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ABSTRACT: The management and analysis of large in silico molecular libraries is critical in many 
areas of modern chemistry. The adoption and success of data-oriented approaches to chemical 
research is dependent on the ease of handling large collections of in silico molecular structures in a 
programmatic way. Herein, we introduce the MOLecular LIibrary toolkit, “molli”, which is a 
Python 3 cheminformatics module that provides a streamlined interface for manipulating large in 
silico libraries. Three-dimensional, combinatorial molecule libraries can be expanded directly from 
two-dimensional chemical structure fragments stored in CDXML files with high stereochemical 
fidelity. Geometry optimization, property calculation, and conformer generation are executed by 
interfacing with widely used computational chemistry programs such as OpenBabel, RDKit, ORCA, 
and xTB/CREST. Conformer-dependent grid-based feature calculators provide numerical 
representation, and interface to robust three-dimensional visualization tools that provide 
comprehensive images to enhance human understanding of libraries with thousands of members. The 
package includes command-line interface in addition to Python classes to streamline frequently used 
workflows. This work describes the development and implementation of molli 1.0 and highlights the 
available functionality. Parallel performance is benchmarked on various hardware platforms and 
common workflows are demonstrated for different tasks ranging from optimized grid-based 
descriptor calculation on catalyst libraries to an NMR chemical shift prediction workflow from 
CDXML files.  
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1 INTRODUCTION 

Modern synthetic chemistry increasingly incorporates theoretical and empirical data-oriented 

approaches for designing functional small molecules, understanding reaction pathways, and 

predicting and optimizing reaction outcomes.1–5 In recent years, medium- to high-throughput 

experimentation techniques have provided access to large data sets suitable for subsequent 

statistical analysis and predictive modeling.6–10 Critically, encoding molecules in a machine-

readable format is essential before any computational analysis of the physical molecular entities 

can commence.11,12 Although great strides have been made in the high-throughput generation of 

empirical chemical data, suitably general tools for the high-throughput generation of in silico 

chemical data are lacking. 

Representations of molecules with calculated features range from computationally simple to 

highly complex. In general, feature extraction from a molecule can be accomplished by 

considering, in order of increasing computational complexity: (1) only the atoms and bonds 

encoded in the molecular graph, (2) the three-dimensional (3D) shape, and (3) the full electronic 

structure of the molecule.13 Molecular graph-based feature extraction methods such as 

fingerprinting14 are fast but may lack 3D information that is critical for certain optimization 

problems. Indeed, the low-energy conformations of a molecule play an essential role in 

determining its chemical properties and recent interest in incorporating 3D information into 

molecular graph objects has led to a variety of feature extraction methods employing graph neural 

networks.15–17 More challenges in representation arise when considering conformational 

flexibility, solvation, non-covalent interaction and other molecular features that can only be 

described by fully explicit 3D molecular encoding.  

Our interest in molecular representation stems from our attempts at modelling quantitative 

structure-(enantio)selectivity relationships (QSSR) in enantioselective chemical reactions using 

chiral, small molecule catalysts.18 Our group and others have designed a variety of alignment-

dependent, molecular interaction and indicator field (MIF) descriptors intending to capture the 

relevant features of a chiral catalyst that lead to high enantioselectivity.19–21 A particular catalyst 

scaffold typically offers numerous options for analogue synthesis at well-defined positions on the 

structure and each analogue then has potentially many possible conformers. Therefore, our 

workflow required the ability to write custom code to manipulate large collections of 3D molecular 

structures and perform high-throughput computations on combinatorially constructed libraries of 

compounds. In 2019, this laboratory disclosed the ccheminfolib toolkit,19 an early iteration of a 

software package designed to handle combinatorial construction of large in silico libraries. One of 
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the main motivations for the creation of a new software package was to establish a modern, 

convenient and extensible interface that would allow rapid prototyping of chemical library-

oriented workflows. Since the disclosure of ccheminfolib, we sought to address the following 

problems: 

1. Generation of molecule and conformer libraries directly from ChemDraw™ .CDXML files 

with stereochemical fidelity. 

