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ABSTRACT: We present the theory for the evaluation of nonadiabatic couplings
(NACs) involving resonance states within the complex absorbing potential
equation-of-motion coupled-cluster (CAP-EOM-CC) framework implemented
within the singles and doubles approximation. Resonance states are embedded in
the continuum and undergo rapid decay through autodetachment. In addition,
nuclear motion can facilitate transitions between di!erent resonances and between
resonances and bound states. These nonadiabatic transitions a!ect the chemical
fate of resonances and have distinct spectroscopic signatures. The NAC vector is a
central quantity needed to model such e!ects. In the CAP-EOM-CC framework,
resonance states are treated on the same footing as bound states. Using the
example of fumaronitrile, which supports a bound radical anion and several anionic resonances, we analyze the NAC between bound
states and pseudocontinuum states, between bound states and resonances, and between two resonances. We find that the NAC
between a bound state and a resonance is nearly independent of the CAP strength and thus straightforward to evaluate, whereas the
NAC between two resonance states or between a bound state and a pseudocontinuum state is more di"cult to evaluate.

1. INTRODUCTION

The Born−Oppenheimer (BO) separation of nuclear and
electronic motion is a cornerstone of quantum chemistry and
molecular physics of bound states and gives rise to the concept
of electronic states and potential energy surfaces (PESs).1−7 It
relies on the fact that the nuclei are significantly heavier and
move slower than electrons. In many circumstances, one can
invoke an adiabatic approximation, often referred to as the BO
approximation, in which couplings between di!erent electronic
states are neglected and nuclear motions on each PES are
entirely independent of each other. This means that the
electrons follow the nuclei instantly and the electronic state
never changes. The BO approximation is in particular
appropriate for the ground electronic state, which is usually
well separated from the electronically excited states so that
nonadiabatic interactions are highly improbable.
However, the BO approximation breaks down when two

electronic states become close to each other, for example, near
a conical intersection. Here, states are coupled by the kinetic
energy operator, which induces transitions between them.
Physically, this coupling results from the dependence of the
electronic wave functions on the nuclear coordinates.
Mathematically, the coupling comprises two terms:6−9 one
term is a vector coupling involving the first derivative of the
electronic wave functions, which is termed the nonadiabatic
coupling (NAC) vector, whereas the other term is a scalar
coupling involving the second derivative of the electronic wave
functions. This second term is related to the diagonal BO
correction.

NAC is thus a central quantity needed to describe
nonadiabatic interactions between electronic states mediated
by nuclear motion. These interactions give rise to nonadiabatic
transitions, intensity borrowing, and vibronic e!ects. Non-
adiabatic transitions result in radiationless relaxation, which is
important in photochemistry.2−6

For bound electronic states that are stable with respect to
electron loss, the computation of NACs is possible with a
variety of quantum-chemical methods including time-depend-
ent density functional theory,10−13 multiconfigurational self-
consistent field approaches,14,15 multireference configuration
interaction (CI),14,16,17 and equation-of-motion coupled-
cluster theory.18−22

The situation is di!erent for electronic resonances that
decay through autodetachment. There is, however, substantial
spectroscopic evidence that NAC plays a critical role for these
metastable states as well. Recent examples include anionic
resonances in pyrrole,23,24 para-benzoquinone,25,26 chloroben-
zene,27 and hexachlorobenzene.28 The evaluation of NACs
with quantum-chemical methods for such systems has so far
only been possible by approximating resonances as bound
states and neglecting their decay.
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However, this is not a good approximation because
resonances are coupled to the continuum and cannot be
associated with discrete states in Hermitian quantum
mechanics.29−31 Rather, they manifest themselves through an
increased density of continuum states. In this framework, a
treatment of resonances in terms of scattering theory is
possible.32,33 In contrast, in non-Hermitian quantum mechan-
ics, it is possible to describe a resonance by a discrete state with
complex energy whose real part is interpreted similarly to the
energy of a bound state, while the imaginary part corresponds
to the decay width, that is, the inverse of the state’s lifetime.
This result can be reached using two di!erent approachesthe
formalism by Gamow and Siegert,34,35 where the resonance is
an adiabatic state, and the formalism by Feshbach and
Fano,36−39 where the resonance is treated as a bound state
diabatically coupled to the continuum. In the former case, the
decay width is a local function of the nuclear coordinates,
whereas in the latter case, it is a nonlocal quantity.
Nuclear motion on resonance PESs and NAC between

electronic resonances have been analyzed by several
authors.40−52 In particular, a linear vibronic coupling model
for resonance−resonance interaction has been devised.45

Importantly, the BO approximation cannot be applied to
resonances without modifications because there is always exact
energetic degeneracy between a resonance state and the
continuum in which it is embedded. Most of the available
theoretical treatments are based on the Feshbach formalism
and scattering theory. This approach leads to energy-
dependent nonlocal terms in the resonance PES as well as in
the coupling matrix elements.44,45,47,53 The nonlocal treatment
is highly accurate, but its high computational cost and the
intricate nature of the coupling matrix elements make it
di"cult to apply to more than very few nuclear degrees of
freedom. Resonances in polyatomic molecules can thus only be
treated within models with reduced dimensionality.
A significant simplification is achieved by the local

approximation, which results in an e!ective complex-valued
potential for the motion of the nuclei called the boomerang
model.54−57 Coupling between resonances can be treated
within this model as well.47 However, a general problem of the
Feshbach formalism is the definition of the resonance state.
Especially for molecular temporary anions, there is no easy way
to separate the resonance from the embedding continuum.
Consequently, the boomerang model and treatments of NAC
based on it have not been combined with state-of-the-art
quantum chemistry methods so far.
It thus appears worthwhile to use the Siegert formalism for

the treatment of NACs involving resonance states. Within this
approach, temporary anions of polyatomic molecules can be
treated more easily using quantum chemistry methods. For
example, crossing seams between anionic resonance states have
been computed and analyzed using Siegert energies.48,51

