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Client Selection for Wireless Federated Learning

with Data and Latency Heterogeneity
Xiaobing Chen, Xiangwei Zhou, Hongchao Zhang, Mingxuan Sun, and H. Vincent Poor

AbstractÐFederated learning is a distributed machine learning
paradigm that allows multiple edge devices to collaboratively
train a shared model without exchanging raw data. However,
the training efficiency of federated learning is highly depen-
dent on client selection. Moreover, due to the varying wireless
communication environments and various computation latencies
among clients, selecting clients randomly or uniformly may not
be optimal for balancing data diversity and training efficiency.
In this paper, we formulate a new latency-minimization prob-
lem that simultaneously optimizes client selection and training
procedures in federated learning, which takes into account the
data and latency heterogeneity among clients. Given the non-
convexity of the problem, we derive a new convergence upper
bound for federated learning with probabilistic client selection.
To solve the mixed integer nonlinear programming problem, we
introduce a hybrid solution that integrates grid search techniques
with the polyhedral active set algorithm. Numerical analyses and
experiments on real-world data demonstrate that our scheme
outperforms existing ones in terms of overall training latency
and achieves up to 3 times acceleration over random client
selection, especially in scenarios with highly heterogeneous data
and latencies among clients.

Index TermsÐFederated learning, client selection, optimiza-
tion, data heterogeneity, latency heterogeneity.

I. INTRODUCTION

The ubiquitous presence of edge devices, such as mobile

phones and Internet of Things (IoT) sensors, is introducing

new paradigms for collaborative machine learning, among

which federated learning is gaining significant attention. This

approach is particularly appealing in edge networks because of

its ability to facilitate decentralized learning over edge devices

while helping preserve the data privacy of these devices.

In a typical federated learning setup, selected devices train

models on their local data and share model updates with

a central server that aggregates these updates to improve a

global model. However, environments such as IoT and edge
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Fig. 1: Data and latency heterogeneity in federated learning.

Clients exhibit diverse data qualities and experience various

latencies. In each round, participants are selected according to

the probability {pi}. δti denotes the latency of the i-th client

in the t-th round.

networks are characterized by significant data and latency

heterogeneity among devices. Therefore, the efficiency of the

training process in federated learning faces several challenges

[1], such as high communication costs between clients and the

server, data heterogeneity among clients [2], and substantial

differences in the response times of clients, as shown in Figure

1.

The overall training time of federated learning is determined

by two factors: the number of global rounds required for

model convergence and the time cost for each training round.

To reduce the overall training time of federated learning,

recent studies have explored various strategies, including

model compression [3±9], model convergence acceleration

[10±12], and judicious participant selection [13±15]. Given the

server’s limited communication resources and the imperative

of maintaining efficient training, only a subset of clients are

selected to participate in each round of training. Hence, the

client selection strategies hold a critical role in determining

both the performance of the model and the efficiency of the

training process. On one hand, the diversity and quality of

the data of selected clients are crucial to the generalizability

of the global model. On the other hand, the various training

latencies of the clients should be taken into account to improve

the training efficiency of the federated learning system.

Given the data heterogeneity among clients, a straightfor-

ward strategy to facilitate faster model convergence is to
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prioritize participants who have high-quality data and can

substantially influence model training. Existing studies have

widely adopted importance sampling techniques, in which

participant selection dynamically evolves based on defined

criteria throughout the training process [16±21]. Data-based

criteria and model-based criteria are two major categories

that determine the importance of clients. Data-based criteria

leverage the intrinsic properties of local datasets, consider-

ing elements such as the volume of data samples and the

divergence in gradients or losses across data sets [16±18, 22].

Instead, model-based criteria prioritize clients with high model

divergence from the global model [19], high angle divergence

from the global model [20], or high magnitude of the local

model [21].

While importance sampling methods have indeed facilitated

enhancements in both performance and training efficiency in

comparison with random client selection [18], they have some

intrinsic constraints and pose serious challenges. Because

most of the importance sampling methods are heuristic, the

effectiveness of sampling designs can only be evaluated by

empirical experiments. It is challenging to provide the perfor-

mance guarantee for these algorithms with respect to the con-

vergence rate and model accuracy [23]. Moreover, manually

defined criteria make it harder to strike the tradeoff between

exploitation, which focuses on selecting important clients,

and exploration, which aims to involve a diverse range of

clients. Another issue is the latency heterogeneity; clients with

valuable data might exhibit slow training times, potentially

extending the overall training time. To alleviate this, some

strategies establish deadlines for model submissions, such as

enforcing a cut-off [24], instituting a soft deadline [18], and

applying a dynamic deadline [25]. Other strategies schedule

the model transmission of participants in consideration of

latency heterogeneity, such as round Robin scheduling [26],

latency clustering [27] and multi-armed bandit scheduling

[28].

In contrast to potentially biased importance sampling meth-

ods, probabilistic client selection strategies have demonstrated

stronger convergence guarantees and remain unbiased in com-

parison with full participation methods [12, 29]. The founda-

tional studies, including the federated optimization [30] and

the Federated Averaging algorithm (FedAvg) [31], have pre-

sented a uniform selection scheme, where a subset of clients

are randomly selected in each round of training. However,

this typically exhibits a suboptimal convergence rate [10].

To improve FedAvg, extra prior knowledge has been used in

determining client selection probabilities, taking into account

factors like data volume [10], employing clustered sampling

[32, 33], and analyzing the norms of the clients’ model

parameters [15]. However, most of these efforts neglect the

impact of latency heterogeneity on the probability of client

selection. A notable exception is a recent study that proposes

an adaptive client sampling algorithm, which factors in both

data and system heterogeneity to address latency issues [29].

However, this method is based on convergence analysis suited

for strongly convex situations, which does not fully align with

the non-convex characteristics commonly found in real-world

federated learning applications.

To address the limitations of existing client selection meth-

ods, we formulate a nonlinear optimization problem with the

aim of reducing overall training time. This produces an optimal

probabilistic client selection scheme grounded in non-convex

convergence analysis that accounts for both data and latency

heterogeneity among clients. The main contributions of our

paper are as follows:

1) We formulate a new latency-minimization problem that

simultaneously optimizes client selection and training

procedures in federated learning. This optimization prob-

lem consists of key variables such as the participant

selection probability, the number of global rounds, and

the number of participants. Our problem formulation

incorporates both system and data diversity to ensure its

comprehensiveness. Furthermore, we study an unbiased

participant selection scheme, guaranteeing the model con-

vergence.

