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ABSTRACT: The management and analysis of large in silico molecular libraries is critical in many
areas of modern chemistry. The adoption and success of data-oriented approaches to chemical
research is dependent on the ease of handling large collections of in silico molecular structures in a
programmatic way. Herein, we introduce the MOLecular Llibrary toolkit, “molli”, which is a
Python 3 cheminformatics module that provides a streamlined interface for manipulating large in
silico libraries. Three-dimensional, combinatorial molecule libraries can be expanded directly from
two-dimensional chemical structure fragments stored in CDXML files with high stereochemical
fidelity. Geometry optimization, property calculation, and conformer generation are executed by
interfacing with widely used computational chemistry programs such as OpenBabel, RDKit, ORCA,
and xTB/CREST. Conformer-dependent grid-based feature -calculators provide numerical
representation, and interface to robust three-dimensional visualization tools that provide
comprehensive images to enhance human understanding of libraries with thousands of members. The
package includes command-line interface in addition to Python classes to streamline frequently used
workflows. This work describes the development and implementation of molli 1.0 and highlights the
available functionality. Parallel performance is benchmarked on various hardware platforms and
common workflows are demonstrated for different tasks ranging from optimized grid-based
descriptor calculation on catalyst libraries to an NMR chemical shift prediction workflow from
CDXML files.
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1 INTRODUCTION

Modern synthetic chemistry increasingly incorporates theoretical and empirical data-oriented
approaches for designing functional small molecules, understanding reaction pathways, and
predicting and optimizing reaction outcomes.! In recent years, medium- to high-throughput
experimentation techniques have provided access to large data sets suitable for subsequent
statistical analysis and predictive modeling.5'° Critically, encoding molecules in a machine-
readable format is essential before any computational analysis of the physical molecular entities
can commence.'!2 Although great strides have been made in the high-throughput generation of
empirical chemical data, suitably general tools for the high-throughput generation of in silico
chemical data are lacking.

Representations of molecules with calculated features range from computationally simple to
highly complex. In general, feature extraction from a molecule can be accomplished by
considering, in order of increasing computational complexity: (1) only the atoms and bonds
encoded in the molecular graph, (2) the three-dimensional (3D) shape, and (3) the full electronic
structure of the molecule.”> Molecular graph-based feature extraction methods such as
fingerprinting!* are fast but may lack 3D information that is critical for certain optimization
problems. Indeed, the low-energy conformations of a molecule play an essential role in
determining its chemical properties and recent interest in incorporating 3D information into
molecular graph objects has led to a variety of feature extraction methods employing graph neural

networks. 517

More challenges in representation arise when considering conformational
flexibility, solvation, non-covalent interaction and other molecular features that can only be
described by fully explicit 3D molecular encoding.

Our interest in molecular representation stems from our attempts at modelling quantitative
structure-(enantio)selectivity relationships (QSSR) in enantioselective chemical reactions using
chiral, small molecule catalysts.!® Our group and others have designed a variety of alignment-
dependent, molecular interaction and indicator field (MIF) descriptors intending to capture the
relevant features of a chiral catalyst that lead to high enantioselectivity.'*! A particular catalyst
scaffold typically offers numerous options for analogue synthesis at well-defined positions on the
structure and each analogue then has potentially many possible conformers. Therefore, our
workflow required the ability to write custom code to manipulate large collections of 3D molecular
structures and perform high-throughput computations on combinatorially constructed libraries of

compounds. In 2019, this laboratory disclosed the ccheminfolib toolkit,'® an early iteration of a

software package designed to handle combinatorial construction of large in silico libraries. One of
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the main motivations for the creation of a new software package was fo establish a modern,
convenient and extensible interface that would allow rapid prototyping of chemical library-
oriented workflows. Since the disclosure of ccheminfolib, we sought to address the following
problems:
1. Generation of molecule and conformer libraries directly from ChemDraw™ .CDXML files
with stereochemical fidelity.
2. Parallelization mechanisms and capable of processing chemical libraries with external
computational software.
3. Rapid input/output of molecular entities from the disk-based storage
4. Optimized calculations of the grid-based descriptors
As aresult, we began the project to create the MOLecular Llbrary toolkit python 3 package we
have dubbed “molli”.

