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Abstract
We study the polyhedral convex hull structure of a mixed-integer set which arises in
a class of cardinality-constrained concave submodular minimization problems. This
class of problems has an objective function in the form of f (a�x), where f is a
univariate concave function, a is a non-negative vector, and x is a binary vector of
appropriate dimension. Suchminimization problems frequently appear in applications
that involve risk-aversion or economies of scale. We propose three classes of strong
valid linear inequalities for this convex hull and specify their facet conditions when a
has two distinct values. We show how to use these inequalities to obtain valid inequal-
ities for general a that contains multiple values. We further provide a complete linear
convex hull description for this mixed-integer set when a contains two distinct values
and the cardinality constraint upper bound is two. Our computational experiments on
the mean-risk optimization problem demonstrate the effectiveness of the proposed
inequalities in a branch-and-cut framework.

Keywords Concave submodular minimization · Cardinality constraint · Lifting

Mathematics Subject Classification 90C10 · 90C26 · 90C57

1 Introduction

Submodular set functions have received great interest in integer and combinatorial
optimization. Many important combinatorial problems and structures, including the
set covering problem, the min-cut problem, and matroids, are closely associated with
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submodular functions. These functions have also found immense utility in applications
such as healthcare [1], viral marketing [18], and sensor placement [21]. Next, we
formally state the definition of submodular functions.

Let N = {1, 2, . . . , n} be a non-empty finite set. We define the power set of N to be
2N = {S : S ⊆ N }. A set function g : 2N → R is submodular if for any X ,Y ∈ 2N ,

g(X) + g(Y ) ≥ g(X ∩ Y ) + g(X ∪ Y ).

For any X ⊆ N and i ∈ N\X , ρi (X) := g(X ∪{i})−g(X) represents the marginal
return to the function value by adding item i to the set X . This notion of marginal
return provides an alternative definition of submodularity, namely g is submodular if

ρi (X) ≥ ρi (Y )

for any X ⊆ Y ⊆ N and i ∈ N\Y . Intuitively, this definition implies that all submod-
ular functions possess a diminishing return property. Many studies have established
that unconstrained submodular minimization is solvable in polynomial time [14, 17,
22, 23, 25]. However, constrained submodular minimization problems are NP-hard in
general [27]. There exist exceptions to this general observation—a class of submod-
ular functions can be minimized in polynomial time in the presence of a cardinality
constraint. We next describe this class of submodular functions in detail.

It is known that composing a non-negativemodular functionwith a concave function
yields a submodular function. To be more precise, let any a ∈ R

n+ and any concave
function f : R → R be given. The function F defined by F(S) = f

(∑
i∈S ai

)
for

all S ⊆ N , or equivalently F(x) = f
(∑n

i=1 ai xi
)
for all x ∈ {0, 1}n , is submodular.

The problem of minimizing such a submodular function with respect to a cardinality
constraint assumes the form of (1):

min

{

f

(
n∑

i=1

ai xi

)

: x ∈ {0, 1}n,
n∑

i=1

xi ≤ k

}

. (1)

This problem has the following equivalent mixed-integer nonlinear programming for-
mulation:

min
{
w : (w, x) ∈ Pm

k

}
,

where

Pm
k =

{

(w, x) ∈ R × {0, 1}n : w ≥ f

(
n∑

i=1

ai xi

)

,

n∑

i=1

xi ≤ k

}

. (2)

The superscript m ∈ {1, 2, . . . , n} denotes the number of distinct values in a, and the
subscript k is the cardinality upper bound. In what follows, we refer to the values in
a as weights. This family of problems usually arises in applications that involve risk
aversion or economies of scale, such as mean-risk optimization [5, 6] and concave cost
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Strong valid inequalities for a class... 805

facility location [12, 15]. Studies [16, 24] have shown that problem (1) is polynomial-
time solvable. This complexity result suggests that a full characterization of conv(Pm

k )
may be tractable.

Inspired by this implication, we take a polyhedral approach to address problem (1)
in this paper. In seminal work, for unconstrained submodular minimization, Edmonds
[10] proposes extended polymatroid inequalities and establishes an explicit linear
convex hull description for the epigraph of any submodular function using these
inequalities (see also [11]). Since this early work, polyhedral approaches have com-
monly been adopted in submodular optimization research. Such approaches have
unique advantages especially in the presence of additional complicating constraints
or when maximizing f leading to NP-hard problems. In this regard, Wolsey and
Nemhauser [28] take a polyhedral approach to tackle unconstrained submodular max-
imization problems. The authors introduce a class of valid linear inequalities, called
submodular inequalities, for the hypograph of any submodular function. This enables
the formulation of the problem as a mixed-integer linear program. This formula-
tion is later strengthened for constrained submodular maximization in [2, 26, 33].
By exploiting hidden submodularity, studies including [3–6, 13, 19] improve the for-
mulations of mixed-binary convex quadratic and conic optimization problems. Yu
and Küçükyavuz [37] consider mixed-integer extensions of submodularity, known as
diminishing returns (DR)-submodularity, and give the convex hull of the epigraph of
a DR-submodular function under box and monotonicity constraints. Atamtürk and
Narayanan [8] extend the polyhedral results to general set function minimization,
in which the authors rewrite a set function as the difference between two submod-
ular functions and form the outer approximation of the original set function based
on the extended polymatroid inequalities and the submodular inequalities of the
pair of submodular functions. For another generalization—namely, k-submodular
optimization—where the objective function is a set function with k ≥ 2 arguments
that maintain submodular properties, Yu and Küçükyavuz [35, 36] provide polyhe-
dral characterizations. In another direction, recent works [20, 29–32, 38] successfully
adopt a polyhedral approach to submodular optimization in stochastic settings.

The polyhedral study closely related to our work is [34], in which the authors
consider problem (1) and obtain a complete description of conv(P1

k ) where the weights
ai are identical across all the items i ∈ N . When m ≥ 2, Yu and Ahmed [34] argue
that one class of facet-defining inequalities for conv(Pm

k ) can be obtained using an
O(n4) extreme point enumeration algorithm [7]. This class of facets is not sufficient
to fully describe conv(Pm

k ) when m ≥ 2, and the explicit form of such inequalities
is not provided. Instead, the authors approximate the inequality coefficients to give a
weaker class of valid inequalities. Despite the progress made by [34] in understanding
conv(P1

k ), how to fully characterize conv(Pm
k ) whenm ≥ 2 remains an open problem.

Our paper takes the first step to tackle this open problem by analyzing the structure of
conv(P2

k ), where the vector a contains two distinct values. We further provide valid
inequalities for conv(Pm

k ) wherem ≥ 3. Next we give a summary of our contributions.
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806 Q. Yu, S. Küçükyavuz

1.1 Our contributions

We propose three classes of strong valid linear inequalities for conv(P2
k ). We present

the explicit forms of these inequalities and specify the conditions under which they
are facet-defining for conv(P2

k ). We further show that these inequalities, along with
the trivial bounds, the cardinality constraint, and a single additional inequality, fully
describe conv(P2

2 ). Our computational experiments on the mean-risk optimization
problem demonstrate the effectiveness of our proposed inequalities in a branch-and-
cut framework. Moreover, we delineate how these inequalities can be extended to the
cases with more than two distinct weights, and how they may be utilized in mixed-
binary conic optimization. We also include remarks on the facets of conv(Pm

k ) when
k ≥ 3 or m ≥ 3, which reflect the complexities in obtaining the complete linear
description of conv(Pm

k ).

1.2 Outline

We structure this paper as follows. In Sect. 2, we set forth our notation and review
two classes of inequalities, namely the extended polymatroid inequalities (EPIs) and
the separation inequalities (SIs). In Sects. 3 and 4, we exactly lift the aforementioned
inequalities and obtain three classes of strong valid linear inequalities for conv(P2

k ),
which we call the lifted-EPIs, the lower-SIs, and the higher-SIs. Next, in Sect. 5, we
provide a linear description of conv(P2

2 ) using the proposed inequalities and prove
its completeness. We explain how to apply the proposed inequalities to the problem
instances with three or more distinct weights, as well as how they can be extended
for mixed-binary conic optimization problems in Sect. 6. In Sect. 7, we present a
computational study on the mean-risk optimization problem with varying cardinality
bounds to test the effectiveness of our proposed inequalities when used in a branch-
and-cut algorithm. Lastly, in Sect. 8, we include examples to illustrate the difficulty
in constructing the complete linear description for general conv(Pm

k ).

2 Preliminaries

2.1 Notation

Throughout this paper, f : R → R is a concave function, andwe assume that f (0) = 0
without loss of generality. To abbreviate set notations, we represent {1, 2, . . . , j} by
[ j] for any integer j ≥ 1, and we use the convention that [0] = ∅. In addition, we let
[i, j] = {i, i + 1, . . . , j} for 1 ≤ i ≤ j ; by convention, [i, i] = {i}.

Let N = [n] be a non-empty finite ground set. We let F : 2N → R be the function
such that, given a ∈ R

n+, F(S) = f
(∑

i∈S ai
)
for any S ⊆ N . We note that for any

S ⊆ N , there exists a unique characteristic vector x S ∈ {0, 1}n such that x Si = 1 for
i ∈ S and x Si = 0 otherwise. On the other hand, with any x ∈ {0, 1}n , we may recover
exactly one Sx = {i ∈ N : xi = 1}. Thus f and F are used interchangeably in later
discussions. The lemma below summarizes a crucial property of f .
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Lemma 2.1 For any d ∈ R+ and y1, y2 ∈ R such that y1 ≤ y2,

f (y1 + d) − f (y1) ≥ f (y2 + d) − f (y2)

in any concave function f : R → R.

Proof First we consider the case where y1 ≥ 0. Let g : {0, 1}3 → R be a func-
tion defined by g(x) = f (y1x1 + (y2 − y1)x2 + dx3). Since f is concave and
y1, y2 − y1, d ≥ 0, we know that g, being the composition of a concave function and
a non-negative modular function, is submodular. To simplify the notation, we use the
alternative form of g, namely G : 2{1,2,3} → R. In particular, G({1}) = g([1, 0, 0]) =
f (y1), G({1, 2}) = g([1, 1, 0]) = f (y2), G({1, 3}) = g([1, 0, 1]) = f (y1 + d) and
G({1, 2, 3}) = g([1, 1, 1]) = f (y2 + d). Then

f (y1 + d) − f (y1) − [ f (y2 + d) − f (y2)]
= G({1, 3}) − G({1}) − [G({1, 2, 3}) − G({1, 2})]
= ρ3({1}) − ρ3({1, 2}) ≥ 0.

If y1 < 0, then we define a function f̂ : R → R such that f̂ (z) = f (z + y1) for all
z ∈ R. This function f̂ is f shifted to the right by |y1|, so it is also concave. We notice
that f (y1) = f̂ (0), f (y2) = f̂ (y2 − y1), f (y1 +d) = f̂ (d) and f (y2 +d) = f̂ (y2 −
y1+d). Thus our goal now is to show that f̂ (d)− f̂ (0) ≥ f̂ (y2− y1+d)− f̂ (y2− y1).
This relation is true according to the analysis of the previous case, which completes
the proof. ��

For P2
k , we denote the two distinct weights in a by aL and aH , such that 0 ≤ aL <

aH . We let IL = {i ∈ N : ai = aL} and IH = {i ∈ N : ai = aH }. Suppose the items
in N are permuted according to δ = (δ1, δ2, . . . , δn). We define Lt , for 0 ≤ t ≤ |IL |,
to be the set of the first t lower-weighted items according to δ. Similarly, we let Hs ,
for 0 ≤ s ≤ |IH |, be the set of the first s higher-weighted items consistent with δ. By
convention, L0 = H0 = ∅.

Next, we review two useful classes of inequalities, namely EPIs [11] and SIs [34].

2.2 Extended polymatroid inequalities (EPIs)

LetG : 2N → R be any submodular set function defined over the ground set N = [n],
with the equivalent form g : {0, 1}n → R. Without loss of generality, we assume that
G(∅) = g(0) = 0. Given any permutation δ = (δ1, δ2, . . . , δn) of N , the correspond-
ing EPI is

w ≥
n∑

i=1

ρδi xδi , (3)

where ρδ1 = G({δ1}) and ρδi = G({δ1, . . . , δi }) − G({δ1, . . . , δi−1}) for i ∈ [2, n].
In the unconstrained set

Q = {
(w, x) ∈ R × {0, 1}n : w ≥ g(x)

}
,
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808 Q. Yu, S. Küçükyavuz

EPIs are known to be facet-defining for conv(Q). In fact, conv(Q) is fully described
by the trivial inequalities 0 ≤ xi ≤ 1, i ∈ [n], and all the EPIs [11].

In our problem context, the EPIs are facet-defining for conv(P2
k (S)), where

P2
k (S) =

{

(w, x) ∈ R × {0, 1}S : w ≥ f

(
∑

i∈S
ai xi

)

,
∑

i∈S
xi ≤ k

}

(4)

for any S ⊆ N with |S| ≤ k. This is because the cardinality constraint trivially holds
for such S. In Section 3, we lift the EPIs with respect to the variables xi for all i ∈ N\S.

2.3 Separation inequalities (SIs)

SIs are strong valid linear inequalities for conv(P1
k ) proposed in [34]. In this case, we

have ai = α for all i ∈ [n] given some α ∈ R+, and

P1
k =

{

(w, x) ∈ R × {0, 1}n : w ≥ f

(

α

n∑

i=1

xi

)

,

n∑

i=1

xi ≤ k

}

.

Given any permutation of N , δ = (δ1, δ2, . . . , δn), and a fixed parameter i0 ∈
{0, 1, . . . , k − 1}, an SI is defined by

w ≥
i0∑

i=1

ρδi xδi +
n∑

i=i0+1

ψxδi . (5)

Here

ψ = f (kα) − f (i0α)

k − i0
,

and ρδi is the EPI coefficient f (iα) − f ((i − 1)α). The authors further show that the
SIs, together with

∑n
i=1 xi ≤ k and 0 ≤ xi ≤ 1 for i ∈ N , fully describe conv(P1

k ). In
our problem context, the same convex hull characterization holds for conv(P1

k (IL))
and conv(P1

k (IH )), where

P1
k (IL) =

⎧
⎨

⎩
(w, x) ∈ R × {0, 1}IL : w ≥ f

⎛

⎝aL
∑

i∈IL

xi

⎞

⎠ ,
∑

i∈IL

xi ≤ k

⎫
⎬

⎭
, (6)

and

P1
k (IH ) =

⎧
⎨

⎩
(w, x) ∈ R × {0, 1}IH : w ≥ f

⎛

⎝aH
∑

i∈IH

xi

⎞

⎠ ,
∑

i∈IH

xi ≤ k

⎫
⎬

⎭
. (7)
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In Section 4, we lift the SIs of conv(P1
k (IL)) and conv(P1

k (IH )), to obtain two classes
of strong valid linear inequalities for conv(P2

k ).
As mentioned earlier, Yu and Ahmed [34] give an O(n4) algorithm to exactly lift

the EPIs for the multi-weighted case. However, the algorithmic approach does not
yield explicit forms of the lifting coefficients, which hinders the effectiveness of this
algorithmic approach in a branch-and-cut scheme. Due to this complexity, the authors
give approximate coefficients of the lifted EPIs. In contrast, we directly describe the
optimal solutions to the lifting problemsgivenbothEPIs andSIs as the base inequalities
for the problems involving two weights. Such a closed-form description of sequence-
dependent lifting coefficients is generally non-trivial. Furthermore, this description
paves the path for the effective use of the resulting inequalities in a branch-and-cut
framework as evidenced by our computational experiments.

