) are labeled. This produces a monotonic
increase in recall, but a fluctuating measure of precision. Recall does not reach 100% for A or B
chirps because in some cases the ensemble incorrectly classifies A or B chirps as background
with high confidence.

Though these precision results at high recall in noisy data are encouraging, we suggest
that they may substantially overstate concerns of false prediction. As discussed in Methods,
test data were labeled based on spectrogram only, and chirps were only labeled when the
annotator was confident in non-background classification. The byproduct of this conserva-
tive labeling is that many actual chirps have likely gone unlabeled in the test set because they
did not visually stand out from background. To gain better insight into this possibility, we
manually evaluated dozens of predicted A and B labels deemed to be incorrect by the bench-
mark, by both reviewing the spectrogram and listening to the corresponding sound block. In
this review, we found that a majority of the “false positives” do in fact appear to be chirps. In
these cases, the spectrogram typically presents a visually-ambiguous event that (with the hint
of the network) appears to be a plausible sound, and the audio clip presents a sound that con-
vincingly matches a chirp. Fig 6 presents two such examples of cases in which the signal is
visually ambiguous, but (with the hint of the network) the classification of the ensemble is
confirmed by listening to the recordings. The A chirps in Fig 6 either look unlike typical A
chirps (subplot on the left) or are surrounded by enough background noise to be partially
obscured.
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Fig 6. Two examples of chirps identified as “false positives” in our analysis—They were called A chirps by DISCO, but labeled background by the
human annotator. The right sub-plot contains a large amount of background beetle movement noise, obscuring the desired signal. Evaluation of the
source audio for these two “false positives” confirms that they do, indeed, appear to be A-type chirps.

https://doi.org/10.1371/journal.pone.0288172.9g006

4.1.2.2 Ensemble technique. We explored the influence of alternative approaches to provid-
ing ensemble members with initialization and training data, with results displayed in Fig 7.
The figure presents a record of ensembles with 10 members each. The bootstrapped ensembles
appear to perform better than the random init ensembles on A chirps, and the inverse for B
chirps. The discrepancy in A chirp performance between ensembles is most likely explained by
the label uncertainty discussed above. Randomly initialized ensembles ingested more unique
A chirps, leading to more diverse representations of the A class. Bootstrapped ensembles, in
contrast, could learn more precise representations because of the smaller set of A chirps avail-
able. The randomly initialized ensembles do better than bootstrapped ones on B chirps since B
chirps contain less label noise in the training set.

4.1.2.3 Point-wise performance, ensemble size. We evaluated pointwise accuracy as a func-
tion of both ensemble type and number of ensemble members, with results presented in Fig 8.
All permutations perform similarly for B chirps. On A chirps, ensembles of 10 and 30 mem-
bers perform better than ensembles with 2 members. This agrees with observations in litera-
ture: more ensemble members typically yield superior performance. The differences in
performance between A and B chirps are partially explained by the difficult nature of collecting
ground truth labels for chirps. A chirps feature a slowly decaying tail that merges into back-
ground noise, so that determining a precise end to A chirps can be guesswork.

Event-wise metrics in Fig 7 are almost 20 points better than point-wise metrics in Fig 8,
because event-wise results are not influenced by minor point-wise errors. In general, we rec-
ommend using a 10-member ensemble as it balances performance increases and compute
requirements.

4.2 Performance with introduction of artificial noise

To demonstrate that DISCO works under a variety of sound conditions, we artificially added
noise to the beetle test set and calculated performance. Gaussian noise with mean 0—often
called “white noise”—was added to the pre-spectrogram waveform at different signal-to-noise
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Fig 7. 10-member ensembles with different initialization techniques. Each experiment was replicated four times (transparent lines), and the median
value of the predictions for each recall point were computed (solid lines).

https://doi.org/10.1371/journal.pone.0288172.9g007

ratios (SNRs). SNR is a measure that compares the strength of a signal to the strength of back-
ground noise, specifically the ratio of the power of the signal to the power of the noise. We
take the mean square of an audio signal as its power in Eq 1 [31].

2

RMSsignal
SNR,; = 10log,, o™ (1)

noise

A chirp B chirp

—e— 2 member, random init.

—e— 2 member, bootstrap

| —=— 10 member, random init.

—e— 10 member, bootstrap
30 member, random init.

—e— 30 member, bootstrap

precision

T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
recall

Fig 8. Point-wise accuracy of different ensembles on the test set.

https://doi.org/10.1371/journal.pone.0288172.9g008
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To generate noise as specific signal-to-noise ratios (in dB), we use the following equation:

RMS?
RMS, = f[|—em (2)

noise 1
1 OSNRdB /10

Since the standard deviation of Gaussian noise with mean zero is the same as the root-mean-
square, we can generate Gaussian noise at specific SNRs by substituting RMS in Eq 2 into the
formula for a Gaussian. Generated noise is then added pointwise to the input signal at different
SNRs. The initial data already contains a significant amount of background noise from the sen-
sitivity of the microphone, so that our SNR values are surely overestimated. At SNR = 50, there
is little added noise distinguishable from the original recordings. When SNR = 30, chirps are
barely perceptible to the human ear.

Fig 9 shows spectrograms computed from recordings with different amounts of added
noise. At very low signal-to-noise ratios, the underlying signals in the uncorrupted recording
are all but invisible. As SNR grows, the signals become more visible.