2 COMBINATORIAL LIBRARY GENERATION PIPELINE

2.1 CDXML File Parsing

Most computational workflows start with either 1D representations (SMILES) or 3D
representations (.xyz or .mol files). We frequently faced challenges associated with the 1D
representations. Axial and planar chirality cannot be encoded in SMILES strings and the
stereochemical information is therefore lost upon the library generation. Although 3D structures
are devoid of such limitations, they pose a considerable challenge to generate en masse. We believe
that one of the most desirable ways to generate large libraries of 3D structures is by correctly
interpreting their 2D chemical depictions. Existing CDXML conversion methods offer limited
support for a number of desirable features such as atom labeling, stereochemical hint perceptions,
isotopic notations, etc. (Figure 1A). The implementation of an improved parser in molli is

described below.

One of the important contributions to the parser was the realization of stereochemical hint
perception. For all acyclic stereobonds?? leading from an atom, the connected fragment
(determined by the breadth-first graph traversal) was rotated by £60° or £90° depending on the
number of adjacent atoms (see the Supporting Information, p. S5 for more details). Endocyclic
stereobonds are subjected to simple out-of-plane displacement of the participating atoms (Figure

1B). This way of interpreting the structures results in better starting geometries for subsequent
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minimization because of fewer atom overlaps and nudging of the z-coordinate toward the basin of
geometric convergence.

This parsing reduced the number of unanticipated consequences, such as configurational
inversion upon a forcefield minimization. It proved useful in the context of axial and planar
chirality interpretation into 3D representation wherein no simple designators can typically be
assigned and enforced by ChemDraw™ or related packages (Figure 1B). Parsing CDXML files
to serialized objects can be executed directly from the command line with the molli parse

command, or by using the CDXMLFile interface (Figure 1C).
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Figure 1. Molli CDXML parsing capabilities. (A) Commonly recognized and parsed elements: atom labels,
attachment points, abbreviations and stereobonds. The panel represents a valid input file for molli parsing.
(B) Recognition of stereochemical hints by out-of-plane displacements and rotations for recognition of
stereochemical information. (C) Jupyter notebook interface with inline molecule display.

2.2 Combinatorial Library Expansion from CDXML Files

Combinatorial library expansion can be performed programmatically in Python or directly
from the command line with the molli combine command. Starting from CDXML files with
the relevant fragment structures, labels, and attachment points denoted with native CDXML
attachment point markup (see the Supporting Information, Figure S3A) molli joins the fragments
on the basis of user-specified expansion rules (Figure S3B). Molli assigns new labels to the

expanded combinatorial library members derived from the composite fragment labels and outputs
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a serializable MoleculelLibrary object (Figure S3B). We have previously reported the
generation of a bis(oxazoline) (BOX) combinatorial library (Figure S3C) comprising a total of
96,120 members, with 267 options for 4,4’-oxazoline substitution, nine options for 5,5’-oxazoline
substitution including stereochemical analogues relative to the 4,4’ -positions, and 40 options for
substitution at the methylene group bridging the two oxazoline rings.?> With the streamlined
workflow described in Figure S3, we successfully obviated manual creation of the full expanded

.CDXML file shown in Figure S3C.

2.3 Molecular Object Collections

Modern cheminformatics tools offer a multitude of ways of storing chemical information for
single molecules or small collections. We identified a need to access molecules or conformer
ensembles from large collections without the necessity to create a full-fledged database. Although
it is possible to store many standard molecular files (.mol2, .sdf or .xyz), these formats lead to
significantly inflated disk footprint, poor portability, and an additional requirement for parsing the
human-readable chemical formats. To address these problems, various solutions to compress
multiple molecular files into commonly used archives, such as ZIP files, were explored. Although
these approaches address the footprint and portability problems, they do not obviate the need for
parsing of the textual information into the program data structures. An alternative solution to this
problem was inspired by the structure of the GDBM (GNU Database Manager) database format.?*
The data is stored in a binary form in which the offsets of the data keys and records are easy to
calculate, allowing access to any data record in constant time. This structure is referred to as a
uKV (micro key-value storage file). Molli implements this structure such as the maximum length
of the key of 255 bytes, and the maximum length of the value of 4.29 GB. The default way of
serializing molecular objects was chosen to be MessagePack?® owing to its fast read/write
performance. The ability to store molecules in a format that does not require parsing and thus
stores data in binary data structures gives the advantage of considerable space saving as well as a
significant improvement in reading/writing performance (Table 1). Repeated atom and bond data
storage for conformer ensembles is avoided and only the coordinates are stored in a contiguous

float array.

