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ABSTRACT
Recommendation foundation model utilizes large language models
(LLM) for recommendation by converting recommendation tasks
into natural language tasks. It enables generative recommendation
which directly generates the item(s) to recommend rather than
calculating a ranking score for each and every candidate item as
in traditional recommendation models, simplifying the recommen-
dation pipeline from multi-stage filtering to single-stage filtering.
To avoid generating excessively long text and hallucinated recom-
mendations when deciding which item(s) to recommend, creating
LLM-compatible item IDs to uniquely identify each item is essential
for recommendation foundation models. In this study, we system-
atically examine the item ID creation and indexing problem for
recommendation foundation models, using P5 as an example of
the backbone LLM. To emphasize the importance of item indexing,
we first discuss the issues of several trivial item indexing methods,
such as random indexing, title indexing, and independent indexing.
We then propose four simple yet effective solutions, including se-
quential indexing, collaborative indexing, semantic (content-based)
indexing, and hybrid indexing. Our study highlights the signifi-
cant influence of item indexing methods on the performance of
LLM-based recommendation, and our results on real-world datasets
validate the effectiveness of our proposed solutions. The research
also demonstrates how recent advances on language modeling and
traditional IR principles such as indexing can help each other for
better learning and inference. Source code and data are available at
https://github.com/Wenyueh/LLM-RecSys-ID.
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1 INTRODUCTION
FoundationModels such as Large LanguageModels (LLMs) [3, 4, 27]
have significantly impacted research areas such as natural language
processing (NLP) and computer vision (CV) [19], and have been
applied to various recommender system (RS) tasks. Recent research
such as P5 [9] and M6Rec [6] leverage the advantages of pre-trained
LLMs for recommendation [17]: they incorporate rich user behavior
and knowledge information into pre-training and benefit from the
strong learning ability of foundation models for recommendation.
Pre-trained LLMs also have improved reasoning ability [11] to in-
fer user interests based on the context. Therefore, these models
aim to utilize LLMs pre-trained on extensive natural language cor-
pora for RS by transforming recommendation tasks into language
generation tasks, enabling generative recommendation.

Since item description may include a large number of words
(e.g., a product title/description could include tens/hundreds of
words and a news article could include thousands of words), we
can hardly expect an LLM to generate the complete and exact item
description when deciding which item(s) to recommend, because
the generated text may not even correspond to a real existing item
in the item database, leading to the hallucination problem [8, 18] in
LLM-based recommendation. As a result, it is important to assign a
unique ID to each item so that each item is represented by a small
number of characteristic tokens while being distinguishable from
each other. For example, a business location in Yelp may be assigned
the ID “location_4332” and be further represented as a sequence
of tokens such as ⟨location⟩⟨_⟩⟨43⟩⟨32⟩ [9]. Note that the item ID
may not necessarily be number tokens, rather, as long as it is a
unique identifier for an item, then it may be considered as an ID
for the item. For example, the title of the movie “The Lord of the
Rings” can be considered as the ID of the movie, which consists
of a sequence of word tokens rather than number tokens. The ID
may even be a sequence of words that do not convey an explicit
meaning, e.g., “ring epic journey fellowship adventure”.

However, assigning LLM-compatible IDs to items is not a trivial
task. First, there could be a huge amount of or even infinite items
while each item should be assigned a unique ID so that items are
distinguishable from each other for the foundation model. Second,
item IDs should be compatible with natural language so that IDs can
be integrated into natural language instructions for the pre-training,
fine-tuning and prompting of LLMs. Third, trivial item indexing
methods such as random indexing may not help and may even hurt
the recommendation foundation models since they may mistakenly
assign related IDs to unrelated items, misleading the training and
prompting of LLMs. As a result, a comprehensive examination for
LLM-oriented item indexing is needed, which enables the seamless
adaptation of recommendation tasks to be compatible with LLMs,
harnessing the potential of LLMs for recommendation.

Besides, a natural idea to ensure the generated text align with
real items so as to avoid the hallucination problem is to employ a
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constrained decoding method [7]. However, utilizing constrained
generation for free-form long text is impractical. This is because
constrained decoding essentially prescribes a singular mode of
expressing the content, negating the flexible nature of long-text
narratives. By compelling themodel to adhere to specific descriptive
patterns, the model is required to memorize rigid text patterns in
addition to recommendation-specific knowledge. This additional
complexity can dilute the primary purpose of the model and hinder
its efficacy in performing the core recommendation task.

Motivated by the above reasons, this paper concentrates on the
item indexing problem for LLM-based recommenders: how to assign
a unique ID (i.e., token sequence) for each item. We study the issue
based on P5 [9], a representative LLM for RS model. P5 employs
pre-training over foundation models and converts recommenda-
tion tasks into natural language sentences based on personalized
prompts. We first experiment on three trivial indexing methods and
show their limitations, some of which were employed in previous
models: Independent Indexing (IID), Title Indexing (TID), and Ran-
dom Indexing (RID). Based on the analysis, we further explore four
novel indexing techniques: Sequential Indexing (SID), Collaborative
Indexing (CID), Semantic (content-based) Indexing (SemID), and
Hybrid Indexing (HID). To ensure the generated IDs align with
real items during the recommendation stage so as to avoid hallu-
cination, we develop a constrained decoding method [7], which
is facilitated by crafting a prefix tree (a.k.a a trie) from the set of
valid IDs and setting the generation probability of non-existent IDs
to zero during the decoding phase. We show the performance of
various ID methods on three widely-used datasets (Amazon Beauty,
Amazon Sports, Yelp) and provide insights about the performance
of different methods for LLM-based recommendation models.