3 Exact lifting of extended polymatroid inequalities

The goal of this section is to lift the EPIs (3) and derive a class of strong valid linear
inequalities for conv(P2

k ). We call this new class of inequalities the lifted-EPIs.
For any permutation δ of N , we can re-index N such that δ is the natural order

(1, 2, . . . , n). Let S be any subset of N such that |S| = k.Without loss of generality, we
assume that S = [k]. This can also be achieved by re-indexing. Let dH = |IH\[k−1]|
and dL = |IL∩[k−1]|.We useH = (H1,H2, . . . ,HdH ) to denote the permutation of
IH\[k−1] that is consistent with δ. We letL = (L1,L2, . . . ,LdL ) be the permutation
of IL ∩ [k − 1] that is also consistent with δ. For q ∈ [dH ], H(q) = {H1, . . . ,Hq}.
If q ≤ 0, then H(q) = ∅. Similarly, we let L(q) = {L1, . . . ,Lq} for q ∈ [dL ];
H(q) = ∅ when q ≤ 0. The set Lt is the same as L(t) for any t ∈ [dL ]. However, Lt

is defined for t > dL as well, while L(·) ⊆ [k − 1]. The next example clarifies the
new notation.

Example 1 Suppose k = 3, and N = [5] such that IL = {1, 3} and IH = {2, 4, 5}.
Given δ = (1, 2, 3, 4, 5), H = (4, 5) and dH = 2. Meanwhile L = (1) and dL = 1.
In addition, H(2) = {4, 5}, L(1) = {1} and L(0) = ∅.

With the specified indexing,

P2
k (S) =

{

(w, x) ∈ R × {0, 1}k : w ≥ f

(
k∑

i=1

ai xi

)

,

k∑

i=1

xi ≤ k

}

.

This set is essentially P2
k with xi fixed at 0 for all i ∈ N\S = [k + 1, n]. Let a base

EPIw ≥ ∑k
i=1 ρi xi associated with the natural ordering of S be given. The coefficient

ρi is ρi ([i − 1]) for any i ∈ [k] to be precise. Lifting this base inequality with the
variables xi , i ∈ N\S, we can construct a valid inequality for conv(P2

k ) in the form of

w ≥
k∑

i=1

ρi xi +
n∑

i=k+1

ξi xi . (8)
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810 Q. Yu, S. Küçükyavuz

which is what we call a lifted-EPI.
In an intermediate step of lifting x j for j ∈ [k + 1, n], we derive a facet-defining

inequality w ≥ ∑k
i=1 ρi xi + ∑ j

i=k+1 ξi xi for the convex hull of the polyhedron

P2
k ([ j]) =

⎧
⎨

⎩
(w, x) ∈ R × {0, 1} j : w ≥ f

⎛

⎝
j∑

i=1

ai xi

⎞

⎠ ,

j∑

i=1

xi ≤ k

⎫
⎬

⎭
.

The coefficient ξ j is the optimal objective value of the j-th lifting problem (9a).

ξ j := min w −
k∑

i=1

ρi xi −
j−1∑

i=k+1

ξi xi (9a)

s.t. w ≥ f

⎛

⎝a j +
j−1∑

i=1

ai xi

⎞

⎠ , (9b)

j−1∑

i=1

xi ≤ k − 1, (9c)

x ∈ {0, 1} j−1. (9d)

In fact, every lifted-EPI is identical with w ≥ ∑n
j=1 ζ j x j , in which ζ j is the optimal

objective of the j-th lifting problem (10) for j ∈ [n]. This observation is formalized
in Lemma 3.1.

ζ j := min w −
j−1∑

i=1

ζi xi (10a)

s.t. w ≥ f

⎛

⎝a j +
j−1∑

i=1

ai xi

⎞

⎠ , (10b)

j−1∑

i=1

xi ≤ k − 1, (10c)

x ∈ {0, 1} j−1. (10d)

Lemma 3.1 In the base EPI w ≥ ∑k
i=1 ρi xi , ρ j = ζ j for all j ∈ [k], where ζ j is the

optimal objective value of the j-th lifting problem (10).

Proof We observe that for any j ∈ [k], constraint (10c) naturally holds. When j = 1,
w is the only decision variable in problem (10). To minimize w, constraint (10b) must
be tight at the optimal solution. Thus ζ1 = f (a1) = ρ1. If k = 1 then the proof is
complete. Now suppose k ≥ 2. When j = 2, ζ2 = min{ f (a1 + a2) − f (a1), f (a2)},
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or equivalently, min{F({1, 2}) − F({1}), F({2})}. By submodularity of F , F({1}) +
F({2}) ≥ F({1, 2}). Therefore, ζ2 = F({1, 2}) − F({1}) = ρ2. Now we have settled
two base cases. For a strong induction, our induction hypothesis is thatρ j is the optimal
objective of the j-th problem (10) for all j ∈ [J − 1], where J − 1 ∈ [k − 1]. Now
we characterize the optimal solution to the J -th problem (10). The optimal objective
value ζJ is minQ⊆[J−1] F(Q∪{J })−∑

i∈Q ζi . Let Q be an arbitrary subset of [J−1].

F(Q ∪ {J }) +
∑

i∈[J−1]\Q
ζi

= F(Q ∪ {J }) +
∑

i∈[J−1]\Q
ρi (by induction hypothesis)

= F(Q ∪ {J }) +
∑

i∈[J−1]\Q
ρi ([i − 1]) (by definition of ρi )

≥ F(Q ∪ {J }) +
∑

i∈[J−1]\Q
ρi (Q ∪ [i − 1]) (by submodularity of F)

= F(Q ∪ {J })+
∑

i∈[J−1]\Q
[F(Q ∪ [i])−F(Q ∪ [i − 1])]

= F(Q ∪ {J }) + F(Q ∪ [J − 1]) − F(Q ∪ ∅)

= F(Q ∪ {J }) + F([J − 1]) − F(Q)

= F([J − 1]) + ρJ (Q)

≥ F([J − 1]) + ρJ ([J − 1]) (by submodularity of F)

= F([J ]).

It follows that

F(Q ∪ {J }) −
∑

i∈Q
ζi = F(Q ∪ {J }) +

∑

i∈[J−1]\Q
ζi −

∑

i∈[J−1]
ζi

≥ F([J ]) −
∑

i∈[J−1]
ζi .

Since the choice of Q is arbitrary, ζJ = F([J ]) − ∑
i∈[J−1] ζi = ρJ . By strong

induction, we conclude that ρ j = ζ j for all j ∈ [k]. ��
Lemma 3.1 shows that all the coefficients in a lifted-EPI are the optimal objective

values of the corresponding lifting problems (10). This observation enables us to
compare ζ j across all j ∈ [n]. Lemma 3.2 captures a descending property of these
coefficients.

Lemma 3.2 Letw ≥ ζ�x be a lifted-EPI associated with S = [k]. If 1 ≤ j1 < j2 ≤ n
satisfy a j1 = a j2 , then ζ j1 ≥ ζ j2 .

Proof By Lemma 3.1, we can view the variables xi , i ∈ S, as the first k variables to be
lifted. Since a j1 = a j2 , this result follows from Proposition 1.3 on page 264 of [28],

123



812 Q. Yu, S. Küçükyavuz

which states that the lifting coefficients are non-increasing with respect to the order
in which the variables are lifted. ��

Before stating the explicit form of any lifted-EPI, we introduce additional notation
and make more observations about the lifting problem (10). In the j-th problem (10),
suppose x ∈ {0, 1} j−1 satisfies

∑n
i=1 xi ≤ k − 1. We denote the support of x by

X = {i ∈ [ j − 1] : xi = 1}. Since the objective is minimized, we attain the lowest
objective value given x when constraint (10b) is tight. We represent the corresponding
objective value by ζ X

j . In other words,

ζ X
j = f

(

a j +
∑

i∈X
ai

)

−
∑

i∈X
ζi ,

for any feasible x ∈ {0, 1} j−1. Then

ζ j = min
X⊆[ j−1],|X |≤k−1

ζ X
j .

We observe that N = [k − 1] ∪ (IL\[k − 1]) ∪ (IH\[k − 1]), where [k − 1],
IL\[k − 1] and IH\[k − 1] are pairwise disjoint. Recall that |IH\[k − 1]| = dH , and
IH\[k − 1] = H(dH ) = {H1, . . . ,HdH }. Thus every j ∈ IH\[k − 1] isHi for some
unique i ∈ [dH ].

Lemma 3.3 shows that, if we restrict the solutions to the j-th lifting problem (10)
by fixing xi = 0 for all i ∈ [k, j − 1], then ζ

[k−1]
j is the lowest attainable objective

value.

Lemma 3.3 Let any j ∈ [k + 1, n] be given. For all Q ⊆ [k − 1], ζ Q
j ≥ ζ

[k−1]
j .

Proof We choose an arbitrary Q ⊆ [k − 1] such that |Q| ≤ k − 1. Then

ζ
Q
j = f

⎛

⎝a j +
∑

i∈Q
ai

⎞

⎠ −
∑

i∈Q
ρi

= F(Q ∪ { j}) −
∑

i∈Q
ρi ([i − 1])

≥ F(Q ∪ { j}) −
∑

i∈Q
ρi (Q ∩ [i − 1]) (F is submodular)

= F(Q ∪ { j}) − F(Q)

≥ F([k − 1] ∪ { j}) − F([k − 1]) (F is submodular)

= f

⎛

⎝
∑

i∈[k−1]
ai + a j

⎞

⎠ −
∑

i∈[k−1]
ρi

= ζ
[k−1]
j .

��
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The next lemma shows that, in any lifting problem (10), among all the feasible
supports with exactly t lower-weighted items and s higher-weighted items, Lt ∪ Hs

has the lowest objective value.

Lemma 3.4 Let any j ∈ [k, n] and fixed integers 0 ≤ t ≤ |IL |, 0 ≤ s ≤ |IH | with
t+s ≤ k−1 be given. For any Q ⊆ [ j−1], such that |Q∩IL | = t and |Q∩IH | = s,
ζ
Q
j ≥ ζ Lt∪Hs

j .

Proof Consider any Q with the stated properties. It satisfies |Q| = s+ t ≤ k−1, so Q
corresponds to a feasible solution to the j-th lifting problem (10). Lemma 3.2 suggests
that

∑
i∈Lt ζi is the sum of the highest t lifting coefficients for the lower-weighted

items. There are t lower-weighted items in Q∩IL as well, so
∑

i∈Lt ζi ≥ ∑
i∈Q∩IL

ζi .
Similarly,

∑
i∈Hs ζi ≥ ∑

i∈Q∩IH
ζi . Thus

ζ
Q
j = f

(
a j + taL + saH

) −
∑

i∈Q∩IL

ζi −
∑

i∈Q∩IH

ζi

≥ f
(
a j + taL + saH

) −
∑

i∈Lt

ζi −
∑

i∈Hs

ζi (by Lemma 3.2, as discussed above)

= ζ Lt∪Hs

j .

��
We may infer from this lemma that an optimal support for any lifting problem (10)

assumes the form Lt ∪ Hs for some t and s. In Lemma 3.5, we provide the optimal
solution to the j-th lifting problem, when all the items in [ j−1] have the same weight.

Lemma 3.5 Let any j ∈ [k, n] be given. If [ j − 1] ⊆ IL , or [ j − 1] ⊆ IH , then
ζ j = ζ

[k−1]
j in the j-th lifting problem (10).

Proof Without loss of generality, suppose [ j − 1] ⊆ IL . Lemma 3.4 implies that
argminQ⊆[ j−1],|Q|≤k−1 ζ

Q
j has the form of [t] for some 0 ≤ t ≤ k−1. We notice that

for any such set,

ζ
[t]
j = f

(
a j + taL

) −
∑

i∈[t]
ζi

= F({ j} ∪ [t]) −
∑

i∈[t]
ρi

= F({ j} ∪ [t]) − F([t])
≥ F({ j} ∪ [k − 1]) − F([k − 1]) (by submodularity of F)

= ζ
[k−1]
j .

Therefore, for any Q ⊆ [ j − 1] such that |Q| ≤ k − 1, ζ
Q
j ≥ ζ

[k−1]
j . We conclude

that ζ j = ζ
[k−1]
j . The case when [ j − 1] ⊆ IH follows similarly. ��

In Proposition 3.6, we present the explicit form of any lifted-EPI.
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814 Q. Yu, S. Küçükyavuz

Proposition 3.6 A lifted-EPI assumes the form w ≥ ∑n
i=1 ζi xi , where

ζ j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ j , if j ∈ [k − 1],

ζ
[k−1]
j , if j ∈ IL\[k − 1],

min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
, if j = Hi , i ∈ [dH ],

and ζH0 = ζ
H(min{0,dL })∪L(dL−0)∪(IH∩[k−1])
j = ζ

[k−1]
j .

Before we prove Proposition 3.6, a remark is in order.

Remark 1 Proposition 3.6 allows us to efficiently derive the lifting coefficients in a
sequential fashion. Here we provide some intuition behind the proposed coefficients.
Given the base EPI, ζ j = ρ j for j ∈ [k]. Thus the first case in Proposition 3.6
when j ∈ [k − 1] naturally follows. Next we verify ζk = ρk in the construction of
Proposition 3.6. When k ∈ IL , ζk = ζ

[k−1]
k = ρk in the second case. When k ∈ IH ,

then it falls under the third case, where ζk = min{ζ [k−1]
k , ζ

[k−1]
k } = ρk . Therefore,

ζk = ρk is satisfied by the proposed construction. Such division of cases is designed
for a conciser proof by strong induction.