Owing to significant improvements in read times (150x), storage size (6.5%), and random data
access (Table 1), the uKV file format is preferred and therefore molli features two dedicated
Collection subclasses, ConformerLibrary and MoleculeLibrary that were made using

uKV file as the default storage backend. Although compressed ZIP files represent a viable
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alternative in terms of size, the reading/writing speeds are significantly inferior. This process reads
1300 conformer ensembles per second on average, which effectively eliminates the input/output

bottleneck for most applications.

Table 1. Comparison of Data Storage and Reading Efficiency.?

Backend | Size [MB] | Read time (1 core) [s] \ Write time (1 core) [s]
Directory[.mol2] 924.9 101.5 89.5
Zip[.mol2] (uncompressed) 925.0 100.6 89.5
Zip[.mol2] (compressed) 126.9 145.7 n/a
uKV-file (.clib) 139.2 0.6 0.4

® Obtained with the BPA dataset. Compressed ZIPFile was obtained with Deflate level 5 algorithm.
Reported timings are the average of three repetitions. Read time represents the time to construct the object
from its serialized version. Tests were performed on system 3 (see the Supporting Information sections
1.2.1 and 1.1, resp. for details).

To demonstrate the broader implications of the proposed molecular storage, an example that is
relevant to storing conformers for medicinally relevant molecules is provided. The data from the
MoleculeNet?® subset of the GEOM?’ dataset was reimported as a molli .uKV file (see the
Supporting Information section 1.2.3) A 2.1 GB compressed .tar.gz archive was seamlessly
converted into a 2.8 GB .uKV file (1.8 times smaller than the uncompressed pickle files and
properties stored in separate files) but more importantly, the .uKV file provides data annotations
directly embedded as attributes in the ConformerEnsemble instances. The same operation was
performed on the drugs crude subset (Supporting Information section 1.2.4), providing the largest

collection, containing 292,028 discrete molecules and 31,223,451 conformers.

3 PARALLEL CALCULATION PIPELINE

In a typical workflow, tasks such as geometry optimizations, conformer generations, and
property calculations are done in parallel. Typically, these calculations are carried out with external
software?® by a unified process in which: (1) a set of input files is prepared, (2) a worker process
receives said input files and shell commands to execute, (3) the commands are run, and the output
is captured, and (4) the necessary files are subsequently transferred to permanent storage and are
analyzed. Molli implements a parallel job pipeline that allows computation of molecular properties
with external software such as RDKit,?*2? XTB,3! CREST,*> NWChem?? and ORCA,3* and it can
be easily extended to any other package (see Supporting Information section 6.1 for more details).

The two workflows shown below demonstrate the flexibility that a molli library can offer.
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3.1 KRAS inhibitor rotational barrier estimation.

Hindered rotation around single bonds resulting in axial chirality is an important motif in
catalysts and pharmaceuticals.’>3¢ The barrier height may not always be straightforward to
estimate experimentally and doing so in a high throughput sense with minimal human involvement
may significantly facilitate pre-screening of synthetic candidates before their experimental
evaluation. The workflow started with the CDXML file containing the necessary molecular
fragments which was deliberately constructed to mimic the original figure®” as closely as possible
(Figure 2). Parsing the CDXML files with the help of molli results in the MoleculeCollection
file that was subsequently subjected to the computational pipeline. Coarse structure minimization
with MMFF94,%8 as implemented in OpenBabel,* yielded the initial guess structures. An XTB?!
relaxed surface scan was then used to explore the potential energy surface with respect to rotation
around the C—N bond by constraining the appropriate dihedral atoms. It was crucial that the
implementation of parsing in molli allowed the labelling of the corresponding atoms in the drawing
that consequently enables facile input file generation. Analysis of the relaxed surface using the
GFN2 method allowed the identification of good guess structures for the rotational barrier
transition states. An ORCA3 transition state search was partially successful; out of nine transition
states, it was able to locate six of them correctly. The remaining three structures could be
assembled in a more streamlined fashion; the core of successfully identified transition state was
dissected along the C—N bond and the substituent was then replaced with the desired ones. Simple
rotation to constrain the dihedral angle allowed the generation of more reasonable transition state
geometries. The computed barriers closely matched the experimentally observed ones (Table 2).
Of note is the remarkable distortion of the 2-pyrimidinone ring away from planarity in the

transition states owing to severe strain (Figures S26—S34).
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Figure 2. KRAS inhibitor rotational barrier estimation workflow. (A) Fragment of CDXML file that was
used for parsing and library assembly. For a full list of structures see the Supporting Information, section
6.3. (B) Representative equilibrium geometries of R-isomers and transition states.
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Table 2. Summary of Predicted vs. Observed Rotational Barriers at B97-3c Level of Theory (in
kJ mol™"). For a Full List of Structures see the Supporting Information, Section 6.3.