2 RELATED WORK
Many traditional recommendation models use a matching-based
paradigm [1, 2, 13, 15, 29, 30, 32]. They project users (or user be-
havior history) and items into a shared embedding space and then
estimate a user’s preference for an item by calculating the ranking
score using their embedding vectors, such as the inner product
between the user and item vectors in matrix factorization [15]. Usu-
ally, this involves calculating ranking scores for each and every
candidate item, making the matching and sorting process time con-
suming when the item pool is large [34]. As a result, industrial
RS usually has to use the multi-stage (usually two-stage) filtering
pipeline [5], where simple and efficient filtering methods such as
rule-based filtering methods are used at early stages, while ad-
vanced filtering methods are used at later stages where candidate
items are fewer. As a result, the most advanced models are only
applied on a small subset of items.

Recently, there have been multiple attempts to pre-train foun-
dational models for generative recommendation, which spare the
expensive one-by-one candidate item matching process and in-
stead directly generate the item to recommend. For example, P5 [9]
unifies diverse recommendation tasks as natural language genera-
tion tasks within a sequence-to-sequence generation framework.
Recommendation data such as user-item interactions, user descrip-
tions, item metadata, and user reviews are converted to a common
format—natural language sequences—using multiple personalized

prompt templates. Each user or item is represented by a unique
sequence of tokens as the user or item ID. M6Rec [6] converts vari-
ous recommendation tasks, such as content supply, delivery, and
presentation, into natural language understanding or generation
tasks. Input prompts incorporate user attributes, past behaviors,
and detailed item descriptions provided by sellers. Users and items
are represented as pre-computed embeddings from their attributes
and descriptions. LMRecSys [33] converts item-based recommen-
dation tasks to text-based cloze tasks. The model is tested on the
MovieLens-1M dataset [10], which includes movies that pre-trained
LLMs may have seen in web text. Items are represented by their
titles that function as indices. This indexing method negatively af-
fects the model performance as reported in the original paper: LLMs
are not only ineffective for inferring the probability distribution of
a multi-token span, but also the linguistic bias contained in titles
may mislead the model as the title could contain little information
about the content of the movie.

The three models use different methods to index items: P5 uses
number tokens, M6Rec uses metadata-based embeddings, and LM-
RecSys uses item titles. This paper studies different item index-
ing methods under the LLM-based generative recommendation
framework using P5 as an example backbone, which compares the
effectiveness of different indexing methods, sheds light on the rela-
tionship between item indexing and foundation model pre-training,
and also provides insights about which item indexing methods are
most suitable for pre-training recommendation foundation models.

3 PRELIMINARIES AND PRECEDING STUDY
3.1 Introduction of P5 Paradigm
This paper studies the indexing problem based on P5 [9]. P5 is a
representative recommendation foundation model which enhances
the generalization capabilities of existing recommender systems
by integrating various tasks and personalized instruction prompts
to pre-train a foundation model for recommendation. These tasks
include sequential recommendation, rating prediction, explanation
generation, review summarization, and direct recommendation.
P5 is trained using input-target pairs of texts generated from a
collection of prompt templates featuring personalized fields for
distinct users and items: an example input prompt for sequential
recommendation can be a description of user-item interactions
such as “According to the places user_1 has visited: location_1123,
location_4332, location_8463, location_12312, can you recommend
another place for the user?” and the output text is the next generated
item such as “Output: location_1934”. In this study, we focus on
the sequential recommendation task since it explicitly relies on the
item interactions presented in the input prompt, making it highly
sensitive to different indexing methods.

3.2 The Angle Bracket Notation
In this paper, we need to introduce Out-of-vocabulary (OOV) tokens
to construct item indices in some indexing methods, which are
tokens that are not part of the normal vocabulary of the language
model. In our case, they are tokens that do not exist in the default
T5 vocabulary [23]. To distinguish the newly created OOV tokens
from existent tokens, we use angle brackets “⟨⟩” to represent the
newly created OOV token, and use text without “⟨⟩” to represent
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#User #Item #Interactions Sparsity(%)
Sports 35,598 18,357 296,337 0.0453
Beauty 22,363 12,101 198,502 0.0734
Yelp 30,431 20,033 316,354 0.0519

Table 1: Basic statistics of datasets

an existent token in the default tokenizer. All OOV tokens are
randomly initialized in the model and thus the text enclosed in “⟨⟩”
does not influence embeddings of the OOV tokens. The text within
angle brackets “⟨⟩” could be words or numbers, but no matter which
case, the text within angle brackets only functions to distinguish
different OOV tokens and it is irrelevant to the existent tokens.
For example, ⟨restaurant⟩ ⟨Greek⟩ ⟨2⟩ is the index for an item in
Yelp consisting three OOV tokens, where ⟨restaurant⟩ is a different
token from the plain English word “restaurant”, and ⟨2⟩ is a different
token from the number “2”. When we need to use the existent plain
word tokens, we will use them without the angle brackets, such as
“restaurant” and “2”.

3.3 Data Format and Prepossessing
Experiments are conducted on Amazon Sports & Outdoors, Ama-
zon Beauty, and the Yelp dataset. The Amazon datasets [22]1 are
sourced from Amazon.com for product recommendations, while
the Yelp dataset2 provides a collection of user ratings and reviews
for business recommendation. We use transaction records from Jan
1, 2019 to Dec 31, 2019, as in the original P5 paper [9]. The detailed
statistics for these datasets can be found in Table 1.

These datasets organize user-item interactions by individual
users. We split the datasets into training, validation, and testing by
the frequently used leave-one-out setting: for each user’s interac-
tion sequence, we put the second-to-last item into the validation
set, put the last item into the testing set, and put all other items of
the sequence into the training set. For example, suppose the inter-
action sequence of user𝑖 is {item𝑖,1, item𝑖,2, item𝑖,3, · · · , item𝑖,𝑘−1,
item𝑖,𝑘 }. Then the prediction of item𝑖,𝑘−1 based on the sequence
{item𝑖,1, item𝑖,2, item𝑖,3, · · · , item𝑖,𝑘−2} is used for validation and the
prediction of item𝑖,𝑘 based on the sequence {item𝑖,1, item𝑖,2, item𝑖,3,
· · · , item𝑖,𝑘−1} is used for testing.