2. Parallelization mechanisms and capable of processing chemical libraries with external 

computational software. 

3. Rapid input/output of molecular entities from the disk-based storage  

4. Optimized calculations of the grid-based descriptors  

As a result, we began the project to create the MOLecular LIbrary toolkit python 3 package we 

have dubbed “molli”.  

2 COMBINATORIAL LIBRARY GENERATION PIPELINE 

2.1 CDXML File Parsing  
Most computational workflows start with either 1D representations (SMILES) or 3D 

representations (.xyz or .mol files). We frequently faced challenges associated with the 1D 

representations. Axial and planar chirality cannot be encoded in SMILES strings and the 

stereochemical information is therefore lost upon the library generation. Although 3D structures 

are devoid of such limitations, they pose a considerable challenge to generate en masse. We believe 

that one of the most desirable ways to generate large libraries of 3D structures is by correctly 

interpreting their 2D chemical depictions. Existing CDXML conversion methods offer limited 

support for a number of desirable features such as atom labeling, stereochemical hint perceptions, 

isotopic notations, etc. (Figure 1A). The implementation of an improved parser in molli is 

described below.  

One of the important contributions to the parser was the realization of stereochemical hint 

perception. For all acyclic stereobonds22 leading from an atom, the connected fragment 

(determined by the breadth-first graph traversal) was rotated by ±60° or ±90° depending on the 

number of adjacent atoms (see the Supporting Information, p. S5 for more details). Endocyclic 

stereobonds are subjected to simple out-of-plane displacement of the participating atoms (Figure 

1B). This way of interpreting the structures results in better starting geometries for subsequent 
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minimization because of fewer atom overlaps and nudging of the z-coordinate toward the basin of 

geometric convergence.  

This parsing reduced the number of unanticipated consequences, such as configurational 

inversion upon a forcefield minimization. It proved useful in the context of axial and planar 

chirality interpretation into 3D representation wherein no simple designators can typically be 

assigned and enforced by ChemDraw™ or related packages (Figure 1B).  Parsing CDXML files 

to serialized objects can be executed directly from the command line with the molli parse 

command, or by using the CDXMLFile interface (Figure 1C). 

  

Figure 1. Molli CDXML parsing capabilities. (A) Commonly recognized and parsed elements: atom labels, 
attachment points, abbreviations and stereobonds. The panel represents a valid input file for molli parsing. 
(B) Recognition of stereochemical hints by out-of-plane displacements and rotations for recognition of 
stereochemical information. (C) Jupyter notebook interface with inline molecule display.  

2.2 Combinatorial Library Expansion from CDXML Files 
Combinatorial library expansion can be performed programmatically in Python or directly 

from the command line with the molli combine command. Starting from CDXML files with 

the relevant fragment structures, labels, and attachment points denoted with native CDXML 

attachment point markup (see the Supporting Information, Figure S3A) molli joins the fragments 

on the basis of user-specified expansion rules (Figure S3B). Molli assigns new labels to the 

expanded combinatorial library members derived from the composite fragment labels and outputs 

parse optimize

C

BA
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a serializable MoleculeLibrary object (Figure S3B). We have previously reported the 

generation of a bis(oxazoline) (BOX) combinatorial library (Figure S3C) comprising a total of 

96,120 members, with 267 options for 4,4’-oxazoline substitution, nine options for 5,5’-oxazoline 

substitution including stereochemical analogues relative to the 4,4’-positions, and 40 options for 

substitution at the methylene group bridging the two oxazoline rings.23 With the streamlined 

workflow described in Figure S3, we successfully obviated manual creation of the full expanded 

.CDXML file shown in Figure S3C. 