Compound” | Exp. Pred.

18 108.8 108.3
22 104.6 103.2
23 >125.5 141.0
24 >125.5 150.0
25 121.3 146.1
26 98.3 92.6
27 90.0 73.7
28 73.2 69.9
29 107.9 101.3

3.2 GIAO-DFT NMR prediction workflow.

Prediction of NMR spectra, particularly '*C NMR spectra is a common task encountered in
structural elucidation and revision.*>*! Although modern computational tools allow fast GIAO-
DFT NMR prediction, a complete cycle workflow that automates the task to start with a
ChemDraw™ file and orchestrates the required computations, is not generally available using
open-source tools. A major advance toward this goal is the CENSO program that enables this
workflow starting from the 3D ensemble representations.*?

The workflow starts with parsing the 3D structures from the .CDXML file to yield a
MoleculeCollection (Figure 3A). Basic minimization with the MMFF943® force field as
implemented in OpenBabel followed by conformer generation with the CREST v4 workflow*
created the desired conformer ensembles. These ensembles were subjected to geometry evaluation
with the B97-3c method as implemented in ORCA. Upon conformer generation, the NMR
isotropic shieldings were calculated with RIICOSX-PBEO / pcSseg-2* + CPCM(chloroform).43:46
Molli features simple syntax that is used to compute the NMR shieldings (Figure 3B). Molli
implements a parser of output files, which was used to scrape thermochemical and magnetic
properties and stores them within the molecule objects. Boltzmann weights were computed, and
the resulting weighed averaged NMR chemical shifts were subsequently compared to the
experimental data showing close correspondence (Tables S5-S12). The average errors in the range
[1.2, 2.0] ppm with maximum errors in the range [3.1, 4.0] ppm are consistent with the general

expectations of DFT prediction methods.*?

* The compound labels throughout the manuscript were chosen to be non-standard on purpose. This is to demonstrate
that the source. CDXML files can be constructed with the compounds labeled arbitrarily. We chose to label ours the
way they were labeled in the original publications.
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ml.pipeline.jobmap (
orca.giao nmr ens,
source=orca_conf dft,
destination=orca conf nmr,
cache_dir="_04_dft_nmr",
kwargs={
"keywords": "rks pbe0 pcSseg-2
& verytightscf nmr cpcm(chloroform)",
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Figure 3. (A) CDXML parsing and conformer generation workflow results for cladosporin. (B) Minimal
code example for GIAO-DFT NMR chemical shielding calculations.

4 GRID-BASED DESCRIPTORS

4.1 Efficiency Optimization

Grid-based, conformer-averaged (GBCA) indicator field descriptors, such as the average steric
occupancy descriptor (ASO) and the average electronic indicator field (AEIF), were useful in the
enantioselectivity prediction workflow developed in this laboratory. A naive implementation of
the GBCA descriptors suffers from significant, unfavorable scaling dependencies with respect to
the grid size. This step was very computationally expensive to carry out on libraries of tens of
thousands of molecules, requiring high performance computational hardware. To eliminate the
slow process of descriptor computation, we performed an optimization. Molli employs two levels
of optimization of the computing process. The optimization of the GBCA descriptors began by
outsourcing numerically intensive arrayed calculations to a more efficient C implementation of the
numpy package (Table 3). A 25-40-fold acceleration was observed; however the processing time
was still high for libraries of >1M conformers. Thus, an auxiliary C++ sublibrary (called
molli_ xt) was created through the use of pybind11.#” Two functions were implemented that
reproduced the behavior of SciPy’s®® cdist function that computes the distance matrix (and an
analogous function was made that would compute a higher dimensional analog of the distance
tensor). These functions calculated large arrays of distances between grid points and corresponding
atomic positions with ~10-50% acceleration on the arrays of relevant size as compared to SciPy
implementation. Up to two-fold acceleration was achieved when the computation was restricted to
single precision floats that was sufficiently accurate for GBCA calculations. The final aspect of
optimization came from the efficient partitioning of the grid points into proximal and distal prior
to the calculation. To enable this process, the k-d tree*>° data structure was used to optimize the
problem of finding the closest atoms to given grid points, as well as eliminating remote grid points

that fall far outside the van der Waals surface of the molecule. Overall, these optimizations
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achieved a 1,700x acceleration of the process compared to a naive python implementation, and a

50x acceleration as compared to naive numpy approach.