In this article, we present the theory for the analytic
evaluation of NACs within the complex absorbing potential
equation-of-motion coupled-cluster framework (CAP-EOM-
CC).58−60 Our approach is based on analytic gradient theory
for CAP methods;61,62 the NAC elements are computed
following the summed-state approach of Tajti and Szalay.20 An
important advantage of CAP-EOM-CC for the study of anionic
resonances is that the ground and excited states of the neutral
molecule and the bound and resonance states of the
corresponding anion are treated on the same footing. CAP-
EOM-CC analytic gradients have been used to compute

adiabatic electron a"nities of temporary anions,62 to locate
minimum-energy crossing points between anionic and neutral
PESs,63 to characterize exceptional points,51 and most recently
to investigate the electron-energy loss spectrum of pyrrole.23

The article is organized as follows. In Section 2, we present
the theory of NACs involving resonance states and their
evaluation within CAP-EOM-CC theory, and in Section 3, we
describe our implementation. To illustrate complex-valued
NACs obtained from these calculations, we use anionic states
of fumaronitrile as an example. The computational details are
outlined in Section 4, and the results are discussed in Section
5. Our concluding remarks are given in Section 6.

2. THEORY

2.1. Nonadiabatic Coupling between Bound Elec-
tronic States. We begin with a brief description of NAC
between bound electronic states within the context of the BO
separation of variables.6 The time-independent Schrödinger
equation of a molecule can be written as

H r R r R( , ) ( , )| = | (1)

where R and r denote nuclear and electronic coordinates,
respectively. The total Hamiltonian Ĥ(r, R) = T̂n(R) +
Ĥel(r, R) consists of the electronic Hamiltonian Ĥel and the
nuclear kinetic energy operator T̂n. The total wave function
ΨT(r, R) for a vibronic state T can be expressed as a sum over
products of nuclear and electronic wave functions

r R r R R( , ) ( ; ) ( )
I

I I

T

T| = |

(2)

Within the BO separation, the electronic wave functions
|ΦI(r; R)⟩ are obtained by solving the electronic Schrödinger
equation at fixed nuclear positions

H r R E R r R( ; ) ( ) ( ; )
I I I

el
| = | (3)

with EI as the electronic energy of adiabatic state I.
The equations that determine the nuclear wave functions

ξI
T(R) are obtained by plugging eq 2 into eq 1

T R H r R r R R

r R R

( ) ( , ) ( ; ) ( )

( ; ) ( )

n

I

I I

T

T

I

I I

T

el
[ + ] |

= |
(4)

and projection of the Schrödinger equation onto an electronic
state ⟨ΦJ|. This yields

T E R R R R( ) ( ) ( ) ( )n J J
T

I

JI I
T T

J
T

[ + ]| + | = |
(5)

The first term in eq 5 describes nuclear motion on an isolated

PES EJ(R), while JI (I ≠ J) is the NAC between states J and I.

Within the BO approximation, JI is neglected resulting in the

separation of electronic and nuclear degrees of freedom.
However, to describe nonadiabatic transitions between
electronic states, this term needs to be considered. The
coupling matrix element is given by

M
R R

1

2
2 ( ) ( )JI JI JI= [ · + ]

(6)

where the sum runs over all nuclear indices α and Mα and ∇α

denote the corresponding masses and gradients. The latter are
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usually evaluated in Cartesian coordinates. The contributions

JI and JI are given as

R r R r R( ) ( ; ) ( ; )JI J I= | | (7)

R r R r R

R R R

( ) ( ; ) ( ; )

( ) ( ) ( )

JI J I

JI

K

JK KI

2
= | |

= +

(8)

The last identity shows that R( )JI is su"cient to describe the

coupling.3 Note, however, that it only holds if the electronic
wave functions form a complete basis.
Semiclassical treatments of nuclear motion6 commonly

neglect R( )JI and consider only R( )JI , which is called

derivative coupling or NAC. Although it has been argued that

the other term, R( )JI , in general cannot be neglected,7,8 it

has also been shown how to account for it in the simulation of

nonadiabatic dynamics.9 The impact of R( )JI on the final

results appears to be limited.
The elements of the NAC vector can be evaluated by

noticing that for an exact solution of the electronic Schrödinger
equation, the nuclear gradient of state I (GI) satisfies the
Hellman-Feynman theorem

G H H( )
I I I I I

el el
| | = | | (9)

By generalization to o!-diagonal matrix elements, i.e., interstate
couplings, one obtains for R( )JI

H

E E H

0

( ) ( )

I J

I J I J I J

el

el

= | |

= | | + | | (10)

