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Client Selection for Wireless Federated Learning
with Data and Latency Heterogeneity

Xiaobing Chen, Xiangwei Zhou, Hongchao Zhang, Mingxuan Sun, and H. Vincent Poor

Abstract—Federated learning is a distributed machine learning
paradigm that allows multiple edge devices to collaboratively
train a shared model without exchanging raw data. However,
the training efficiency of federated learning is highly depen-
dent on client selection. Moreover, due to the varying wireless
communication environments and various computation latencies
among clients, selecting clients randomly or uniformly may not
be optimal for balancing data diversity and training efficiency.
In this paper, we formulate a new latency-minimization prob-
lem that simultaneously optimizes client selection and training
procedures in federated learning, which takes into account the
data and latency heterogeneity among clients. Given the non-
convexity of the problem, we derive a new convergence upper
bound for federated learning with probabilistic client selection.
To solve the mixed integer nonlinear programming problem, we
introduce a hybrid solution that integrates grid search techniques
with the polyhedral active set algorithm. Numerical analyses and
experiments on real-world data demonstrate that our scheme
outperforms existing ones in terms of overall training latency
and achieves up to 3 times acceleration over random client
selection, especially in scenarios with highly heterogeneous data
and latencies among clients.

Index Terms—Federated learning, client selection, optimiza-
tion, data heterogeneity, latency heterogeneity.

I. INTRODUCTION

The ubiquitous presence of edge devices, such as mobile
phones and Internet of Things (IoT) sensors, is introducing
new paradigms for collaborative machine learning, among
which federated learning is gaining significant attention. This
approach is particularly appealing in edge networks because of
its ability to facilitate decentralized learning over edge devices
while helping preserve the data privacy of these devices.

In a typical federated learning setup, selected devices train
models on their local data and share model updates with
a central server that aggregates these updates to improve a
global model. However, environments such as IoT and edge
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Fig. 1: Data and latency heterogeneity in federated learning.
Clients exhibit diverse data qualities and experience various
latencies. In each round, participants are selected according to
the probability {p;}. d! denotes the latency of the i-th client
in the ¢-th round.

networks are characterized by significant data and latency
heterogeneity among devices. Therefore, the efficiency of the
training process in federated learning faces several challenges
[1], such as high communication costs between clients and the
server, data heterogeneity among clients [2], and substantial
differences in the response times of clients, as shown in Figure
1.

The overall training time of federated learning is determined
by two factors: the number of global rounds required for
model convergence and the time cost for each training round.
To reduce the overall training time of federated learning,
recent studies have explored various strategies, including
model compression [3-9], model convergence acceleration
[10-12], and judicious participant selection [13—15]. Given the
server’s limited communication resources and the imperative
of maintaining efficient training, only a subset of clients are
selected to participate in each round of training. Hence, the
client selection strategies hold a critical role in determining
both the performance of the model and the efficiency of the
training process. On one hand, the diversity and quality of
the data of selected clients are crucial to the generalizability
of the global model. On the other hand, the various training
latencies of the clients should be taken into account to improve
the training efficiency of the federated learning system.

Given the data heterogeneity among clients, a straightfor-
ward strategy to facilitate faster model convergence is to
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prioritize participants who have high-quality data and can
substantially influence model training. Existing studies have
widely adopted importance sampling techniques, in which
participant selection dynamically evolves based on defined
criteria throughout the training process [16-21]. Data-based
criteria and model-based criteria are two major categories
that determine the importance of clients. Data-based criteria
leverage the intrinsic properties of local datasets, consider-
ing elements such as the volume of data samples and the
divergence in gradients or losses across data sets [16-18, 22].
Instead, model-based criteria prioritize clients with high model
divergence from the global model [19], high angle divergence
from the global model [20], or high magnitude of the local
model [21].

While importance sampling methods have indeed facilitated
enhancements in both performance and training efficiency in
comparison with random client selection [18], they have some
intrinsic constraints and pose serious challenges. Because
most of the importance sampling methods are heuristic, the
effectiveness of sampling designs can only be evaluated by
empirical experiments. It is challenging to provide the perfor-
mance guarantee for these algorithms with respect to the con-
vergence rate and model accuracy [23]. Moreover, manually
defined criteria make it harder to strike the tradeoff between
exploitation, which focuses on selecting important clients,
and exploration, which aims to involve a diverse range of
clients. Another issue is the latency heterogeneity; clients with
valuable data might exhibit slow training times, potentially
extending the overall training time. To alleviate this, some
strategies establish deadlines for model submissions, such as
enforcing a cut-off [24], instituting a soft deadline [18], and
applying a dynamic deadline [25]. Other strategies schedule
the model transmission of participants in consideration of
latency heterogeneity, such as round Robin scheduling [26],
latency clustering [27] and multi-armed bandit scheduling
[28].

In contrast to potentially biased importance sampling meth-
ods, probabilistic client selection strategies have demonstrated
stronger convergence guarantees and remain unbiased in com-
parison with full participation methods [12, 29]. The founda-
tional studies, including the federated optimization [30] and
the Federated Averaging algorithm (FedAvg) [31], have pre-
sented a uniform selection scheme, where a subset of clients
are randomly selected in each round of training. However,
this typically exhibits a suboptimal convergence rate [10].
To improve FedAvg, extra prior knowledge has been used in
determining client selection probabilities, taking into account
factors like data volume [10], employing clustered sampling
[32, 33], and analyzing the norms of the clients’ model
parameters [15]. However, most of these efforts neglect the
impact of latency heterogeneity on the probability of client
selection. A notable exception is a recent study that proposes
an adaptive client sampling algorithm, which factors in both
data and system heterogeneity to address latency issues [29].
However, this method is based on convergence analysis suited
for strongly convex situations, which does not fully align with
the non-convex characteristics commonly found in real-world
federated learning applications.