Table 3: Benchmarking Results of GBCA Descriptor Calculation.?

Grid point spacing, A \ 1.5 | 1.0 | 0.7
Number of grid points 3510 11362 32832
Descriptor vector sparsity (mean =+ stdev) 92.0£4.4%  91.6%=4.6%  91.5E4.7%
Pruned grid sparsity (mean & stdev) 86.7%E6.5% 86.0%E6.7% 85.9%6.8%
Naive python ASO, s 175.4 580.8 1686.5
Naive numpy ASO, s 5.0 14.3 67.1
Scipy cdist optimized ASO, s 0.8 2.6 7.3
molli cdist ASO, s 0.5 1.8 49
KDTree & molli cdist optimized ASO, s 0.1 0.5 1.2

® Timings are reported on the BPA catalyst 65_vi (88 atoms, 215 conformers). Benchmarks reported on
system 3 (see the Supporting Information, sections 1.2.1 and 1.1, resp.).

With the optimized GBCA calculation protocol in hand, the benchmark calculations were
performed on the BPA dataset?® consisting of 806 entries and a total of 99,680 conformers, as well
as on the BOX dataset (Supporting Information section 1.2.2)> consisting of 72,542 entries and
4,662,551 conformers. The calculations on the BPA dataset could be performed on a laptop
computer (system 3) within two minutes. Computing the BOX dataset under identical conditions
took ca 1.5 h, which could be sped up considerably by employing more parallel processes on a
workstation. Employing 64 processes in parallel, ASO computation for the BOX dataset was
complete in under five minutes. This result represents a marked enhancement in speed and enables

the calculation of descriptors with chemical resolution (0.75 A spacing or below).

4.2 Molecule, Ensemble and Descriptor Visualization

By virtue of being a pure Python library, molli can be easily interfaced with a few different
visualization libraries. Molli uses two different engines for visualization purposes, the first is
3DMol.js,’! which is used for simpler molecular renderings inside Jupyter notebooks (Figure 1C).
This implementation allows a very simple, in-place visualization that helps the end user understand
the contents of their molecular or conformer libraries much better without the need to transfer the

data to a third-party program for rendering.

The second is the pyvista package which is a convenient set of wrapping functions over the
VTK (Visualization ToolKit).’>> This engine can be employed for molecular rendering and it
performs particularly well for visualizing high-dimensional, grid-based descriptors in context of
conformer ensembles, Figure 4. Highly dimensional grid-based descriptors are particularly hard to

interpret by a chemist without relying on the visual representation. Figure 4 illustrates the
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directions of the maximal variance in the ASO and AEIF descriptors, corresponding to the

locations of largest steric and charge distribution diversity in the BPA catalyst library (see also

Figures S4-S18).

Figure 4. Normalized PCA1 loadings of ASO (left) and AEIF (right) descriptors of the BPA dataset
overlayed with the conformer ensemble visualization. A 1.0 A spacing grid was chosen for the visualization.

5 CONCLUSIONS

Molli comprises a powerful chemoinformatics toolkit that specializes in the creation of large
combinatorial libraries of small molecules and parallel computations. A pure pythonic interface
enables a seamless transition between a plain chemical drawing to a large in silico molecular
dataset with preservation of stereochemical integrity. Combinatorial library creation can be
performed with ease through both the command line interface as well as by writing custom scripts.
Optimized GBCA descriptor calculations can now easily reproduce the existing ASO and AEIF
calculations as well as visualize their corresponding results. Lastly, one can employ the
parallelized computational pipeline to compute the properties of isolated molecules and their
conformer ensembles with external software; examples of workflows for XTB, CREST, ORCA
and NWChem are provided.

6 ASSOCIATED CONTENT

6.1 Data Availability Statement
Source code for the project can be found at https:/github.com/SEDenmarklab/molli. The

project is available for quick installation Python package index and conda channels. Up-to-date
documentation detailing the installation procedure and package usage examples can be found on

the documentation portal, https:/molli.readthedocs.io Datasets and the code for workflows
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discussed in the present manuscript can be downloaded from the Zenodo repository

(https://zenodo.org/records/10719791, doi 10.5281/zenodo.10719790).

6.2 Supporting Information
Description of the hardware, additional information about implementation details, results from
the computational pipeline workflows (including atomic coordinates) and plots of PCA

components can be found in the attached pdf file.
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