From eq 10, it follows that the derivative coupling can be
evaluated as

R
H

E E
( )

( )
IJ

I J

J I

el

=
| |

(11)

where h H( )IJ I J

el
| | can be viewed as an interstate

generalization of the nuclear gradient that is called the NAC
force.6,21 Eq 11 illustrates that the derivative coupling becomes
large when two PESs are nearly degenerate. Since R( )JI

enters the Schrödinger equation for the nuclei, eq 5, through
the scalar product with the nuclear velocity in eq 6,
nonadiabatic transitions are also more likely when the nuclei
move fast. Conversely, the adiabatic approximation is
recovered when the nuclei are moving infinitesimally slow.
We note that the sign of the vectors hIJ and IJ is arbitrary: a

change of phase in either ΦI or ΦJ induces a sign change in hIJ
and IJ , but the resulting wave function is still a solution to eq

3. Also, the elements of hIJ and IJ sum up to 0 because of

translational invariance.64,65

2.2. Nonadiabatic Coupling between Resonances
Based on Complex Absorbing Potentials. The practi-
tioners of bound-state quantum chemistry need not be
concerned that the |ΦI(r; R)⟩ in eq 2 only form a complete
basis if continuum states are included as they work with a
basis-set representation of finite size. However, this needs to be
reconsidered when dealing with NACs where one or both of

the coupled states is an electronic resonance because these
states are embedded in the continuum.29−31

Although it is possible to extend the BO ansatz to Hilbert
spaces of infinite dimensions,3 we will follow the conventional
approach here and work with a finite set of electronic
functions. We accomplish this in the framework of non-
Hermitian quantum chemistry where electronic resonances are
described as discrete states separated from the continuum. In
contrast, in Hermitian quantum chemistry, resonances are not
discrete states but correspond to an increased density of
continuum states.
Our computational treatment of NAC employs the Siegert

representation of electronic resonances.35 This means that we
consider eigenstates of the electronic Hamiltonian that diverge
exponentially in space and have complex energy

E E i /2res = (12)

The real part of the energy corresponds to the position of the
resonance, whereas the imaginary part is related to the decay
width Γ. For bound states, Γ = 0. The Siegert states can be
included in the manifold of electronic wave functions
|ΦI(r; R)⟩ in eq 2 in a straightforward manner. Eres from eq
12 then depends parametrically on the nuclear coordinates,
and the resonance width Γ is a local quantity.
Alternatively, eq 12 can be obtained following the theory by

Feshbach and Fano.36−38 Importantly, Γ is a nonlocal quantity
in this framework. We discuss the treatment of nonadiabatic
e!ects based on this latter approach in Section 2.3. Also, we
note that the coupling between diabatic resonance states and
the ensuing nuclear dynamics have been analyzed in ref 45.
Siegert states and energies can be computed using di!erent

techniques, in particular using complex scaling66,67 or,
alternatively, CAPs.68,69 Here, we use the CAP method
where an imaginary potential Ŵ(r) is added to the electronic

Hamiltonian H
el

according to

H H W r( ) i ( )
el el

= (13)

Di!erent functional forms have been suggested for Ŵ, all of
which bring the diverging resonance wave function into an

integrable2 form. Here, we use a shifted quadratic potential
defined as

W r W x W y W z( ) ( ) ( ) ( )x y z= + +

W

o r

o r

( )
0 if

( ) otherwise

0

0 2

l

m

ooo

n

ooo
=

| |

| | (14)

where α = (x, y, z), (rx
0, ry

0, rz
0) and (ox

0, oy
0, oz

0) are the onset and
origin in each dimension, respectively, and η is a strength
parameter.

The CAP Hamiltonian H ( )
el

has complex eigenvalues, and
it can be shown that some of them converge to true Siegert
energies defined according to eq 12 in the limit η → 0+.69

However, in a finite basis set where H ( )
el

is represented
approximately, this limit is not meaningful. In this work, we
follow the most common strategy and determine an optimal
CAP strength ηopt by minimizing the perturbation of the
energy in first order, which yields the criterion min|η dE/dη|.69

The remaining eigenvalues of Ĥ(η), which do not correspond
to resonances, are either bound states with real energy or
pseudocontinuum states whose complex energy changes much
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more rapidly with η than that of resonances so that no ηopt can
be determined.
To derive equations for the nuclear motion, we reconsider

eqs 1 and 2 and assume that some electronic wave functions
|ΦI(r; R)⟩ have complex energy. Equations 4 and 5 do not
formally change, but the potential energy surface EJ(R) is
complex-valued if one projects onto a resonance state
⟨ΦJ(r; R)|. If ⟨ΦJ(r; R)| is a bound state, EJ(R) is real-valued,

whereas JI is complex-valued for all I that correspond to

resonance states.
The definitions of the coupling matrix elements, eqs 6−8, do

not change when one or both of the coupled states have
complex energy. Also, it is still possible to evaluate the
derivative coupling from the NAC force through eq 11. This
shows that the derivative coupling diverges at exceptional
points where the real and imaginary parts of two resonance
energies EI and EJ become identical. An important di!erence
between real-valued and complex-valued NAC is also apparent
from eq 11: the vectors IJ and hIJ are necessarily collinear if EI

and EJ are both real, but this is not the case if one or both of
them are complex. Rather, the four vectors Re( )IJ , Im( )IJ ,

