


the combination of theory and experiments can be used to vali-

date and improve theoretical methods for condensed-phase

modeling.

In this contribution, we compute and analyze the two-photon

absorption (2PA) spectrum of SCN!
ðaqÞ using the same computational

protocol as in our previously reported calculations of the one-photon

absorption (1PA) spectrum. Nonlinear spectroscopies, such as 2PA,

second-harmonic generation, and electronic sum-frequency genera-

tion (SFG), are gaining popularity, including applications to solvated

anions.6–10 Because 1PA and 2PA transitions are governed by differ-

ent selection rules, 2PA spectra can provide complementary informa-

tion, for example, by revealing states that are dark in 1PA.11,12 In

addition, 2PA can provide more detailed information about the

underlying electronic structure, such as the symmetry of electronic

states of the solute, by varying the polarizations of the two

photons.12–14 For example, Bradforth and co-workers have shown

that different electronic states of water can be discerned from

polarization dependence of the continuous 2PA spectra of bulk

water.15

Although in the condensed phase the formal symmetry is C1, the

native symmetry of the solvated species strongly influences their opti-

cal properties. For example, n! π ∗ transitions are rather dim in 1PA,

despite being formally allowed. However, such dim transitions can be

probed using a different spectroscopy. As a recent illustration of how

1PA selection rules can be overcome by multiphoton techniques, con-

sider the electronic spectrum of aqueous OH radical.16 Its UV–vis

spectrum shows only a small shoulder corresponding to the

σðpzÞ! πðpx=pyÞ valence transition, but the same transitions become

sharp and intense in the RIXS (resonant inelastic x-ray scattering)

spectrum.16

As a linear molecule, SCN! is an interesting model system for

analyzing the effect of native symmetry on the 1PA and 2PA spectra

in solutions. Here, we analyze the computed electronic states and

their properties in terms of their relationship to hypothetical states of

an ideal symmetric model. By comparing the 1PA and 2PA spectra, we

highlight the differences in their intensity patterns. Together with

polarization data, such differences between the 1PA and 2PA spectra

can be used for spectroscopic assignments. We hope that our simula-

tions will motivate experimental efforts to measure the continuous

2PA spectrum of this interesting system.

The structure of the paper is as follows. We begin with a descrip-

tion of theoretical methods and computational protocols. We then

discuss the molecular orbital (MO) framework and introduce symme-

try analysis of the low-energy electronic states of aqueous thiocya-

nate. Using this analysis, we then explain the trends in the computed

1PA and 2PA spectra.

2 | THEORETICAL METHODS AND

COMPUTATIONAL DETAILS

Ab initio modeling of condensed-phase spectroscopy requires the fol-

lowing: (i) a quantum chemistry method capable of describing

electronic states involved; (ii) an adequate description of the solute–

solvent interactions; (iii) the ability to compute spectroscopic signal

(e.g., absorption cross sections); (iv) reliable description of equilibrium

dynamics; and (v) tools for spectroscopic assignments. Our previous

study of aqueous thiocyanate5 illustrates the challenges involved

in developing computationally feasible protocols that adequately

address these points. Below, we briefly summarize essential details of

the theoretical framework and its extension to 2PA.

We use the equation-of-motion coupled-cluster method for

electronically excited states with single and double substitutions

(EOM-EE-CCSD), which is capable of treating states of different

character (e.g., local and CTTS excitations) in a balanced way.17

Describing solvent effects in calculations of electronic spectra of

solvated anions is particularly difficult because, in addition to strong

electrostatic interactions, one should also properly treat quantum-

confinement effects (Pauli repulsion between solvent molecules and

excited electrons) that prevent the artificial spilling of the electron

density of the solute into the solvent. Towards this end, we employ

a relatively large QM system comprising the thiocyanate molecule

and more than two solvation shells.

Whereas calculating UV–vis (1PA) intensities are straightforward,

calculating the 2PA cross sections requires implementation of

response equations. Here, we use the theoretical framework

described in References 18–20. We carried out equilibrium averaging

using the same snapshots from the AIMD trajectories as were used in

the calculations of 1PA spectra.5 To assign spectral features, we used

wave-function analysis and exciton descriptors,21–25 in particular,

exciton sizes, which allow one to distinguish between local and CTTS

excitations. For 2PA, we used the NTOs of the response density

matrices,20 which are related to the 2PA transition moments.