Now suppose j ≥ k+1. The second case in Proposition 3.6 states that, when j is a
lower-weighted item, the support of the optimal solution to the corresponding lifting
problem (10) is [k − 1]. This implies that ζ j is a constant for all such j . That is, lifting
is sequence independent for j ∈ IL . On the other hand, if j ∈ IH , then j = Hi for
some i ∈ [dH ]. This means that j is the i-th higher-weighted item strictly after k − 1
in the fixed permutation. In this case, ζ j is the minimum of two candidates. The first
candidate is ζ j ′ where j ′ = Hi−1 is the higher-weighted item right before j in the
given permutation. The coefficient ζ j ′ has already been obtained before computing ζ j
because j ′ comes before j in the lifting sequence. The second candidate has a support
setH(min{i −1, dL })∪L(dL − i +1})∪ (IH ∩[k−1]) which always has cardinality
k − 1. Intuitively, this set is constructed by replacing the last i − 1 lower-weighted
items in [k − 1] with the first i − 1 higher-weighted items strictly after k − 1. If
i − 1 ≥ dL , then this support set is H(dL) ∪ (IH ∩ [k − 1]) which is the set of the
first k − 1 higher-weighted items.

Next, we present a proof by strong induction to show that the proposed lifted-EPI
coefficients are indeed the optimal objective values in the lifting problems (10). The
correctness of case 1, when j ∈ [k − 1], in Proposition 3.6 is immediate from the
base EPI. It suffices to show that when j ≥ k, cases 2 and 3 in Proposition 3.6 are
also correct. For a strong induction, we use j = k and j = k + 1 as our base cases.
Remark 1 has cleared the case of j = k. Thus it suffices to examine the case of
j = k + 1. Once we settle the base cases, we show the correctness of ζJ for some
J ≥ k + 2 given the induction hypothesis that ζ j ’s are correct for all j ∈ [k, J − 1].
After that, Proposition 3.6 is formally established.

Lemma 3.7 examines the base case of j = k + 1 when k + 1 ∈ IL .
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Lemma 3.7 When k + 1 ∈ IL , ζk+1 = ζ
[k−1]
k+1 .

Proof For i ∈ [k], we know that ζi = ρi . Consider any Q ⊆ [k] with |Q| ≤ k − 1.
Such a set Q is the support of any feasible solution x to the (k + 1)-th lifting problem
(10). If k /∈ Q, then Lemma 3.3 applies. For all such Q, ζ Q

j ≥ ζ
[k−1]
j . On the other

hand, suppose k ∈ Q.We denote Q\{k} by Q′ and note that Q′ ⊆ [k−1], |Q′| ≤ k−2.
Thus

∑
i∈Q′ ai ≤ ∑

i∈[k−1] ai − aL . In this case,

ζ
Q
k+1 = f

⎛

⎝
∑

i∈Q′
ai + ak + ak+1

⎞

⎠ −
∑

i∈Q′
ρi − ρk

= F(Q′ ∪ {k, k + 1}) −
∑

i∈Q′
ρi ([i − 1]) − ρk

≥ F(Q′ ∪ {k, k + 1}) −
∑

i∈Q′
ρi (Q

′ ∩ [i − 1]) − ρk (F is submodular)

= F(Q′ ∪ {k, k + 1}) − F(Q′) − ρk

= F(Q′ ∪ {k, k + 1}) − F(Q′ ∪ {k + 1}) − ρk + F(Q′ ∪ {k + 1}) − F(Q′)

= f

⎛

⎝
∑

i∈Q′
ai + ak + aL

⎞

⎠

− f

⎛

⎝
∑

i∈Q′
ai + aL

⎞

⎠ −
⎡

⎣ f

⎛

⎝
∑

i∈[k−1]
ai + ak

⎞

⎠ − f

⎛

⎝
∑

i∈[k−1]
ai

⎞

⎠

⎤

⎦

+ F(Q′ ∪ {k + 1}) − F(Q′)

≥ F(Q′ ∪ {k + 1}) − F(Q′)

⎛

⎝ f is concave and
∑

i∈Q′
ai + aL ≤

∑

i∈[k−1]
ai

⎞

⎠

≥ F([k − 1] ∪ {k + 1}) − F([k − 1]) (F is submodular)

= f

⎛

⎝
∑

i∈[k−1]
ai + ak+1

⎞

⎠ −
∑

i∈[k−1]
ρi

= ζ
[k−1]
k+1 .

Therefore, for any Q ⊆ [k] such that |Q| ≤ k − 1, ζ Q
k+1 ≥ ζ

[k−1]
k+1 . It follows that

ζk+1 = ζ
[k−1]
k+1 . ��

We continue to explore the base case of j = k + 1 when k + 1 ∈ IH . Three
scenarios are possible in this case:

(1) k ∈ IL ;
(2) k ∈ IH and dL = |IL ∩ [k − 1]| ≥ 1;
(3) k ∈ IH and dL = 0; in other words, [k] ⊆ IH .

Lemmas 3.8, 3.9 and 3.10 address these three scenarios respectively.
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816 Q. Yu, S. Küçükyavuz

Lemma 3.8 If k + 1 ∈ IH and k ∈ IL , then ζk+1 = ζ
[k−1]
k+1 .

Proof Consider any Q ⊆ [k] such that |Q| ≤ k − 1. For every such Q that does
not contain k, ζ

Q
k+1 ≥ ζ

[k−1]
k+1 due to Lemma 3.3. Now we consider any Q � k with

|Q| ≤ k − 1. Let Q′ = Q\{k}. We know that Q′ ⊆ [k − 1] and |Q′| ≤ k − 2. Let u be
argmin{ai : i ∈ [k−1]}, whichmeans that if IL ∩[k−1] = ∅ then u is any i ∈ [k−1];
otherwise, u is any i ∈ IL∩[k−1]. By this choice of u, aL ≤ au ≤ ai for all i ∈ [k−1].
Let T = [k − 1]\{u}. It follows that∑i∈Q′ ai ≤ ∑

i∈[k−1] ai − au = ∑
i∈T ai . In this

case,

ζ
Q
k+1 = f

⎛

⎝ak+1 + ak +
∑

i∈Q′
ai

⎞

⎠ −
∑

i∈Q′
ρi − ρk

= f

⎛

⎝aH + aL +
∑

i∈Q′
ai

⎞

⎠ −
∑

i∈Q′
ρi ([i − 1]) − ρk([k − 1])

≥ f

⎛

⎝aH + aL +
∑

i∈Q′
ai

⎞

⎠ −
∑

i∈Q′
ρi (Q

′ ∩ [i − 1]) − ρk([k − 1]) (F is submodular)

= f

⎛

⎝aH + aL +
∑

i∈Q′
ai

⎞

⎠ − f

⎛

⎝
∑

i∈Q′
ai

⎞

⎠ − ρk([k − 1])

≥ f

⎛

⎝aH + aL +
∑

i∈T
ai

⎞

⎠ − f

⎛

⎝
∑

i∈T
ai

⎞

⎠ − ρk([k − 1])

(aH + aL ≥ 0,
∑

i∈Q′
ai ≤

∑

i∈T
ai , so Lemma 2.1 applies)

≥ f

⎛

⎝aH + aL +
∑

i∈T
ai

⎞

⎠ − f

⎛

⎝
∑

i∈T
ai

⎞

⎠ − ρk(T ) (F is submodular, T ⊂ [k − 1])

= f

⎛

⎝aH + aL +
∑

i∈T
ai

⎞

⎠ − f

⎛

⎝aL +
∑

i∈T
ai

⎞

⎠ (ak = aL )

≥ f

⎛

⎝aH + au +
∑

i∈T
ai

⎞

⎠ − f

⎛

⎝au +
∑

i∈T
ai

⎞

⎠ (by Lemma 2.1)

= f

⎛

⎝aH +
k−1∑

i=1

ai

⎞

⎠ − f

⎛

⎝
k−1∑

i=1

ai

⎞

⎠ (T ∪ {u} = [k − 1] by construction)

= f

⎛

⎝aH +
k−1∑

i=1

ai

⎞

⎠ −
k−1∑

i=1

ρi

= ζ
[k−1]
k+1 .

Therefore, for every Q ⊆ [k]with |Q| ≤ k−1, ζ Q
k+1 ≥ ζ

[k−1]
k+1 . That is, ζk+1 = ζ

[k−1]
k+1 .

��
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Lemma 3.9 Suppose k, k + 1 ∈ IH and dL ≥ 1. Let l = LdL , which is the largest

index in [k − 1] such that al = aL . Then ζk+1 = min{ζ [k−1]
k+1 , ζ

[k]\{l}
k+1 }.

Proof We partition all the feasible supports Q into two cases.

Case 1 We first consider all Q ⊆ [k] with |Q| ≤ k − 1, such that l /∈ Q. Let
q = |Q\[l]|. We observe that q ≤ |[k]\[l]| = k − l, and for all i ∈ Q\[l], ai = aH .
In other words, q is the number of higher-weighted items in Q with indices greater
than l. In this case, we show that ζ Q

k+1 ≥ ζ
[k]\{l}
k+1 .

ζ
Q
k+1 = f

⎛

⎝aH +
∑

i∈Q,i<l

ai +
∑

i∈Q,i>l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi −
∑

i∈Q,i>l

ρi

= f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi + f

⎛

⎝aH +
∑

i∈Q,i<l

ai +
∑

i∈Q,i>l

aH

⎞

⎠

− f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i>l

ρi

≥ f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi + f

⎛

⎝aH +
∑

1≤i<l

ai +
∑

i∈Q,i>l

aH

⎞

⎠

− f

⎛

⎝aH +
∑

1≤i<l

ai

⎞

⎠ −
∑

i∈Q,i>l

ρi

( f is concave and
∑

i∈Q,i<l

ai ≤
∑

1≤i<l

ai )

= f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi

+
q∑

p=1

[

f

(
l−1∑

i=1

ai + aH + p · aH
)

− f

(
l−1∑

i=1

ai + aH + (p − 1) · aH
)]

−
∑

i∈Q,i>l

ρi (because Q\[l] ⊆ IH and|Q\[l]| = q)

≥ f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi

+
q∑

p=1

[

f

(
l−1∑

i=1

ai + aH + p · aH
)

− f

(
l−1∑

i=1

ai + aH + (p − 1) · aH
)]
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−
q∑

p=1

ρl+p ({l + 1, . . . , l + q} ⊆ IH with size q; by Lemma 3.2,
l+q∑

i=l+1

ρi

≥
∑

i∈Q\[l]
ρi )

= f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi

+
q∑

p=1

[

f

(
l−1∑

i=1

ai + aH + p · aH
)

− f

(
l−1∑

i=1

ai + aH + (p − 1) · aH
)]

−
q∑

p=1

[

f

(
l−1∑

i=1

ai + aL + p · aH
)

− f

(
l−1∑

i=1

ai + aL + (p − 1) · aH
)]

≥ f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi

+
k−l∑

p=1

[

f

(
l−1∑

i=1

ai + aH + p · aH
)

− f

(
l−1∑

i=1

ai + aH + (p − 1) · aH
)]

−
k−l∑

p=1

[

f

(
l−1∑

i=1

ai + aL + p · aH
)

− f

(
l−1∑

i=1

ai + aL + (p − 1) · aH
)]

(Let�p
1 = f

(
l−1∑

i=1

ai + aH + p · aH
)

− f

(
l−1∑

i=1

ai + aH + (p − 1) · aH
)

, and

�
p
2 = f

(
l−1∑

i=1

ai + aL + p · aH
)

− f

(
l−1∑

i=1

ai + aL + (p − 1) · aH
)

.

By Lemma 2.1, �p
1 ≤ �

p
2

for any 1 ≤ p ≤ k − l.)

= f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi ([i − 1]) + f

(
l−1∑

i=1

ai + aH + (k − l)aH

)

− f

(
l−1∑

i=1

ai + aH

)

−
k∑

i=l+1

ρi

≥ f

⎛

⎝aH +
∑

i∈Q,i<l

ai

⎞

⎠ −
∑

i∈Q,i<l

ρi (Q ∩ [i − 1])

+ f

(
l−1∑

i=1

ai + aH + (k − l)aH

)

− f

(
l−1∑

i=1

ai + aH

)

−
k∑

i=l+1

ρi
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(F is submodular)

= F({k + 1} ∪ (Q ∩ [l − 1])) − F(Q ∩ [l − 1]) + f

(
l−1∑

i=1

ai + aH + (k − l)aH

)

− f

(
l−1∑

i=1

ai + aH

)

−
k∑

i=l+1

ρi

≥ F({k + 1} ∪ [l − 1]) − F([l − 1]) + f

(
l−1∑

i=1

ai + aH + (k − l)aH

)

− f

(
l−1∑

i=1

ai + aH

)

−
k∑

i=l+1

ρi (F is submodular)

= f

(

aH +
l−1∑

i=1

ai

)

−
l−1∑

i=1

ρi + f

(
l−1∑

i=1

ai + aH + (k − l)aH

)

− f

(
l−1∑

i=1

ai + aH

)

−
k∑

i=l+1

ρi

= f

(

aH +
l−1∑

i=1

ai +
k∑

i=l+1

ai

)

−
l−1∑

i=1

ρi −
k∑

i=l+1

ρi

= ζ
[k]\{l}
k+1 .

Case 2 Next we consider the remaining Q ⊆ [k] with |Q| ≤ k − 1, which satisfies
l ∈ Q. If Q does not contain all the elements in IL ∩ [k], we let l ′ ∈ IL ∩ [k] be any
lower-weighted item that is not included in Q. By definition of l, l ′ < l. We observe
that

ζ
Q
k+1 = f

⎛

⎝aH +
∑

i∈Q\{l}
ai + aL

⎞

⎠ −
∑

i∈Q\{l}
ρi − ρl

≥ f

⎛

⎝aH +
∑

i∈Q\{l}
ai + aL

⎞

⎠−
∑

i∈Q\{l}
ρi − ρl ′ (becauseρl ′ ≥ ρl by Lemma 3.2)

= ζ
Q∪{l ′}\{l}
k+1

≥ ζ
[k]\{l}
k+1 (follows from Case 1).

Thus it suffices to consider all Q ⊆ [k] with |Q| ≤ k − 1 such that IL ∩ [k] ⊆ Q.
Given a fixed 0 ≤ s ≤ k−1−dL , recall that Hs is the set of the first s higher-weighted
items in the natural ordering of N . For any Q ⊆ [k] that satisfies |Q| ≤ k − 1,
IL ∩ [k] ⊆ Q and |Q ∩ IH | = s, ζ Q

k+1 ≥ ζ
L(dL )∪Hs

k+1 by Lemma 3.4. Hence if Q∗ =
argminQ⊆[k],|Q|≤k−1,IL∩[k]⊆Q ζ

Q
k+1, then Q∗ must assume the form of L(dL) ∪ Hs
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for some 0 ≤ s ≤ k − 1 − dL .

ζ
L(dL )∪Hs

k+1 = f

⎛

⎝aH +
∑

i∈L(dL )∪Hs

ai

⎞

⎠ −
∑

i∈L(dL )∪Hs

ρi

= F({k + 1} ∪ L(dL) ∪ Hs) − F(L(dL) ∪ Hs)

≥ F({k + 1} ∪ L(dL) ∪ Hk−1−dL ) − F(L(dL) ∪ Hk−1−dL )

(because F is submodular)

= F({k + 1} ∪ [k − 1]) − F([k − 1])

= f

(

ak+1 +
k−1∑

i=1

)

−
k−1∑

i=1

ρi

= ζ
[k−1]
k+1 .