Re(hIJ), and Im(hIJ) can all point in di!erent directions.
2.3. Nonadiabatic Coupling between Resonances

Based on Feshbach’s Projection Formalism. As an
alternative to CAPs, Feshbach’s projection formalism can be
used to define resonance states. In the following, we use the
ansatz by O’Malley,40 later extended by Royal et al.,47 to obtain
further insights into NAC between resonance states and the
meaning of complex-valued NAC vectors between Siegert
states obtained from CAP calculations.
In the Feshbach formalism,36−39 the total wave function

|Ψ(r, R)⟩ from eq 1 is expressed as

Q P Q P| = | + | = | + | (15)

where the projectors Q̂ and P̂ operate on the electronic part of
the total wave function and are defined as

Q r R r R( ; ) ( ; )
I

n

I I= | |

(16)

P Q E1 d
E E

0

= = | |
(17)

with |ΦI(r; R)⟩ as discrete
2-normalized electronic resonance

states and |χE⟩ as δ-normalized scattering states. Using eq 2,
one obtains for |ΨQ⟩ the explicit form

r R r R R( , ) ( ; ) ( )Q

I

I I| = |

(18)

Applying the Hamiltonian to eq 15 yields the following
coupled equations

P H P PHQ( ) | = | (19)

Q H Q QHP( ) | = | (20)

By plugging eq 19 into eq 20, a projected Schrödinger equation
is obtained for the discrete states, which reads

QHQ QHP PHP PHQ( )Q Q Q
1

| + [ ]| = |

(21)

Here, the projected Hamiltonian QHQ is corrected by a
complex level-shift operator defined by

QHP PHP PHQ QHPG PHQ

r R r R H PG PH r R r R

r R r R

( )

( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; )

IJ

n

I I J J

IJ

n

I IJ J

1
P

el

P

el

= =

= | | | |

= | |

(22)

with G PHPlim( i )P
0

= + as Green’s function in the P-

space.
By integrating over the electronic coordinates, one obtains

from eq 21 the following equation for the nuclear wave
function40,44,47

T E R R R R

R

( ) ( ) ( ) ( )

( )

n J JJ J

I

JI JI I

J

[ + + ]| + [ + ]|

= | (23)

Equation 23 governs nuclear motion in the resonance state and
is the equivalent of eq 5. The first term describes the motion
on an isolated resonance PES, while the second term is the
NAC. Evidently, both terms include energy-dependent and
nonlocal contributions due to that are absent in eq 5.
It is, however, often possible to invoke a local complex

potential approximation, which results in the boomerang
model.54−56 This yields for the elements of

I J/2 forII I I= = (24)

I Ji /2 forIJ I J= (25)

where ΔI represents an energy shift, which is set to 0 in the
coupling term IJ . Evidently, the coupling term IJ vanishes if

one of the coupled states is bound (Γ = 0). Likewise, the
diagonal term

II
vanishes for bound states as well.

Equations 23−25 provide a basis for the interpretation of
NACs obtained from CAP calculations. In the Feshbach

formalism, JI describes the NAC between two discrete states

and the resonance character comes about solely due to IJ .

This suggests to associate Im( )IJ obtained in a CAP

calculation with IJ and to interpret Re( )IJ as an analogue

of the NAC between bound states. However, this comparison
is problematic for at least two reasons: first, IJ does not

depend on the nuclear coordinates, meaning it should provide
the same contribution to all elements of the NAC vector,
whereas Im( )IJ inherently depends on the nuclei so that all

elements of the vector are di!erent. Second, all results
obtained in a CAP calculation are subject to an unwanted
dependence on the CAP strength η.
We note that recent experiments24 provide a concrete

illustration that nonadiabatic transitions between resonances
are modulated by specific vibrations, which can only be
explained by the dependence of NACs on nuclear coordinates.
However, these observations do not rule out that only the real
part of the NAC vector depends on the nuclear coordinates
and the imaginary part is coordinate-independent.

2.4. Evaluation of Nonadiabatic Couplings within
CAP-EOM-CC Framework. The computation of NACs
between bound states within the EOM-CC framework has
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been discussed in refs 18−22. Notably, the di!erent
formulations are not numerically identical. The recent work
of Kjønstad and Koch22 as well as the earlier work by
Christiansen18 employ CC response theory. In ref 22, the NAC
is obtained from a biorthonormal formulation in which only
the right state is di!erentiated. In contrast, the works by Ichino
et al.,19 by Tajti and Szalay,20 and by Faraji et al.21 use CC
gradient theory.
Here, we use the second strategy, more specifically, the

summed-state approach introduced by Tajti and Szalay,20 and
combine it with analytic-gradient theory for CAP methods.61

This allows us to compute NACs between CAP-EOM-CCSD
states.
In EOM-CC theory,70−75 target states |ΦI⟩, |ΦJ⟩, ... are

defined by applying CI-like linear excitation operators RI, RJ, ...
to the CC reference state

R R e 0
I I I

T

ref
| = | = | (26)

where |0⟩ is the reference determinant, usually the Hartree-
Fock (HF) determinant, and T stands for the coupled-cluster
amplitudes that satisfy the CC equations for the reference state
|Φref⟩. The left EOM-CC states ⟨ΦI|, ⟨ΦJ|, ... are not the
conjugates of the right EOM-CC states but rather chosen as