2.3 Molecular Object Collections 
Modern cheminformatics tools offer a multitude of ways of storing chemical information for 

single molecules or small collections. We identified a need to access molecules or conformer 

ensembles from large collections without the necessity to create a full-fledged database. Although 

it is possible to store many standard molecular files (.mol2, .sdf or .xyz), these formats lead to 

significantly inflated disk footprint, poor portability, and an additional requirement for parsing the 

human-readable chemical formats. To address these problems, various solutions to compress 

multiple molecular files into commonly used archives, such as ZIP files, were explored. Although 

these approaches address the footprint and portability problems, they do not obviate the need for 

parsing of the textual information into the program data structures. An alternative solution to this 

problem was inspired by the structure of the GDBM (GNU Database Manager) database format.24 

The data is stored in a binary form in which the offsets of the data keys and records are easy to 

calculate, allowing access to any data record in constant time. This structure is referred to as a 

uKV (micro key-value storage file). Molli implements this structure such as the maximum length 

of the key of 255 bytes, and the maximum length of the value of 4.29 GB. The default way of 

serializing molecular objects was chosen to be MessagePack25 owing to its fast read/write 

performance. The ability to store molecules in a format that does not require parsing and thus 

stores data in binary data structures gives the advantage of considerable space saving as well as a 

significant improvement in reading/writing performance (Table 1). Repeated atom and bond data 

storage for conformer ensembles is avoided and only the coordinates are stored in a contiguous 

float array.  

Owing to significant improvements in read times (150×), storage size (6.5×), and random data 

access (Table 1), the uKV file format is preferred and therefore molli features two dedicated 

Collection subclasses, ConformerLibrary and MoleculeLibrary that were made using 

uKV file as the default storage backend. Although compressed ZIP files represent a viable 
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alternative in terms of size, the reading/writing speeds are significantly inferior. This process reads 

1300 conformer ensembles per second on average, which effectively eliminates the input/output 

bottleneck for most applications. 

Table 1. Comparison of Data Storage and Reading Efficiency.a 

Backend  Size [MB] Read time (1 core) [s] Write time (1 core) [s] 
Directory[.mol2] 924.9 101.5 89.5 
Zip[.mol2] (uncompressed) 925.0 100.6  89.5 
Zip[.mol2] (compressed) 126.9 145.7 n/a 
uKV-file (.clib) 139.2 0.6 0.4 

a Obtained with the BPA dataset. Compressed ZIPFile was obtained with Deflate level 5 algorithm. 
Reported timings are the average of three repetitions. Read time represents the time to construct the object 
from its serialized version. Tests were performed on system 3 (see the Supporting Information sections 
1.2.1 and 1.1, resp. for details).  

To demonstrate the broader implications of the proposed molecular storage, an example that is 

relevant to storing conformers for medicinally relevant molecules is provided. The data from the 

MoleculeNet26 subset of the GEOM27 dataset was reimported as a molli .uKV file (see the 

Supporting Information section 1.2.3) A 2.1 GB compressed .tar.gz archive was seamlessly 

converted into a 2.8 GB .uKV file (1.8 times smaller than the uncompressed pickle files and 

properties stored in separate files) but more importantly, the .uKV file provides data annotations 

directly embedded as attributes in the ConformerEnsemble instances. The same operation was 

performed on the drugs crude subset (Supporting Information section 1.2.4), providing the largest 

collection, containing 292,028 discrete molecules and 31,223,451 conformers.   

3 PARALLEL CALCULATION PIPELINE 

In a typical workflow, tasks such as geometry optimizations, conformer generations, and 

property calculations are done in parallel. Typically, these calculations are carried out with external 

software28 by a unified process in which: (1) a set of input files is prepared, (2) a worker process 

receives said input files and shell commands to execute, (3) the commands are run, and the output 

is captured, and (4) the necessary files are subsequently transferred to permanent storage and are 

analyzed. Molli implements a parallel job pipeline that allows computation of molecular properties 

with external software such as RDKit,29,30 XTB,31 CREST,32 NWChem33 and ORCA,34 and it can 

be easily extended to any other package (see Supporting Information section 6.1 for more details). 