2) We derive a new convergence upper bound for federated

learning with probabilistic client selection in non-convex

settings. Our results reflect a convergence rate of O( 1
T
).

This completes the convergence analysis for federated

learning in both convex and non-convex cases.

3) We derive the analytical expression of the overall latency

of federated learning with probabilistic participant se-

lection and build the analytical relationship between the

latency, convergence constraint, system and data hetero-

geneity, and control variables. To address the complexities

of the mixed integer nonlinear programming problem,

we introduce a hybrid solution that integrates grid search

techniques with the polyhedral active set algorithm.

4) Through numerical analyses and experiments on real-

world data, we demonstrate that our proposed client

selection scheme is more efficient in reducing overall

training time in comparison with existing methods.

In the remainder of this paper, we first introduce the system

model and problem formulation in Section II. Next, Section

III delves into the convergence upper bound of our algorithm

and the solution to the optimization problem. Following this,

we present numerical analyses and experimental results on

real-world datasets in Section IV. We conclude this paper in

Section V.

II. SYSTEM MODEL

A. Federated Learning

We consider a federated learning system with a server and N
clients with index set N = {1, 2, ..., N}, where the i-th client

owns its private dataset Di = {ξij | j = 1, 2, ..., |Di|} with size

|Di|. Here, ξij denotes the j-th data sample at the i-th client.

The whole dataset across clients is denoted as D =
⋃

i∈N Di

with size |D|.
The goal of federated learning is to find an optimal model

parameter x to minimize a global objective function f(x) over

dataset D, which can be formulated as

min
x

f(x) :=

N
∑

i=1

diFi(x), (1)
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where di = |Di|/|D| denotes the ratio of the size of the

local dataset at the i-th client to the whole dataset and
∑N

i=1 di = 1. Fi(x) is the local objective function for the

i-th client, computed over dataset Di as

Fi(x) :=
1

|Di|
∑

ξi
j
∈Di

Fi(x; ξ
i
j). (2)

Client selection typically occurs during each round of

federated learning to prevent network congestion due to full

participation. This partial participation was proposed as Fe-

dAvg [31] by uniformly sampling participants.

We generalize FedAvg as shown in Algorithm 1, which

allows probabilistic client selection. Moreover, we will show

that the aggregated model in Algorithm 1 is unbiased to the

one with full participation later. Specifically, the algorithm

executes for T rounds in total after the stopping criterion is

satisfied. For each round, there are three major stages:

1) Global model broadcasting. The sever samples M clients

to participate in the t-th round of training to form

Mt, according to the client selection probability p =
[p1, p2, ..., pN ]. The global model weights, xt, are broad-

cast to the selected participants.

2) Local updating. The i-th participant initializes its local

model yit,0 with the global one and performs model train-

ing on the private dataset Di by applying the stochastic

gradient descent (SGD) algorithm as follows:

yit,j+1 ← yit,j − γ∇Fi(y
i
t,j , ξ

i
j), (3)

where j = 0, 1, 2, ..., I − 1 denotes the epoch index of

local updating and γ denotes the step size. ξij ∈ Di is a

randomly selected data sample. After I epochs, the local

model weights will be submitted to the server.

3) Aggregation. After the server successfully receives all the

model updates from the selected participants, aggregation

is performed to update the global model:

xt+1 =
∑

i∈Mt

di
Mpi

yit,I . (4)

The stopping criterion is as follows:

E ∥∇f(xT )∥2 ≤ ϵ, (5)

where ϵ is a small number.

In Algorithm 1, participation probability p should be prop-

erly chosen in consideration of data heterogeneity and latency

differences among clients. Furthermore, the number of partic-

ipants M and the number of global rounds T also affect the

overall training time. Intuitively, a larger M and a greater T
enhance the convergence of the global model. Nevertheless, a

larger M increases the likelihood of selecting clients with the

poorest response time. This straggler effect may consequently

prolong the federated learning training process. The selection

of T follows similar considerations.

Therefore, to achieve time-efficient training and model

convergence, we explore a novel training scheduling policy

by solving a joint optimization problem of total time cost and

model convergence, which yields the optimal client-selection

probability p, number of participants M , and number of global

Algorithm 1: Generalized FedAvg with probabilistic

participation

Input: x0, γ, I,p
Output: {xr : ∀r}

1 for t = 0, 1, ..., T − 1 do

2 select M participants according to p with

replacement to form Mt;

3 for i ∈Mt in parallel do

4 yit,0 ← xt;

5 yit,I ← ClientUpdate(yit,0, γ);

6 end

7 xt+1 ←
∑

i∈Mt
di

Mpi
yit,I ;

8 end

9 ClientUpdate (yit,0, γ):

10 for j = 0, 1, ..., I − 1 do

11 yit,j+1 ← yit,j − γ∇Fi(y
i
t,j , ξ

i
j);

12 end

rounds T .

B. Latency Model

For each training round, there are four phases where latency

occurs: global model broadcasting, local computing, model

uploading, and model aggregation. However, the time cost of

model aggregation is negligible given the simple operation.

Similar to previous work in wireless federated learning [34],

we make an assumption that each edge device possesses a

comparatively consistent computational capability yet operates

within varying communication environments. Therefore, we

use δti to denote the response time of the i-th client in the

t-th round, resulting from global model broadcasting, local

computing, and model uploading. Different clients may exhibit

various latencies. Inspired by the scheduling optimization

theory [35], we adopt the short-processing time first rule to

schedule the model transmission of participants. In the t-th
round, we can sort the latency of each client in ascending

order as δt1 ≤ δt2 ≤ ... ≤ δtN .

In synchronous federated learning, the server waits for all

the model updates from participants to be received and then

starts to aggregate the models. As a result, the latency for the

t-th round is determined by the client with the longest response

time, i.e.,

∆t = max
i∈Mt

δti . (6)

Accordingly, the overall latency for T rounds of training is

∆ =
T
∑

t=1

∆t. (7)

C. Client Selection Model

We assume that all the clients are willing to participate in every

round of federated learning training once they are selected.

We consider general probabilistic client selection according

to p = [p1, p2, ..., pN ] in each round, where
∑N

i=1 pi = 1.

Similar to [29, 36, 37], the t-th round of participant setMt is
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generated by selecting for M times from N clients according

to p with replacement, which means that the same client could

appear in Mt multiple times. The sampling scheme without

replacement can also be extended from our work, but for ease

of exposition, we only discuss sampling with replacement.