L0 e
I I

T
| = |

†
(27)

where LI is a CI-like excitation operator as well. The EOM-CC
energies and eigenvectors are obtained by solving the
eigenvalue equations

HR E R0 0
I I I
| = | (28)

L H E L0 0J J J| = |
† †

(29)

L R0 0J I IJ| | =
†

(30)

where H He e
T T

= is the similarity-transformed Hamiltonian.
Depending on the choice of R and L, eqs 26 and 27 describe

excited, electron-attached, or ionized states. The truncation
level of T, R, and L defines the EOM-CCSD, EOM-CCSDT,
and so forth models. In the context of this work, where we
focus on bound and temporary radical anions, we consider the
EOM-EA-CCSD method where R and L are electron-attaching
operators comprising one-particle (1p) and two-particle-one-
hole (2p1h) excitations.75

To evaluate the NAC between two EOM-CCSD states I and
J, we consider an artificial summed state |ΦI+J⟩ ≡|ΦI⟩ + |ΦJ⟩
and its gradient GI+J, which is related to the NAC force hIJ
according to20

G H H

H H

G G H G G h

( ) ( )

( ) 2 ( )

2 ( ) 2

I J I J I J I I

J J I J

I J I J I J IJ

= | | = | |

+ | | + | |

= + + | | = + +

+ + +

(31)

From eq 31, it follows that the NAC force can be evaluated as

h G G G0.5( )IJ I J I J=
+ (32)

where the summed-state gradient vector is computed in
analogy to the proper gradient vectors GI and GJ. The theory of
analytic EOM-CC gradients76 is based on the general theory of

Figure 1. Real (left) and imaginary (right) energies of resonance and pseudocontinuum states of 2Ag (upper panels) and 2Au (lower panels)
symmetry as a function of CAP strength η computed with CAP-EOM-EA-CCSD/cc-pVTZ+2s5p2d at the equilibrium structure of neutral
fumaronitrile. Optimal CAP strengths ηopt are indicated by black stars.
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molecular property calculations in CC theory. For an e"cient
implementation, the gradient is expressed in terms of
di!erentiated matrix elements over atomic-orbital integrals. A
generic expression is

G I S
I

= + +

(33)

where γ, Γ, and I are density matrices, whose exact definitions
depend on the EOM-CC model, and , ⟨μν∥ρσ⟩α, and Sα

are derivatives of the one-electron, two-electron, and overlap
integrals, respectively.
Because H̅ is not symmetric

h H H h( ) ( )IJ I J J I JI= | | | | = (34)

similar to other interstate properties in EOM-CC theory.73

Possible solutions are to consider either the geometric19,21 or
the arithmetic mean;20 here we choose the former approach.
One concern regarding the computation of the derivative

coupling IJ is that eq 11 does not hold for approximate

solutions of the Schrödinger equation. Rather, the result of eq

11 corresponds to a modified derivative coupling IJ
C where

∇α does not operate on the HF wave function but only on the

CC and EOM-CC amplitudes.20,21 Whereas IJ
C is transla-

tionally invariant, the full expression, which includes the
derivative of the HF wave function, violates translational
invariance, which is why it is commonly omitted.12,21,65 This is
also done in the present work where we use eq 11 to compute

IJ
C .

In a computation of NACs between CAP-EOM-CCSD
states, the wave function parameters, energy eigenvalues, and
gradient vectors become complex.59−61 However, eqs 26−34
do not formally change except that the usual scalar product is
replaced by the c-product.29,77 We point out that this is only
the case if the CAP is included in the Hamiltonian at the HF
level. For projected CAP methods,78−80 which o!er the
advantage of reduced computational cost, a separate gradient
theory would need to be worked out. Importantly, all integrals
over atomic orbitals and their derivatives with respect to
nuclear displacements are real-valued in CAP-EOM-CCSD,
while the density matrices in eq 33 are complex-valued. Also,
the derivative of the one-electron Hamiltonian contains
some extra terms that result from the di!erentiation of the
CAP and the dependence of the CAP origin on the nuclear
coordinates.61

To analyze the dependence of h H( ( ))IJ I J= | | on η,

the definition of the CAP Hamiltonian from eq 13 can be used.
This yields

h H W( ) ( ) i ( )IJ I J I J= | | | | (35)

which illustrates that hIJ
α(η) depends linearly on η for large η

values. We note that this is similar to the energy but di!erent
to molecular properties that can be formulated as expectation
values. For the latter quantities, there is no term that depends
on η explicitly and the overall dependence on η is determined
entirely by that of the density matrix.81 Equation 35 suggests
that hIJ

α(η) can be deperturbed in analogy to the energy59 by
removing the term that depends on η explicitly.

3. IMPLEMENTATION

All expressions for evaluating the NAC force hIJ and the
derivative coupling IJ have been implemented into the Q-

Chem electronic structure program.82 Our implementation is
able to compute couplings between CAP-EOM-EA-CCSD
states, between CAP-EOM-IP-CCSD states, and between
CAP-EOM-EE-CCSD states. However, couplings between
CAP-EOM-EE-CCSD states and the CAP-CCSD reference
state are not implemented. Also, our implementation requires
to include all electrons in the correlation treatment because the
implementation of analytic CAP-EOM-CCSD gradients61 on
which our work is based has the same restriction.
The following steps are taken to compute hIJ and IJ :

1. solve the CAP-HF and CAP-CCSD equations for the
reference state.