The two workflows shown below demonstrate the flexibility that a molli library can offer. 
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3.1 KRAS inhibitor rotational barrier estimation. 
Hindered rotation around single bonds resulting in axial chirality is an important motif in 

catalysts and pharmaceuticals.35,36 The barrier height may not always be straightforward to 

estimate experimentally and doing so in a high throughput sense with minimal human involvement 

may significantly facilitate pre-screening of synthetic candidates before their experimental 

evaluation. The workflow started with the CDXML file containing the necessary molecular 

fragments which was deliberately constructed to mimic the original figure37 as closely as possible 

(Figure 2). Parsing the CDXML files with the help of molli results in the MoleculeCollection 

file that was subsequently subjected to the computational pipeline. Coarse structure minimization 

with MMFF94,38 as implemented in OpenBabel,39 yielded the initial guess structures. An XTB31 

relaxed surface scan was then used to explore the potential energy surface with respect to rotation 

around the C–N bond by constraining the appropriate dihedral atoms. It was crucial that the 

implementation of parsing in molli allowed the labelling of the corresponding atoms in the drawing 

that consequently enables facile input file generation. Analysis of the relaxed surface using the 

GFN2 method allowed the identification of good guess structures for the rotational barrier 

transition states. An ORCA34 transition state search was partially successful; out of nine transition 

states, it was able to locate six of them correctly. The remaining three structures could be 

assembled in a more streamlined fashion; the core of successfully identified transition state was 

dissected along the C–N bond and the substituent was then replaced with the desired ones. Simple 

rotation to constrain the dihedral angle allowed the generation of more reasonable transition state 

geometries. The computed barriers closely matched the experimentally observed ones (Table 2). 

Of note is the remarkable distortion of the 2-pyrimidinone ring away from planarity in the 

transition states owing to severe strain (Figures S26–S34). 

 

Figure 2. KRAS inhibitor rotational barrier estimation workflow. (A) Fragment of CDXML file that was 
used for parsing and library assembly. For a full list of structures see the Supporting Information, section 
6.3. (B) Representative equilibrium geometries of R-isomers and transition states.  

 

(R)-18 TS-18

A B
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Table 2. Summary of Predicted vs. Observed Rotational Barriers at B97-3c Level of Theory (in 
kJ mol–1). For a Full List of Structures see the Supporting Information, Section 6.3. 

Compound* Exp.  Pred. 
18 108.8 108.3 
22 104.6 103.2 
23 >125.5 141.0 
24 >125.5 150.0 
25 121.3 146.1 
26 98.3 92.6 
27 90.0 73.7 
28 73.2 69.9 
29 107.9 101.3 

3.2 GIAO-DFT NMR prediction workflow. 
Prediction of NMR spectra, particularly 13C NMR spectra is a common task encountered in 

structural elucidation and revision.40,41 Although modern computational tools allow fast GIAO-

DFT NMR prediction, a complete cycle workflow that automates the task to start with a 

ChemDraw™ file and orchestrates the required computations, is not generally available using 

open-source tools. A major advance toward this goal is the CENSO program that enables this 

workflow starting from the 3D ensemble representations.42  

The workflow starts with parsing the 3D structures from the .CDXML file to yield a 

MoleculeCollection (Figure 3A). Basic minimization with the MMFF9438 force field as 

implemented in OpenBabel followed by conformer generation with the CREST v4 workflow43 

created the desired conformer ensembles. These ensembles were subjected to geometry evaluation 

with the B97-3c method as implemented in ORCA. Upon conformer generation, the NMR 

isotropic shieldings were calculated with RIJCOSX-PBE0 / pcSseg-244 + CPCM(chloroform).45,46 