3.4 Motivating Analysis of Item Indexing
We motivate the exploration of indexing methods starting from
three trivial indexing methods:
• Random Indexing (RID): Assigning each item with a random
number as the item ID. The number is further tokenized into a se-
quence of sub-tokens based on the SentencePiece tokenizer [24],
as did in P5 [9]. For example, a Yelp item is randomly assigned
the number “4332”, and “4332” is represented as a sequence of
tokens “43”“32”.

• Title Indexing (TID): Using the item title to represent the item
which is also tokenized by SentencePiece [24]. For example, the
Yelp item “Las Vegas Cigar Outlet” is represented as a sequence
of tokens “Las”“Vegas”“Ci”“gar”“Outlet”.

• Independent Indexing (IID): Creating an independent OOV extra
token that needs to be learned for each item. For example, a Yelp

1https://cseweb.ucsd.edu/ jmcauley/datasets/amazon_v2/
2https://www.yelp.com/dataset

item is represented as ⟨IID5⟩ which is an independent extra token
specifically allocated for this item. In the rest of the paper, tokens
created for IID will always start with the letters “IID”.
RID generates random numerical indices, leading to potential

overlaps between unrelated items after tokenization. For example,
two items “4332” and “4389” would be tokenized into “43”“32” and
“43”“89”, respectively, which means that they always share the same
sub-token “43” even though the two items may be totally unrelated
with each other. This unintended overlap may establish arbitrary
relationships among items, introducing unwanted bias to model
training. As the overlaps stem from the index structure, they are
impossible to eliminate no matter how the model learns from data.
Consequently, RID is considered an unfavorable method.

TID makes the task more challenging since the model needs to
memorize and generate lengthy item titles. Besides, certain words
or expressions in the title could be unrelated to the real content of
the item, also, very different items may share overlapping tokens in
their title, and thus semantics derived from the titles may introduce
strong linguistic biases [33]. For example, the movies “The Lord
of the Rings” and “The Lord of War” share many tokens in their
titles (“the”, “lord”, “of”), but they are two very different movies:
the former is an epic fantasy, while the later is a crime drama. In
general, two irrelevant items could have very similar titles, such as
Apple the fruit and Apple the company, while two closely related
items may have very different titles, such as the classic “beer and
diaper” example in data mining [17]. As a result, using title as
ID may encode misleading semantics into the generation process,
similar as the problem of random indexing.

IID uses single-token indices for items without assuming any
prior information about the items, making the item representations
easier for language models to learn compared to RID and TID.
Though better than RID and TID, it still has limited performance
due to considering all items independent from each other when
creating item IDs. It could also incur prohibitively long training
time if a large number of new tokens are required to create.

The aforementioned analysis implies that none of the three meth-
ods is optimal. To validate this, we provide experimental results to
show their suboptimal performance. We evaluate the three indexing
methods against two strong and widely-used baselines: SASRec
[14] and S3-Rec [35]. Results are shown in Table 2, where the best
result for each metric is highlighted in bold and the second-best
result is underlined with wavy lines. Based on Table 2, RID and
TID underperform relative to the baselines, while IID offers minor
gains at the cost of introducing more learnable tokens because each
item is considered as an independent new token. As a result, these
indexing methods are considered suboptimal and we will further
explore nontrivial indexing methods in the next section.

4 NONTRIVIAL INDEXING METHODS
Based on the above analysis, an optimal item indexing method
should meet two criteria to enable an effective learning process:
(1) Maintaining a suitable length to mitigate the text generation

difficulty.
(2) Integrating prior information to item index structure to ensure

that similar items share a maximum number of tokens while
distinguishable, and dissimilar items share minimal tokens.
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Method Amazon Sports Amazon Beauty Yelp

HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10

SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0170 0.0110 0.0284 0.0147
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0201 0.0123 0.0341 0.0168

RID 0.0208 0.0122 0.0288 0.0153 0.0213 0.0178 0.0479 0.0277 0.0225 0.0159 0.0329 0.0193
TID 0.0000 0.0000 0.0000 0.0000 0.0182 0.0132 0.0432 0.0254 0.0058 0.0040 0.0086 0.0049
IID 0.0268 0.0151 0.0386 0.0195 0.0394 0.0268 0.0615 0.0341 0.0232 0.0146 0.0393 0.0197

Table 2: Performances of the trivial indexingmethods for P5 as well as the baselines. The numbers in bold represent
the best results, while the numbers with underline represent the second-best results. The results for RID and TID
are significantly worse on Sports and Beauty, with a 𝑝-value < 0.05 under the paired Student’s t-test protocol.

To achieve these objectives, we introduce and explore four index-
ing methods of increasing complexity: Sequential Indexing (SID),
Collaborative Indexing (CID), Semantic (content-based) Indexing
(SemID), and Hybrid Indexing (HID). SID and CID leverage collab-
orative information, enabling co-occurring items to share tokens.
SemID employs metadata in natural language, allowing semanti-
cally similar items to share tokens. HID combines multiple indexing
methods, seeking to capitalize on the strengths of each approach
in order to generate optimal indices. In the following subsections,
we will provide details of the four indexing methods.

4.1 Sequential Indexing
Sequential indexing is a straightforward method to leverage collabo-
rative information for item indexing. Items interacted consecutively
by a user are assigned consecutive numerical indices, reflecting
their co-occurrence. Take Table 3 as an example, items are assigned
with IDs consecutively starting from the first user and all the way to
the last user. If an item has already been indexed in previous users’
interaction sequence, such as item 1001 in User 2’s sequence (and all
other squared items in the table), then the item’s already assigned
ID will be used, otherwise, an incremental new ID will be created
and assigned to the item. Notice that the item indexing process only
depends on the training sequences, while the validate and testing
items do not participate in the indexing process. After the indexing
process is finished, the validation and testing items are assigned the
corresponding IDs that have already been established during the
indexing process. Upon tokenization based on the SentencePiece
tokenizer [24], an ID such as “1001” will be tokenized into “100”“1”,
while “1002” will be tokenized into “100”“2”, resulting in the shared
token “100” for these two consecutive items. This gives us encoding
similarity between those items that co-appear in at least one user’s
sequence. As a result, this simple sequential indexing method is
able to capture collaborative information on some occasions.