2. Solve the right and left CAP-EOM-EA-CCSD equations,
eqs 28 and 29, for the coupled states I and J.

3. Solve the amplitude response and orbital response
equations for states I, J, and I + J and construct the
density matrices γ, Γ, and I for each state.

4. Evaluate the gradient vectors GI, GJ, and GI+J using eq
33.

5. Compute NAC forces hIJ using eq 32 and derivative
couplings IJ using eq 11.

To verify our implementation, we evaluated the summed-
state gradient GI+J through numerical di!erentiation. Note that
special attention has to be paid to the relative phase of the two
coupled states in these calculations.

4. COMPUTATIONAL DETAILS

As an illustration of complex-valued NACs between CAP-
EOM-EA-CCSD states, we consider anionic states of
fumaronitrile (trans−CN−CHCH−CN, point group C2h).
We chose fumaronitrile as an example for the following
reasons: first, electron attachment to an out-of-plane π*

molecular orbital (MO) produces a bound anion (2Bg state)
with an energy lower than that of the neutral ground state.
Second, multiple resonance states with di!erent symmetries
exist. Ehara and Sommerfeld reported four anionic resonance
states83 of in-plane (2Ag and

2Bu) and out-of-plane (2Au and
2Bg) character using the symmetry adapted cluster (SAC)-CI
ansatz and a projected CAP.79

Table 1. Resonance Positions E and Widths Γ of
Fumaronitrile in Electronvolts Computed with Full and
Projected CAP-EOM-EA-CCSD and Projected CAP-SAC-
CIa

full CAP-EOM-
EA-CCSDb

proj. CAP-EOM-
EA-CCSDb

state uncorr. corr. uncorr. corr. proj. CAP-SAC-CIc expt.d

Resonance Positions
2Ag 2.27 2.21 2.28 2.24 2.35 1.8
2Au 3.70 3.74 3.67 3.64 4.11 3.5

Resonance Widths
2Ag 0.26 0.31 0.27 0.33 0.39
2Au 0.80 0.82 0.78 0.84 0.37

aValues are given with and without the first-order correction. bThis
work. cFrom ref 83, computed with an approximate symmetrized
SAC-CI matrix and a smooth Voronoi CAP. dFrom ref 88,
determined using electron transmission spectroscopy.
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Here, we consider the bound anion (2Bg) and the resonance
states of 2Ag and

2Au symmetry and compute the NAC between
bound and pseudocontinuum states, between bound and
resonance states, and between two resonance states. The
geometry of neutral fumaronitrile was optimized in the xy-
plane using B3LYP84,85/cc-pVTZ86 and is provided in the
Supporting Information. In the following, we refer to the
central carbon atoms of fumaronitrile as C1 and C2, while the
outer carbon atoms, which belong to the cyano groups, are
named C3 and C4. Note that C1 and C2, C3 and C4, as well
as the nitrogen and hydrogen atoms are pairwise equivalent
due to symmetry.
In the CAP-EOM-EA-CCSD calculations for the anionic

states, we added a set of 2s5p2d di!use shells to the cc-pVTZ
basis on all C and N atoms to achieve satisfactory stabilization
of the η-trajectories of the resonance states. For those di!use
shells, the exponent ratios are 1.5 for the p functions and 2.0

for the s and d functions. The resulting basis set is identical to
the one from ref 83. We used a cuboid CAP with onsets rx

0 =
25.460 a.u., ry

0 = 7.039 a.u., and rz
0 = 5.047 a.u. in all

calculations.

5. RESULTS

5.1. Energies and Decay Widths. The vertical electron
a"nity of fumaronitrile was determined as 0.93 eV using
EOM-EA-CCSD/cc-pVTZ+2s5p2d, as compared to the SAC-
CI value of 1.01 eV83 and the experimental value for the
adiabatic electron a"nity of 1.21 eV.87

To identify the resonance states, we analyzed the behavior of
the 10 lowest CAP-EOM-EA-CCSD states of 2Ag and 2Au

symmetry as a function of CAP strength η. Figure 1 shows the
real and imaginary parts of the energy of the lowest-lying
resonance and pseudocontinuum states of both symmetries. In

Figure 2. Real parts of Dyson orbitals for electron attachment to fumaronitrile computed with CAP-EOM-EA-CCSD/cc-pVTZ+2s5p2d at the
respective ηopt and plotted at an isovalue of 0.02.