In summary, given any Q ⊆ [k] such that |Q| ≤ k − 1, if Q contains all the lower-
weighted items before k, then ζ

Q
k+1 ≥ ζ

[k−1]
k+1 ; otherwise, ζ

Q
k+1 ≥ ζ

[k]\{l}
k+1 . Therefore,

ζk+1 = min
{
ζ

[k]\{l}
k+1 , ζ

[k−1]
k+1

}
. ��

Lemma 3.10 If [k + 1] ⊆ IH , then ζk+1 = ζ
[k−1]
k+1 .

Proof This result immediately follows from Lemma 3.5. ��

Corollary 3.10.1 The lifted-EPI coefficients ζ j for j = k and k + 1 are given by

ζ j =

⎧
⎪⎪⎨

⎪⎪⎩

ζ
[k−1]
j , j ∈ IL ,

min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
, j = Hi , 1 ≤ i ≤ dH ,

where ζH0 = ζ
[k−1]
j .

Proof We know that ζk = ζ
[k−1]
k from the EPI coefficients, so when k ∈ IL , the

proposed assignment is correct. If k = H1, then ζ
H(min{0,dL })∪L(dL )∪(IH∩[k−1])
j =

ζ
[k−1]
k , and ζk = min{ζ [k−1]

k , ζ
[k−1]
k }, which is also correct.

The case of k + 1 ∈ IL follows from Lemma 3.7. Suppose k + 1 ∈ IH . Then
k + 1 = H1 or H2. When k + 1 = H1, Lemma 3.8 shows that ζk+1 = ζ

[k−1]
k+1 . When

k + 1 = H2, k = H1 and ζk = ζ
[k−1]
k = ζ

[k−1]
k+1 . Lemmas 3.9 and 3.10 prove that

ζk+1 = min
{
ζ

[k−1]
k+1 = ζH1 , ζ

[k]\{l}
k+1

}
. ��
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Wehavenowcleared the base cases. For a strong induction, our induction hypothesis
is that for all j ∈ [k, J − 1] the following holds:

ζ j =

⎧
⎪⎪⎨

⎪⎪⎩

ζ
[k−1]
j , if j ∈ IL\[k − 1],

min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
, if j = Hi , i ∈ [dH ],

where ζH0 = ζ
H(min{0,dL })∪L(dL−0)∪(IH∩[k−1])
j = ζ

[k−1]
j . We next show that the pro-

posed coefficients are correct for j = J , given the induction hypothesis, to complete
the induction step.

Lemma 3.11 Suppose the induction hypothesis holds. If J ∈ IL , then ζJ = ζ
[k−1]
J .

Proof As defined earlier in this section, Lt is the set of the first t lower-weighted items
in N , and Hs is the set of the first s higher-weighted items. Thanks to Lemma 3.4,
we know that argminQ⊆[J−1],|Q|≤k−1 ζ

Q
J must have the form Lt ∪ Hs , where 0 ≤

t ≤ |IL |, 0 ≤ s ≤ |IH | and s + t ≤ k − 1. Recall that dL = |IL ∩ [k − 1]| and
|IH ∩ [k − 1]| = k − 1 − dL . We prove the stated lemma by cases.

Case 1 Suppose t ≤ dL and s ≤ k − 1− dL . This means that both the lower- and the
higher-weighted items we include in the candidate set Lt ∪ Hs all belong to [k − 1].
In this case, Lt ∪ Hs ⊆ [k − 1]. By Lemma 3.3, ζ Lt∪Hs

J ≥ ζ
[k−1]
J .

Case 2 Suppose t > dL and s < k − 1 − dL . This means that the higher-weighted
items we include in the candidate set Lt ∪ Hs all belong to [k − 1]; in other words,
Hs ⊆ [k − 1]. Meanwhile some lower-weighted items in Lt ∪ Hs are taken from
N\[k − 1]. We let q = t − dL , which is strictly positive by assumption. We construct
two sets W = Lt ∪ Hs ∩ [k − 1] ⊆ [k − 1] and U = Lt ∪ Hs\[k − 1] = Lt\[k − 1].
By design, |U | = q and W ∪ U = Lt ∪ Hs . We also observe that [k − 1]\W ⊆ IH ,
and ∑

i∈W
ai + qaL ≤

∑

i∈W
ai + qaH ≤

∑

i∈[k−1]
ai . (11)

The latter follows from t + s = |W | + q ≤ k − 1, which implies q ≤ k − 1 − |W |.
For any Lt ∪ Hs in this case,

ζ L
t∪Hs

J = f

⎛

⎝aJ +
∑

i∈W
ai +

∑

i∈U
ai

⎞

⎠ −
∑

i∈W
ρi −

∑

i∈U
ζi

≥ f

⎛

⎝aL +
∑

i∈W
ai + qaL

⎞

⎠ −
∑

i∈W
ρi − qζ

[k−1]
J (by the induction hypothesis andU ⊆ Lt )

= f

⎛

⎝aL +
∑

i∈W
ai

⎞

⎠ +
q∑

p=1

⎡

⎣ f

⎛

⎝aL +
∑

i∈W
ai + paL

⎞

⎠ − f

⎛

⎝aL +
∑

i∈W
ai + (p − 1)aL

⎞

⎠

⎤

⎦

−
∑

i∈W
ρi − qζ

[k−1]
J

123



822 Q. Yu, S. Küçükyavuz

= f

⎛

⎝aL +
∑

i∈W
ai

⎞

⎠ +
q∑

p=1

⎡

⎣ f

⎛

⎝aL +
∑

i∈W
ai + paL

⎞

⎠ − f

⎛

⎝
∑

i∈W
ai + paL

⎞

⎠

⎤

⎦

−
∑

i∈W
ρi − qζ

[k−1]
J

≥ f

⎛

⎝aL +
∑

i∈W
ai

⎞

⎠ +
q∑

p=1

⎡

⎣ f

⎛

⎝aL +
∑

i∈[k−1]
ai

⎞

⎠ − f

⎛

⎝
∑

i∈[k−1]
ai

⎞

⎠

⎤

⎦

−
∑

i∈W
ρi − qζ

[k−1]
J

(by concavity of f and (11))

= f

⎛

⎝aL +
∑

i∈W
ai

⎞

⎠ + qζ
[k−1]
J −

∑

i∈W
ρi ([i − 1]) − qζ

[k−1]
J

≥ F({J } ∪ W ) −
∑

i∈W
ρi (W ∩ [i − 1]) (by submodularity ofF)

= F({J } ∪ W ) − F(W )

≥ F({J } ∪ [k − 1]) − F([k − 1]) (by submodularity of F)

= ζ
[k−1]
J .

Case 3 Suppose t < dL and s > k−1−dL . In this case, the lower-weighted items we
include in the candidate set Lt ∪ Hs all belong to [k − 1], and some higher-weighted
items in Lt ∪ Hs are taken from N\[k − 1]. We define W = (Lt ∪ Hs) ∩ [k − 1]. Let
l = Lt+1 be the (t + 1)-th lower-weighted item. In this case, t < dL , so l ≤ k − 1,
l /∈ W and ζl = ρl . Moreover, we let q = |(Lt ∪Hs)\[k−1]| = s−(k−1−dL). Since
s > k−1−dL , q > 0. In addition, t+s = t+q+k−1−dL ≤ k−1, so t+q−dL ≤ 0.
Recall thatH(q) is the set of the first q higher-weighted items strictly after k − 1. We
notice that Lt ∪ Hs = W ∪H(q). The set V = W ∪ {l} ∪H(q − 1) ⊆ [Hq − 1] has
cardinality (t + k − 1 − dL) + 1 + q − 1 = k − 1 + (t + q − dL) ≤ k − 1. Thus V
corresponds to a feasible solution to the lifting problem (10) for ζHq , and ζ V

Hq
≥ ζHq .

ζ L
t∪Hs

J = f

⎛

⎝aJ +
∑

i∈W
ai +

∑

i∈H(q)

ai

⎞

⎠ −
∑

i∈W
ρi −

∑

i∈H(q)

ζi

= f

⎛

⎝al +
∑

i∈W
ai +

∑

i∈H(q−1)

ai + aH

⎞

⎠ −
∑

i∈W∪{l}
ρi −

∑

i∈H(q−1)

ζi − ζHq + ρl

= f

⎛

⎝
∑

i∈V
ai + aH

⎞

⎠ −
∑

i∈V
ζi − ζHq + ρl

= ζVHq
− ζHq + ρl ≥ ρl

≥ ζ
[k−1]
J (because l, J ∈ IL and Lemma 3.2 applies).

We have now considered every Lt ∪ Hs , for any 0 ≤ t ≤ |IL |, 0 ≤ s ≤ |IH |
such that s + t ≤ k − 1. In all the cases, ζ Lt∪Hs

J ≥ ζ
[k−1]
J . Hence we conclude that

ζJ = ζ
[k−1]
J . ��
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Lemma 3.12 Suppose the induction hypothesis holds. If J = H1, then ζJ = ζ
[k−1]
J .

Proof Due to Lemma 3.4, it is sufficient for us to show that ζ
Q
J ≥ ζ

[k−1]
J for all

Q ⊆ [J − 1], |Q| ≤ k − 1 such that Q = Lt ∪ Hs for some 0 ≤ t ≤ |IL | and
0 ≤ s ≤ |IH |. Since J = H1, the higher-weighted items that can be included in Q
must belong to [k − 1]. That is, s ≤ |IH ∩ [k − 1]| = k − 1 − dL .

Case 1 Suppose t ≤ dL . In other words, the lower weighted items we include in Q
are exclusively from [k−1]. Then Q = Lt ∪ Hs ⊆ [k−1]. According to Lemma 3.3,
ζ
Q
J ≥ ζ

[k−1]
J .

Case 2 Suppose t ≥ dL + 1. Now at least one lower-weighted item indexed between
k and J −1 is in Q. Let the number of such lower-weighted items be q > 0. We define
W = Q ∩ [k − 1] and U = Q\[k − 1]. Then [k − 1]\W ⊆ IH , |W | = dL + s and
U = {k, . . . , k + q − 1}. Since U ⊆ IL , ζi = ζ

[k−1]
k for all i ∈ U by the induction

hypothesis. To ensure the cardinality of Q is at most k−1, s ≤ k−2−dL . This means
that [k−1]∩IH\Hs �= ∅. We use u to denote an arbitrary element in [k−1]∩IH\Hs ,
which satisfies au = aH and ζu = ρu . We observe that W ∪ {u} ⊆ [k − 1]. Since
t + s = dL + q + s ≤ k − 1, q ≤ k − 1 − (dL + s) = k − 1 − |W |. It follows that

∑

i∈W
ai + aH + (q − 1)aL ≤

∑

i∈W
ai + qaH ≤

∑

i∈[k−1]
ai . (12)

For any Q of the given type in this case,

ζ
Q
J = f

(

aH +
∑

i∈W
ai +

∑

i∈U
aL

)

−
∑

i∈W
ρi −

∑

i∈U
ζi

= f

(

aH +
∑

i∈W
ai + qaL

)

−
∑

i∈W
ρi − qζ

[k−1]
k (by induction hypothesis)

= f

(
∑

i∈W
ai + aH + qaL

)

− f

(
∑

i∈W
ai + aH

)

− qζ
[k−1]
k + f

⎛

⎝
∑

i∈W∪{u}
ai

⎞

⎠ −
∑

i∈W
ρi

=
q∑

p=1

[

f

(

aL +
∑

i∈W
ai + aH + (p − 1)aL

)

− f

(
∑

i∈W
ai + aH + (p − 1)aL

)]

− qζ
[k−1]
k

+ f

⎛

⎝
∑

i∈W∪{u}
ai

⎞

⎠ −
∑

i∈W
ρi

≥
q∑

p=1

⎡

⎣ f

⎛

⎝aL +
∑

i∈[k−1]
ai

⎞

⎠ − f

⎛

⎝
∑

i∈[k−1]
ai

⎞

⎠

⎤

⎦ − qζ
[k−1]
k + f

⎛

⎝
∑

i∈W∪{u}
ai

⎞

⎠ −
∑

i∈W
ρi

(by Lemma 2.1 and (12))

= qζ
[k−1]
k − qζ

[k−1]
k + F(W ∪ {u}) −

∑

i∈W
ρi ([i − 1])

≥ F(W ∪ {u}) −
∑

i∈W
ρi (W ∩ [i − 1]) (because F is submodular)

= F(W ∪ {u}) − F(W )
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≥ F([k − 1] ∪ {u}) − F([k − 1]) (again because F is submodular)

= f

(

aH +
k−1∑

i=1

ai

)

−
k−1∑

i=1

ζi = ζ
[k−1]
J .

Therefore, ζ
Q
J ≥ ζ

[k−1]
J for all Q ⊆ [J − 1] with |Q| ≤ k − 1. We conclude that

ζH1 = ζ
[k−1]
J . ��

Lemma 3.13 Suppose the induction hypothesis holds. If J = Hi for some 2 ≤ i ≤ dH ,
then

ζJ = min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
.

Proof In this case, there exists at least one higher-weighted item before J and strictly
after k − 1. The coefficient ζHi−1 is the optimal objective value of theHi−1-th lifting
problem (10). Since bothHi−1,Hi ∈ IH , all Q ⊆ [Hi−1−1]with |Q| ≤ k−1 are the
supports for all the feasible solutions x to both theHi−1-th and theHi -th lifting prob-

lem (10). Thus ζ
Q
J ≥ ζHi−1 ≥ min

{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
.