Oneminor note is that we initiate item index enumeration at 1001.
We initiate at 1001 instead of 1 for two reasons: 1) the SentencePiece
tokenizer does not tokenize some numbers smaller than 1000 into
multiple sub-tokens, such as the number 12, and thus items assigned
with these small numbers will be completely independent of each
other, 2) after tokenization, smaller numbers could become complete
subsets of larger tokenized numbers, e.g., ID “12” can be a subset of
ID “12”“34”, which may enforce false correlation between items.

Nevertheless, sequential indexing also has limitations: 1) Ad-
jacently indexed items not interacted together by the same user

may erroneously share tokens; for instance, the last item of User
2 is indexed as 1014 (tokenized as “10”“14”) and the first item of
User 3 is indexed as 1015 (tokenized as “10”“15”), then the token
“10” will be shared despite a lack of co-occurrence between the two
items, 2) it cannot capture similarities based on the frequency of
co-occurrence; for example, suppose items 1001 and 1002 co-occur
once while items 1002 and 1003 co-occur ten times, both pairs will
still share only one token, failing to convey frequency information,
and 3) user ordering in the training data affects the results; for
example, if we exchange the rows of User 1 and User 2 in Table 3,
then the indexing result would be different. Although sequential
indexing has its shortcomings, it can still yield relatively favorable
results that are close to, or even surpass, the baselines.

4.2 Collaborative Indexing
Sequential Indexing is a preliminary method for integrating col-
laborative information into item indexing. To effectively capture
the essence of collaborative filtering, we explore the Collabora-
tive Indexing (CID) approach, which employs spectral clustering
based on Spectral Matrix Factorization (SMF) [21, 28] to generate
item indices. This method is based on the premise that items with
more frequent co-occurrence are more similar and should share
more overlapping tokens in index construction. The core concept
involves constructing a co-occurrence graph for all items based on
the training dataset and using spectral clustering to group items
into clusters, ensuring that items within the same cluster share
tokens when constructing indices.

4.2.1 Spectral Clustering based on Spectral Matrix Factorization.
To elaborate, we create a graph based on the training set, as exam-
pled in Figure 1(a): each item serves as a node, edges between two
items represent their co-occurrence (i.e., two items co-appear in
a user’s interaction sequence), and the edge weights indicate the
frequency of co-occurrence (i.e., the number of user interaction
sequences in which two items co-appear). The adjacency matrix
corresponding to the graph (Figure 1(b)) indicates the similarity be-
tween items in terms of co-appearance frequency, and the Laplacian
matrix corresponding to the graph (Figure 1(c)) can be factorized to
enable spectral clustering [21, 28]. The spectral clustering process
groups items into clusters so that items sharing more co-appearance
similarity are grouped into the same cluster; each cluster can be
further grouped into finer-grained clusters by recursively applying
the spectral clustering process within the big cluster, resulting in
hierarchical levels of clusters, as shown in Figure 1(a).
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Training Sequence Validation Testing
User 1 1001 1002 1003 1004 1005 1006 1007 1008 1009 1018 1019
User 2 1010 1011 1001 1012 1008 1009 1013 1014 1022 1023
User 3 1015 1016 1017 1007 1018 1019 1020 1021 1009 1015 1016
User 4 1022 1023 1005 1002 1006 1024 1002 1008
User 5 1025 1026 1027 1028 1029 1030 1024 1020 1021 1031 1033 1034

Table 3: An illustration of Sequential Indexing method. Numbers in boxes represent previously indexed items.

(a) Recursive spectral clustering on item co-appearance graph (b) Adjacency matrix (c) Laplacian matrix

Figure 1: Illustration of spectral clustering on the item co-appearance graph based on spectral matrix factorization

More specifically, spectral clustering leverages the eigenvectors
of the Laplacian matrix to group nodes into clusters [21, 28]. It
ensures that items within the same cluster have a higher degree
of similarity while items in different clusters exhibit lower simi-
larity. We use the standard spectral clustering implementation in
the Python scikit-learn package3. We do not expand too many de-
tails of the spectral clustering algorithm since it is considered a
textbook-level algorithm for data analysis [16]. However, we do
want to discuss the two important parameters that are used to con-
trol the recursive clustering process: 1) 𝑁 : we divide the items into
𝑁 clusters at each level of the clustering, and 2) 𝑘 : the maximum
number of items allowed in the final cluster, which serves as the
stopping criterion of the recursive clustering process, i.e., when a
cluster contains at most 𝑘 items, we will not further reduce its size.

Finally, the clustering result can be formulated into a hierarchical
tree structure, as shown in Figure 2. In this figure, each non-leaf
node (large yellow nodes in the graph) represents the clusters cre-
ated at the corresponding level, and each leaf node (small blue
nodes) represents an item in the corresponding final cluster. In the
next subsection, we will introduce how to create item IDs based on
the hierarchical tree structure.