Figure 3. NAC force h and derivative coupling between the lowest pseudocontinuum state of 2Ag symmetry and the bound 2Bg state of the
fumaronitrile anion as a function of CAP strength η computed at the equilibrium structure of the neutral molecule. See Section 4 for explanation of
the atom labels.
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both cases, the resonance state is energetically above the lowest
pseudocontinuum state. Figure 1 also illustrates that the
stabilization of the 2Au resonance is somewhat better than that
of the 2Ag resonance. From these η-trajectories, we determined
the ηopt values for the

2Ag and
2Au resonances as 0.005 a.u. and

0.020 a.u., respectively, by means of the criterion min|η dE/dη|

(see Section 2.2).
In addition, we computed the positions and widths of these

two resonance states with projected CAP-EOM-EA-CCSD.80

In these calculations, the CAP was constructed in a basis of 10
EOM-EA-CCSD states; the optimal CAP strengths are 0.006
a.u. and 0.021 a.u., respectively, for the 2Ag and

2Au resonances.
For both approaches, projected and full CAP-EOM-EA-CCSD,
we also computed the first-order correction and analyzed the
corresponding trajectories.59,69

All computed resonance positions and widths are given in
Table 1. Full and projected CAP-EOM-EA-CCSD agree within
0.03 eV for the positions and widths of both states; only for the
first-order corrected resonance position of the 2Au state, the
di!erence is 0.1 eV. The correction amounts to at most 0.06
eV. In view of this good agreement among di!erent CAP-
EOM-EA-CCSD variants, the substantial deviations from
CAP-SAC-CI83 that we observe for the 2Au resonance are

somewhat surprising. For this state, the resonance position
computed with CAP-EOM-EA-CCSD is 0.5 eV lower than the
CAP-SAC-CI value, whereas the resonance width is about
twice as large, i.e., 0.8 eV as compared to 0.4 eV. In contrast,
we observe good agreement with CAP-SAC-CI for the 2Ag

resonance; the position and width di!er by no more than 0.15
eV.
We also computed CAP-EOM-EA-CCSD Dyson orbitals81

for the bound and temporary anion states of fumaronitrile. The
real parts of these orbitals are shown in Figure 2. It is evident
that the bg and au orbitals have out-of-plane character, while
the ag orbital has in-plane character.

5.2. Nonadiabatic Coupling between Bound and
Pseudocontinuum States. Figure 3 shows the NAC force
h and the derivative coupling between the lowest
pseudocontinuum state of 2Ag symmetry and the bound 2Bg

state of the fumaronitrile anion. Since the sign is arbitrary, we
report the absolute values of all elements. We point out that
the physical meaning of pseudocontinuum states in CAP
theories is limited; the main purpose of Figure 3 is to enable a
discussion of di!erences between pseudocontinuum states and
resonances, which we do in the following sections. In addition,
the analysis of coupling vectors involving pseudocontinuum

Figure 4. NAC force h and derivative coupling between the 2Ag resonance and the bound 2Bg state of the fumaronitrile anion as a function of
CAP strength η computed at the equilibrium structure of the neutral molecule. See Section 4 for explanation of the atom labels.
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states is helpful for the verification of our implementation. For
example, the NAC force vector always needs to reflect spatial
symmetry and the sum of all elements needs to vanish for
couplings between bound, resonance, and pseudocontinuum
states alike.
The two states shown in Figure 3 are coupled by vibrations

of bg symmetry, which correspond to out-of-plane motions in z
direction. Panels a and b of Figure 3 illustrate the dependence
of the four symmetry-unique elements of h on the CAP
strength η, while panels c and d show the same for the norms
of h and , respectively. It is apparent that there is no
stabilization with respect to η in the imaginary part of either h
or , which reflects the behavior of the energy of
pseudocontinuum states. The asymptotically linear depend-
ence on η according to eq 35 is clearly visible. Somewhat
surprisingly, the real part of h does not vary much in the range
η = 0.005−0.020 a.u.; only at larger CAP strengths, the
dependence is more pronounced. Notably, the four elements
of h are all of the same order of magnitude, while their
dependence on η di!ers a little.
5.3. Nonadiabatic Coupling between Bound and

Resonance States. The NAC force and the derivative

coupling between the bound 2Bg state and the 2Ag resonance
are shown in Figure 4. As the irreducible representations are
the same as those for the pair of states displayed in Figure 3,
the same four symmetry-unique elements of h and are
nonzero. However, whereas all four elements are of similar
magnitude for the coupling to the pseudocontinuum state in
Figure 3, the coupling to the resonance state is dominated by
one single element, the out-of-plane motion of the hydrogen
atoms. This element of Re(h) is about 10 times larger than the
other three elements of Re(h) and all four elements of Im(h).
Although the linear dependence on η is visible for large η

values, all elements of h vary less with η above ηopt = 0.005 a.u.
than in Figure 3, especially as concerns the imaginary part.
This reflects the behavior of the energy and illustrates that the
resonance is stabilized.
It is thus meaningful to evaluate the NAC force at one

particular CAP strength as done in panels a and b of Figure 4.
This graphic illustrates that Re(h) and Im(h) point in di!erent
directions. More specifically, the angle between these two
vectors is 97°. Re(h) and Re( ) are nearly collinear, whereas
Im(h) and Im( ) span an angle of ca. 9°. Although it is
di"cult to assign physical meaning to these angles, we repeat

Figure 5. NAC force h between the 2Au resonance and the bound 2Bg state of the fumaronitrile anion as a function of CAP strength η computed at
the equilibrium structure of the neutral molecule. See Section 4 for explanation of the atom labels.
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that h and are necessarily collinear in Hermitian quantum
chemistry, while this is not the case in non-Hermitian quantum
chemistry by virtue of eq 11.
The norms of h and are displayed in panels e and f of