Let Xt
i be a random variable denoting the number of times

the i-th client is selected in the t-th round. Then, Xt
i follows

a binomial distribution with parameters M and pi, i.e., Xt
i ∼

Binomial(M,pi). The expectation of Xt
i is given by

E[Xt
i ] = Mpi. (8)

As a result, the expected model updates from the i-th client

can be expressed as

Ep(y
i
t,I) = E[Xt

i ]y
i
t,I = Mpiy

i
t,I . (9)

D. Problem Formulation

As discussed, client selection probability p determines the

probability of selecting the straggler, which greatly affects

the per-round latency. Furthermore, more training rounds T
and a larger number of participants M are beneficial to the

model convergence, while they potentially increase the overall

latency.

Therefore, we formulate a joint optimization problem with

respect to p, T , and M to minimize the overall latency of

federated learning training while satisfying the model conver-

gence requirement. The problem can be formulated as follows.

min
p,T,M

T
∑

t=1

max
i∈Mt

δti (P1)

s.t. E ∥∇f(xT )∥2 ≤ ϵ, (P1a)

N
∑

i=1

pi = 1, (P1b)

T ∈ Z
+,M ∈ Z

+, (P1c)

where E ∥∇f(xT )∥2 denotes the expected gradient norm of

f after T rounds of training where the randomness is from

local SGD and client selection. (P1a) denotes the model

convergence constraint and (P1b) is a basic constraint of a

probability distribution.

In practice, maxi∈Mt δti is a random variable due to the

probabilistic client selection, which makes it impossible to an-

alytically solve the problem. Instead, we change the objective

to be the expected overall latency, i.e.,

min
p,T,M

E(∆). (10)

Moreover, we need to explicitly express E ∥∇f(xT )∥2 w.r.t

p, T , and M , which will be discussed in III-C.

III. TRAINING SCHEDULING WITH CLIENT-SELECTION

PROBABILITY

In this section, we aim to transform Problem (P1) into a more

tractable form. Firstly, we derive the analytical expression of

E(∆). Through convergence analysis, we obtain the upper

bound of E ∥∇f(xT )∥2 and utilize it to reformulate constraint

(P1a). Subsequently, we formulate and solve an alternative

optimization problem, (P2), to determine the optimal training

scheduling in terms of p, T , and M .

A. Analytical Expression of Expected Latency

Let qi denote the probability of the i-th client being selected

in the t-th round and being a straggler. According to (6) and

(7), we have the expected overall latency as follows:

E(∆) =

T
∑

t=1

N
∑

i=1

qiδ
t
i

= T

N
∑

i=1

qiδi,

(11)

where δi = 1
T

∑T
t=1 δ

t
i denotes the average respond time of

the i-th client.

Moreover, the i-th client being a straggler means that only

clients 1, 2, ..., i are candidates of participants in this round.

Therefore, we have

qi = P(i is a straggler)

=
M
∑

m=1

(

M

m

)

pmi





i−1
∑

j=1

pj





M−m

=





i
∑

j=1

pj





M

−





i−1
∑

j=1

pj





M

,

(12)

where the last equality can be obtained according to the

Binomial Theorem.

As a result, the analytical expression of the expected overall

latency is given by

E(∆) =

N
∑

i=1











i
∑

j=1

pj





M

−





i−1
∑

j=1

pj





M





δiT. (13)

Let li =
(

∑i
j=1 pj

)M

, (13) can be rewritten as

E(∆) =

N
∑

i=1

(li − li−1)δiT

(a)
=

[

N
∑

i=1

liδi −
N
∑

i=2

li−1δi

]

T

=

[

N
∑

i=1

liδi −
N−1
∑

i=1

liδi+1

]

T

(b)
=

[

δN −
N−1
∑

i=1

li(δi+1 − δi)

]

T

=






δN −

N−1
∑

i=1





i
∑

j=1

pj





M

(δi+1 − δi)






T, (14)

where (a) uses l0 = 0 and (b) uses lN = 1.
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B. Adjusted Aggregation Weights for Probabilistic Selection

Despite only M participants being selected for the t-th round,

we demonstrate that probabilistic client selection remains

unbiased towards full participation by adjusting aggregation

weights, as exhibited in line 7 of Algorithm 1.

Consider FedAvg with full participation. The aggregation

rule is given by

x̄t+1 =

N
∑

i=1

diy
i
t,I . (15)

Let ai denote the adjusted aggregation weight for the i-
th client. The aggregated model can be expressed as xt+1 =
∑

i∈Mt aiy
i
t,I . Therefore, the expected global model with p

is

Ep(xt+1) =

N
∑

i=1

aiEp(y
i
t,I)

(a)
=

N
∑

i=1

aiMpiy
i
t,I , (16)

where (a) is using (9).

To make Ep(xt+1) unbiased to x̄t+1, we have

N
∑

i=1

aiMpiy
i
t,I =

N
∑

i=1

diy
i
t,I . (17)

Then we can easily obtain

ai =
di

Mpi
. (18)

Therefore, the unbiased aggregation rule in federated learn-

ing with client-selection probability p is

xt+1 =
∑

i∈Mt

di
Mpi

yit,I . (19)

C. Convergence Analysis

In the following, we will derive the convergence upper bound

for Algorithm 1. To facilitate the convergence analysis, we use

some common assumptions [12, 29, 37] about local objective

functions {Fi}:
Assumption 1. Fi(x) is continuous and differentiable, i.e.,

∇Fi(x) exists. Fi(x) is lower bounded by Fi(x
∗).

Assumption 2. The gradient of Fi(x) is L-Lipschitz continu-

ous: for any x, y ∈ dom(Fi), we have ∥∇Fi(x)−∇Fi(y)∥ ≤
L ∥x− y∥.
Assumption 3. The expected second moment of ∇Fi(x) is

bounded: for any data sample ξij ∈ Di and when there exists

a constant Gi > 0, we have E(
∥

∥∇Fi(x, ξ
i
j)
∥

∥

2
) ≤ G2

i , ∀x ∈
dom(Fi).

It is worth noting that there are some related studies on the

convergence analysis of FedAvg with client selection [29, 37].

However, those results rely on the strongly convex assumption

of Fi, which is unrealistic for deep learning models. Instead,

our convergence upper bound can be used in non-convex

scenarios.

With the adjusted aggregation rule by (19), we present the

convergence result of federated learning with client-selection

probability.

Theorem 1. Let Assumptions 1 to 3 hold. When γ ≤ 1
LI

, the

federated learning with client-selection probability p satisfies

min
t

E ∥∇f(xt)∥2 ≤
2Γ

TγI
+

(I − 1)(2I − 1)L2γ2

6

N
∑

i=1

diG
2
i

+
LIγ

M

N
∑

i=1

d2iG
2
i

pi
,

(20)

where Γ = f(x0)− f(x∗).