To address the limitations of existing client selection meth-
ods, we formulate a nonlinear optimization problem with the
aim of reducing overall training time. This produces an optimal
probabilistic client selection scheme grounded in non-convex
convergence analysis that accounts for both data and latency
heterogeneity among clients. The main contributions of our
paper are as follows:

1) We formulate a new latency-minimization problem that
simultaneously optimizes client selection and training
procedures in federated learning. This optimization prob-
lem consists of key variables such as the participant
selection probability, the number of global rounds, and
the number of participants. Our problem formulation
incorporates both system and data diversity to ensure its
comprehensiveness. Furthermore, we study an unbiased
participant selection scheme, guaranteeing the model con-
vergence.

2) We derive a new convergence upper bound for federated
learning with probabilistic client selection in non-convex
settings. Our results reflect a convergence rate of O(%)
This completes the convergence analysis for federated
learning in both convex and non-convex cases.

3) We derive the analytical expression of the overall latency
of federated learning with probabilistic participant se-
lection and build the analytical relationship between the
latency, convergence constraint, system and data hetero-
geneity, and control variables. To address the complexities
of the mixed integer nonlinear programming problem,
we introduce a hybrid solution that integrates grid search
techniques with the polyhedral active set algorithm.

4) Through numerical analyses and experiments on real-
world data, we demonstrate that our proposed client
selection scheme is more efficient in reducing overall
training time in comparison with existing methods.

In the remainder of this paper, we first introduce the system
model and problem formulation in Section II. Next, Section
IIT delves into the convergence upper bound of our algorithm
and the solution to the optimization problem. Following this,
we present numerical analyses and experimental results on
real-world datasets in Section IV. We conclude this paper in
Section V.

II. SYSTEM MODEL

A. Federated Learning

We consider a federated learning system with a server and N
clients with index set N' = {1,2, ..., N}, where the i-th client
owns its private dataset D; = {&} | j = 1,2, ...,|D;|} with size
|Di|. Here, & denotes the j-th data sample at the i-th client.
The whole dataset across clients is denoted as D = | J;c s Di
with size |D|.

The goal of federated learning is to find an optimal model
parameter x to minimize a global objective function f(x) over
dataset D, which can be formulated as

N
min f(z) =Y _ d;Fi(), (1)
i=1
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where d; = |D;|/|D| denotes the ratio of the size of the
local dataset at the i-th client to the whole dataset and
SN, d; = 1. Fy(x) is the local objective function for the
i-th client, computed over dataset D; as

1 ,
D] Z Fi(@;&5).

&;E’Di

Fi(z) =

2

Client selection typically occurs during each round of
federated learning to prevent network congestion due to full
participation. This partial participation was proposed as Fe-
dAvg [31] by uniformly sampling participants.

We generalize FedAvg as shown in Algorithm 1, which
allows probabilistic client selection. Moreover, we will show
that the aggregated model in Algorithm 1 is unbiased to the
one with full participation later. Specifically, the algorithm
executes for 7" rounds in total after the stopping criterion is
satisfied. For each round, there are three major stages:

1) Global model broadcasting. The sever samples M clients
to participate in the t¢-th round of training to form
M?, according to the client selection probability p =
[p1, P2, ..., PN ). The global model weights, z¢, are broad-
cast to the selected participants.

2) Local updating. The i-th participant initializes its local
model y! , with the global one and performs model train-
ing on the private dataset D; by applying the stochastic
gradient descent (SGD) algorithm as follows:

Yo < Y —AVE (Y, €), 3)

where j = 0,1,2,...,I — 1 denotes the epoch index of
local updating and ~ denotes the step size. 53. €D;isa
randomly selected data sample. After I epochs, the local
model weights will be submitted to the server.

3) Aggregation. After the server successfully receives all the
model updates from the selected participants, aggregation
is performed to update the global model:

di
Ti41 = Z myt,[- “)
ieEM?
The stopping criterion is as follows:
E V()| < e, 5)

where € is a small number.

In Algorithm 1, participation probability p should be prop-
erly chosen in consideration of data heterogeneity and latency
differences among clients. Furthermore, the number of partic-
ipants M and the number of global rounds 7' also affect the
overall training time. Intuitively, a larger M and a greater T’
enhance the convergence of the global model. Nevertheless, a
larger M increases the likelihood of selecting clients with the
poorest response time. This straggler effect may consequently
prolong the federated learning training process. The selection
of T follows similar considerations.

Therefore, to achieve time-efficient training and model
convergence, we explore a novel training scheduling policy
by solving a joint optimization problem of total time cost and
model convergence, which yields the optimal client-selection
probability p, number of participants M, and number of global

Algorithm 1: Generalized FedAvg with probabilistic
participation

Input: zo,v,1,p
Output: {z, : Vr}

1 fort=0,1,....,T—1 do

2 select M participants according to p with
replacement to form M?;

for i € M in parallel do

Yio < ot _

y; ; < ClientUpdate(y; ,,7);

T4l < Dieme Md*;”yé,ﬂ
end
ClientUpdate (y; , 7):
10 for j =0,1,....,1—1do
1 ‘ yg,j+1 — yi,j - ’YVFi(yi,yf;');
12 end

3
4
5
6 end
7
8
9

rounds 7'.