We note that modeling of multiphoton properties such as 2PA

cross sections is very sensitive to approximations in electron-

correlation treatment.19,26 The underlying model Hamiltonians must

reliably describe not only the initial and final states in a transition but

the full spectrum of electronic states, owing to the sum-over-states

expressions of the corresponding cross sections (see, for example,

expressions for the 2PA transition moments below). This is different

from modeling one-photon spectroscopies (e.g., UV–vis) in which one

only needs to compute transition dipole moments between the

ground state and a few low-lying excited states. Therefore, electronic

structure methods and computational protocols that provide a robust

theoretical characterization of UV–vis spectra may be inadequate for

2PA spectra.19,26

EOM-EE-CCSD has been used to model 2PA spectra of several

isolated chromophores,18,27–30 showing a reasonable agreement with

available experimental spectra despite neglecting the solvent effects,

especially in non-polar solvents.28,29 Coupled-cluster simulations

using explicit solvent models have also been reported.19,31,32 Here,

we apply the EOM-EE-CCSD method combined with an explicit sol-

vent treatment to a system that is more demanding in terms of the

description of the solute–solvent interactions. This is the first applica-

tion of EOM-EE-CCSD for calculations of nonlinear optical spectra

involving CTTS states. Once the experimental 2PA spectrum of
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SCN!
ðaqÞ becomes available, our simulations will serve as an important

benchmark for assessing the performance of EOM-EE-CCSD com-

bined with the explicit description of the solvent. These results can

also be used for developing more approximate treatments for electron

correlation and embedding.

2.1 | 2PA cross sections within EOM-EE-CCSD

framework

Below, we outline the theoretical framework for computing 2PA cross

sections.18 Within the non-Hermitian EOM-CC theory, the right and

left transition moments are not equivalent. Using the expectation-

value EOM-EE-CCSD formalism, the right and left 2PA transition

moments (Mf g
yz and Mg f

yz , respectively) are given by the sum-over-all-

states expressions,18–20

Mf g
yz ¼!

P
n

hΦ0jL̂
fbμzR̂

n
jΦ0ihΦ0jL̂

nbμyR̂
g
jΦ0i

En!Eg!ω1

!
P
n

hΦ0jL̂
fbμyR̂

n
jΦ0ihΦ0jL̂

nbμzR̂
g
jΦ0i

En!Eg!ω2

ð1Þ

and

Mg f
yz ¼!

P
n

hΦ0jbL
gbμybR

n
jΦ0ihΨ0jbL

nbμzbR
f
jΦ0i

En!Eg!ω1

!
P
n

hΦ0jbL
gbμzbR

n
jΦ0ihΦ0jbL

nbμybR
f
jΦ0i

En!Eg!ω2

:

ð2Þ

Here, g, n, and f are state indices for the initial, intermediate, and final

states. The energies Ek and right and left EOM-CC wave functions

(R̂
k
jΦ0i and hΦ0jL̂

k
, respectively) of state k within the EOM-EE-CCSD

framework are computed by solving the following right and left EOM-

CC eigenvalue equations in the determinant space of the reference

(Φ0) and singly and doubly excited determinants:

HR̂
k
jΦ0i¼EkR̂

k
jΦ0i ð3Þ

and

hΦ0jL̂
k
H¼ hΦ0jL̂

k
Ek , ð4Þ

where H¼ e!T̂HeT̂ is the EOM-CCSD similarity-transformed Hamilto-

nian expressed in terms of the CCSD operator, T̂. The energies of the

two photons (ωs) satisfy the 2PA resonance condition:

Ω
fg ¼ Ef !Eg ¼ω1þω2. bμx ¼ e!T̂μxe

T̂ is the x Cartesian component of

the similarity-transformed dipole-moment operator. The 2PA transi-

tion moments are computed by recasting the sum-over-states expres-

sions into expressions that use response wave functions, which can

be computed with roughly the same cost as excited-state wave func-

tions themselves.18

The rotationally averaged microscopic 2PA cross sections are

computed using the transition strength matrix, Sab,cd, as follows:

δ2PA
! "gf

¼
1

30
FδF þGδGþHδHð Þ

¼
1

30
F
X

a,b

S
gf
aa,bbþG

X

a,b

S
gf
ab,abþH

X

a,b

S
gf
ab:ba

 !
,

ð5Þ

where Sab,cd is given in terms of the products of left and right 2PA

transition-moment components,

S
gf
ab,cd ¼

1

2
ðMg f

ab Þ
∗

M
f g
cd þðMg f

cd Þ
∗

M
f g
ab

# $

: ð6Þ

The constants F, G, and H depend on the polarization of the incident

light.13 F¼G¼H¼2 for parallel linearly polarized light, F¼!1, G¼4,

H¼!1 for perpendicular linearly polarized light, and F¼!2,

G¼H¼3 for circularly polarized light.