4.2.2 Item Indexing based on the Spectral Clustering Tree. As men-
tioned above, the recursive clustering process generates a tree struc-
ture for the clusters and items, as shown in Figure 2 using𝑁 = 4 and
𝑘 = 20 as an example, which means that each iteration of spectral
clustering divides items into 4 clusters, and the process is recur-
sively applied on each cluster until the cluster size is smaller than
or equal to 20. Each non-leaf node (large yellow node) represents
a cluster while all items present as leaf nodes (small blue nodes)
under the final cluster. Note that since the maximum number of
items allowed in the final cluster is 𝑘 , it means that we only need
at most 𝑘 independent extra tokens to distinguish the items within
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html

Figure 2: Collaborative indexing based on the spectral
clustering tree (𝑁 = 4, 𝑘 = 20).

the same final cluster (i.e., the small blue nodes under the same
yellow node is at most 𝑘). As a result, we introduce 𝑘 independent
extra tokens into the vocabulary, noted as ⟨0⟩, ⟨1⟩, ⟨2⟩, · · · , ⟨𝑘 − 1⟩.

We first assign tokens to the non-leaf nodes. The non-leaf nodes
are enumerated level by level across the whole tree using the 𝑘
independent tokens beginning from ⟨0⟩ to ⟨𝑘 − 1⟩, as shown in
Figure 2. Once all 𝑘 tokens are used, we simply restart from ⟨0⟩. As
mentioned before, each parent cluster node has 𝑁 children cluster
nodes. However, if 𝑁 > 𝑘 , then we would not have enough tokens
to distinguish the different children under the same parent node. As
a result, we require 𝑁 ≤ 𝑘 for collaborative indexing. Together with
the level-by-level token assignment process, this can guarantee that
different children nodes under the same parent node are assigned
different tokens.

We then assign tokens to leaf nodes (small blue nodes), where
each leaf node is an item. This is rather straightforward: for each
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final cluster, we assign each of its children item node with an inde-
pendent extra token, beginning from ⟨0⟩ and on-wards. Since the
clustering process ensures that each final cluster contains at most 𝑘
items, so the 𝑘 independent extra tokens are enough to distinguish
different items under the same final cluster.

Finally, the ID of an item is the concatenation of its non-leaf an-
cestor nodes’ tokens and its own leaf node token. For example, the
item under the bolded path in Figure 2 is indexed as ⟨1⟩⟨9⟩⟨5⟩⟨4⟩.
This indexing process guarantees that any two items within the
same final cluster will share tokens until their own token within
the final cluster, which means that the more frequently two items
co-occur, the more tokens they will share, well leveraging the col-
laborative information hidden in user behavior sequences.

4.3 Semantic (Content-based) Indexing
Semantic (content-based) Indexing (SemID) utilizes item metadata
to construct IDs for items. As shown in Figure 3, items’ categories
form a hierarchical structure [36], with each non-leaf node (large
yellow node) representing a category and each leaf node (small
blue node) representing an item. Each non-leaf node is assigned an
independent extra token, and each leaf node receives a unique extra
token under its parent node. To create an item index, the tokens of
non-leaf nodes and leaf nodes are concatenated along the path from
root to leaf. Take the bolded path in Figure 3 as an example, the
item’s categories range from coarse to fine-grained as ⟨Makeup⟩,
⟨Lips⟩, ⟨Lip_Liners⟩, and its leaf node token is ⟨5⟩, which differenti-
ates this item from other items under the Lip Liners category, then
the item would be indexed as ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨5⟩.

4.4 Hybrid Indexing
Hybrid Indexing (HID) is not a single specific indexing method
but a category of methods. It concatenates multiple indices intro-
duced above into one index, such as SID+IID, CID+IID, SemID+IID,
SemID+CID, etc. This approach aims to leverage the advantages
of different indexing techniques to produce better indices. In this
paper we implement four combinations and here are the details:

For SID+IID: we append an independent extra token at the end
of the sequential ID for each item. Suppose the SID of an item
after tokenization is “10”“18”, and its IID index is ⟨IID982⟩, then
the HID index will be “10”“18”⟨IID982⟩. Thus it contains some item
co-appearance information from SID and meanwhile ensure the
item distinction through IID.

For CID and SemID, before we concatenate them with IID, we
first remove the last token (the leaf node token) from them since
the last token simply functions to differentiate an item from others
under the same parent non-leaf node. For CID+IID: suppose an
item’s CID is ⟨1⟩⟨9⟩⟨5⟩⟨4⟩, and its IID is ⟨IID28⟩, then the item’s
HID would be ⟨1⟩⟨9⟩⟨5⟩⟨IID28⟩. For SemID+IID: suppose an item’s
SemID is ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨5⟩, and its IID is ⟨IID1023⟩,
then the HID is ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨IID1023⟩. The final
index incorporates both collaborative information from CID (or
metadata content information in SID), and a special IID token that
differentiates the item from all others, ensuring item distinction
while preserving the advantages of the CID (or SID).

For SemID+CID: we concatenate the SemID and CID in either
order, hoping to combine both metadata content information and

Figure 3: An example of semantic indexing

collaborative information. Since both SemID and CID contain leaf
node tokens to distinguish items under one parent node, we only
need to retain one of them, e.g., we retain the CID leaf node to-
ken. Suppose the SemID is ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨5⟩ and
the CID is ⟨1⟩⟨9⟩⟨5⟩⟨4⟩. If we put SemID first, the final HID index
is ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨1⟩⟨9⟩⟨5⟩⟨4⟩; otherwise, the HID
index is ⟨1⟩⟨9⟩⟨5⟩⟨4⟩⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩.

In the following experiments, we will evaluate and compare the
various different HIDs.

5 EXPERIMENTS
5.1 Dataset and Baselines
The datasets and their pre-processing methods have been intro-
duced in Section 3.3. In this section, we introduce the baselines.
We apply the various item indexing methods into the P5 frame-
work [9] for sequential recommendation and compare with several
representative sequential recommendation methods as baselines:
Caser [26]: This approach treats sequential recommendation as a
Markov Chain and utilizes convolutional neural network to model
user interests. HGN [20]: This approach leverages hierarchical
gating networks to learn user behaviors from both long-term and
short-term perspectives. GRU4Rec [12]: Originally proposed for
session-based recommendation, this approach employs GRU to
model the user click history sequence. BERT4Rec [25]: This ap-
proach mimics BERT-style masked language modeling, learning a
bidirectional representation for sequential recommendation. FDSA
[31]: Focusing on feature transition patterns, this approach models
the feature sequence with a self-attention module. SASRec [14]:
Adopting a self-attention mechanism in a sequential recommen-
dation model, this approach reconciles the properties of Markov
Chains and RNN-based approaches. S3-Rec [35]: Leveraging self-
supervised objectives on meta information of items, this approach
helps the sequential recommendation model to better discover the
correlations among different items and their attributes. For com-
parison, we utilize the implementation of S3-Rec and its baselines.