The following discussion focuses on Q ⊆ [J − 1] with |Q| ≤ k − 1,
such that Q is not a subset of [Hi−1 − 1]. We aim to show that ζ

Q
J ≥

min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
for any such set Q. This state-

ment is true as long as it holds for Q in the form of Lt ∪ Hs for some 0 ≤ t ≤ |IL |
and 0 ≤ s ≤ |IH |, as a result of Lemma 3.4. Since Q is not a subset of [Hi−1 − 1],
Q contains at least one item from the set {Hi−1,Hi−1 + 1, . . . ,Hi − 1}. In this set,
Hi−1 ∈ IH and {Hi−1 + 1, . . . ,Hi − 1} ⊆ IL .
Case 1SupposeHi−1 ∈ Q = Lt∪Hs . In this case, Q contains all the s = (i−1)+(k−
1− dL) = k + i − 2− dL higher-weighted items up to and includingHi−1 because of
the form it assumes. This assumption implies that k+i−2−dL ≤ k−1, so i−1 ≤ dL .
To ensure that |Q| ≤ k − 1, t ≤ k − 1− (i − 1) − (k − 1− dL) = dL + 1− i . Recall
that dL = |IL ∩[k−1]|. Therefore, Lt = L(t) ⊆ [k−1]. For any 0 ≤ t ≤ dL+1− i ,
we define W = L(t) ∪ (IH ∩ [k − 1]), and the set Q = Lt ∪ Hs satisfies

ζ
Q
J = f

⎛

⎝aJ +
∑

l∈Q
al

⎞

⎠ −
∑

l∈Q
ζl

= f

⎛

⎝aH +
∑

l∈W
ai + (i − 1)aH

⎞

⎠ −
∑

l∈W
ρl −

∑

l∈H(i−1)

ζl

≥ f

⎛

⎝aH +
∑

l∈W
ai + (i − 1)aH

⎞

⎠ −
∑

l∈W
ρl −

∑

l∈H(i−1)

ζl

+
dL−i+1∑

p=t+1

(
ρLp ({J } ∪ W ∪ H(i − 1) ∪ L(p − 1)) − ρLp ([Lp − 1])

)

(because [Lp − 1] ⊆ W ∪ L(p − 1) for t + 1 ≤ p ≤ dL − i + 1, and F is submodular)
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= f

⎛

⎝aH +
∑

l∈W∪L(dL−i+1)

ai + (i − 1)aH

⎞

⎠ −
∑

l∈W∪L(dL−i+1)

ρl −
∑

l∈H(i−1)

ζl

= f

⎛

⎝aH +
∑

l∈L(dL−i+1)∪(IH∩[k−1])
ai + (i − 1)aH

⎞

⎠

−
∑

l∈L(dL−i+1)∪(IH∩[k−1])
ρl −

∑

l∈H(i−1)

ζl

= ζ
L(dL−i+1)∪(IH∩[k−1])∪H(i−1)
J

≥ min
{
ζHi−1

, ζ
H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
.

Case 2 Suppose Hi−1 /∈ Q = Lt ∪ Hs . In this case, Q must contain the lower-
weighted itemsHi−1 + 1, . . . ,Hi−1 + q for some q > 0, so that Q is not a subset of
[Hi−1 − 1]. LetW = Q ∩ [Hi−1 − 1], then Q = W ∪ {Hi−1 + 1, . . . ,Hi−1 + q} and
|W | = k−1−q ≤ k−2. Given thatHi−1+q ∈ Q, we observe thatW\[k−1] consists
of only lower-weighted items, and there are at least |W\[k − 1]| + q higher-weighted
items in [k − 1]\W . Thus, for any p ∈ {1, . . . , q},

f

⎛

⎝
∑

l∈W∪{Hi−1}
al + paL

⎞

⎠ − f

⎛

⎝
∑

l∈W∪{Hi−1}
al + (p − 1)aL

⎞

⎠

= f

(
∑

l∈W
al + aH + paL

)

− f

(
∑

l∈W
al + aH + (p − 1)aL

)

= f

⎛

⎝
∑

l∈W∩[k−1]
al +

∑

l∈|W\[k−1]|
aL + aH + paL

⎞

⎠

− f

⎛

⎝
∑

l∈W∩[k−1]
al +

∑

l∈|W\[k−1]|
aL + aH + (p − 1)aL

⎞

⎠

≥ f

⎛

⎝
∑

l∈W∩[k−1]
al +

∑

l∈|W\[k−1]|+p

aH + aL

⎞

⎠

− f

⎛

⎝
∑

l∈W∩[k−1]
al +

∑

l∈|W\[k−1]|+p

aH

⎞

⎠ (by Lemma 2.1)

≥ f

⎛

⎝
∑

l∈[k−1]
al + aL

⎞

⎠ − f

⎛

⎝
∑

l∈[k−1]
al

⎞

⎠

(by the aforementioned observation and Lemma 2.1)

= ζ
[k−1]
Hi−1+p .
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We further derive that

ζ
Q
J = f

(

aJ +
∑

l∈W
al + qaL

)

−
∑

l∈W
ζl −

q∑

p=1

ζHi−1+p

= f

(

aH +
∑

l∈W
al

)

−
∑

l∈W
ζl + f

(

aH +
∑

l∈W
al + qaL

)

− f

(

aH +
∑

l∈W
al

)

−
q∑

p=1

ζHi−1+p

= f

(

aHi−1 +
∑

l∈W
al

)

−
∑

l∈W
ζl

+
q∑

p=1

⎡

⎣ f

⎛

⎝
∑

l∈W∪{Hi−1}
al + paL

⎞

⎠ − f

⎛

⎝
∑

l∈W∪{Hi−1}
al + (p − 1)aL

⎞

⎠ − ζHi−1+p

⎤

⎦

≥ ζW
Hi−1

+
q∑

p=1

[
ζ

[k−1]
Hi−1+p − ζHi−1+p

]

≥ ζW
Hi−1

(for any 1 ≤ p ≤ q, [k − 1] is a feasible solution support for the

(Hi−1 + p)-th lifting problem)

≥ ζHi−1 (W is a feasible solution support for theHi−1-th lifting problem)

≥ min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
.

So far we have shown that for any Q ⊆ [J − 1] with |Q| ≤ k − 1,

ζ
Q
J ≥ min

{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
. Hence ζJ = min

{
ζHi−1 ,

ζ
H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
. ��

Lemma 3.14 Suppose the induction hypothesis holds. If J ∈ IH , then J = Hi for
some i ∈ [dH ]. The J -th lifted-EPI coefficient is

ζJ = min
{
ζHi−1 , ζ

H(min{i−1,dL })∪L(dL−i+1)∪(IH∩[k−1])
j

}
,

where ζH0 = ζ
[k−1]
J .

Proof This induction step for J ∈ IH holds by Lemmas 3.12 and 3.13. ��
With all the lemmas established above, we now prove Proposition 3.6.

Proof (Proposition 3.6) The proposed lifted-EPI coefficients ζ j are correct in the base
cases j = k and k + 1 according to Corollary 3.10.1. Given our induction hypothesis
that the proposed coefficients hold for all j ∈ [k, J − 1], Lemmas 3.11 and 3.14 show
that the proposed ζJ is the optimal objective of the J -th lifting problem (10). Hence
we conclude that the proposed lifted-EPI coefficients ζ j for all j ∈ [k, n] are indeed
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the desired optimal objective values of the corresponding lifting problems (10). In
other words, our lifted-EPIs are exact from lifting the EPIs. ��

Now we know that the lifting coefficients given in Proposition 3.6 are exact. In the
next corollaries, we infer the strength of the lifted-EPIs.

Corollary 3.6.1 The lifted-EPIs are facet-defining for conv(P2
k ).

Proof For any S ⊆ N with |S| = k, the cardinality constraint in P2
k (S) is redundant.

Thus the EPIs are facet-defining for such conv(P2
k (S)) [11]. Since the lifted-EPIs are

exactly lifted from the EPIs, they are facet-defining for conv(P2
k ). ��

Corollary 3.6.2 For any conv(P2
k ), the lifted-EPIs are at least as strong as the approxi-

mate lifted inequalities proposed in [34], Proposition 11. Although Yu and Ahmed [34]
call such inequalities the lifted inequalities, to distinguish them from the lifted-EPIs
with exact lifting coefficients, we refer to them as the approximate lifted inequalities
(ALIs). An ALI has the form

w ≥
k∑

i=1

ρi xi +
n∑

i=k+1

φi xi ,

where ρi for i ∈ [k] are the EPI coefficients. For each i > k, let T with |T | = k − 1
be a subset of [i − 1] such that the sum of the weights are as high as possible. Then
φi = f (ai + ∑

j∈T a j ) − f (
∑

j∈T a j ).

Proof Let an EPI with respect to [k] be given. The lifted-EPI w ≥ ∑k
i=1 ρi xi +∑n

i=k+1 ζi xi is exactly lifted from this base EPI. The proof of Proposition 11 in [34]
shows that φi ≤ ζi for i ∈ [k + 1, n]. ��
Example 2 Suppose N = [6], a = [4, 100, 100, 100, 4, 4] and k = 2. Let us consider
the concave function f (a�x) = √

a�x . The ALI [34] with a permutation of N ,
δ = (2, 5, 1, 6, 4, 3), is

w ≥ 0.198x1 + 10x2 + 4.142x3 + 4.142x4 + 0.198x5 + 0.198x6,

which coincides with the lifted-EPI, that we exactly lift from the base EPI for S =
{2, 5}. Another permutation δ = (5, 2, 3, 1, 4, 6) yields an ALI

w ≥ 0.198x1 + 8.198x2 + 4.142x3 + 4.142x4 + 2x5 + 0.198x6.

Consider the EPI that is associatedwith S = {2, 5} and δ. The corresponding lifted-EPI
is

w ≥ 0.828x1 + 8.198x2 + 5.944x3 + 5.944x4 + 2x5 + 0.828x6.

In this example, the lifted-EPI dominates the ALI.
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4 Exact lifting of separation inequalities

In this section, we exactly lift the SIs proposed in [34] to obtain strong valid linear
inequalities for conv(P2

k ). We refer the readers to Sect. 2 for a detailed introduction
to the SIs (5) and the definitions of P1

k (IL) and P1
k (IH ). In particular, recall that

i0 ∈ {0, 1, . . . , k − 1} is a fixed parameter used to construct an SI. In Sect. 4.1, we
propose the lower-separation inequalities (lower-SIs) that are exactly lifted from the
SIs of conv(P1

k (IL)). In Sect. 4.2, we propose another class of inequalities that are
exactly lifted from the SIs of conv(P1

k (IH )). We call these lifted cuts the higher-
separation inequalities (higher-SIs).

Before analyzing the lifting procedures, we show some useful properties of the
coefficients in any SI constructed with an integer 0 ≤ i0 ≤ k − 1. In the lemmas
below, we let N = [n] be the ground set, in which each item has weight α ∈ R+. For
ease of notation, we assume that the permutation δ used to construct SI is (1, 2, . . . , n),
so we omit δ in the indices.

Lemma 4.1 For any r ∈ [k − i0],

rψ = r

k − i0
[ f (kα) − f (i0α)] ≤ f ((i0 + r)α) − f (i0α).

Proof The stated inequality is equivalent to k−i0
r [ f ((i0 + r)α) − f (i0α)] ≥ f (kα) −

f (i0α) because k−i0
r > 0. We observe that

k − i0
r

[ f ((i0 + r)α) − f (i0α)]

= f ((i0 + r)α) − f (i0α) + k − i0 − r

r
[ f ((i0 + r)α) − f (i0α)]

= f ((i0 + r)α) − f (i0α) + k − i0 − r

r

r∑

i=1

[ f ((i0 + i)α) − f ((i0 + i − 1)α)]

≥ f ((i0 + r)α) − f (i0α) + k − i0 − r

r

r∑

i=1

[ f ((i0 + r)α) − f ((i0 + r − 1)α)]

(by concavity of f )

= f ((i0 + r)α) − f (i0α) + (k − i0 − r)[ f ((i0 + r)α) − f ((i0 + r − 1)α)]

≥ f ((i0 + r)α) − f (i0α) +
k−i0−r∑

l=1

[ f ((i0 + r + l)α) − f ((i0 + r − 1 + l)α)]

(by concavity of f )

= f ((i0 + r)α) − f (i0α) + f (kα) − f ((i0 + r)α)

= f (kα) − f (i0α).

Therefore the stated relation holds. ��
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Lemma 4.2 In the SI (5), ρ1 ≥ ρ2 ≥ · · · ≥ ρi0 ≥ ψ .

Proof The descending trend among ρi , for i ∈ [i0], follows from concavity of f .
By Lemma 4.1, ψ ≤ f ((i0 + 1)α) − f (i0α). Moreover, f ((i0 + 1)α) − f (i0α) ≤
f (i0α)− f ((i0 − 1)α) = ρi0 because of Lemma 2.1. Thus ρi0 ≥ ψ , which completes
the proof. ��

4.1 Lower-separation inequalities

Without loss of generality, we index the items in N in such a way that, [|IL |] are
the lower-weighted items, and [|IL | + 1, n] are higher-weighted. We assume that
|IL | ≥ k so that SIs are defined for conv(P1

k (IL)). Let any such SI (5) constructed
with some i0 ∈ {0, 1, . . . , k − 1} be given. Suppose the permutation of IL used to
construct this SI is δ. Again without loss of generality, we assume that the permutation
δ = (1, 2, . . . , |IL |). This can be achieved by re-indexing the lower-weighted items
in N . Thus we omit δ in the discussion below.

We would like to lift this arbitrary SI to derive an inequality of the form

w ≥
i0∑

i=1

ρi xi +
|IL |∑

i=i0+1

ψxi +
n∑

j=|IL |+1

η j x j . (13)

In this expression, η j is the optimal objective value of the j-th lifting problem (14)
for j ∈ [|IL | + 1, n].

η j := min w −
i0∑

i=1

ρi xi −
|IL |∑

i=i0+1

ψxi −
j−1∑

i=|IL |+1

ηi xi (14a)

s.t. w ≥ f

⎛

⎝aH +
j−1∑

i=1

ai xi

⎞

⎠ , (14b)

j−1∑

i=1

xi ≤ k − 1, (14c)

x ∈ {0, 1} j−1. (14d)

We call such inequalities the lower-SIs.
In the j-th lifting problem (14), any feasible x has a corresponding support X =

{i ∈ [ j −1] : xi = 1}. On the other hand, for any X ⊆ [ j −1] with |X | ≤ k−1, there
exists a unique feasible solution x such that xi = 1 if i ∈ X , and 0 otherwise. We will
later analyze the optimal objective of (14) in terms of the feasible supports. Since we
are minimizing the objective function, given any feasible x , the lowest objective value
is attained when constraint (14b) is tight. We denote the best objective value evaluated
at a feasible x with support X by

ηX = f

(

aH +
∑

i∈X
ai

)

−
∑

i∈[i0]∩X

ρi −
∑

i∈[i0+1,|IL |]∩X

ψ −
∑

i∈[|IL |+1, j−1]∩X

ηi .
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We first note that, the lifted coefficients η j ’s are descending.

Lemma 4.3 For any |IL | + 1 ≤ j1 < j2 ≤ n, η j1 ≥ η j2 .

Proof This result immediately follows from Proposition 1.3 on page 264 of [28]. ��
Recall that Hs is the set of the first s higher-weighted items in N . In this section,

by our assumed indexing, Hs = [|IL | + 1, |IL | + s]. The next lemma characterizes
a general form of an optimal solution support to any lifting problem (14).

Lemma 4.4 For any j ∈ [|IL | + 1, n], η j = ηQ∗
for some Q∗ ⊆ [ j − 1] with

|Q∗| ≤ k − 1, such that Q∗ = [t] ∪ Hs, for some 0 ≤ t ≤ k − 1 and 0 ≤ s ≤ |IH |
such that t + s ≤ k − 1.