The macroscopic 2PA cross sections, hσ2PAi (in Göppert-Mayer

units, 1 GM = 10!50 cm4s/photon) are expressed in terms of hδ2PAi as

σ2PA
! "gf

ðωÞ¼
2π3αa50 Ω

fg
% &2

c
δ2PA
! "g f

ℒ Ω
fg ,ω,Γ

% &

, ð7Þ

where α is the fine structure constant, a0 is the Bohr radius, c is the

speed of light, and ℒðEf !Eg ,ω,ΓÞ is the lineshape function (Γ is an

empirical factor describing line broadening).

A typical experimental setup for measuring 2PA spectra involves

a non-resonant pump and broad-band probe beams,15,28–30 meaning

that ω1 is fixed and ω2 ¼ Eex!ω1.

2.2 | Polarization ratios

In their pioneering work, McClain and co-workers13,14 explained that

by varying relative polarization of the two photons, one can discern

the three contributions to the overall cross-section—δF , δG, and δH—

and by doing so gain a more detailed picture of the underlying elec-

tronic structure. The most common approach is to compare the spec-

tra obtained with parallel (σpar ) and perpendicular (σperp) polarizations

of the two photons. Below we briefly summarize the key

expressions.13

For linearly polarized light,

hδi¼AþBcos2ðθÞ, ð8Þ

where θ is the angle between the two photons. Hence, the polariza-

tion ratio r of parallel and perpendicular cross sections is

r¼
δpar

δperp
¼1þ

B

A
: ð9Þ

For the degenerate 2PA, δG ¼ δH (this also holds for non-degenerate

case for fully symmetric transitions).13 In these cases,

A¼!δF þ3δG, ð10Þ
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B¼3δF þδG: ð11Þ

As per Equation (5), the expressions for δF and δG are:

δF ¼
P
a,b

Saa,bb ¼ Sxx,xxþSxx,yyþSxx,zzþSyy,xxþ

Syy,yyþSyy,zzþSzz,xxþSzz,yyþSzz,zz

ð12Þ

and

δG ¼
P
a,b

Sab,ab ¼ Sxx,xxþSxy,xyþSxz,xzþSyx,yxþ

Syy,yyþSyz,yzþSzx,zxþSzy,zyþSzz,zz:
ð13Þ

To apply these equations to a specific case, one needs to write down

the structure of Sab,cd based on the properties of the 2PA moments

(they are given in Reference 14 for all symmetry groups). Below we

do this for SCN! (C∞v ).

2.3 | Computational details

We computed the 2PA spectra using a hybrid QM/MM approach with

an electrostatic embedding scheme in which the QM part was treated

with EOM-EE-CCSD and the MM waters were described as Gaussian-

broadened TIP3P point charges. As in the previous calculations of

1PA spectra,5 we constructed the spectra using eight excited states

per snapshot (the benchmarks in Reference 5 have shown that the

computed 1PA spectrum does not change when up to 10 states per

snapshot were computed). A total of 40 snapshots were chosen from

the AIMD calculations performed in Reference 5. The QM region con-

sisted of SCN! and 20 nearest waters with the 6-31+G* basis on the

anion and 11 nearest waters and 6-31G on the rest. We carried out

non-degenerate 2PA calculations with ω1 fixed at 4.66 eV (pump of

266 nm is often used in multiphoton spectroscopies10). The lineshape

function, ℒ, was a normalized Gaussian with FWHM of 0.1 eV. All

calculations were performed using the Q-Chem software.33,34 We

provide a sample input for EOM-EE-CCSD 2PA jobs in the SI.

3 | RESULTS AND DISCUSSION

We begin with discussing the MO framework and symmetry of the

electronic states of SCN!. Although in the condensed phase the sym-

metry is C1, MOs largely retain their shapes and nodal structures, as

can be easily seen from the computed orbitals; for example, Figure 3

in Reference 5 and Tables S1 and S2 in the SI. Thus, the electronic

states of SCN!
ðaqÞ can be understood in terms of perturbed states of

an isolated linear molecule.