B. Latency Model

For each training round, there are four phases where latency
occurs: global model broadcasting, local computing, model
uploading, and model aggregation. However, the time cost of
model aggregation is negligible given the simple operation.

Similar to previous work in wireless federated learning [34],
we make an assumption that each edge device possesses a
comparatively consistent computational capability yet operates
within varying communication environments. Therefore, we
use 6! to denote the response time of the i-th client in the
t-th round, resulting from global model broadcasting, local
computing, and model uploading. Different clients may exhibit
various latencies. Inspired by the scheduling optimization
theory [35], we adopt the short-processing time first rule to
schedule the model transmission of participants. In the ¢-th
round, we can sort the latency of each client in ascending
order as 0} < 05 < ... <44

In synchronous federated learning, the server waits for all
the model updates from participants to be received and then
starts to aggregate the models. As a result, the latency for the
t-th round is determined by the client with the longest response
time, i.e.,

A! = max §!.
e M?

(6)

Accordingly, the overall latency for T rounds of training is

T
A= ZN.
t=1

(7

C. Client Selection Model

We assume that all the clients are willing to participate in every

round of federated learning training once they are selected.

We consider general probabilistic client selection according
. N

to p = [p1,p2,...,pn] in each round, where > ;" p; = 1.

Similar to [29, 36, 37], the ¢-th round of participant set M? is
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generated by selecting for M times from N clients according
to p with replacement, which means that the same client could
appear in M! multiple times. The sampling scheme without
replacement can also be extended from our work, but for ease
of exposition, we only discuss sampling with replacement.
Let X! be a random variable denoting the number of times
the ¢-th client is selected in the ¢-th round. Then, Xf follows
a binomial distribution with parameters M and p;, i.e., X} ~
Binomial(M, p;). The expectation of X! is given by

E[X!] = Mp;. ®)

As a result, the expected model updates from the ¢-th client
can be expressed as

Ep(yi,l) = E[Xf]yif = Mpiy;]. ©))

D. Problem Formulation

As discussed, client selection probability p determines the
probability of selecting the straggler, which greatly affects
the per-round latency. Furthermore, more training rounds 7°
and a larger number of participants M are beneficial to the
model convergence, while they potentially increase the overall
latency.

Therefore, we formulate a joint optimization problem with
respect to p, T, and M to minimize the overall latency of
federated learning training while satisfying the model conver-
gence requirement. The problem can be formulated as follows.

T
. t

S 2 .
st. E|Vf(zp)|® <e (Pla)

N
> opi=1, (P1b)

=1
TeZ" MeZt, (P1c)

where E ||V f(z7)|® denotes the expected gradient norm of
f after T rounds of training where the randomness is from
local SGD and client selection. (Pla) denotes the model
convergence constraint and (P1b) is a basic constraint of a
probability distribution.

In practice, max;c ¢ 0F is a random variable due to the
probabilistic client selection, which makes it impossible to an-
alytically solve the problem. Instead, we change the objective
to be the expected overall latency, i.e.,

S B

(10)

Moreover, we need to explicitly express E ||V f(z7)|* w.r.t
p. T, and M, which will be discussed in III-C.

III. TRAINING SCHEDULING WITH CLIENT-SELECTION
PROBABILITY

In this section, we aim to transform Problem (P1) into a more
tractable form. Firstly, we derive the analytical expression of
E(A). Through convergence analysis, we obtain the upper
bound of E ||V f(z7)||* and utilize it to reformulate constraint

(Pla). Subsequently, we formulate and solve an alternative
optimization problem, (P2), to determine the optimal training
scheduling in terms of p, 7', and M.

A. Analytical Expression of Expected Latency

Let g; denote the probability of the ¢-th client being selected
in the t-th round and being a straggler. According to (6) and
(7), we have the expected overall latency as follows:

T N
E(A) =) qd

t=1 i=1
N
=T a4,
i=1

where §; = % Zle 6! denotes the average respond time of
the ¢-th client.

Moreover, the i-th client being a straggler means that only
clients 1,2, ...,4 are candidates of participants in this round.
Therefore, we have

Y

g; = P(i is a straggler)

M 1 M—m
M -
=3 (o (X
m °
m=1 j=1 (12)
M M
i 1—1
= Dy - ij )
j=1 j=1

where the last equality can be obtained according to the
Binomial Theorem.
As a result, the analytical expression of the expected overall
latency is given by
M , M

7 i—1
dopi| — 2w | 6T
j=1 j=1

(13)

, M
Let [; = (Z;lej) , (13) can be rewritten as

N

E(A) = Z(li —1,_1)86T

1
N N

lz Lidi = Y lie16i
i= =2

1 i—

1
(@)

T

N N-1
[ li6; — li0i41
=1 1

i=

~.

—~
o
~

N-1
= |FN - Z Li(0i41—0:)| T
i=1
M
N-1 i
=ov=>_|D.pi| Gia—=0)|T, (14
i=1 \j=1

where (a) uses lp = 0 and (b) uses Iy = 1.
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B. Adjusted Aggregation Weights for Probabilistic Selection

Despite only M participants being selected for the ¢-th round,
we demonstrate that probabilistic client selection remains
unbiased towards full participation by adjusting aggregation
weights, as exhibited in line 7 of Algorithm 1.