Proof Consider any Q ⊆ [ j − 1] that satisfies |Q| ≤ k − 1. We let t = |IL ∩ Q| and
s = |IH ∩ Q|. Then

ηQ = f
(
aH + taL + saH

) −
∑

i∈[i0]∩Q

ρi −
∑

i∈[i0+1,|IL |]∩Q

ψ −
∑

i∈[|IL |+1, j−1]∩Q

ηi

≥ f
(
aH + taL + saH

) −
∑

i∈[i0]∩[t]
ρi −

∑

i∈[i0+1,|IL |]∩[t]
ψ −

∑

i∈Hs

ηi

(from Lemmas 4.2 and 4.3)

= η[t]∪Hs
.

Therefore the set of all the feasible supports Q in the form of [t] ∪ Hs contains an
optimal support Q∗ = argminQ⊆[ j−1],|Q|≤k−1 ηQ , such that ηQ∗ = η j . ��

Lemma 4.4 suggests that there must exist an optimal solution support for any lifting
problem (14) that has the form [t]∪Hs , which concatenates the first t lower-weighted
items with the first s higher-weighted items. We next compare all feasible solutions
of this form in Lemmas 4.5, 4.6 and 4.7. It turns out that for any fixed number of
higher-weighted items s ≤ k − 1, the support [k − 1− s] ∪ Hs always has the lowest
objective value. This result is formalized in Lemma 4.8.

Lemma 4.5 For any 0 ≤ s ≤ min{|IH |, k − 1}, η[t−1]∪Hs ≥ η[t]∪Hs
for all t ∈

[min{k − 1 − s, i0}].
Proof Given any [t − 1] ∪ Hs that satisfies the stated properties,

η[t−1]∪Hs = f (aH + (t − 1)aL + saH ) −
t−1∑

i=1

ρi −
|IL |+s∑

i=|IL |+1

ηi

= f (taL + (s + 1)aH ) − [ f (taL + (s + 1)aH ) − f ((t − 1)aL + (s + 1)aH )]

−
t−1∑

i=1

ρi −
|IL |+s∑

i=|IL |+1

ηi ≥ f (taL + (s + 1)aH ) − [ f (taL ) − f ((t − 1)aL )]

123



Strong valid inequalities for a class... 831

−
t−1∑

i=1

ρi −
|IL |+s∑

i=|IL |+1

ηi (because f is concave)

= f (aH + taL + saH ) − ρt −
t−1∑

i=1

ρi −
|IL |+s∑

i=|IL |+1

ηi

= η[t]∪Hs
.

��
Lemma 4.6 Let any 0 ≤ s ≤ min{|IH |, k − 1} be given. If k − 1 − s ≥ i0, then
η[t]∪Hs ≥ min{η[i0]∪Hs

, η[k−1−s]∪Hs } for all t ∈ [i0, k − 1 − s].
Proof We first observe that for every t ∈ [i0, k − 2 − s],

η
[t+1]∪Hs

j − η
[t]∪Hs

j = f ((s + 1)aH + taL + aL) − f ((s + 1)aH + taL) − ψ.

Since f is concave, f ((s + 1)aH + taL + aL) − f ((s + 1)aH + taL) decreases as
t increases. This implies that when t becomes bigger, η

[t+1]∪Hs

j − η
[t]∪Hs

j shrinks.
With this observation, we prove this lemma by contradiction. Suppose there exists
i0 < q < k − 1 − s, such that η[q]∪Hs

j < η[i0]∪Hs
and η

[q]∪Hs

j < η[k−1−s]∪Hs
. Then

η[q]∪Hs − η[i0]∪Hs =
q−1∑

p=i0

[
η[p+1]∪Hs − η[p]∪Hs

]
< 0,

and

η[k−1−s]∪Hs − η[q]∪Hs =
k−2−s∑

p=q

[
η[p+1]∪Hs − η[p]∪Hs

]
> 0.

Hence, there exists q1 ∈ [i0, q − 1] such that η[q1+1]∪Hs − η[q1]∪Hs
< 0. There also

exists q2 ∈ [q, k − 2 − s] such that η[q2+1]∪Hs − η[q2]∪Hs
> 0. This contradicts our

observation that η[t+1]∪Hs

j − η
[t]∪Hs

j decreases as t gets larger. Thus no such q exists.

We conclude that η[t]∪Hs ≥ min{η[i0]∪Hs
, η[k−1−s]∪Hs } for all t ∈ [i0, k − 1 − s]. ��

Lemma 4.7 Let any 0 ≤ s ≤ min{|IH |, k − 1} be given. If k − 1 − s ≥ i0, then
η[i0]∪Hs ≥ η[k−1−s]∪Hs

. In other words, η[t]∪Hs ≥ η[k−1−s]∪Hs
for all t ∈ [i0, k −

1 − s].
Proof The difference η[i0]∪Hs − η[k−1−s]∪Hs

turns out to be non-negative.

η[i0]∪Hs − η[k−1−s]∪Hs

= f (aH + i0aL + saH ) − f (aH + (k − 1 − s)aL + saH ) + (k − 1 − s − i0)ψ

= f (i0aL + (s + 1)aH ) − f ((k − 1 − s)aL + (s + 1)aH )
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+ (k − i0) − (1 + s)

k − i0
[ f (kaL ) − f (i0aL )]

= f (i0aL + (s + 1)aH ) − f ((k − 1 − s)aL + (s + 1)aH ) + f (kaL ) − f (i0aL ) − (1 + s)ψ

≥ f (i0aL + (s + 1)aH ) − f ((k − 1 − s)aL + (s + 1)aH )

+ f (kaL ) − f (i0aL ) + f (i0aL ) − f ((i0 + 1 + s)aL )

(by Lemma 4.1)

= f (i0aL + (s + 1)aH ) − f ((i0 + 1 + s)aL ) − [ f ((k − 1 − s)aL + (s + 1)aH ) − f (kaL )]

= f ((i0 + 1 + s)aL + (s + 1)(aH − aL )) − f ((i0 + 1 + s)aL )

− [ f (kaL + (s + 1)(aH − aL )) − f (kaL )]

≥ 0, (because i0 + 1 + s ≤ k and f is concave).

��
Lemma 4.8 Given any 0 ≤ s ≤ min{k − 1, |IH |}, η[k−1−s]∪Hs ≤ η[t]∪Hs

for any t
such that [t]∪Hs is a feasible solution support to the (|IL |+s+1)-th lifting problem.

Proof If s ≥ k − 1− i0, then to ensure |[t] ∪ Hs | ≤ k − 1, 0 ≤ t ≤ k − 1− s ≤ i0. In
this case, Lemma 4.5 immediately suggests that η[t]∪Hs ≥ η[k−1−s]∪Hs

. On the other
hand, if s ≤ k − 2 − i0, then any t ≤ k − 1 − s makes [t] ∪ Hs is a feasible solution
support in the (|IL | + s + 1)-th lifting problem. For all t ≤ i0, η[t]∪Hs ≥ η[i0]∪Hs

again by Lemma 4.5. It then follows from Lemma 4.7 that for any t ≤ k − 1 − s,
η[t]∪Hs ≥ min{η[i0]∪Hs

, η[k−1−s]∪Hs } = η[k−1−s]∪Hs
. ��

Proposition 4.9 The exact lifting coefficients from the lifting problems (14) are

η j =
{

η[k−1], j = |IL | + 1,

min{η j−1, η
[k−1−s]∪Hs }, j = |IL | + 1 + s, s ∈ [n − 1 − |IL |].

Proof Recall that the optimal solution support for any lifting problem (14) has the
form [t]∪Hs for some s, t ≤ k−1 according to Lemma 4.4. In addition, according to
Lemma 4.8, such a support has s+t = k−1. Therefore, η|IL |+1 = η[k−1]∪H0 = η[k−1]
as stated in this proposition. For any j > |IL | + 1, we let j = |IL | + 1 + s, where
s ∈ {1, 2, . . . , n − 1 − |IL |}. We first consider any solution support Q ⊆ [ j − 1]
with |Q| ≤ k − 1, such that j − 1 /∈ Q. Such solutions are feasible to both the
j-th and the ( j − 1)-th lifting problems (14). Thus for any such Q, ηQ ≥ η j−1 ≥
min{η j−1, η

[k−1−s]∪Hs }. The remaining feasible supports are Q ⊆ [ j−1]with |Q| ≤
k − 1 that contain j − 1. Due to Lemma 4.4 we only need to consider those with the
form [t] ∪ Hs for some 0 ≤ t ≤ k − 1 − s. Thanks to Lemma 4.8, we know that
η[k−1−s]∪Hs

has the lowest objective value among all these supports. Therefore, in
this case, ηQ ≥ η[k−1−s]∪Hs ≥ min{η j−1, η

[k−1−s]∪Hs } as well. We conclude that
the proposed assignments are indeed the exact lifting coefficients. ��

YuandAhmed [34] show that the SIs constructedwith all i0 such that 0 ≤ i0 ≤ k−1,
together with the trivial 0-1 bounds and the cardinality constraint, give the convex hull
of P1

k (IL), as well as P1
k (IH ). We thus infer the following corollary regarding the

strength of our lower-SIs.
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Corollary 4.9.1 Based on any SI that is facet-defining for conv(P1
k (IL)), the lower-SIs

given by Proposition 4.9 are facet-defining for conv(P2
k ).

4.2 Higher-separation inequalities

Next, we lift the SIs of conv(P1
k (IH )). Throughout this section, we impose the fol-

lowing assumption.

Assumption 4.10 For a given i0 ∈ {0, 1, . . . , k − 2}, the weights aL and aH satisfy

f (aL + (i0 + 1)aH ) − f (aL + i0aH ) ≤ f (kaH ) − f (i0aH )

k − i0
. (15)

Note that (15) is always true when i0 = k − 1. This is because f (aL + kaH ) −
f (aL +(k−1)aH ) = f (aL +(k−1)aH +aH )− f (aL +(k−1)aH ) ≤ f ((k−1)aH +
aH )− f ((k−1)aH ), where the inequality follows from concavity of f . The right-hand
side of (15) is the average marginal contribution of k− i0 units of the higher-weighted
items, which matches the coefficientψ in the SI, associated with i0, of conv(P1

k (IH )).
Intuitively, Assumption 4.10 suggests that ψ dominates the marginal contribution of
one unit of the higher-weighted item when it is added to a collection of at least one
lower-weighted item and at least i0 higher-weighted items. Under this assumption, we
will be able to quantify the net effect of adding or removing a higher-weighted item
to the objective value of the lifting problem, given any feasible support with a fixed
number of lower-weighted items (see Lemmas 4.14 and 4.15). This is crucial to the
derivation of the exact lifting coefficients.

Remark 2 Assumption 4.10 is satisfied when aH/q ≤ aL for some real number q ≥ 1
that depends on the given parameters i0, k, and the function f . For example, for
f (·) = √·, k = 2, and i0 = 0, this assumption holds when aH/8 ≤ aL ≤ aH . A
higher value of q means that a wider range of aL will satisfy Assumption 4.10 given
a fixed aH . We observe empirically that, when k is low, q is high across the feasible
choices of i0. For a fixed k, q is usually high when k − i0 is low. When f is twice
differentiable, a high curvature of f at i0aH for a fixed aH tends to suggest a high q
as well.

Similar to the setups in Sect. 4.1, we re-index N such that the first |IH | items are
higher-weighted, and the items |IH | + 1 to n are lower-weighted. Suppose we are
given an arbitrary SI for conv(P1

k (IH )) constructed with i0 ∈ {0, 1, . . . , k−1}. In this
section, we assume that Assumption 4.10 holds for this given i0. Moreover, we assume
that |IH | > k for this SI to be defined.Without loss of generality, δ = (1, 2, . . . , |IH |)
is the permutation associated with the given SI. This allows us to drop δ and simplify
the notation.

In the order of j = |IH | + 1, |IH | + 2, . . . , n, we sequentially solve the lifting
problem (16)

γ j := min w −
i0∑

i=1

ρi xi −
|IH |∑

i=i0+1

ψxi −
j−1∑

i=|IH |+1

γi xi (16a)
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s.t. w ≥ f

⎛

⎝aL +
j−1∑

i=1

ai xi

⎞

⎠ , (16b)

j−1∑

i=1

xi ≤ k − 1, (16c)

x ∈ {0, 1} j−1. (16d)

With the optimal objective values γ j , we construct inequality (17), which is exactly
lifted from the given SI.

w ≥
i0∑

i=1

ρi xi +
|IH |∑

i=i0+1

ψxi +
n∑

j=|IH |+1

γ j x j . (17)

We call such inequalities the higher-SIs.
Similar to the discussion in Sect. 4.1, We denote the best objective value evaluated

at a feasible x with support X by

γ X = f

(

aL +
∑

i∈X
ai

)

−
∑

i∈[i0]∩X

ρi −
∑

i∈[i0+1,|IH |]∩X

ψ −
∑

i∈[|IH |+1, j−1]∩X

γi .

Lemma 4.11 captures the observation that the lifted coefficients γ j decreases as j
becomes larger.

Lemma 4.11 For any |IH | + 1 ≤ j1 < j2 ≤ n, γ j1 ≥ γ j2 .

Proof This result immediately follows from Proposition 1.3 on page 264 of [28]. ��
We remind the readers that Lt denotes the set of the first t lower-weighted items

in N . The next lemma argues that there exists an optimal solution support to the j-th
lifting problem (16), that is the concatenation of the first t lower-weighted items and
the first s higher-weighted items for some s, t ≤ k − 1.

Lemma 4.12 For any j ∈ [|IH | + 1, n], γ j = γ Q∗
for some Q∗ ⊆ [ j − 1] with

|Q∗| ≤ k − 1, such that Q∗ = Lt ∪ [s]. Specifically, 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ |IL |
such that t + s ≤ k − 1.

Proof This result follows from Lemmas 4.2 and 4.11. We refer the readers to the proof
of Lemma 4.4 for more details. ��

Thanks to Lemma 4.12, we know that the support with the lowest objective, among
all the feasible solution supports in given special form, gives the optimal objective of
(16). Lemmas 4.13 and 4.14 explore and compare the objectives of these candidate
solutions.