5.2 Implementation Details
Following the P5 framework [9], our implementation utilizes T5 as
the backbone [23]: there are 6 layers for both encoder and decoder,
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Method Amazon Sports Amazon Beauty Yelp

HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10

Caser 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.015 0.0099 0.0263 0.0134
HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0186 0.0115 0.0326 0.159
GRU4Rec 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0176 0.0110 0.0285 0.0145
BERT4Rec 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0051 0.0033 0.0090 0.0090
FDSA 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0158 0.0098 0.0276 0.0136
SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0170 0.0110 0.0284 0.0147
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0201 0.0123 0.0341 0.0168

RID 0.0208 0.0122 0.0288 0.0153 0.0213 0.0178 0.0479 0.0277 0.0225 0.0159 0.0329 0.0193
TID 0.000 0.000 0.000 0.000 0.0182 0.0132 0.0432 0.0254 0.0058 0.0040 0.0086 0.0049
IID 0.0268 0.0151 0.0386 0.0195 0.0394 0.0268 0.0615 0.0341 0.0232 0.0146 0.0393 0.0197

SID 0.0264 0.0186 0.0358 0.0216 0.0430 0.0288 0.0602 0.0368 0.0346 0.0242 0.0486 0.0287
CID 0.0313 0.0224 0.0431 0.0262 0.0489 0.0318 0.0680 0.0357 0.0261 0.0171 0.0428 0.0225
SemID 0.0274 0.0193 0.0406 0.0235 0.0433 0.0299 0.0652 0.0370 0.0202 0.0131 0.0324 0.0170

SID+IID 0.0235 0.0161 0.0339 0.0195 0.0420 0.0297 0.0603 0.0355 0.0329 0.0236 0.0465 0.0280
CID+IID 0.0321 0.0227 0.0456 0.0270 0.0512 0.0356 0.0732 0.0427 0.0287 0.0195 0.0468 0.0254
SemID+IID 0.0291 0.0196 0.0436 0.0242 0.0501 0.0344 0.0724 0.0411 0.0229 0.0150 0.0382 0.0199
SemID+CID 0.0043 0.0031 0.0070 0.0039 0.0355 0.0248 0.0545 0.0310 0.0021 0.0016 0.0056 0.0029

Table 4: Performance of all baseline results and all indexing methods under P5. Numbers in bold represent the
best results, numbers in bold italic represent the second-best results, and numbers with a straight underline
indicate that they are better than the best baseline result. Results better than baselines here have been tested to be
significant under the paired Student’s t-test protocol with 𝑝-value < 0.05.

the model dimensionality is 512 with 8-headed attention. For to-
kenization, we use the default SentencePiece tokenizer [24] with
a vocabulary size of 32,128 for parsing sub-word units. All inde-
pendent extra tokens are not further tokenized. We use the same
sequential recommendation prompts as P5 [9] to convert sequential
information into texts. We pre-train P5 for 20 epochs using AdamW
optimizer on two NVIDIA RTX A5000 GPUs with a batch size of
64, a peak learning rate of 1e-3. We apply warm-up for the first 5%
of all training steps to adjust the learning rate.

RID, TID, and SID do not involve creating OOV tokens since
their item indices comprise tokens from the default T5 tokenizer,
while IID, CID, SemID, and HID involve creating extra OOV to-
kens, extending the original vocabulary. All tokens used in these
indexing methods, excluding TID, are randomly initialized rather
than using T5’s pre-trained embeddings for initialization. This is
due to our observation that the pre-trained T5’s a priori semantics
about numbers adversely impact the learning of item semantics
and the recommendation performance during experimentation. We
use T5’s pre-trained token embeddings for initializing TID tokens
since TID only involves plain word tokens.

5.3 Overall Results
The overall experimental results are presented in Table 4 with all
baselines. The best result for each metric is highlighted in bold,
while the second-best result is underlined with wavy lines. For each
indexing method, if the result surpasses the best baseline result, it is
emphasized by underlining with straight lines. In general, RID, TID
and IID cannot beat the baseline results in most cases, while most
of the advanced indexing methods (SID, CID, SemID and the HIDs)

surpass the baseline results. A more detailed breakdown analysis is
as follows.

In Table 4, the first block contains all the baseline results. The
second block contains the basic indexing methods, where RID and
TID consistently perform worse than baselines, while IID in general
performs better. The third block contains three advanced indexing
methods. We can see that SID performs worse than CID and SemID
on Amazon datasets but better on Yelp, while CID performs better
than SemID across different datasets, indicating that constructing
indices using collaborative information is more beneficial than
using metadata, because CID can better capture item relationships
from user behaviors by collaborative learning from the wisdom of
the crowd, which could be more effective than only using items’
metadata. The fourth block in the table contains HID results with
several different implementations: SID+IID, CID+IID, SemID+IID,
and SemID+CID. CID+IID and SemID+IID perform much better
than all other indexing methods while SID+IID and SemID+CID
performworse. In the following subsections, wewill further analyze
the results in the third and fourth blocks in detail based on more
comprehensive experiments.