We first use the L-Lipschitz gradient assumption to build

the relationship between f(xtk) and f(xtk+1
), denoting the

function values of the k-th and (k + 1)-th global models,

respectively. We can find that ∥∇f(xtk)∥2 is upper bounded

by an affine function of f(xtk) − f(xtk+1
). After summing

up ∥∇f(xtk)∥2 for k = 0, 1, ..., T − 1, we can find the upper

bound of mint E ∥∇f(xt)∥2. The full proof is in Appendix A.

From Theorem 1, it is noteworthy that our results reflect a

convergence rate ofO( 1
T
). This rate aligns with the established

convergence results for scenarios assuming strong convexity of

local functions {Fi} [37].

Corollary 1. Choosing γ = 1
LI

√
T

, where T ≥ 1, we have

min
t

E ∥∇f(xt)∥2 ≤
1√
T

(

2LΓ +
1

M

N
∑

i=1

d2iG
2
i

pi

)

+
1

T

(I − 1)(2I − 1)

6I2

N
∑

i=1

diG
2
i ,

(21)

where Γ = f(x0)− f(x∗).

Directly plugging γ = 1
LI

√
T

into (20) produces (21).

Remark 1. Gi measures the degree of none Independent and

Identically Distributed (non-I.I.D.) distribution across clients.

When clients’ data are I.I.D., we have G1 = G2 = · · · =
Gn = 0, which makes upper bound be O( 1√

T
).

Remark 2. More global rounds T and more participants M
reduce the upper bound.

Corollary 2. Let ρ =
maxi G

2
i

maxi diG
2
i

be the heterogeneity ratio.

When T ≥ Td, where Td =
⌈

M2ρ2

9

⌉

, the first term in (20)

dominates. Therefore, we have

min
t

E ∥∇f(xt)∥2 ≤
1√
T

(

2LΓ +
1

M

N
∑

i=1

d2iG
2
i

pi

)

, (22)

where Γ = f(x0)− f(x∗).

Proof of Corollary 2 can be found in Appendix B.

D. Alternative Optimization Problem

To re-formulate Problem (P1), we use (22) to replace the

convergence constraint and use the new expected overall

latency E(∆) in (14) as the objective function. We have

min
p,T,M






δN −

N−1
∑

i=1





i
∑

j=1

pj





M

(δi+1 − δi)






T (P2)
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s.t.
1√
T

(

α+
1

M

N
∑

i=1

d2iG
2
i

pi

)

≤ ϵ, (P2a)

N
∑

i=1

pi = 1, (P2b)

T ∈ Z
+,M ∈ Z

+, (P2c)

where α = 2LΓ.

Problem (P2) is a mixed integer nonlinear programming

problem due to the inclusion of T and M , and its objective

function is non-convex concerning p and M .

Before we present our solution to Problem (P2), we first

discuss a special case where the response times are uniform

across all clients. Under this uniform response time condition,

Problem (P2) can be simplified into a convex optimization

problem where the objective function becomes δNT . This

special case is noteworthy because it allows us to apply

a different analytical approach to find the optimal solution.

Solving the convex problem by the method of Lagrange

multipliers produces Corollary 3 and we refer to its solution

as norm selection.

Corollary 3. (Norm Selection). When δ1 = δ2 = · · · =
δN , Problem (P2) is a convex problem and its optimal client

selection probability is p∗i = diGi∑
N
i=1

diGi
for the i-th client.

E. Solution to P2

With continuous (p) and integer (T,M ) variables, (P2) is

a mixed integer nonlinear programming problem, which is

difficult to solve directly in general.

As M denotes an integer representing the number of par-

ticipants, we have M ∈ {1, 2, ..., N}, yielding a maximum of

N candidates for (P2)’s optimal solution. Therefore, we apply

grid search to find the best M . Given fixed M , we utilize the

polyhedral active set algorithm to obtain the optimal (p∗, T ∗).
Subsequently, we calculate the objective function of (P2) using

the candidate solution (p∗, T ∗,M). Finally, we obtain the

optimal solution (p∗, T ∗,M∗) that yields the minimized value

of the objective function.

It is worth noting that the grid search method results in

a computational complexity that is linear with respect to the

number of clients N . As N increases, the complexity of the

solution also increases. However, since the computation is

performed offline before the actual training process, it does

not impact the runtime performance. For extremely large N ,

alternative strategies such as adaptive sampling or hierarchical

search methods can be employed to further reduce the com-

putational complexity.

Specifically, we first relax T to be a continuous variable,

which converts constraint (P2c) to be T ∈ R
+. According to

(P2) and (P2a), we can see that T ∗
i satisfies

1√
T ∗

(

α+
1

M

N
∑

i=1

d2iG
2
i

pi

)

= ϵ, (23)

i.e.,

T ∗ =
1

ϵ2

(

α+
1

M

N
∑

i=1

d2iG
2
i

pi

)2

. (24)

With (24) and fixed M , we can re-formulate Problem (P2)

as follows:

min
p






δN −

N−1
∑

i=1





i
∑

j=1

pj





M

(δi+1 − δi)







×
(

α+
1

M

N
∑

i=1

d2iG
2
i

pi

)2
(P3)

s.t.

N
∑

i=1

pi = 1. (P3a)

Problem (P3) represents a nonlinear optimization challenge

with polyhedral constraints. To address this issue, we employ

the polyhedral active set algorithm [38], which is comprised

of two distinct phases: the initial phase implements the

gradient projection technique, whereas the subsequent phase

incorporates an appropriate algorithm tailored for linearly

constrained optimization problems. By alternating between

these two phases according to well-defined branching criteria,

the Polyhedral active set algorithm guarantees the convergence

to a stationary point.

Therefore, for any given M , p∗ is solved by (P3) and T ∗

is given by

T ∗ =

⌈

1

ϵ2
(α+

1

M

N
∑

i=1

d2iG
2
i

pi
)2

⌉

, (25)

where ⌈·⌉ denotes the ceiling function.

At last, by searching M ∈ {1, 2, ..., N}, we obtain the

suboptimal solution (p∗, T ∗,M∗) of Problem (P3), which is

our training scheduling for federated learning.

F. Estimates of Unknown Parameters

As shown in Section III-E, p∗i and T ∗
i are decided by di,

Gi and α, which are unknown to the server prior to the

federated learning training. Therefore, we need to estimate

those unknown parameters.