Table 1 shows the character table for C∞v group. It has an infinite

number of irreducible representations (irreps), but for the low-lying

electronic states of SCN! only A1, A2, E1, and E2 are relevant. Figure 1

shows the MOs involved in the low-lying electronic transitions of

SCN!: doubly degenerate HOMO of π character (E1=Π), doubly

degenerate LUMO of π ∗ character (E1=Π), and four diffuse atomic-like

orbitals—s (A1=Σ
þ), pz (A1=Σ

þ), and px=py (E1=Π).

The ground electronic state of SCN! is X1
Σ
þ. Isolated thiocya-

nate anion does not support bound electronic excited states, but in

aqueous solutions the detachment energy increases considerably and

several excited states become electronically bound. The low-lying

states of aqueous SCN! are derived from the transitions between the

doubly degenerate π HOMO and doubly degenerate π ∗ LUMO, giving

rise to the intra-molecular excitations, and transitions from the

HOMO to the diffuse atomic-like orbitals (s, px, py , and pz), giving rise

to the CTTS transitions. The CTTS transitions can mix with the locally

excited transitions. In the absence of symmetry, all transitions can

mix, however, as we observe from the calculations, many states have

character that can be assigned to a particular type of transition. This

can be seen from the shapes of NTOs, and even more so, from the

electronic properties (e.g., oscillator strengths). As we show below,

this native symmetry also explains trends in the 2PA spectrum.

Table 2 shows the symmetries of electronic states derived from

transitions between orbitals from Figure 1 (see Table S1 in the SI for

the irrep multiplication table). There are a total of twelve configura-

tions that can be generated of which six are dipole allowed—one local

transition and five CTTS transitions. We note that the NTO analysis

only shows the nature of the orbitals involved, but does not distin-

guish between different symmetries—for example, all local excitations

have two pairs of similar looking NTOs. Different states can be distin-

guished by either wave-function amplitudes or by the transition prop-

erties such as transition dipole moments or matrix elements of the

angular momentum operator.

The calculations of the spectra are based on eight lowest exited

states, which was deemed sufficient for capturing the low-energy part

TABLE 1 Character table for C∞v group with standard and

spectroscopic irrep labels.

Irrep E 2C∞ ∞σv Lin. fns.

A1/Σ
þ 1 1 1 z

A2/Σ
! 1 1 !1

E1/Π 1 2cos ϕð Þ 0 x,y

E2/Δ 1 2cos 2ϕð Þ 0

E3/Φ 1 2cos 3ϕð Þ 0

En 1 2cos nϕð Þ 0

F IGURE 1 Relevant molecular orbitals of SCN! and their

symmetry labels (in C∞v group).

SARANGI ET AL. 881



of the 1PA spectrum.5 Figure 2 shows the computed density of states

and the 1PA spectrum. As one can see, the eight states span an

energy range of about 2 eV and are clustered in three groups—around

5.7, 6.5, and 7.2 eV, with the second group being the largest. How-

ever, their intensities in the 1PA spectrum are completely different—

the most intense peak corresponds to the third group and has a maxi-

mum at about 7.5 eV, the first peak has much lower intensity, and the

second cluster of states gives rise to a shoulder in between the first

and the third peaks. Such significant difference between the density

of states and 1PA intensities is the result of the symmetry-imposed

selection rules of the underlying transitions.

Based on the gas-phase calculations, the only bright locally excited

state, Σ
þ, lies several eV above the lowest excited state. In the

condensed-phase calculations, we found no signatures of this bright

ππ ∗ transition in the eight lowest states—the three states with pre-

dominant locally excited ππ ∗ character have very low oscillator

strengths.

The NTO analysis shows that the intense bands in the 1PA spec-

trum correspond to the states with CTTS character. From Table 2, we

see that not all CTTS transitions are bright–among the eight transi-

tions only five are dipole allowed; those are doubly degenerate π! s

and π! pz (with transition dipole moments perpendicular to the

molecular axis) and one π! px=py (with the transition dipole moment

parallel to the molecular axis).