Consider FedAvg with full participation. The aggregation

rule is given by
N
= Z diyy 1-
i=1

Let a; denote the adjusted aggregation weight for the -
th client. The aggregated model can be expressed as z;+1 =
Y iemt aiyf’ 1- Therefore, the expected global model with p
is

Te1 (15)

N
a) i
p(Tr41) Zaz i) = > aMpy,;,  (16)
i=1
where (a) is using (9).
To make E,(x,41) unbiased to 11, we have
N N
> aiMpyi =Y diyi ;. (17)
i=1 i=1
Then we can easily obtain
d;
U 18
¢ Mp; (1%

Therefore, the unbiased aggregation rule in federated learn-
ing with client-selection probability p is

d;
Z Mp; y;p

ieEM?

Ti41 = (19)

C. Convergence Analysis

In the following, we will derive the convergence upper bound
for Algorithm 1. To facilitate the convergence analysis, we use
some common assumptions [12, 29, 37] about local objective
functions {F;}:

Assumption 1. F;(x) is continuous and differentiable, i.e.,
VF;(x) exists. F;(x) is lower bounded by F;(x*).

Assumption 2. The gradient of F;(x) is L-Lipschitz continu-
ous: for any x,y € dom(F;), we have |V F;(x) — VF;(y)| <
Lilz —yl.

Assumption 3. The expected second moment of VF;(x) is
bounded: for any data sample 8 € D; and when there exists

a constant G; > 0, we have E HVF x 51 H ) < G2Vx €
dom(F3).

It is worth noting that there are some related studies on the
convergence analysis of FedAvg with client selection [29, 37].
However, those results rely on the strongly convex assumption
of F;, which is unrealistic for deep learning models. Instead,
our convergence upper bound can be used in non-convex
scenarios.

With the adjusted aggregation rule by (19), we present the
convergence result of federated learning with client-selection
probability.

Theorem 1. Let Assumptions 1 to 3 hold. When v < L 7, the
federated learning with client-selection probability p satisfies

, o, (I )2]—1L27 ,
mtmIEHVf(Jct)H ST’yI+ g d;G;
N
LI d?G?
+J§ iy

(20)

where T' = f(xo) — f(a*).

We first use the L-Lipschitz gradient assumption to build
the relationship between f(x;,) and f(xy,,,), denoting the
function values of the k-th and (k + 1)-th global models,
respectively. We can find that ||V f(zy, )| is upper bounded
by an affine function of f(zy,) — f(xy,,,). After summing
up ||V f(z¢,)||? for k =0, 17 ..., T —1, we can find the upper
bound of miny E ||V f(z)||*. The full proof is in Appendix A.

From Theorem 1, it is noteworthy that our results reflect a
convergence rate of O(%) This rate aligns with the established

convergence results for scenarios assuming strong convexity of
local functions {F;} [37].

Corollary 1. Choosing v = ﬁ where T' > 1, we have
1 2G?
in £ 2LT +
min B[V /()| <= < = Z 5 )
- (2D

1I-1D@RI-1) <~
+7 e Zdei,

f@®).
Directly plugging v =

where T' = f(xo) —

7 f into (20) produces (21).

Remark 1. G; measures the degree of none Independent and
Identically Distributed (non-1.1.D.) distribution across clients.
When clients’ data are LI.D., we have G1 = Gy = - - - =
G, = 0, which makes upper bound be O(ﬁ)

Remark 2. More global rounds T and more participants M
reduce the upper bound.

maxi G Lo the heterogeneity ratio.

max; d; G2
When T > Ty, where Ty = [Mg —‘, the first term in (20)

dominates. Therefore, we have

1 d?G?
<— | 2Lr + 22
VT < M Z pi ) -

=1
f@).
Proof of Corollary 2 can be found in Appendix B.

Corollary 2. Let p =

min B |V £ (z,)|

where I' = f(xg) —

D. Alternative Optimization Problem

To re-formulate Problem (P1), we use (22) to replace the
convergence constraint and use the new expected overall
latency E(A) in (14) as the objective function. We have

M
N-1 [ 4
p%{lz}/[ ON — ; ;pj (Gix1 —6)| T (P2)
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N
1 1 d?G?
st. — |a+ — | < (P2a)
N
Sp=1, (P2b)
i—1
TeZ " MecZ", (P20)

where oo = 2LT".

Problem (P2) is a mixed integer nonlinear programming
problem due to the inclusion of 7" and M, and its objective
function is non-convex concerning p and M.

Before we present our solution to Problem (P2), we first
discuss a special case where the response times are uniform
across all clients. Under this uniform response time condition,
Problem (P2) can be simplified into a convex optimization
problem where the objective function becomes dn7'. This
special case is noteworthy because it allows us to apply
a different analytical approach to find the optimal solution.
Solving the convex problem by the method of Lagrange
multipliers produces Corollary 3 and we refer to its solution
as norm selection.

Corollary 3. (Norm Selection). When 61 = 05 = - - =
On, Problem (P2) is a convex problem and its optimal client

selection probability is p; = % for the i-th client.
i=1 ¥4

E. Solution to P2

With continuous (p) and integer (7, M) variables, (P2) is
a mixed integer nonlinear programming problem, which is
difficult to solve directly in general.