5.4 Different Settings of Sequential Indexing
Table 4 shows that though simple in nature, SID can generate favor-
able results that are close to or surpass baselines. In Section 4.1, we
explored the construction of SID and its limitations, specifically, the
indexing result can be influenced by the user ordering, e.g., if we
exchange the rows of User 1 and User 2 in Table 3, then the indexing
result would be different. In this section, we present the results of
SID using four different user orderings, which substantiate this
claim and also suggest the most effective ordering to use:
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Method Amazon Sports Amazon Beauty Yelp

HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10

SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0170 0.0110 0.0284 0.0147
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0201 0.0123 0.0341 0.0168

SID-TSO 0.0264 0.0186 0.0358 0.0216 0.0430 0.0288 0.0602 0.0368 0.0346 0.0242 0.0486 0.0287
SID-RO 0.0214 0.0150 0.0291 0.0175 0.0392 0.0257 0.0512 0.0335 0.0324 0.0219 0.0461 0.0263
SID-S2LO 0.0304 0.0230 0.0395 0.0259 0.0395 0.0259 0.0520 0.0337 0.0335 0.0237 0.0442 0.0277
SID-L2SO 0.0244 0.0176 0.0356 0.0209 0.0409 0.0286 0.0586 0.0343 0.0316 0.0215 0.0472 0.0265

Table 5: Different settings of Sequential Indexing for P5 compared with two baselines on three datasets. The
numbers in bold represent the best results, while the numbers with underline represent the second-best results.
TSO results in Amazon Beauty and Yelp are tested to be significant with respect to other settings.

Figure 4: CID Beauty ablations on 𝑁 (number of clus-
ters at each level) and 𝑘 (maximum number of items
allowed in the final cluster).

Figure 5: CID average length on Beauty.

(1) Time-Sensitive Ordering (TSO): Users are ordered chrono-
logically in the original dataset based on their initial interaction
with the system. Subsequent interactions are recorded and new
records are created for previously unrecorded users upon their
first interaction with the system. By sorting and processing
interactions based on their timestamps, we ensure that users
with earlier initial interactions are recorded first.

(2) Random Ordering (RO): Users are ordered randomly.
(3) Short-to-Long Ordering (S2LO): Users are organized accord-

ing to their number of interactions, arranged in ascending order
from the fewest to the most interactions.

(4) Long-to-Short Ordering (L2SO): Users are sorted in descend-
ing order from the most to the fewest interactions.
Table 5 presents the performance of the four settings. Our ob-

servations indicate that, in general, the relative performance is as
follows: Time-Sensitive > {Long-to-Short, Short-to-Long} > Ran-
dom. The observations imply that time plays an important role in

Dataset Sports Beauty Yelp

SASRec 0.0350 0.0605 0.0284
S3-Rec 0.0385 0.0647 0.0341

𝑁 = 10 𝑁 = 20 𝑁 = 10 𝑁 = 20 𝑁 = 10 𝑁 = 20
𝑘=200 0.0302 0.0423 0.0566 0.0635 0.0416 0.0428
𝑘=500 0.0400 0.0431 0.0680 0.0668 0.0388 0.0403
𝑘=1000 0.0435 0.0416 0.0658 0.0638 0.0385 0.0388

Table 6: CID hit@10 results under different parame-
ters and datasets. Bold numbers are best results and
underline numbers are second-best results. The highest
scored settings in all datasets are tested to be signif-
icant with respect to other settings under the paired
Student’s t-test with 𝑝-value < 0.05.

Dataset Sports Beauty Yelp

𝑁 = 10 𝑁 = 20 𝑁 = 10 𝑁 = 20 𝑁 = 10 𝑁 = 20
𝑘=200 4.25 3.35 4.31 3.23 3.88 3.25
𝑘=500 3.66 3.66 3.80 2.94 3.57 2.91
𝑘=1000 3.31 2.78 3.54 3.54 3.21 2.76

Table 7: Average ID lengths under different parame-
ters. Bold numbers in this table correspond to the best
results in Table 6 (i.e., bold numbers in Table 6).

sequential indexing: items that are interacted at similar times, even
by different users, may be more similar to each other compared to
items being interacted at vastly different times. As a result, items
that occurred at similar times are more likely to be co-interacted
by certain users. Thus, using the time-related information when
ordering users is likely to improve the performance.

Considering these observations, we recommend that fu-
ture implementations of the simple SID method consider
using the time-sensitive user ordering strategies to enhance
performance. Note that the original Amazon and Yelp datasets
already used a time-sensitive ordering to arrange the users. As a re-
sult, to generate indices using SID, we simply need to incrementally
index the items from the first user all the way to the last user.

5.5 Different Settings of Collaborative Indexing
CID involves two hyper-parameters: 𝑁 and 𝑘 , where 𝑁 is the num-
ber of clusters at each level of the clustering, and 𝑘 is the maximum
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Beauty > Skin Care > Eyes > Combinations Beauty > Skin Care > Eyes > Creams
Beauty > Makeup > Makeup Remover > Eyes Beauty > Makeup > Body > Moisturizers > Creams

Table 8: Examples of non-tree structure categories in Amazon Beauty dataset.

Method Amazon Sports Amazon Beauty Yelp

HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10 HR@5 NCDG@5 HR@10 NCDG@10

SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0170 0.0110 0.0284 0.0147
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0201 0.0123 0.0341 0.0168

SemID-non-tree 0.0281 0.0192 0.0410 0.0233 0.0423 0.0288 0.0632 0.0354 0.0028 0.0019 0.0050 0.0025
SemID-tree 0.0274 0.0193 0.0406 0.0235 0.0433 0.0299 0.0652 0.0370 0.0202 0.0131 0.0324 0.0170

Table 9: SemID results under different settings. Bold numbers are best results and underline numbers are second-
best. Tree setting results in Amazon Beauty and Yelp are tested to be significant with respect to non-tree setting.

number of items allowed in the final cluster. Varying these hyper-
parameters results in different numbers of independent extra tokens
and recommendation performances.