Figure 3 shows exciton sizes for the eight states averaged over

the equilibrium trajectory.5 As one can see, states 3–5 have smaller

sizes, so that they can be classified as predominantly local excitations,

whereas states 1–2 and 6–8 have larger sizes. Thus, the lowest eight

transitions in our condensed-phase calculations can be described as

three dim local excitations, giving rise to the shoulder in the middle,

and five brighter states of CTTS character, giving rise to the two

brighter peaks, with the brightest peak having the largest CTTS char-

acter. Inspection of NTOs (see Tables S2 and S3 in the SI and Refer-

ence 5) shows that the third band is dominated by π! px=py

transitions, whereas the lower band is due to π! s transitions. Addi-

tionally, the NTOs reveal some mixing between local and CTTS excita-

tions in the two lower bands. We note that this mixing depends

strongly on the local structure of the solvent and is not captured by

the MD simulations using classical force fields.

Figure 4 summarizes symmetry-imposed selection rules for the

manifold of low-lying electronic states in SCN!. Dipole-allowed tran-

sitions are those for which product of the irreps of the initial and final

state and dipole moment contains fully symmetric irrep (see Table S1

in the SI for help). As one can see, the dipole-forbidden Δ and Σ
!

states become two-photon allowed, which should lead to the intensity

increase in the low-energy part of the spectrum relative to 1PA.

Figure 5 compares the 1PA and 2PA (σpar ) spectra of aqueous

SCN!. As one can see, the relative intensities of the three

bands change in 2PA, with the lower-energy peaks becoming more

prominent, as anticipated from the symmetry considerations.

The change becomes even more visible if one takes into

account the frequency factor (Figure 5, bottom panel), which

favors higher-energy transitions—because the oscillator strength is

proportional to ω and the macroscopic 2PA cross section is propor-

tional to ω2.

The changes in the intensities result in an apparent red shift of

&0.05 eV of the three bands in the 2PA spectrum relative to the 1PA

spectrum. This red shift is a purely electronic phenomenon as the

position of the excited states are the same in the two calculations,

akin to the non-Condon effects observed in fluorescent proteins.35

To further analyze the 2PA spectrum, we carried out NTO

analysis of the 2PA response one-particle transition density

F IGURE 2 Density of states and 1PA spectrum computed using

eight states from AIMD snapshots.

F IGURE 3 Average exciton sizes and standard deviations for the

eight lowest states of SCN!
ðaqÞ computed using AIMD snapshots.

Reproduced with permission from Reference 5.

TABLE 2 Symmetry analysis of electronic transitions.

Transition Symmetry/States # states 1PA allowed

π! π ∗
Π'Π!Σ

þþΣ
!þΔ 4 Σ

þ (z)

π! s Π'Σ
þ!Π 2 Π (x,y)

π! pz Π'Σ
þ!Π 2 Π (x,y)

π! px=py Π'Π!Σ
þþΣ

!þΔ 4 Σ
þ (z)

Note: The polarization of transitions is shown in parentheses.
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matrices (1PTDM).20 Whereas regular NTOs are related to the

1PA intensities, these response (or 2PA) NTOs are related to

the magnitude of the 2PA cross sections. Hence, they can

reveal the nature of the “virtual” state,36 providing details of

the important orbitals involved in the 2PA transition.

Tables S2–S11 in the SI show 1PA and 2PA NTOs for a repre-

sentative snapshot. For this snapshot, the first two transitions

have clear s-type CTTS character, the next three transitions are

intramolecular, and the last three are p-type CTTS transitions. This

characterization is based on the analysis of the dominant NTO pair of

the 1PA 1PTDMs in Table S2 in the SI.

For the 2PA transitions, the response 1PTDMs have three Carte-

sian components and depend on frequencies of the two photons,

which makes the analysis more involved. Tables S4–S11 in the SI

show the 2PA NTOs. Qualitatively, we observe that these NTOs show

contributions of multiple “virtual” states into the 2PA cross sections,

which are not seen in 1PA NTOs. For example, for the first two transi-

tions (Table S4 in the SI), the response 1PTDMs reveal dominant

π! s(CTTS) NTO pair from the y-component response 1PTDMs. We

also observe a π! px(CTTS) character from the less important x-com-

ponent response 1PTDMs.

Symmetry is also responsible for the differences between the

2PA spectra obtained with parallel (σpar ) and perpendicular (σperp)

polarized beams.12–14 In general, the ratio is larger for fully symmetric

transitions.12–14 Following McClain,11,12 we can estimate the ratio r

for our system using idealized symmetry (C∞v ). Table 3 summarizes

the symmetry-imposed structure of the 2PA moments for the C∞v

group.