As M denotes an integer representing the number of par-
ticipants, we have M € {1,2,..., N}, yielding a maximum of
N candidates for (P2)’s optimal solution. Therefore, we apply
grid search to find the best M. Given fixed M, we utilize the
polyhedral active set algorithm to obtain the optimal (p*, 7).
Subsequently, we calculate the objective function of (P2) using
the candidate solution (p*,7*, M). Finally, we obtain the
optimal solution (p*, T*, M*) that yields the minimized value
of the objective function.

It is worth noting that the grid search method results in
a computational complexity that is linear with respect to the
number of clients N. As N increases, the complexity of the
solution also increases. However, since the computation is
performed offline before the actual training process, it does
not impact the runtime performance. For extremely large N,
alternative strategies such as adaptive sampling or hierarchical
search methods can be employed to further reduce the com-
putational complexity.

Specifically, we first relax 7' to be a continuous variable,
which converts constraint (P2c) to be T € R™. According to
(P2) and (P2a), we can see that 7" satisfies

N
1 1 d?G?
a+ — —— | =g, (23)
7 (e 57)
ie.,
1 1 & eer\
T = = — ) i) 24
2w x5 2

With (24) and fixed M, we can re-formulate Problem (P2)
as follows:

M
N-1{ i
mgn oN — ij (0i41 — 0;)
i=1 j=1 (P3)
2
1 2G?
X |a+ — t
N
st Y pi=1. (P3a)
i=1

Problem (P3) represents a nonlinear optimization challenge
with polyhedral constraints. To address this issue, we employ
the polyhedral active set algorithm [38], which is comprised
of two distinct phases: the initial phase implements the
gradient projection technique, whereas the subsequent phase
incorporates an appropriate algorithm tailored for linearly
constrained optimization problems. By alternating between
these two phases according to well-defined branching criteria,
the Polyhedral active set algorithm guarantees the convergence
to a stationary point.

Therefore, for any given M, p* is solved by (P3) and T
is given by

1 1

N
i EvE S St

(25
€ -1 P

where [-] denotes the ceiling function.

At last, by searching M € {1,2,..., N}, we obtain the
suboptimal solution (p*, 7™, M*) of Problem (P3), which is
our training scheduling for federated learning.

FE. Estimates of Unknown Parameters

As shown in Section III-E, p; and T are decided by d;,
G; and «, which are unknown to the server prior to the
federated learning training. Therefore, we need to estimate
those unknown parameters.

We run one trial experiment with p, = [d1,da, ..., dx]. The
trial runs total 7" rounds and in each round M clients are
selected according to the probabilistic client selection. Suppose
€, denotes the loss value after 7'-rounds training for p, and &
be the estimate of «, we have the following equality according

to (23):
S I EN d;G?
“T M)

where d; and G; can be reported by clients along with their
model updates.
By solving (26), we have & given by

(26)

N

a=VTe, — % > 4G 27)
i=1

To reduce the estimation error, we can record different sets

of (T, ¢) to obtain an averaged & in just one trial experiment.

Regarding the cost, this estimation process does not add much

communication overhead since only two numbers (d; and G;)
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Fig. 2: Impact of C,-ger and By,qe on optimal per-round latency and global rounds. The values of per-round latency for
Corder = 10 and Cl-gerr = 1000 are normalized to allow for a direct comparison with C,;.4. = 1. Similarly, the values of
global rounds for B,,qer = 10 and B,,4e» = 1000 are also normalized for the same reason.
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Fig. 3: Optimal overall latency and latency difference comparison.

are added to the uploaded data. The computation cost is also
low because the trial experiment does not need to be a full
training process. 1" can be set very small as long as all clients
have participated at least once. Furthermore, the trained model
in the estimation process can be reused as a good initial model
for the experiment with (p*, 7™, M*), which avoids repeating
experiments.

1V. EXPERIMENTS
A. Numerical Experiments

We conduct a series of numerical experiments to study the
effect of parameters such as M, §;, d;, and G; on the solution

to Problem (P3). We also compare our optimal client-selection
probability p* with other probabilities in terms of the number
of global rounds 7" and the overall latency E(A).

1) Reformatting (P3): To simplify the parameter set, we
define the data factor B; = d?G? and the neighboring latency
difference C; = §;+1 — 9;. Therefore, Problem (P3) can be
reformulated as follows:

N-1 i
min 51\7 - Z C,‘ ij
P i=1 j=1

N 2
1 B,
a+M;E

(P4)
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N
st. Y pi=1 (P4a)
i=1

2) Experiment Settings: Hyperparameters. We utilize the
SuiteOPT toolbox [38] to solve our optimization problem
(P4). With o = 1 and ¢ = 1072, we perform an ablation
study on the other parameters in Problem (P4). Specifi-
cally, we explore the impacts of the total number of clients
N € {10,50,100} and the participation ratio M/N €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} on the selection
probability. Furthermore, we study the effect of the discrep-
ancy of local data by modifying the order of B,.4cr €
{1,10,103} and uniformly sampling B; € (0, Border]. Sim-
ilarly, to demonstrate the effect of the latency differences of
clients, we change the order of Cy.qc € {1,10,103} and
uniformly sample C; € (0, Cypqer]. We repeat the experiment
10 times for each combination of parameters.