We run one trial experiment with pa = [d1, d2, ..., dN ]. The

trial runs total T rounds and in each round M clients are

selected according to the probabilistic client selection. Suppose

ϵa denotes the loss value after T -rounds training for pa and α̃
be the estimate of α, we have the following equality according

to (23):

ϵa =
1√
T

(

α̃+
1

M

N
∑

i=1

diG
2
i

)

, (26)

where di and Gi can be reported by clients along with their

model updates.

By solving (26), we have α̃ given by

α̃ =
√
Tϵa −

1

M

N
∑

i=1

diG
2
i . (27)

To reduce the estimation error, we can record different sets

of (T, ϵ) to obtain an averaged α̃ in just one trial experiment.

Regarding the cost, this estimation process does not add much

communication overhead since only two numbers (di and Gi)
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(a) Per-round latency when N = 10. (b) Per-round latency when N = 100.

(c) Global rounds when N = 10. (d) Global rounds when N = 100.

Fig. 2: Impact of Corder and Border on optimal per-round latency and global rounds. The values of per-round latency for

Corder = 10 and Corder = 1000 are normalized to allow for a direct comparison with Corder = 1. Similarly, the values of

global rounds for Border = 10 and Border = 1000 are also normalized for the same reason.

(a) Optimal overall latency with various N
and M/N .

(b) Latency difference between ours and
uniform selection.

(c) Latency difference between ours and
norm selection.

Fig. 3: Optimal overall latency and latency difference comparison.

are added to the uploaded data. The computation cost is also

low because the trial experiment does not need to be a full

training process. T can be set very small as long as all clients

have participated at least once. Furthermore, the trained model

in the estimation process can be reused as a good initial model

for the experiment with (p∗, T ∗,M∗), which avoids repeating

experiments.

IV. EXPERIMENTS

A. Numerical Experiments

We conduct a series of numerical experiments to study the

effect of parameters such as M , δi, di, and Gi on the solution

to Problem (P3). We also compare our optimal client-selection

probability p
∗ with other probabilities in terms of the number

of global rounds T and the overall latency E(∆).

1) Reformatting (P3): To simplify the parameter set, we

define the data factor Bi = d2iG
2
i and the neighboring latency

difference Ci = δi+1 − δi. Therefore, Problem (P3) can be

reformulated as follows:

min
p






δN −

N−1
∑

i=1

Ci





i
∑

j=1

pj





M






(

α+
1

M

N
∑

i=1

Bi

pi

)2

(P4)
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s.t.

N
∑

i=1

pi = 1. (P4a)

2) Experiment Settings: Hyperparameters. We utilize the

SuiteOPT toolbox [38] to solve our optimization problem

(P4). With α = 1 and ϵ = 10−3, we perform an ablation

study on the other parameters in Problem (P4). Specifi-

cally, we explore the impacts of the total number of clients

N ∈ {10, 50, 100} and the participation ratio M/N ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} on the selection

probability. Furthermore, we study the effect of the discrep-

ancy of local data by modifying the order of Border ∈
{1, 10, 103} and uniformly sampling Bi ∈ (0, Border]. Sim-

ilarly, to demonstrate the effect of the latency differences of

clients, we change the order of Corder ∈ {1, 10, 103} and

uniformly sample Ci ∈ (0, Corder]. We repeat the experiment

10 times for each combination of parameters.

Evaluation Metrics. We adopt three metrics to evaluate

the performance of different client-selection probabilities: ex-

pected per-round latency E(∆t), global rounds T , and overall

latency E(∆) = E(∆t)T . We can compute E(∆t) and T as

E(∆t) = δN −
N−1
∑

i=1

Ci





i
∑

j=1

pj





M

(28)

and

T =

⌈

1

ϵ2
(α+

1

M

N
∑

i=1

Bi

pi
)2

⌉

, (29)

respectively, where Bi = d2iG
2
i and Ci = δi+1 − δi.

Benchmarks. We compare our solution to Problem (P4),

denoted as p∗, with two other selection schemes. The first one

is the uniform selection, where p1 = p2 = · · · = pN = 1/N ,

which is the selection scheme used in FedAvg [31]. The second

one is the norm selection, where participants are selected

according to pi calculated by the server based on the norms

of participants’ updates [15].

3) Experiment Results: The impact of N and M/N on

the optimal per-round latency and global rounds is greater

than that of Corder and Border. Figures 2a and 2b illustrate

the average optimal per-round latency with various values

of Corder when N = 10 and N = 100, respectively. The

per-round latency for Corder = 10 and Corder = 1000
is normalized by eliminating the effect of the magnitude

of C, allowing for a direct comparison with Corder = 1.

It is observed that different Corder values produce similar

per-round latencies. However, per-round latency dramatically

increases as the number of clients N or the participant ratio

M/N increases. Similarly, as shown in Figures 2c and 2d, the

number of global rounds increases as fewer clients participate

in training per round or the number of clients increases.

In contrast, different values of Border play a small role in

determining the number of global rounds. These observations

suggest that the magnitude of Ci and Bi do not change the

optimal selection probability p
∗.

Figure 3a shows the optimal overall latency with various N
and M/N for Corder = 1 and Border = 1. It shows that as

the number of clients N decreases and the participation ratio

M/N increases, the overall latency decreases. Additionally,

the variance of the overall latency also decreases when N
decreases and M/N increases. These results suggest that

smaller client populations and higher participation ratios result

in more efficient communication overall.

Figure 3b and 3c illustrate the difference in the overall

latency between our selection scheme and uniform selection,

and norm selection, respectively. It is observed that our se-

lection scheme has the smallest overall latency. Interestingly,

when N is sufficiently large, norm selection provides a good

estimate of the optimal selection probabilities. This is further

demonstrated in experiments conducted on real-world datasets.

B. Experiments on Real-World Datasets

In this section, we evaluate the effectiveness of our client

selection probabilities in the generalized federated learning

process (Algorithm 1) using real-world datasets.

1) Experimental Settings: Platform: We develop a cus-

tomized federated learning platform using the Tensorflow

Federated framework [39]. This platform allows for multi-

machine simulation runtime experiments and can also be

extended to multi-device implementation. Our experiments are

conducted on a High-Performance Computing (HPC) cluster

comprised of eight nodes, each of which is equipped with two

32-core Intel CPUs and four NVIDIA Ampere A100 GPUs

with NVLink interconnect.