For fully symmetric transition, Σþ!Σ
þ, we obtain

δF ¼2Sxx,xxþSzz,zzþ4Sxx,zzþ2Sxx,yy ð14Þ

and

δG ¼2Sxx,xxþSzz,zz, ð15Þ

which yields

A ¼! 2Sxx,xxþSzz,zzþ4Sxx,zzþ2Sxx,yyð Þ

þ3 2Sxx,xxþSzz,zzð Þ

¼4Sxx,xxþ2Szz,zz!4Sxx,zz!2Sxx,yy

¼ 4Sxx,xxþ2Szz,zzþ6Sxx,zzþ3Sxx,yyð Þ

! 10Sxx,zzþ5Sxx,yyð Þ

ð16Þ

and

B ¼3 2Sxx,xxþSzz,zzþ4Sxx,zzþ2Sxx,yyð Þ

þ2Sxx,xxþSzz,zz

¼8Sxx,xxþ4Szz,zzþ12Sxx,zzþ6Sxx,yy

¼2 4Sxx,xxþ2Szz,zzþ6Sxx,zzþ3Sxx,yyð Þ:

ð17Þ

F IGURE 5 Top panel: 1PA and 2PA (σpar ) spectra of aqueous

SCN!. Bottom panel: Energy-rescaled intensities, i.e., 1PA spectrum

divided by the excitation energy (ω) and the 2PA spectrum divided

by ω2.

TABLE 3 Structure of 2PA moments for transitions in C∞v

group.14

Transition Non-zero elements Notesa

Σ
þ!Σ

þ Mzz , Mxx , Myy Mxx ¼Myy

Σ
þ!Σ

! Mxy , Myx Mxy ¼!Myx

Σ
þ!Π Mxz , Myz , Mzx , Mzy Myz ¼!iMxz , Mzy ¼!iMzx

Σ
þ!Δ Mxx, Mxy , Myx, Myy Mxy ¼!iMxx , Myy ¼!Mxx

Myx ¼!iMxx

aThis is valid within Hermitian framework. For Π and Δ, there are two

components and their moment are complex-conjugate of each other.

F IGURE 4 Selection rules for 2PA transitions in SCN!.
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Neglecting ð10Sxx,zzþ5Sxx,yyÞ terms*, we obtain B=A≈2, giving rise

to r≈3.

For Σ
!, Π, and Δ transitions, δF=0, which gives B=A¼1=3

and r¼4=3.

The computed polarization ratio follows these idealized

symmetry-based estimates. The ratio is the largest, reaching the

value of 2.2 for the third band, dominated by totally symmetric (Σþ),

π! px=py transitions. For other transitions, r varies between 1.4 and

1.7. The deviations from the limiting values of 3 (for Σþ) and 1.3 (for

Σ
þ, Π, and Δ) can be explained by mixing configurations of different

types, approximations in deriving the limiting values, and by the fact

that the two photons are not degenerate.

We conclude by noting that the computed spectra (Figure 6)

show that the polarization ratio reveals a more detailed structure than

each spectrum alone, with about seven distinct peaks.

4 | CONCLUSIONS

Nonlinear spectroscopies such as 2PA and SFG can provide comple-

mentary information of the electronic structure relative to linear

(i.e., UV–vis) spectroscopy owing to their different selection rules. By

using aqueous thiocyanate, we demonstrated that the symmetry-

imposed selection rules of the ideal (isolated) system persist in the

condensed-phase and strongly influence 1PA and 2PA spectral

features.

We have presented state-of-the-art simulations of the 2PA spec-

tra of SCN!
ðaqÞ and compared it with the 1PA spectrum computed

using the same protocol. The simulations reveal changes in the

intensity patterns, which can be explained by the native symme-

try of the solute. The native symmetry leads to the variations of

polarization ratio across the 2PA spectrum, which can facilitate

spectroscopic assignments. These changes in the intensities

result in an apparent red shift of the 2PA spectrum of 0.05 eV

relative to 1PA. We emphasize that the electronic states probed

in both experiments are the same and the shift is of purely elec-

tronic nature, akin to non-Condon effects observed in fluores-

cent proteins.35

Our study contributes to a growing body of non-linear spec-

troscopic studies in condensed phase. We hope that our results

will inspire future spectroscopic studies on this system and pro-

vide useful benchmark for theoretical and experimental

developments.
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ENDNOTE

* These terms are neglected for convenience, as was done in other

analyzes,27 Analysis of the computed 2PA moments confirms that the

neglected terms are indeed small.
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