Evaluation Metrics. We adopt three metrics to evaluate
the performance of different client-selection probabilities: ex-
pected per-round latency E(A?), global rounds 7', and overall
latency E(A) = E(AY)T. We can compute E(A?) and T as

M
N-1 %
E(AY) =dx = > Ci | Y p; (28)
i=1 j=1
and N
1 1 < Bi
T—LQ<a+M;pi>w (29)

respectively, where B; = d?G? and C; = ;41 — ;.

Benchmarks. We compare our solution to Problem (P4),
denoted as p*, with two other selection schemes. The first one
is the uniform selection, where p; = p; = --+- = py = 1/N,
which is the selection scheme used in FedAvg [31]. The second
one is the norm selection, where participants are selected
according to p; calculated by the server based on the norms
of participants’ updates [15].

3) Experiment Results: The impact of N and M /N on
the optimal per-round latency and global rounds is greater
than that of C,,qer and By,qe-. Figures 2a and 2b illustrate
the average optimal per-round latency with various values
of Cyrger when N = 10 and N = 100, respectively. The
per-round latency for Cypger = 10 and Cyrger = 1000
is normalized by eliminating the effect of the magnitude
of C, allowing for a direct comparison with C\yqer = 1.
It is observed that different C,,4¢,- values produce similar
per-round latencies. However, per-round latency dramatically
increases as the number of clients N or the participant ratio
M/N increases. Similarly, as shown in Figures 2¢ and 2d, the
number of global rounds increases as fewer clients participate
in training per round or the number of clients increases.
In contrast, different values of B,.q4e play a small role in
determining the number of global rounds. These observations
suggest that the magnitude of C; and B; do not change the
optimal selection probability p*.

Figure 3a shows the optimal overall latency with various N
and M/N for Cyr4er = 1 and Byrger = 1. It shows that as
the number of clients NV decreases and the participation ratio

M/N increases, the overall latency decreases. Additionally,
the variance of the overall latency also decreases when N
decreases and M /N increases. These results suggest that
smaller client populations and higher participation ratios result
in more efficient communication overall.

Figure 3b and 3c illustrate the difference in the overall
latency between our selection scheme and uniform selection,
and norm selection, respectively. It is observed that our se-
lection scheme has the smallest overall latency. Interestingly,
when N is sufficiently large, norm selection provides a good
estimate of the optimal selection probabilities. This is further
demonstrated in experiments conducted on real-world datasets.

B. Experiments on Real-World Datasets

In this section, we evaluate the effectiveness of our client
selection probabilities in the generalized federated learning
process (Algorithm 1) using real-world datasets.

1) Experimental Settings: Platform: We develop a cus-
tomized federated learning platform using the Tensorflow
Federated framework [39]. This platform allows for multi-
machine simulation runtime experiments and can also be
extended to multi-device implementation. Our experiments are
conducted on a High-Performance Computing (HPC) cluster
comprised of eight nodes, each of which is equipped with two
32-core Intel CPUs and four NVIDIA Ampere A100 GPUs
with NVLink interconnect.

Datasets and Model: We use the EMNIST_LETTERS [40]
and FASHION_MNIST [41] datasets. EMNIST_LETTERS
contains images of 26 lowercase letters and FASH-
ION_MNIST contains 10 different image classes. The training
data of each dataset is partitioned into clients’ datasets, while
the testing data is used to evaluate the performance of our
method. We use LeNet-5 [42] as the classification model.

Latency Heterogeneity: To emulate latency differences
among clients, we independently sample § ~ U(0,1) for N
clients and then arrange them in an ascending order such that
0<d; <y <...<dy <1 While §; is in seconds in the
following results, this simulation is capable of representing the
normalization of any latency heterogeneity scheme.

Data Heterogeneity: To simulate data heterogeneity in
real-world federated learning applications, we employ three
different data partition configurations, one I.I.D. and two Non-
LLD. configurations.

e [I.D. The training data is randomly partitioned among
clients such that each client has an equal amount of data
and an equal amount for each class.

e Class. The training data is partitioned among clients
based on classes, with each client having data from only
C randomly selected classes and with no overlapping data
between clients, while the data volume in each client is
the same. We let a client own 50% classes of the dataset,
ie., C = 13 for EMNIST LETTERS and C = 5 for
FASHION_MNIST.

o Dir. The training data is partitioned among clients follow-
ing a Dirichlet process, with each client having a different
amount of data and a non-uniform class distribution. We
set the Dirichlet parameter o = 0.1.
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Fig. 5: Performance comparison under Dir data setting.
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Dataset | Data Setting | Ours | Uniform [31] | Norm [15] | Ratio [10]
LLD. 245.66 | 472.87 (1.92x) | 419.93 (1.71x) | 469.51 (1.91x)
EMNIST_LETTERS Class 164.82 | 444.37 (2.70x) | 317.70 (1.93x) | 447.33 (2.71x)
Dir. 64.12 | 188.33 (2.94x) | 128.90 (2.01x) | 169.61 (2.65x%)
LID. 114.05 | 181.46 (1.539x) | 177.35 (1.56x) | 210.93 (1.85x%)
FASHION_MNIST Class 220.92 | 439.33 (1.99x) | 392.50 (1.78x) | 439.42 (1.99x%)
Dir. 88.08 | 270.14 (3.07x) | 137.35 (1.56x) | 255.69 (2.90x)

TABLE I: Overall latency in seconds of various methods under different datasets and data heterogeneity settings. (- X)
denotes the acceleration ratio of ours in comparison with benchmarks in terms of the overall latency.
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Fig. 6: Performance comparison under Class data setting.