Datasets and Model: We use the EMNIST LETTERS [40]

and FASHION MNIST [41] datasets. EMNIST LETTERS

contains images of 26 lowercase letters and FASH-

ION MNIST contains 10 different image classes. The training

data of each dataset is partitioned into clients’ datasets, while

the testing data is used to evaluate the performance of our

method. We use LeNet-5 [42] as the classification model.

Latency Heterogeneity: To emulate latency differences

among clients, we independently sample δ ∼ U(0, 1) for N
clients and then arrange them in an ascending order such that

0 < δ1 ≤ δ2 ≤ . . . ≤ δN ≤ 1. While δi is in seconds in the

following results, this simulation is capable of representing the

normalization of any latency heterogeneity scheme.

Data Heterogeneity: To simulate data heterogeneity in

real-world federated learning applications, we employ three

different data partition configurations, one I.I.D. and two Non-

I.I.D. configurations.

• I.I.D. The training data is randomly partitioned among

clients such that each client has an equal amount of data

and an equal amount for each class.

• Class. The training data is partitioned among clients

based on classes, with each client having data from only

C randomly selected classes and with no overlapping data

between clients, while the data volume in each client is

the same. We let a client own 50% classes of the dataset,

i.e., C = 13 for EMNIST LETTERS and C = 5 for

FASHION MNIST.

• Dir. The training data is partitioned among clients follow-

ing a Dirichlet process, with each client having a different

amount of data and a non-uniform class distribution. We

set the Dirichlet parameter α = 0.1.
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(a) Global loss on EMNIST LETTERS dataset. (b) Test accuracy on EMNIST LETTERS dataset.

(c) Global loss on FASHION MNIST dataset. (d) Test accuracy on FASHION MNIST dataset.

Fig. 4: Performance comparison under I.I.D. data setting.

(a) Global loss on EMNIST LETTERS dataset. (b) Test accuracy on EMNIST LETTERS dataset.

(c) Global loss on FASHION MNIST dataset. (d) Test accuracy on FASHION MNIST dataset.

Fig. 5: Performance comparison under Dir data setting.
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Dataset Data Setting Ours Uniform [31] Norm [15] Ratio [10]

EMNIST LETTERS
I.I.D. 245.66 472.87 (1.92×) 419.93 (1.71×) 469.51 (1.91×)
Class 164.82 444.37 (2.70×) 317.70 (1.93×) 447.33 (2.71×)
Dir. 64.12 188.33 (2.94×) 128.90 (2.01×) 169.61 (2.65×)

FASHION MNIST
I.I.D. 114.05 181.46 (1.59×) 177.35 (1.56×) 210.93 (1.85×)
Class 220.92 439.33 (1.99×) 392.50 (1.78×) 439.42 (1.99×)
Dir. 88.08 270.14 (3.07×) 137.35 (1.56×) 255.69 (2.90×)

TABLE I: Overall latency in seconds of various methods under different datasets and data heterogeneity settings. (· ×)

denotes the acceleration ratio of ours in comparison with benchmarks in terms of the overall latency.

(a) Global loss on EMNIST LETTERS dataset. (b) Test accuracy on EMNIST LETTERS dataset.

(c) Global loss on FASHION MNIST dataset. (d) Test accuracy on FASHION MNIST dataset.

Fig. 6: Performance comparison under Class data setting.

Hyperparameters: For our experiments, we set the total

number of clients to N = 10 for FASHION MNIST and

N = 40 for EMNIST LETTERS. The number of partici-

pants is M = 5 for FASHION MNIST and M = 10 for

EMNIST LETTERS. In each round, participants are selected

according to given selection schemes, and each participant

updates the local model in I = 5 epochs using SGD with

the batch size of 256. The default parameters of Adam

optimizer in Tensorflow are used, i.e., learning rate is 0.001
and exponential decay rates are 0.9 and 0.999, respectively

[43].

Benchmarks: To evaluate the performance of our proposed

selection scheme, we compare it with these existing schemes:

• Uniform selection [31]. The probability for each client to

be selected is identical, i.e., p1 = p2 = · · · = pN = 1/N .

• Norm selection [15]. Participants are selected according

to pi, where pi is calculated by the server based on the

norms of participants’ updates.

• Ratio selection [10]. Participants are selected according

to pi = di, proposed by FedProx.

2) Experiment Results: We evaluate the global loss and test

accuracy of different selection schemes on two datasets under

different data settings. Each experiment is independently run

10 times with different random seeds and the same seed is used

across different selection schemes. Results averaged over 10

runs are reported.

In Table I, we summarize the overall latency required to

achieve the targeted global loss with various client selection

schemes on EMNIST LETTERS and FASHION MNIST. As

is shown, ours outperforms other selection schemes in both

I.I.D. and non-I.I.D. configurations with the lowest overall

latency and achieves up to 3 times acceleration. More details

are shown by the decreasing global loss in (a) and (c) of

Figures 4, 5, and 6.

In comparison with the I.I.D. setting, our approach at-

tains more acceleration ratios within two none-I.I.D. scenar-

ios. Specifically, in contrast to uniform selection on EM-

NIST LETTERS, our method yields 2.94× and 2.7× accel-

eration for Dir and Class categories, respectively, surpassing

the 1.92× acceleration observed in the I.I.D. scenario.
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As shown in (b) and (d) of Figures 4, 5, and 6, our approach,

in some cases, achieves superior test accuracy with much less

overall latency required for the convergence of the training

model. In the non-I.I.D. scenarios, our methodology exhibits

enhanced robustness in comparison with uniform selection, as

evidenced by the mitigation of test accuracy fluctuations.

It is worth noting that norm-based selection frequently fa-

cilitates the reduction of the overall latency relative to uniform

selection, as shown in Table I. It indicates that the prior

knowledge of di and Gi is helpful for a better client selection

scheme. On the other hand, norm selection is not optimal

because it ignores the latency differences among clients.

V. CONCLUSION

We have introduced a novel client selection scheme designed

to minimize the overall training time of federated learning by

considering both data and latency heterogeneity among clients.

Through the derivation of a convergence upper bound with

probabilistic client selection, we have established the theo-

retical convergence guarantee for our proposed scheme. Our

numerical analyses and experimental evaluations on real-world

datasets have demonstrated the superiority of our selection

scheme in achieving faster convergence rates and competitive

test accuracy, even in scenarios with highly non-I.I.D. data.

Notably, our scheme obtains up to 3 times acceleration in

comparison with random client selection.