Molli features simple syntax that is used to compute the NMR shieldings (Figure 3B). Molli 

implements a parser of output files, which was used to scrape thermochemical and magnetic 

properties and stores them within the molecule objects. Boltzmann weights were computed, and 

the resulting weighed averaged NMR chemical shifts were subsequently compared to the 

experimental data showing close correspondence (Tables S5-S12). The average errors in the range 

[1.2, 2.0] ppm with maximum errors in the range [3.1, 4.0] ppm are consistent with the general 

expectations of DFT prediction methods.40 

 
* The compound labels throughout the manuscript were chosen to be non-standard on purpose. This is to demonstrate 
that the source. CDXML files can be constructed with the compounds labeled arbitrarily. We chose to label ours the 
way they were labeled in the original publications. 
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Figure 3. (A) CDXML parsing and conformer generation workflow results for cladosporin. (B) Minimal 
code example for GIAO-DFT NMR chemical shielding calculations. 

4 GRID-BASED DESCRIPTORS 

4.1 Efficiency Optimization 
Grid-based, conformer-averaged (GBCA) indicator field descriptors, such as the average steric 

occupancy descriptor (ASO) and the average electronic indicator field (AEIF), were useful in the 

enantioselectivity prediction workflow developed in this laboratory. A naïve implementation of 

the GBCA descriptors suffers from significant, unfavorable scaling dependencies with respect to 

the grid size. This step was very computationally expensive to carry out on libraries of tens of 

thousands of molecules, requiring high performance computational hardware. To eliminate the 

slow process of descriptor computation, we performed an optimization. Molli employs two levels 

of optimization of the computing process. The optimization of the GBCA descriptors began by 

outsourcing numerically intensive arrayed calculations to a more efficient C implementation of the 

numpy package (Table 3). A 25-40-fold acceleration was observed; however the processing time 

was still high for libraries of >1M conformers. Thus, an auxiliary C++ sublibrary (called 

molli_xt) was created through the use of pybind11.47 Two functions were implemented that 

reproduced the behavior of SciPy’s48 cdist function that computes the distance matrix (and an 

analogous function was made that would compute a higher dimensional analog of the distance 

tensor). These functions calculated large arrays of distances between grid points and corresponding 

atomic positions with ~10-50% acceleration on the arrays of relevant size as compared to SciPy 

implementation. Up to two-fold acceleration was achieved when the computation was restricted to 

single precision floats that was sufficiently accurate for GBCA calculations. The final aspect of 

optimization came from the efficient partitioning of the grid points into proximal and distal prior 

to the calculation. To enable this process, the k-d tree49,50 data structure was used to optimize the 

problem of finding the closest atoms to given grid points, as well as eliminating remote grid points 

that fall far outside the van der Waals surface of the molecule. Overall, these optimizations 

A
ml.pipeline.jobmap(

orca.giao_nmr_ens,

source=orca_conf_dft,

destination=orca_conf_nmr,

cache_dir="_04_dft_nmr",

kwargs={

"keywords": "rks pbe0 pcSseg-2 

verytightscf nmr cpcm(chloroform)",

"elements": ("C",),

},

n_workers=16,

)

B



Shved, Denmark et al. Page 10 of 16 

achieved a 1,700× acceleration of the process compared to a naïve python implementation, and a 

50× acceleration as compared to naïve numpy approach.  

Table 3: Benchmarking Results of GBCA Descriptor Calculation.a  

Grid point spacing, Å 1.5  1.0 0.7 
Number of grid points 3510 11362 32832 
Descriptor vector sparsity (mean ± stdev) 92.0±4.4% 91.6±4.6% 91.5±4.7% 
Pruned grid sparsity (mean ± stdev) 86.7±6.5% 86.0±6.7% 85.9±6.8% 
Naïve python ASO, s 175.4 580.8 1686.5 
Naïve numpy ASO, s 5.0 14.3 67.1 
Scipy cdist optimized ASO, s 0.8 2.6 7.3 
molli cdist ASO, s 0.5 1.8 4.9 
KDTree & molli cdist optimized ASO, s 0.1 0.5 1.2 

a Timings are reported on the BPA catalyst 65_vi (88 atoms, 215 conformers). Benchmarks reported on 
system 3 (see the Supporting Information, sections 1.2.1 and 1.1, resp.). 