Hyperparameters: For our experiments, we set the total
number of clients to N = 10 for FASHION_MNIST and
N = 40 for EMNIST_LETTERS. The number of partici-
pants is M = 5 for FASHION_MNIST and M = 10 for
EMNIST_LETTERS. In each round, participants are selected
according to given selection schemes, and each participant
updates the local model in I = 5 epochs using SGD with
the batch size of 256. The default parameters of Adam
optimizer in Tensorflow are used, i.e., learning rate is 0.001
and exponential decay rates are 0.9 and 0.999, respectively
[43].
Benchmarks: To evaluate the performance of our proposed
selection scheme, we compare it with these existing schemes:
o Uniform selection [31]. The probability for each client to
be selected is identical, i.e., p; = p2 = --- = py = 1/N.

o Norm selection [15]. Participants are selected according
to p;, where p; is calculated by the server based on the
norms of participants’ updates.

e Ratio selection [10]. Participants are selected according

to p; = d;, proposed by FedProx.

2) Experiment Results: We evaluate the global loss and test
accuracy of different selection schemes on two datasets under
different data settings. Each experiment is independently run
10 times with different random seeds and the same seed is used
across different selection schemes. Results averaged over 10
runs are reported.

In Table I, we summarize the overall latency required to
achieve the targeted global loss with various client selection
schemes on EMNIST_LETTERS and FASHION_MNIST. As
is shown, ours outperforms other selection schemes in both
LLD. and non-LL.D. configurations with the lowest overall
latency and achieves up to 3 times acceleration. More details
are shown by the decreasing global loss in (a) and (c) of
Figures 4, 5, and 6.

In comparison with the LLD. setting, our approach at-
tains more acceleration ratios within two none-L.I.D. scenar-
ios. Specifically, in contrast to uniform selection on EM-
NIST_LETTERS, our method yields 2.94x and 2.7x accel-
eration for Dir and Class categories, respectively, surpassing
the 1.92x acceleration observed in the I.I.D. scenario.
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As shown in (b) and (d) of Figures 4, 5, and 6, our approach,
in some cases, achieves superior test accuracy with much less
overall latency required for the convergence of the training
model. In the non-L.I.D. scenarios, our methodology exhibits
enhanced robustness in comparison with uniform selection, as
evidenced by the mitigation of test accuracy fluctuations.

It is worth noting that norm-based selection frequently fa-
cilitates the reduction of the overall latency relative to uniform
selection, as shown in Table I. It indicates that the prior
knowledge of d; and G; is helpful for a better client selection
scheme. On the other hand, norm selection is not optimal
because it ignores the latency differences among clients.

V. CONCLUSION

We have introduced a novel client selection scheme designed
to minimize the overall training time of federated learning by
considering both data and latency heterogeneity among clients.
Through the derivation of a convergence upper bound with
probabilistic client selection, we have established the theo-
retical convergence guarantee for our proposed scheme. Our
numerical analyses and experimental evaluations on real-world
datasets have demonstrated the superiority of our selection
scheme in achieving faster convergence rates and competitive
test accuracy, even in scenarios with highly non-LI.D. data.
Notably, our scheme obtains up to 3 times acceleration in
comparison with random client selection.

In the future, conducting extensive experiments on large-
scale datasets, such as ImageNet, and using complex models,
such as ResNet-50 and Vision Transformers (ViTs), will
further explore the applicability of our optimization framework
across diverse learning scenarios. Additionally, developing a
unified framework to evaluate both probabilistic selection and
dynamic selection methods is an intriguing research direction.
Moreover, implementing a federated learning testbed with
real federated clients will provide additional insights into
the practical network variability and real-world deployment
challenges.

APPENDIX A
PROOF OF THEOREM 1

Throughout the proof, we denote ¢, = kI, k=0,1,...,T—1
as the time instants when global aggregation happens. We
define y;, ;1 = Zf\ildlyik 1» which denotes the virtual ag-
gregated model with all the IV participants. To aid the proof
of Theorem 1, we first prove some important lemmas.

A. Lemma 1 & Proof

Lemma 1. Following Algorithm 1, when x, is given, the
expectation of xy, ., is unbiased to ¥y, 1, i.e.,

= ]Etk (‘rtk+1)

where By, denotes conditional expectation E(-|t,).

E(‘Ttk+l|xtk) = gtk,la (30)

Proof. Let X[* be a random variable denoting the number of
times the i-th client is selected in the x-th round. Then, X f k
follows a binomial distribution with parameters M and p;, i.e.,

Xf’“ ~ Binomial(M, p;). The expectation of Xf’“ is given by
E[X[*] = Mp;.