In the future, conducting extensive experiments on large-

scale datasets, such as ImageNet, and using complex models,

such as ResNet-50 and Vision Transformers (ViTs), will

further explore the applicability of our optimization framework

across diverse learning scenarios. Additionally, developing a

unified framework to evaluate both probabilistic selection and

dynamic selection methods is an intriguing research direction.

Moreover, implementing a federated learning testbed with

real federated clients will provide additional insights into

the practical network variability and real-world deployment

challenges.

APPENDIX A

PROOF OF THEOREM 1

Throughout the proof, we denote tk = kI, k = 0, 1, ..., T−1
as the time instants when global aggregation happens. We

define ȳtk,I =
∑N

i=1 diy
i
tk,I

, which denotes the virtual ag-

gregated model with all the N participants. To aid the proof

of Theorem 1, we first prove some important lemmas.

A. Lemma 1 & Proof

Lemma 1. Following Algorithm 1, when xtk is given, the

expectation of xtk+1
is unbiased to ȳtk,I , i.e.,

E(xtk+1
|xtk) = Etk(xtk+1

) = ȳtk,I , (30)

where Etk denotes conditional expectation E(·|tk).
Proof. Let Xtk

i be a random variable denoting the number of

times the i-th client is selected in the tk-th round. Then, Xtk
i

follows a binomial distribution with parameters M and pi, i.e.,

Xtk
i ∼ Binomial(M,pi). The expectation of Xtk

i is given by

E[Xtk
i ] = Mpi.

Since the participants of each round are selected according

to probability p with replacement, the expectation of the

aggregated model Etk(xtk+1
) is given by

Etk(xtk+1
) = E





∑

i∈Mtk

di
Mpi

yitk,I |xtk





=

N
∑

i=1

E[Xtk
i ]

di
Mpi

yitk,I =

N
∑

i=1

diy
i
tk,I

= ȳtk,I .

B. Lemma 2 & Proof

Lemma 2. For given xtk , letMtk = {i1, i2, ..., iM} ⊂ [N ] in

Algorithm 1, where il denotes the index of the l-th participant.

Then for any il, the expectation of
dil

pil

yiltk,I is unbiased to ȳtk,I ,

i.e.,

Etk

(

dil
pil

yiltk,I

)

= ȳtk,I . (31)

Proof. For certain il inMtk , it could be any index a ∈ [1, N ]
with probability pa. Therefore,

Etk

(

dil
pil

yiltk,I

)

= Etk

N
∑

a=1

P (il = a)
da
pa

yatk,I

= Etk

N
∑

a=1

day
a
tk,I

= ȳtk,I .

C. Lemma 3 & Proof

Lemma 3. Given xtk , the variance of xtk+1
satisfies

Etk

∥

∥xtk+1
− ȳtk,I

∥

∥

2 ≤ I2γ2

M

N
∑

i=1

d2iG
2
i

pi
. (32)

Proof.

Etk

∥

∥xtk+1
− ȳtk,I

∥

∥

2
= Etk

∥

∥

∥

∥

∥

M
∑

l=1

dil
pil

yiltk,I − ȳtk,I

∥

∥

∥

∥

∥

2

= Etk

∥

∥

∥

∥

∥

1

M

M
∑

l=1

(
dil
pil

yiltk,I − ȳtk,I)

∥

∥

∥

∥

∥

2

(a)
=

1

M2
Etk

M
∑

l=1

∥

∥

∥

∥

dil
pil

yiltk,I − ȳtk,I

∥

∥

∥

∥

2

(b)
=

1

M2

N
∑

i=1

MpiEtk

∥

∥

∥

∥

di
pi
yitk,I − ȳtk,I

∥

∥

∥

∥

2

=
1

M

N
∑

i=1

piEtk

∥

∥

∥

∥

di
pi
yitk,I −

di
pi
yitk,0 − (ȳtk,I −

di
pi
yitk,0)

∥

∥

∥

∥

2

(c)

≤ 1

M

N
∑

i=1

piEtk

∥

∥

∥

∥

di
pi
yitk,I −

di
pi
yitk,0

∥

∥

∥

∥

2

=
1

M

N
∑

i=1

d2i
pi

Etk

∥

∥

∥

∥

∥

∥

−
I−1
∑

j=0

γ∇Fi(y
i
tk,j

, ξj)

∥

∥

∥

∥

∥

∥

2
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(d)

≤ 1

M

N
∑

i=1

d2i
pi

γ2I

I−1
∑

j=0

Etk

∥

∥∇Fi(y
i
tk,j

, ξj)
∥

∥

2

(e)

≤ 1

M

N
∑

i=1

d2i
pi

γ2I2G2
i =

I2γ2

M

N
∑

i=1

d2iG
2
i

pi
,

where (a) uses Lemma 2, (b) takes expectation over client

selection, (c) uses E ∥x− Ex∥2 ≤ E ∥x∥2, (d) uses Jensen’s

Inequality, and (e) uses Assumption 3.

D. Proof of Theorem 1

Proof. According to Assumption 2, for any given xtk , we have

Etkf(xtk+1
) ≤ Etk(f(xtk)+

〈

xtk+1
− xtk ,∇f(xtk)

〉

+
L

2

∥

∥xtk+1
− xtk

∥

∥

2
).

(33)

Consider the third term in (33):

L

2
Etk

∥

∥xtk+1
− xtk

∥

∥

2

(a)
=

L

2
(Etk

∥

∥xtk+1
− ȳtk,I

∥

∥

2
+ Etk ∥ȳtk,I − xtk∥2)

(b)

≤ LI2γ2

2M

N
∑

i=1

d2iG
2
i

pi
+

L

2
Etk ∥ȳtk,I − xtk∥2 , (34)

where (a) uses Lemma 1 where Etk(xtk+1
− ȳtk,I) = 0 and

(b) uses Lemma 3.

Consider the second term in (33):

Etk

〈

xtk+1
− xtk ,∇f(xtk)

〉

= Etk ⟨ȳtk,I − xtk ,∇f(xtk)⟩

= −γEtk

〈

N
∑

i=1

di

I−1
∑

j=0

∇Fi(y
i
tk,j

),∇f(xtk)

〉

(a)
=

γ

2I
Etk

(

∥

∥

∥

∥

∥

∥

N
∑

i=1

di

I−1
∑

j=0

(∇Fi(y
i
tk,j

)−∇Fi(xtk))

∥

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

∥

N
∑

i=1

di

I−1
∑

j=0

∇Fi(y
i
tk,j

)

∥

∥

∥

∥

∥

∥

2

− I2 ∥∇f(xtk)∥2
)

(b)
=

γ

2I
Etk

(

∥

∥

∥

∥

∥

∥

N
∑

i=1

di

I−1
∑

j=0

(∇Fi(y
i
tk,j

)−∇Fi(xtk))

∥

∥

∥

∥

∥

∥

2

− 1

γ2
∥ȳtk,I − xtk∥2 − I2 ∥∇f(xtk)∥2

)

, (35)

where (a) uses −⟨a, b⟩ = 1
2 (∥a− b∥2−∥a∥2−∥b∥2) and (b)

uses Etk(ȳtk,I−xtk) = −γEtk

(

∑N
i=1 di

∑I−1
j=0 ∇Fi(y

i
tk,j

)
)

.