In Figure 4, we present hit@10 results for various 𝑁 and 𝑘 value
combinations on the Beauty dataset. When 𝑘 = 50, the perfor-
mance is below 4.5%, which is significantly lower than the baselines
and some basic indexing methods. However, when 𝑘 is greater
than 100, the performances improve considerably. Furthermore,
Table 6 shows hit@10 results for multiple configurations with
𝑘 ∈ {200, 500, 1000}, 𝑁 ∈ {10, 20} and on all three datasets. In
these different settings, nearly all the CID results outperform the
baselines, indicating that CID is relatively easy to fine-tune with
respect to its hyper-parameters.

Based on our observations, we can draw the following conclu-
sions: (1) Extremely small 𝑘 values lead to suboptimal performance
regardless of the chosen 𝑁 . When 𝑘 = 50, the performance is below
the baselines. This can be attributed to the limited expressiveness of
a small number of new tokens, which cannot adequately capture the
diversity of items. (2) Different 𝑘 and 𝑁 combinations yield varying
ID lengths (i.e., the number of tokens in an ID). We compute the
average ID length for each 𝑘 and 𝑁 hyper-parameter setting, and
the results are shown in Figure 5 (for Beauty) and Table 7 (for all
datasets). Combining Figure 4 and 5, as well as Table 6 and 7, we
find that the optimal recommendation results are usually observed
when the average ID length is between 3 and 4. For example, the
squared points in Figure 5 shows all cases whose average ID length
is between 3 and 4 for the Beauty dataset, and we can see that these
points also correspond to the optimal performance on each line in
Figure 4. Similarly, the best or second-best results in Table 6 also
corresponds to 3∼4 ID lengths in Table 7 in most cases.

Based on these observations, we recommend that future
CID implementations use hyperparameters that generate
an average ID length between 3 and 4. However, it is worth
noting that different datasets may require slightly different
lengths for optimal performance.

5.6 When will Semantic Indexing Work
SemID uses metadata to construct item indices. In our experiments,
we observe that if the categories follow a hierarchical tree structure,
then the performance tends to improve. Category information in
datasets is usually not a tree structure because in some cases, one

category name can occur under different parent categories, which
makes the categories into a graph but not a tree. Table 8 are two
examples in Amazon Beauty, where the category “Eyes” occurs
under both “Skin Care” and “Makeup Remover”, and the category
“Creams” occurs under both “Skin Care” and “Moisturizers”.

To test whether the tree structure in categories is crucial, we
compare two different settings in our experiments:

(1) Non-tree-structure setting: we directly use the category names
to create the corresponding independent OOV extra tokens.
For example, an item under “Beauty”, “Skin Care”, “Eyes”, and
another item under “Beauty”, “Makeup”, “Makeup Remover”,
“Eyes” will share the token ⟨Eyes⟩.

(2) Tree-structure setting: we enforce a tree structure on the cat-
egories by creating different OOV tokens when the same cat-
egory name occurs at different places. For example, the cat-
egory “Eyes” under “Beauty”, “Skin Care” will correspond to
token ⟨Eyes1⟩ while that under “Beauty”, “Makeup”, “Makeup
Remover” corresponds to ⟨Eyes2⟩.

Table 9 illustrates the importance of hierarchical information for
SemID’s effectiveness. The more closely the categories adhere to
a hierarchical structure, the better the performance of the model.
This is likely because a hierarchically organized category list helps
reduce the search space during the generation process. Conse-
quently, this finding highlights the importance of properly
organizing and structuring category information when im-
plementing SemID in recommendation foundation models.

5.7 What Types of HID Work and Why
Based on the results presented in Table 4, CID+IID and SemID+IID
show much better performance compared to their respective CID
and SemID counterparts. But SID+IID does not improve on SID,
and SemID+CID not only does not improve but decreases the per-
formance a lot. Both CID+IID and SemID+IID are constructed by
assigning each item an independent extra token and concatenating
it after the sequence of cluster IDs or category IDs. These combi-
nations maintain the original index lengths while preserving the
hierarchical structure. The improved performance can be attributed
to the increased expressiveness of the indices provided by the extra
token, as well as the retention of either collaborative information
or metadata information within the hybrid index. This combination
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of factors contributes to the performance enhancement observed
in CID+IID and SemID+IID methods.

SID+IID is created by appending an independent extra token
after the original sequential index, increasing the ID length by 1.
SID+IID does not improve the performance possibly because the
additional token interferes the time-sensitive information encoded
as a numerical style in the original sequential indices. SemID+CID,
which is created by concatenating category IDs with cluster IDs or
vice versa, exhibits suboptimal performance, as shown in Table 4.
This holds true for both concatenation orders: category IDs followed
by CID indices and cluster IDs followed by SemID indices. The
reason behind this suboptimal performance is that it generates
excessively long indices and disrupts the hierarchical structure
encoded in both SemID and CID. Considering our findings, we
recommend employing CID+IID and SemID+IID as hybrid
indices for recommendation foundationmodels, as they have
demonstrated superior performance in such scenarios.

6 CONCLUSION
This paper examines various ID creation and indexing methods
using P5 as an example backbone model. We examine three trivial
indexing methods: Random Indexing (RID), Title Indexing (TID),
and Independent Indexing (IID), and emphasize their limitations.
This highlights the importance of selecting an appropriate index-
ing method for foundation recommendation models, as it greatly
impacts themodel performance.We then examine four simple yet ef-
fective indexing methods: Sequential Indexing (SID), Collaborative
Indexing (CID), Semantic Indexing (SemID), and Hybrid Indexing
(HID). Experimental results on Amazon Sports, Amazon Beauty,
and Yelp datasets demonstrate their strong performance. The four
effective indexing methods satisfy the two criteria introduced in
this paper: (1) maintaining a suitable ID length, and (2) integrat-
ing useful prior information into item ID construction. We hope
this study serves as an inspiration for future research on indexing
methods for LLM-based recommendation models and beyond.
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