Since the participants of each round are selected according
to probability p with replacement, the expectation of the
aggregated model E;, (2, ,) is given by

d;
By, (2,,,) =E Z M, Ve
i€ Mk
N .
= ZE[thk] Yi1 Zdzytk 1= Y1 [
i=1
B. Lemma 2 & Proof
Lemma 2. For given xy,, let M'" = {iy,is,...,ip} C [N]in

Algorithm 1, where i) denotes the index of the l-th participant.
. . di; . . _
Then for any 1, the expectation of ﬁyz; ; is unbiased to s, 1,

ie., J
Etk (”yzi”]) = gtk,l'
Di,

Proof. For certain 4; in M it could be any index a € [1, N]
with probability p,. Therefore,

d;

E,, <p. il g > E,, ZP i1 =a) ytk’
il

=K, Zday?k,f
a=1

€29

= gtk,I' O

C. Lemma 3 & Proof

Lemma 3. Given xy,, the variance of xy, ., satisfies

N
2 I%4? d2G?
E — 7 < 2T 32
tk thk+1 ytk,IH =T Zz:; o ( )
Proof.
M d 2
_ 2 i B
By oo = | = B |3 St —
1=1 Pi
2
M
1 d;
=Eu |77 — Y1~ Y1
tr M lzzl(p” tr, I i, )
M 9
(@) 1 d; B
a2 WEM Z Z ytk I = Ytp,I
=1
N 2
® 1 d; . ~
= W ZMsztk Eyzle - ytk}]
— dz i _ dz i 2
= M ZP’LEtk yt;m Eytk,o - (ytk,f - Eytkvo)
(c) d; . 2
< szl t ytk E_yzk,o
2
I-1
MZ Z]Etk — > VE(, &)
=0
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@ 1 L2, =

S 72 2 2IZEtk ||VF ytkﬁfJ)H
i—1 Pi j=0

© 1 L @2 d2G2

< - ZiA21202 =

= M;p7 ' Z

where (a) uses Lemma 2, (b) takes expectation over client
selection, (¢) uses E ||z — Ez|* < E|z||, (d) uses Jensen’s
Inequality, and (e) uses Assumption 3. O

D. Proof of Theorem 1

Proof. According to Assumption 2, for any given z;, , we have

Et, f(2ty,,) < Bu (f (o) + (@i yy — @y, VF(22,))

2
+ B ||xtk+1 - mtk” )
(33)
Consider the third term in (33):
L 2
§Etk thkJrl - xtk”
@ L g o 124 E g 2
- 5( ty ||xtk+1 - ythH + Iy, ”ytk,l - xtk” )
®) L1292 N d2G2 L )
< oM pm — + ]Etk Hyth xtk” ’ (34)
where (a) uses Lemma 1 where E;, (z4,., — ¥,,1) = 0 and

(b) uses Lemma 3.
Consider the second term in (33):

- xtkavf(xtk)> - xtk’vf(xtk)>

N I—-1 .
= —Ey, <Z d; ZVFi(yzk,j),Vf<:ctk>>

Ey, <xtk+1 =Ey, <ytk71

i=1  j=0
2
@ 7 -
o7t Zdzz (VEi(yi, ;) — VFi(2,))
=1 7=0
2
N I—-1
7 2
D> VFE(, ) —I2Vf(:m)l>
i=1  j=0
2
b N I—-1
(b) En( > di» (VFi(yi, ;) — VFi(xr,))
=1 =0
1
— 5 Gt — @, |* = 12 Vf(mtk)l2>7 (35)
where (a) uses — (a,b) = &([la — b]* — [lal|* - ||b]|*) and (b)

_ N I—- i
uses [, (ytk,l _l'tk) = —Ey, (Zi:l d; ijcl) VFi(ytk,j)) .
The first term in (35) is
2

N I—-1
Ky, Zdi Z(VFi(ytik,j) — VF(24,))
=1 j=0

(a) )
< By Y di Y I|VE(y, ;) — VEi(,)|

I—
(_b)]Eth Z IVEi(yi, ;) — VEi(z)|
i=1 j:

() - )
< I§ :d1§ :L2Etk ||y§m _xtkH2
=1 =1

Jj—1

- ZVVFZ(yzk,wfg)

g=0

N I—-1
@ IZ d; Z L2E,,
I-1j5—-1

< 112 QZd ZZEt’“ ||VF ytkgvgg H J

i=1 j=1g=0
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< IL? QZd ZZGQ

=1 7j=1g=0

_ 2

(36)

where (a) and (e) use Jensen’s 1nequahty, (b) holds because
VF;(yi, 0) = VFi(2y,), (c) uses Assumption 2, (d) uses the
update rule of SGD, (f) uses Assumption 3, and (g) holds
because of Y171 j2 = 1U=D@I-1)
j=1J 6 :
Plugging (36) back, (35) becomes

_l‘tk’vf(xtk)>
_ - )(21—1 )L23 ZdG2

Etk <xtk+1

Et, [1Ge0,1 — 2o, || T]Etk IV f(ze)|?. 37

~ 35
Plugging (34) and (37) back in (33), we have

Etk f(xtk+1)

I(I —1)(2] — 1)L23
< By, ) + TETNEIZ DI 5~ o

12 P
L 1 _ i
+ (5 B E)Etk ||yt1«,1 - ‘rtk” Etk ||Vf(mtk)||
LI*y? SN d2G2
oM £ p;

i=1

(a) I(I— 21‘*1 L?~3

1

— LBy, [VF(@n)I” +

L2y & d?G?
2M pi

i=1

(38)

where (a) holds if v < ;. Rearranging (38), we have

By, [V ()| < %(Etkfmk) - Etkﬂxw))

_ 2 2
i=1 (39)

We now have

minE |V f (z,)|” Ee, |V f(ze,)|

< min
tr€{0,1,...(T-1)I}
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