With the optimized GBCA calculation protocol in hand, the benchmark calculations were 

performed on the BPA dataset20 consisting of 806 entries and a total of 99,680 conformers, as well 

as on the BOX dataset (Supporting Information section 1.2.2)23 consisting of 72,542 entries and 

4,662,551 conformers. The calculations on the BPA dataset could be performed on a laptop 

computer (system 3) within two minutes. Computing the BOX dataset under identical conditions 

took ca 1.5 h, which could be sped up considerably by employing more parallel processes on a 

workstation. Employing 64 processes in parallel, ASO computation for the BOX dataset was 

complete in under five minutes. This result represents a marked enhancement in speed and enables 

the calculation of descriptors with chemical resolution (0.75 Å spacing or below). 

4.2 Molecule, Ensemble and Descriptor Visualization 
By virtue of being a pure Python library, molli can be easily interfaced with a few different 

visualization libraries. Molli uses two different engines for visualization purposes, the first is 

3DMol.js,51 which  is used for simpler molecular renderings inside Jupyter notebooks (Figure 1C). 

This implementation allows a very simple, in-place visualization that helps the end user understand 

the contents of their molecular or conformer libraries much better without the need to transfer the 

data to a third-party program for rendering.  

The second is the pyvista package which is a convenient set of wrapping functions over the 

VTK (Visualization ToolKit).52,53 This engine can be employed for molecular rendering and it 

performs particularly well for visualizing high-dimensional, grid-based descriptors in context of 

conformer ensembles, Figure 4. Highly dimensional grid-based descriptors are particularly hard to 

interpret by a chemist without relying on the visual representation. Figure 4 illustrates the 
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directions of the maximal variance in the ASO and AEIF descriptors, corresponding to the 

locations of largest steric and charge distribution diversity in the BPA catalyst library (see also 

Figures S4–S18). 

 

Figure 4. Normalized PCA1 loadings of ASO (left) and AEIF (right) descriptors of the BPA dataset 
overlayed with the conformer ensemble visualization. A 1.0 Å spacing grid was chosen for the visualization.  

5 CONCLUSIONS 

Molli comprises a powerful chemoinformatics toolkit that specializes in the creation of large 

combinatorial libraries of small molecules and parallel computations. A pure pythonic interface 

enables a seamless transition between a plain chemical drawing to a large in silico molecular 

dataset with preservation of stereochemical integrity. Combinatorial library creation can be 

performed with ease through both the command line interface as well as by writing custom scripts. 

Optimized GBCA descriptor calculations can now easily reproduce the existing ASO and AEIF 

calculations as well as visualize their corresponding results. Lastly, one can employ the 

parallelized computational pipeline to compute the properties of isolated molecules and their 

conformer ensembles with external software; examples of workflows for XTB, CREST, ORCA 

and NWChem are provided.  

6 ASSOCIATED CONTENT 

6.1 Data Availability Statement 
Source code for the project can be found at https://github.com/SEDenmarkLab/molli. The 

project is available for quick installation Python package index and conda channels. Up-to-date 

documentation detailing the installation procedure and  package usage examples can be found on 

the documentation portal, https://molli.readthedocs.io Datasets and the code for workflows 

https://github.com/SEDenmarkLab/molli
https://molli.readthedocs.io/
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discussed in the present manuscript can be downloaded from the Zenodo repository 

(https://zenodo.org/records/10719791, doi 10.5281/zenodo.10719790).  

6.2 Supporting Information 
Description of the hardware, additional information about implementation details, results from 

the computational pipeline workflows (including atomic coordinates) and plots of PCA 

components can be found in the attached pdf file. 
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