Fig 10 shows the performance of a randomly initialized 10-member ensemble on the same
test set with different levels of noise. The flat high-recall regions in both figures correspond to
cases of high SNR (low relative noise). Performance drops precipitously at about the point that
human identification of sounds becomes impossible.

spectrograms at different sn ratios

Fig 9. 10 member random init ensemble performance with different levels of noise. As signal-to-noise (SNR) decreases, the synthetically generated
white noise increasingly interferes with recognition of sound events.

https://doi.org/10.1371/journal.pone.0288172.9g009
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Fig 10. Spectrograms computed from waveforms with different signal-to-noise ratios (SNRs). As SNR decreases, the sounds in the recording
become less visible.

https://doi.org/10.1371/journal.pone.0288172.9010

In the noise experiment, the maximum median classification was selected, with no IQR
filtering (effectively IQR threshold = 1). Not surprisingly, labeling uncertainty grows with
increasing noise levels, as shown in Fig 11. The trend reverses at very high noise levels
(SNR = 15in Fig 11). IQRs closer to 0 dominate, as the ensemble is certain most points are
background. At moderate levels of noise—SNR near 30, the limit of the our ability to hear
the chirps—IQR distributions demonstrate longer tails, indicating higher overall
uncertainty.

4.3 Impact of hidden Markov model smoothing

Fig 12 contains examples of the results of applying the smoothing hidden Markov model
(HMM) after ensemble-based labeling. In the first subplot, a small background prediction in a
long region of B predictions is converted to the correct class. In the second subplot, a unrealis-
tic transition is correct. In the third, a low-confidence A chirp prediction is converted to back-
ground. The HMM smooths small interruptions in predictions. We observed that it
occasionally smooths true positive predictions that are smaller than the minimum length
threshold. This often happens with quiet or low-fidelity chirps, where only a small region is
clearly visible to the ensemble. One benefit of this smoothing is that it removes very short
sound elements that may pose a problem for downstream analyses. We also highlight that the
precise boundaries of each event are quite difficult to establish; in these cases, each manually-
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Fig 11. Distribution of maximum IQR values for each point in the test set, as a function of added noise. Maximum IQR values are low when all
models agree on classification, i.e. when noise is low (SNR > 30, so true chirps are fairly easy to identify) or very high (SNR < 20, so noise drowns out

almost all chirps). For intermediate SNR values, some ensemble members may recognize a chirp while others do not, leading to higher typical IQR
values.

https://doi.org/10.1371/journal.pone.0288172.9011

selected label has a range that disagrees with the post-HMM range, which itself appears to be
plausibly the correct range.

4.4 Run time

On average, DISCO models took 7 minutes on an NVIDIA Tesla V100 GPU with 32Gb of
VRAM to train for 100 epochs. On the same GPU, DISCO took 65 minutes to analyze 117Gb
of recordings—280 separate files containing 179 hours of data.

4.5 Evaluation on alternative sound type—right whale

As DISCO was designed to be a general-purpose sound annotation tool, we analyzed another
sound dataset of right whale calls [32]. This is a dataset of up-calls from right whales collected
by underwater microphones on buoys. The data consists of short slices of larger recordings—
each slice contains either just background noise or a right whale call surrounded by a small
amount of background noise. Each slice is associated with one label even though containing
multiple time points (which, in the case of whale call slices, may actually belong to different
classes). Because this is a binary classification problem, DISCO defaults to a simpler final
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Fig 12. Results of applying the smoothing HMM. Small discontinuities in the predictions are converted to the correct class automatically. This figure
also demonstrates the challenge of selecting correct chirp boundaries. In the two chirps on the left, the model extends the label a bit beyond the
manually-selected boundary, and the choice appears to be reasonable. In the rightmost chirp, the model cuts a chirp call short; though the longer
manual choice is likely the correct label, boundary ambiguity is clear.

https://doi.org/10.1371/journal.pone.0288172.9012

Table 1. Confusion matrix showing DISCO’s performance on the whale dataset.

Predicted
true false
Actual true 975 431
false 188 4406

https://doi.org/10.1371/journal.pone.0288172.t001

softmax layer (a single sigmoid activation for binary classification) and uses binary cross
entropy as the loss function. At evaluation time, the model produces a prediction for each time-
point in each short slice. We implemented a simple post-processing analysis to take the most
commonly occurring prediction as the model’s prediction for each sound slice. Results without
hyperparameter tuning are shown in Table 1. Overall accuracy is 89%. We note that this analy-
sis required development of 35 new lines of code to accommodate the specific format of the
right whale dataset. Templates for extending DISCO in this way are available in the github
repository.

Fig 13 shows a few examples of true positive, true negative, false negative, and false 430 pos-
itive classifications by DISCO on the whale data.

5 Conclusion

DISCO is a novel toolkit for sound classification that quantifies uncertainty and accounts for
transitions between different sound classes through the application of a hidden Markov
model. It includes sub-tools for labeling training data and efficiently annotating novel sound
files. Using an event-based accuracy metric that closely relates to typical labeling end goals to
quantify performance, we show that DISCO performs well on test datasets consisting of both
beetle chirps and whale songs. DISCO also produces calibrated estimates of uncertainty via the
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Fig 13. Randomly-selected example spectrograms for correct and incorrect classifications by DISCO on the whale data.

https://doi.org/10.1371/journal.pone.0288172.9g013

application of a model ensemble. One advantage of this feature is that it is possible to tune
DISCO to output only highly-confident sound event labels. DISCO is freely available via pip
and github, requires minimal code changes to operate on a new dataset, and is designed to be
easily editable and comprehensible.
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