Figure 4. Notably, the di!erences between the pseudocontin-
uum state and the resonance are less visible here than in the
individual elements of h. It is also worth noting that the
evaluation of h and at η = 0, i.e., with bound-state EOM-
CCSD, gives di!erent results: although the norms are similar,
the ratio between the elements is markedly di!erent at ηopt.
As a second example, shown in Figures 5 and 6, we

investigated the NAC between the bound 2Bg state and the 2Au

resonance. These two states are coupled by vibrations of bu
symmetry, which correspond to motions in the xy plane. There
are eight symmetry-unique elements of h, whose dependence
on η is displayed in Figure 5. Similar to Figure 4, all elements
of Re(h) and Im(h) do not change much with η above the
optimal value, which is 0.020 a.u. for the 2Au resonance. The
two elements of h that correspond to the motion of the
hydrogen atoms are almost zero, whereas the atoms of the
cyano groups have the largest elements in h. Similar to the
previous example, Re(h) and Im(h) point in di!erent
directions, but here the angle between them amounts to ca.
171°. Re(h) and Re( ) are again almost collinear, and the
angle between Im(h) and Im( ) is ca. 2°.
An important di!erence between the two resonance states is

that the excitation from the bound 2Bg state to the 2Au

resonance is bright, whereas the excitation to the 2Ag resonance

is dark owing to spatial symmetry. We would thus expect that
the NAC between the 2Bg and

2Au states could be probed in a
photodetachment experiment on the anion of fumaronitrile if
direct and indirect detachment can be distinguished.
For this reason, we investigated the dependence of h and

on the CN bond distance for the coupling between the 2Bg and
2Au states. Figure 6 demonstrates that h and are very
sensitive to the molecular structure as already a small change of
0.02 Å in the CN distance changes the norms of Re(h) and
Im(h) by more than 10%. Interestingly, the norm of Re(h)
grows when the CN bond is stretched, while the norm of
Im(h) shrinks. We note that the width of the 2Au state also
changes significantly from 0.96 eV over 0.80 to 0.63 eV when
stretching the bond. However, the energy gap between the two
states only changes from 4.60 to 4.63 eV as both anionic states
are stabilized with respect to the neutral ground state when the
CN bond is stretched. This can be explained by the shape of
the Dyson orbitals shown in Figure 2, both of which have
nodal planes across the CN bond.

5.4. Nonadiabatic Coupling between Two Resonance
States. As a final example, we studied the coupling between
the 2Ag and

2Au resonances, which is mediated by vibrations of
au symmetry. This means that the only nonzero elements of h
and are in z-direction. However, as illustrated by Figure 7,
there is no stabilization of Re(h) or Im(h) with respect to η

because the two resonances have di!erent optimal CAP
strengths. Figure 7 shows that the NAC force has significantly
di!erent character at the two ηopt values of 0.005 a.u. and 0.02

Figure 6. NAC force h and derivative coupling between the 2Au resonance and the bound 2Bg state of the fumaronitrile anion as a function of
CAP strength η at di!erent structures.
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a.u. At the lower value, the vector is dominated by the
elements corresponding to movements of the carbon atoms,
but their magnitude is much smaller at the higher value. We
note that the lack of stability with respect to η was also
observed for transition dipole moments between two
resonances computed with CAP-EOM-CCSD81 and can be
considered a fundamental weakness of CAP methods. Also
noteworthy is that Re(h) and Im(h) are of similar magnitude,
which is di!erent from the coupling between a resonance and a
bound state where the real part is dominant (see Section 5.3).

6. CONCLUSIONS

We presented the theory and implementation of NAC vectors
within the CAP-EOM-EA-CCSD framework, which is relevant
for the study of nonadiabatic e!ects involving molecular
temporary anions. Our approach is based on the Siegert

representation, where electronic resonances are adiabatic states
with complex energy and the resonance width is a local
quantity. We also considered the connection of our approach
to the treatment of NACs based on the Feshbach
representation of electronic resonances.
The use of analytic gradient theory for CAP methods

enables a treatment of polyatomic molecules that takes account
of the full dimensionality of their PESs. We demonstrated this
in a pilot application to anionic states of fumaronitrile, where
we investigated the NACs between bound, resonance, and
pseudocontinuum states. Our approach is most useful for
evaluating couplings between a resonance and a bound state,
where the results depend only weakly on the CAP strength. In
contrast, couplings between two resonances depend more
strongly on the CAP strength, which arises from a fundamental

Figure 7. NAC force h and derivative coupling between the 2Ag and
2Au resonances of the fumaronitrile anion as a function of CAP strength η

computed at the equilibrium structure of the neutral molecule. See Section 4 for explanation of the atom labels.
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feature of CAP methods, namely, that optimal CAP parameters
are specific to a particular resonance state.
We see our work as a step toward the modeling of

nonadiabatic e!ects involving metastable states in polyatomic
molecules. Given the shortcomings of the CAP approach, it
appears worthwhile to extend other approaches for electronic
resonances to NACs. At the same time, we are convinced that
our method is already useful in its present form as there are
numerous other bound molecular anions besides that of
fumaronitrile that have metastable excited states. NACs
between them should leave fingerprints in spectroscopic
experiments, and we believe that NAC vectors computed
with our method could help model them.
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Pavosěvic,́ F.; Pei, Z.; Prager, S.; Proynov, E. I.; Rák, Á.; Ramos-
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