Lemma 4.13 For any 0 ≤ t ≤ min{|IL |, k − 1}, γ Lt∪[s−1] ≥ γ Lt∪[s] for all s ∈
[min{k − 1 − t, i0}].
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Proof This proof follows the same arguments for the proof of Lemma 4.5. ��
Lemma 4.14 Recall that i0 is the parameter used to construct the base SI. Suppose
Assumption 4.10 holds for this i0. Let any 0 ≤ t ≤ min{|IL |, k − 1} be given. If
k − 1 − t ≥ i0, then γ Lt∪[s] ≥ γ Lt∪[k−1−t] for all s ∈ [i0, k − 1 − t].
Proof We first deduce the following relation from Assumption 4.10:

0 ≥ f (aL + (i0 + 1)aH ) − f (aL + i0aH ) − ψ

≥ f (maL + (i0 + p)aH ) − f (maL + (i0 + p − 1)aH ) − ψ,

for any m, p ≥ 1. Given any Lt ∪ [s] described in the lemma,

γ Lt∪[s] = f (aL + taL + saH ) −
i0∑

i=1

ρi − (s − i0)ψ −
|IH |+t∑

i=|IH |+1

γi

= f ((t + 1)aL + i0aH )

+
s−i0∑

i=1

[ f ((t + 1)aL + (i0 + i)aH ) − f ((t + 1)aL + (i0 + i − 1)aH ) − ψ]

−
i0∑

i=1

ρi −
|IH |+t∑

i=|IH |+1

γi

≥ f ((t + 1)aL + i0aH )

+
k−1−t−i0∑

i=1

[ f ((t + 1)aL + (i0 + i)aH ) − f ((t + 1)aL + (i0 + i − 1)aH ) − ψ]

−
i0∑

i=1

ρi −
|IH |+t∑

i=|IH |+1

γi (follows from Assumption 4.10)

= f (aL + taL + (k − 1 − t)aH ) −
i0∑

i=1

ρi − (k − 1 − t − i0)ψ −
|IH |+t∑

i=|IH |+1

γi

= γ Lt∪[k−1−t].

��
In fact, γ Lt∪[s] may be lower than γ Lt∪[k−1−t] when Assumption 4.10 is violated,

despite the fact that its counterpart Lemma 4.7 is true in general. Lemma 4.15 summa-
rizes Lemmas 4.13 and 4.14. It establishes that, under Assumption 4.10, Lt ∪[k−1−t]
has the lowest objective among all the supports that contains exactly t lower-weighted
items.

Lemma 4.15 Suppose Assumption 4.10 holds for a given i0 ∈ {0, 1, . . . , k − 1}. For
any 0 ≤ t ≤ min{k − 1, |IL |}, γ Lt∪[k−1−t] ≤ γ Lt∪[s] for any t such that Lt ∪ [s] is a
feasible solution support to the (|IH | + t + 1)-th lifting problem.
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Proof If k − 1− t ≤ i0, then 0 ≤ s ≤ k − 1− t . In this case, γ Lt∪[k−1−t] ≤ γ Lt∪[s] is
immediate fromLemma 4.13. Otherwise, suppose s ≥ i0 is viable. For any 0 ≤ s ≤ i0,
γ Lt∪[s] ≥ γ Lt∪[i0]. Then combining this observation with Lemma 4.14, we conclude
that γ Lt∪[k−1−t] ≤ γ Lt∪[s]. ��

Next we provide the explicit form of the lifting coefficients.

Proposition 4.16 Suppose Assumption 4.10 holds for a given i0 ∈ {0, 1, . . . , k − 1}.
The exact lifting coefficients from the lifting problems (16) are

γ j =
{

γ [k−1], j = |IH | + 1,

min{γ j−1, γ
Lt∪[k−1−t]}, j = |IH | + 1 + t, t ∈ [n − 1 − |IH |].

Proof When j = |IH | + 1, any feasible support contains only the higher-weighted
items. Thus γ|IH |+1 = γ [k−1] immediately follows from Lemma 4.15. When j >

|IH | + 1, we represent j as |IH | + 1+ t , where t ∈ [n − 1− |IH |]. All the solutions
to the j-th lifting problem (16) with x j−1 = 0, are feasible to the j − 1-th lifting
problem. Thus the objective evaluated at these solutions are no lower than γ j−1.
On the other hand, if j − 1 is included in the support, then we know that all such
solution supports have worse objective values than Lt ∪ [k − 1 − t] by Lemma 4.15.
Therefore, min{γ j−1, γ

Lt∪[k−1−t]} is the lowest attainable objective value in the j-th
lifting problem (16). This completes the proof. ��
Corollary 4.16.1 Based on any SI that is facet-defining for conv(P1

k (IH )), the higher-
SIs given by Proposition 4.16 are facet-defining for conv(P2

k ).

5 Full description of conv(P2
2 )

In the previous sections, we propose the lifted-EPIs, the lower-SIs, and the higher-
SIs. These inequalities are shown to be facet-defining for conv(P2

k ) under certain
conditions. The readers may wonder to what extent these strong valid inequalities can
narrow the relaxed feasible space toward its convex hull. To provide insights into this,
we construct the convex hull of P2

2 , with the help of the proposed inequalities, where
P2
2 contains two types of weights and has two as its cardinality upper bound.
Throughout this section, we require Assumption 4.10 to hold for i0 = 0. In other

words,

f (aL + aH ) − f (aL) ≤ f (2aH )

2
.

In Sect. 5.1, we will first describe an additional single constraint, which we call
the super-average inequality, and prove its validity for conv(P2

2 ). Then we present the
explicit forms of the lifted-EPIs, the lower-SIs, and the higher-SIs specific to conv(P2

2 ).
In Sect. 5.2, we enumerate all the facets of conv(P2

2 ) by examining its polar. Lastly,
we show that these proposed inequalities together with the 0-1 bounds and cardinality
constraint fully characterize conv(P2

2 ) in Sect. 5.3.
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5.1 Valid inequalities for conv(P2
2 )

We begin this subsection with a summary of the properties of f that will be helpful
for describing the valid inequalities. First, by the definition of concave functions,

f (aL + aH ) = f

(
1

2
· 2aL + 1

2
· 2aH

)
≥ f (2aL)/2 + f (2aH )/2. (18)

In addition,

f (aL) = [ f (aL) + f (aL) − f (0)]/2
≥ [ f (aL) + f (2aL) − f (aL)]/2 (because f is concave)

= f (2aL)/2.

(19)

With exactly the same reasoning, we derive

f (aH ) ≥ f (2aH )/2. (20)

Relying on these properties, we propose a new single valid inequality for P2
2 .

Proposition 5.1 The inequality

w ≥
∑

i∈IL

f (2aL)

2
xi +

∑

i∈IH

f (2aH )

2
xi (21)

is valid for P2
2 . We call this inequality the super-average inequality.

Proof We need to show that inequality (21) is satisfied at all the feasible points of P2
2 .

In particular, it is sufficient to check validity at any point ( f (x), x) inP2
2 .We represent

such points by P(S1, S2), where S1 = {i ∈ IL : xi = 1} and S2 = {i ∈ IH : xi = 1}.
These points fall into one of the following classes: P(∅,∅), P({i},∅), P({i1, i2},∅),
P(∅, { j}), P(∅, { j1, j2}), and P({i}, { j}), where i, i1, i2 ∈ IL and j, j1, j2 ∈ IH .
We first observe that P(∅,∅), P({i1, i2},∅) and P(∅, { j1, j2}) satisfy inequality (21)
by construction. It follows from (18) that inequality (21) is valid for P({i}, { j}).
Inequality (21) is also valid for P({i},∅) and P(∅, { j}) due to properties (19) and
(20), respectively. Therefore, inequality (21) is valid for P2

2 . ��
It is worth noting that the validity of inequality (21) does not require Assump-

tion 4.10. In the inequalities we describe below, l denotes an arbitrary lower-weighted
item in N , and h is any higher-weighted item.

Proposition 5.2 Given Assumption 4.10 for i0 = 0, the lifted-EPIs for P2
2 are

w ≥ f (aL)xl +
∑

i∈IL\{l}
[ f (2aL) − f (aL)]xi +

∑

i∈IH

[ f (aL + aH ) − f (aL)]xi , (22)
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and

w ≥ f (aH )xh +
∑

i∈IL

[ f (aL +aH )− f (aH )]xi +
∑

i∈IH \{h}
[ f (2aH )− f (aH )]xi . (23)

Proof Inequality (22) is lifted from the EPI with respect to {l} and any permutation
δ of N , such that δ1 = l. By Proposition 3.6, ζl = f (aL) and for all i ∈ IL\{l},
ζi = f (2aL)− f (aL). Let the first higher-weighted item in δ be h, then ζh = f (aL +
aH ) − f (aL). The next higher-weighted item i has coefficient min{ f (aL + aH ) −
f (aL), f (2aH ) − [ f (aL + aH ) − f (aL)]}. We observe the second candidate minus
the former gives

f (2aH ) − 2[ f (aL + aH ) − f (aL)] ≥ 0 (24)

as a consequence of Assumption 4.10. Thus this second higher-weighted item also
takes on the lifting coefficient f (aL + aH ) − f (aL). Following the same reasoning,
we can iteratively show that ζi = f (aL + aH ) − f (aL) for every i ∈ IH .

Inequality (23) is lifted from the EPI with respect to {h} and permutation δ, in which
δ1 = h. Again due to Proposition 3.6, ζh = f (aH ) and ζi = f (aL +aH )− f (aH ) for
all i ∈ IL . Moreover, the second higher-weighted item in δ has coefficient f (2aH ) −
f (aH ). Now, the third higher-weighted item in δ has the coefficient min{ f (2aH ) −
f (aH ), f (2aH ) − [ f (2aH ) − f (aH )] = f (aH )}, which is f (2aH ) − f (aH ). This
follows from Lemma 2.1. Iteratively, we can apply the same reasoning to show that
ζi = f (2aH ) − f (aH ) for every i ∈ IH\{h}. ��

As we noted in Corollary 3.6.1, inequalities (22) and (23) are facet-defining for
conv(P2

2 ). Next we state the explicit forms of the lower- and the higher-SIs.

Proposition 5.3 Suppose Assumption 4.10 holds for i0 = 0. When |IL | ≥ 2, the
lower-SIs for P2

2 are

w ≥
∑

i∈IL

f (2aL)

2
xi +

[
f (aL + aH ) − f (2aL)

2

]
xh

+
∑

i∈IH \{h}

[
f (2aH ) − f (aL + aH ) + f (2aL)

2

]
xi , (25)

for i0 = 0, and for i0 = 1,

w ≥ f (aL)xl +
∑

i∈IL\{l}
[ f (2aL) − f (aL)]xi +

∑

i∈IH

[ f (aL + aH ) − f (aL)]xi . (26)

Proof We show that the coefficients constructed according to Proposition 4.9 is iden-
tical with those in the given inequalities. When i0 = 0, ψ = f (2aL)/2, which is the
lifting coefficient for all i ∈ IL . We can interpret h as the first higher-weighted item
being lifted, then ηh = f (aL + aH ) − f (2aL)/2. The next higher-weighted item to
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be lifted takes on the coefficient min{ f (aL + aH ) − f (2aL)/2, f (2aH ) − f (aL +
aH ) + f (2aL)/2}. We observe that

f (aL + aH ) − f (2aL)/2 − [ f (2aH ) − f (aL + aH ) + f (2aL)/2]
≥ 2 f (aL + aH ) − f (2aL) − f (2aH )

≥ 0 (due to (18)).

Therefore, this higher-weighted item has lifting coefficient f (2aH ) − f (aL + aH ) +
f (2aL)/2. Following the exact same reasoning, we infer that ηi = f (2aH )− f (aL +
aH ) + f (2aL)/2 for all i ∈ IH\{h}. Hence the lower-SI with i0 = 0 constructed
according to Proposition 4.9 is the same as (25).

In the case of i0 = 1, ρl = f (aL) and the remaining lower-weighted items take
the coefficient ψ = f (2aL) − f (aL). The first higher-weighted item i has ηi =
f (aL + aH ) − f (aL). For the higher-weighted item j right after i in the permutation
of N , η j = min{ f (aL + aH )− f (aL), f (2aH )−[ f (aL + aH )− f (aL)]} = f (aL +
aH ) − f (aL). We have justified this in (24) which relies on Assumption 4.10. Hence,
ηi = f (aL + aH ) − f (aL) for all i ∈ IH , and inequality (26) is exactly the lower-SI
with i0 = 1. ��
Proposition 5.4 Suppose Assumption 4.10 holds for i0 = 0. When |IH | ≥ 2, the
higher-SIs are

w ≥
[
f (aL + aH ) − f (2aH )

2

]
xl +

∑

i∈IL\{l}

[
f (2aL) − f (aL + aH ) + f (2aH )

2

]
xi

+
∑

i∈IH

f (2aH )

2
xi (27)

for i0 = 0, and for i0 = 1,

w ≥ f (aH )xh +
∑

i∈IL

[ f (aL + aH ) − f (aH )]xi +
∑

i∈IH \{h}
[ f (2aH ) − f (aH )]xi .

(28)

Proof We construct the higher-SIs as given in Proposition 4.16, then show that they
match the given inequalities.Recall that Proposition 4.16 is truewhenAssumption 4.10
for i0 = 0 holds. When i0 = 0, all the higher-weighted items have coefficient ψ =
f (2aH )/2. Suppose l is the first lower-weighted item in a fixed permutation of N .
Then γl = f (aL +aH )− f (2aH )/2. Let i ∈ IL be right after l. The lifting coefficient
γi = min{ f (aL + aH ) − f (2aH )/2, f (2aL) − [ f (aL + aH ) − f (2aH )/2]}. We
examine the difference between the two candidates, which is

f (aL + aH ) − f (2aH )/2 − [ f (2aL) − f (aL + aH ) + f (2aH )/2]
≥ 2 f (aL + aH ) − f (2aL) − f (2aH )

≥ 0 (by (18)).
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Thus γi = f (2aL) − f (aL + aH ) + f (2aH )/2. In fact, we can iteratively show that
all the lifting coefficients for the lower-weighted items are f (2aL) − f (aL + aH ) +
f (2aH )/2 with the same argument. Therefore, inequality (27) is correct.
Now suppose i0 = 1. The corresponding SI over IH is w ≥ f (aH )xh +∑
i∈IH \{h}[ f (2aH )− f (aH )]xi . By Proposition 4.16, the coefficient of the first lifted

lower-weighted item is f (aL + aH ) − f (aH ). Let j ∈ IL be the second lifted item.
Then γ j = min{ f (aL +aH )− f (aH ), f (2aL)− f (aL +aH )+ f (aH )}. Furthermore,

f (2aL) − f (aL + aH ) + f (aH ) − [ f (aL + aH ) − f (aH )]
= [ f (aL) − f (0)] + [ f (2aL) − f (aL)] − [ f (aL + aH ) − f (aH )]

− [ f (aL + aH ) − f (aH )] ≥ [ f (aL) − f (0)] + [ f (2aL) − f (aL)]
− [ f (aL) − f (0)] − [ f (2aL) − f (aL)](due to Lemma 2.1)

= 0.