The first term in (35) is

Etk

∥

∥

∥

∥

∥

∥

N
∑

i=1

di

I−1
∑

j=0

(∇Fi(y
i
tk,j

)−∇Fi(xtk))

∥

∥

∥

∥

∥

∥

2

(a)

≤ Etk

N
∑

i=1

di

I−1
∑

j=0

I
∥

∥∇Fi(y
i
tk,j

)−∇Fi(xtk)
∥

∥

2

(b)
= Etk

N
∑

i=1

di

I−1
∑

j=1

I
∥

∥∇Fi(y
i
tk,j

)−∇Fi(xtk)
∥

∥

2

(c)

≤ I

N
∑

i=1

di

I−1
∑

j=1

L2
Etk

∥

∥yitk,j − xtk

∥

∥

2

(d)
= I

N
∑

i=1

di

I−1
∑

j=1

L2
Etk

∥

∥

∥

∥

∥

−
j−1
∑

g=0

γ∇Fi(y
i
tk,g

, ξg)

∥

∥

∥

∥

∥

2

(e)

≤ IL2γ2
N
∑

i=1

di

I−1
∑

j=1

j−1
∑

g=0

Etk

∥

∥∇Fi(y
i
tk,g

, ξg)
∥

∥

2
j

(f)

≤ IL2γ2
N
∑

i=1

di

I−1
∑

j=1

j−1
∑

g=0

G2
i j

(g)
=

I2(I − 1)(2I − 1)L2γ2

6

N
∑

i=1

diG
2
i , (36)

where (a) and (e) use Jensen’s inequality, (b) holds because

∇Fi(y
i
tk,0

) = ∇Fi(xtk), (c) uses Assumption 2, (d) uses the

update rule of SGD, (f) uses Assumption 3, and (g) holds

because of
∑I−1

j=1 j
2 = I(I−1)(2I−1)

6 .

Plugging (36) back, (35) becomes

Etk

〈

xtk+1
− xtk ,∇f(xtk)

〉

≤ I(I − 1)(2I − 1)L2γ3

12

N
∑

i=1

diG
2
i

− 1

2Iγ
Etk ∥ȳtk,I − xtk∥2 −

γI

2
Etk ∥∇f(xtk)∥2 . (37)

Plugging (34) and (37) back in (33), we have

Etkf(xtk+1
)

≤ Etkf(xtk) +
I(I − 1)(2I − 1)L2γ3

12

N
∑

i=1

diG
2
i

+ (
L

2
− 1

2Iγ
)Etk ∥ȳtk,I − xtk∥2 −

γI

2
Etk ∥∇f(xtk)∥2

+
LI2γ2

2M

N
∑

i=1

d2iG
2
i

pi

(a)

≤ Etkf(xtk) +
I(I − 1)(2I − 1)L2γ3

12

N
∑

i=1

diG
2
i

− γI

2
Etk ∥∇f(xtk)∥2 +

LI2γ2

2M

N
∑

i=1

d2iG
2
i

pi
, (38)

where (a) holds if γ ≤ 1
IL

. Rearranging (38), we have

Etk ∥∇f(xtk)∥2 ≤
2

γI
(Etkf(xtk)− Etkf(xtk+1

))

+
(I − 1)(2I − 1)L2γ2

6

N
∑

i=1

diG
2
i +

LIγ

M

N
∑

i=1

d2iG
2
i

pi
.

(39)

We now have

min
t

E ∥∇f(xt)∥2 ≤ min
tk∈{0,I,...,(T−1)I}

Etk ∥∇f(xtk)∥2
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≤ 1

T

(T−1)I
∑

tk=0

Etk ∥∇f(xtk)∥2

(a)
=

2

γIT
(f(x0)− f(xTI))

+
(I − 1)(2I − 1)L2γ2

6

N
∑

i=1

diG
2
i +

LIγ

M

N
∑

i=1

d2iG
2
i

pi

≤ 2

γIT
(f(x0)− f(x∗))

+
(I − 1)(2I − 1)L2γ2

6

N
∑

i=1

diG
2
i +

LIγ

M

N
∑

i=1

d2iG
2
i

pi
,

(40)

where (a) uses the telescoping sum of (39).

APPENDIX B

PROOF OF COROLLARY 2

Proof. According to Corollary 1, we have

min
t

E ∥∇f(xt)∥2 ≤
1√
T

(

2LΓ +
1

M

N
∑

i=1

d2iG
2
i

pi

)

+
1

T

(I − 1)(2I − 1)

6I2

N
∑

i=1

diG
2
i .

To make the first term dominate, we simply let

1√
T

(

2LΓ +
1

M

N
∑

i=1

d2iG
2
i

pi

)

≥ 1

T

(I − 1)(2I − 1)

6I2

N
∑

i=1

diG
2
i ,

i.e.,

√
T ≥

(

(I − 1)(2I − 1)

6I2

N
∑

i=1

diG
2
i

)

/

(

2LΓ +
1

M

N
∑

i=1

d2iG
2
i

pi

)

.

Let B denote the RHS of the above inequality, we have

B
(a)

≤
(

(I − 1)(2I − 1)

6I2

N
∑

i=1

diG
2
i

)

/

(

1

M

N
∑

i=1

d2iG
2
i

pi

)

(b)

≤
(

(I − 1)(2I − 1)

6I2
max

i
G2

i

)

/

(

1

M
min
i

diG
2
i

)

<
M

3

maxi G
2
i

mini diG2
i

=
M

3
ρ,

where (a) uses 2LΓ ≥ 0; (b) uses the following inequal-

ities:
∑N

i=1 diG
2
i ≤ maxi G

2
i ,
∑N

i=1
d2
iG

2
i

pi
≥ mini diG

2
i ;

ρ =
maxi G

2
i

mini diG
2
i

.

As a result,
√
T ≥ B when T ≥

⌈

M2ρ2

9

⌉

.
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