Therefore γ j = f (aL +aH )− f (aH ). By iteratively applying the same argument, we
conclude that the for all i ∈ IL , γi = f (aL + aH ) − f (aH ). Hence inequality (28) is
the higher-SI with i0 = 1. ��

Note that the lower-SI (26) and the higher-SI (28) coincide with the lifted-EPIs (22)
and (23). To avoid confusion, we will refer to these inequalities as the lifted-EPIs, and
refer to inequalities (25) and (27) as the lower- and higher-SIs, respectively.

Lastly, the trivial inequalities

0 ≤ xi ≤ 1, for all i ∈ N , (29)

and the cardinality constraint ∑

i∈N
xi ≤ 2, (30)

are naturally valid for P2
2 .

5.2 Polarity and facets of conv(P2
2 )

Our next goal is to prove that the inequalities provided in Sect. 5.1 fully describe
conv(P2

2 ). We show this by enumerating the extreme rays of the polar � of conv(P2
2 ),

where

� =
{
(−πw, π,−π0) ∈ R

n+2 : −πww + π�x + π0 ≤ 0,∀(w, x) ∈ conv(P2
2 )
}

.

It is well-known that, for any full-dimensional polyhedron, any non-zero element of
its polar is an extreme ray, if and only if the corresponding inequality is a facet of the
polyhedron (see Theorem 5.2, pg. 99 [28]). In our context, if conv(P2

2 ) is full dimen-
sional, then πww ≥ π0 + π�x is a facet of conv(P2

2 ) if and only if (−πw, π,−π0)

is an extreme ray of �, where (−πw, π) �= 0. The trivial inequalities (29) and the
cardinality constraint (30) are the trivial facets of conv(P2

2 ). To obtain all the other
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non-trivial facets of conv(P2
2 ), it is sufficient to find all the optimal solutions to problem

(31) given any (w, x) ∈ R × [0, 1]n such that
∑n

i=1 xi ≤ 2.

max π0 +
∑

i∈N
xiπi (31a)

s.t. π0 +
∑

i∈S
πi ≤ f

(
∑

i∈S
ai

)

, for all S ⊆ Nwith |S| ≤ 2. (31b)

This is because all such optimal solutions are the desired extreme rays of �. We
note that πw ≥ 0 because (1, 0) is the recession direction of conv(P2

2 ). Therefore, πw

is normalized to one in problem (31) to avoid unboundedness. In this subsection, we
first show that conv(P2

2 ) is full-dimensional. Then we prove that the optimal solutions
to problem (31) for any (w, x) ∈ R × [0, 1]n with

∑n
i=1 xi ≤ 2, are exactly the

coefficients of the proposed non-trivial inequalities (21), (22), (23), (25) and (27).

Proposition 5.5 The polyhedron conv(P2
2 ) is full-dimensional.

Proof Let 0 ∈ R
n be a zero vector, and ei ∈ R

n be a vector with 1 in the i-th entry and
0 everywhere else. The points (0, 0), (1, 0), and {( f (a�ei ), ei )}ni=1 all lie in conv(P2

2 )
and are affine independent. Hence, dim(conv(P2

2 )) = n + 1. ��
Weproceed to enumerate the optimal solutions to problem (31). For any x ∈ [0, 1]n ,

we define l = argmaxi∈IL xi and h = argmaxi∈IH xi .We partition the set of (w, x) ∈
R × [0, 1]n with

∑n
i=1 xi ≤ 2 into the following five subsets, where x additionally

satisfies

(c1) 2xl >
∑

i∈N xi ;
(c2) 2xh >

∑
i∈N xi ;

(c3) 2xl <
∑

i∈IL
xi and 2xh <

∑
i∈IH

xi ;
(c4)

∑
i∈IL

xi ≤ 2xl ≤ ∑
i∈N xi , 2xh ≤ ∑

i∈N xi , and 2xh − ∑
i∈IH

xi ≤ 2xl −∑
i∈IL

xi ;
(c5)

∑
i∈IH

xi ≤ 2xh ≤ ∑
i∈N xi , 2xl ≤ ∑

i∈N xi , and 2xl − ∑
i∈IL

xi ≤ 2xh −∑
i∈IH

xi .

These subsets are pairwise disjoint and their union is the original set of (w, x). Later,
wemay refer to these subsets as categories as well. Given any (w, x) from each subset,
we show that the corresponding problem (31) has the coefficients of one of the five
classes of inequalities, (21), (22), (23), (25) and (27), as its optimal solution. Problem
(32) is the dual problem of problem (31), where Q(S) is the dual variable associated
with constraint (31b).

min
∑

S⊆N ,|S|≤2

Q(S) f

(
∑

i∈S
ai

)

(32a)

s.t.
∑

S:|S|≤2,S�i
Q(S) = xi , for all i ∈ N , (32b)

∑

S:|S|≤2

Q(S) = 1, (32c)
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Q(S) ≥ 0, for all S such that |S| ≤ 2. (32d)

This dual linear program is crucial in the succeeding discussions because we will
use strong duality to show the optimality of the proposed primal feasible solutions.

Now, let any (w, x) ∈ R × [0, 1]n with
∑n

i=1 xi ≤ 2 be given. Recall that l =
argmaxi∈IL xi and h = argmaxi∈IH xi .

Proposition 5.6 (c1) If 2xl >
∑

i∈N xi , then

π i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 0,

f (aL), i = l,

f (2aL) − f (aL), i ∈ IL\{l},
f (aL + aH ) − f (aL), i ∈ IH ,

is an optimal solution to problem (31) associated with x. This π corresponds to the
coefficients of the lifted-EPI (22).

Proof Given that inequality (22) is valid for P2
2 , π is a feasible solution to problem

(31). To prove its optimality, we first propose a solution to the dual problem (32):

Q(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi , S = {l, i}, i ∈ N\{l},
2xl − ∑

j∈N x j , S = {l},
1 − xl , S = ∅,

0, for all other S ⊆ N with |S| ≤ 2.

Since x ∈ [0, 1]n and 2xl >
∑

i∈N xi , Q(S) ≥ 0 for all S ⊆ N with |S| ≤ 2. Thus
constraint (32d) is satisfied. We observe that

∑

S:|S|≤2

Q(S) =
∑

i∈N\{l}
xi + 2xl −

∑

j∈N
x j + 1 − xl = 1,

so constraint (32c) is also satisfied by the proposed solution. For any i ∈ N\{l},
∑

S:|S|≤2,S�i
Q(S) = Q({l, i}) = xi .

In addition,
∑

S:|S|≤2,S�l
Q(S) =

∑

i∈N\{l}
Q({l, i}) + Q({l}) =

∑

i∈N\{l}
xi + 2xl −

∑

j∈N
x j = xl .

Therefore, (32b) is satisfied, and Q(·) is a feasible solution to the dual problem (32).
The objective of (31) evaluated at π is

f (aL)xl +
∑

i∈IL\{l}
[ f (2aL) − f (aL)]xi +

∑

i∈IH

[ f (aL + aH ) − f (aL)]xi .

123



Strong valid inequalities for a class... 843

The dual objective evaluated at Q(·) is
f (0)Q(∅) + f (aL )Q({l}) + f (2aL )

∑

i∈IL\{l}
Q({l, i}) + f (aL + aH )

∑

i∈IH

Q({l, i}) (33)

= f (aL )

⎛

⎝2xl −
∑

j∈N
x j

⎞

⎠ +
∑

i∈IL\{l}
f (2aL )xi +

∑

i∈IH

f (aL + aH )xi (34)

= f (aL )

⎛

⎝2xl − xl −
∑

j∈IL\{l}
x j −

∑

j∈IH

x j

⎞

⎠

+
∑

i∈IL\{l}
f (2aL )xi +

∑

i∈IH

f (aL + aH )xi (35)

= f (aL )xl +
∑

i∈IL\{l}
[ f (2aL ) − f (aL )]xi +

∑

i∈IH

[ f (aL + aH ) − f (aL )]xi , (36)

which is identical with the primal objective at π . By strong duality, π is optimal in
problem (31). ��

Proposition 5.7 (c2) If 2xh >
∑

i∈N xi , then

π i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 0,

f (aH ), i = h,

f (aL + aH ) − f (aH ), i ∈ IL ,

f (2aH ) − f (aH ), i ∈ IH\{h},

is an optimal solution to problem (31) associated with x. This optimal solution is
exactly the coefficients of the lifted-EPI (23).

Proof The proposed solution is feasible in (31) due to the validity of inequality (23)
for P2

2 . Similar to the proof of Lemma 5.7, we again construct a dual solution as the
following:

Q(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi , S = {h, i}, i ∈ N\{h},
2xh − ∑

j∈N x j , S = {h},
1 − xh, S = ∅,

0, for all other S ⊆ N with |S| ≤ 2.

First we show the feasibility of Q(·). Given that x ∈ [0, 1]n and 2xl >
∑

i∈N xi ,
constraint (32d) is satisfied. In addition,

∑

S:|S|≤2

Q(S) =
∑

i∈N\{h}
xi + 2xh −

∑

j∈N
x j + 1 − xh = 1,
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indicating that constraint (32c) is also satisfied. For any i ∈ N\{h},
∑

S:|S|≤2,S�i
Q(S) = Q({h, i}) = xi .

Moreover,

∑

S:|S|≤2,S�h
Q(S) =

∑

i∈N\{h}
Q({h, i}) + Q({h}) =

∑

i∈N\{h}
xi + 2xh −

∑

j∈N
x j = xh .

Hence, constraints (32b) are satisfied.
The objective of (32) evaluated at Q(·) is

f (0)Q(∅) + f (aH )Q({h}) + f (2aH )
∑

i∈IH \{h}
Q({h, i}) + f (aL + aH )

∑

i∈IL

Q({h, i})

= f (aH )

⎛

⎝2xh − xh −
∑

j∈IH \{h}
x j −

∑

j∈IL

x j

⎞

⎠ +
∑

i∈IH \{h}
f (2aH )xi

+
∑

i∈IL

f (aL + aH )xi

= f (aH )xh +
∑

i∈IL

[ f (aL + aH ) − f (aH )]xi +
∑

i∈IH \{h}
[ f (2aH ) − f (aH )]xi

= π0 +
∑

i∈N
π i xi .

By strong duality, we conclude that π is optimal in problem (31). ��
Before characterizing the optimal solution to problem (31) for category (c3) of

(w, x), we state a useful lemma.

Lemma 5.8 (Yu and Ahmed [34] Lemma 4 and Proposition 5) Suppose N = IL or
N = IH . In either case, we denote aL , or aH , by α. Let any (w, x) ∈ R× [0, 1]n that
satisfies

∑
i∈N xi ≤ 2 be given, in which xmax = maxi∈N xi . If 2xmax <

∑
i∈N xi ,

then

π i =
{
0, i = 0,

f (2α)/2, i ∈ N ,
(37)

is an optimal solution to the primal problem (31) associated with x. There exists a
corresponding optimal solution Q(S), for all S ⊆ N with |S| ≤ 2, to the dual problem
(32); in particular, Q(∅) = 1 − ∑

i∈N xi/2.

Proposition 5.9 (c3) If 2xh <
∑

i∈IH
xi and 2xl <

∑
i∈IL

xi , then

π i =

⎧
⎪⎨

⎪⎩

0, i = 0,

f (2aL)/2, i ∈ IL ,

f (2aH )/2, i ∈ IH ,
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is an optimal solution to problem (31) associated with x. This solution corresponds to
the super-average inequality (21).

Proof Feasibility of π follows from validity of inequality (21). Next we construct a
solution to problem (32). Let x L be a sub-vector of x that contains only xi , for all
i ∈ IL , and we define xH similarly.

By Lemma 5.8, problem (31) associated with x J has optimal objective f (2aJ )/2 ·∑
i∈IJ

xi , for J ∈ {L, H}. Again for J ∈ {L, H}, an optimal dual solution in prob-

lem (32) associated with x J , which we denote by Q
J
(·), attains the same objective.

Given the feasibility of Q
J
(S) in the corresponding dual problem (32), the following

properties hold:

• Q
J
(S) ≥ 0 for any S ⊆ IJ such that |S| ≤ 2,

• ∑
S⊆IJ ,|S|≤2 Q

J
(S) = 1,

• ∑
S⊆IJ ,|S|≤2,S�i Q

J
(S) = xi for any i ∈ IJ ,

• Q
J
(∅) = 1 − ∑

i∈IJ
xi/2,

where J ∈ {L, H}. We claim that

Q(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − ∑
i∈N xi/2, S = ∅

Q
L
(S), S ⊆ IL , 1 ≤ |S| ≤ 2

Q
H

(S), S ⊆ IH , 1 ≤ |S| ≤ 2

0, for all other S ⊆ N with |S| ≤ 2.

is optimal in the dual problem (32) associatedwith x . Since x ∈ [0, 1]n and∑i∈N xi ≤
2, 1−∑

i∈N xi/2 ≥ 0. Given the non-negativity of Q
L
(S) and Q

H
(S), Q(S) satisfies

constraint (32d). Next, we check for constraint (32c).

∑

S:|S|≤2

Q(S) = Q(∅) +
∑

S⊆IL :1≤|S|≤2

Q
L
(S) +

∑

S⊆IH :1≤|S|≤2

Q
H

(S) + 0

= Q(∅) +
∑

S⊆IL :|S|≤2

Q
L
(S) − Q

L
(∅) +

∑

S⊆IH :|S|≤2

Q
H

(S) − Q
H

(∅)

= 1 −
∑

i∈N
xi/2 +

⎛

⎝1 − 1 +
∑

i∈IL

xi/2

⎞

⎠ +
⎛

⎝1 − 1 +
∑

i∈IH

xi/2

⎞

⎠

= 1.

For any i ∈ IL ,

∑

S:|S|≤2,S�i
Q(S) =

∑

S⊆IL :|S|≤2,S�i
Q

L
(S) + 0 = xi ;
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and for any i ∈ IH ,

∑

S:|S|≤2,S�i
Q(S) =

∑

S⊆IH :|S|≤2,S�i
Q

H
(S) + 0 = xi .

Hence, constraints (32b) are satisfied.
To show the optimality of π , we note that the objective of (32) evaluated at Q(·) is

∑

S⊆N :|S|≤2

Q(S) f

(
∑

i∈S
ai

)

= Q(∅) · f (0) +
∑

S⊆N :1≤|S|≤2

Q(S) f

(
∑

i∈S
ai

)

= 0 +
∑

S⊆IL :|S|≤2

Q
L
(S) f

(
∑

i∈S
aL

)

− Q
L
(∅) · f (0)

+
∑

S⊆IH :|S|≤2

Q
H

(S) f

(
∑

i∈S
aH

)

− Q
H

(∅) · f (0)

= f (2aL)/2 ·
∑

i∈IL

xi + f (2aH )/2 ·
∑

i∈IH

xi .

The last inequality holds due to the optimality of Q
L
(S) and Q

H
(S). This objective

value coincides with the objective of (31) at π . By strong duality, π is optimal in
problem (31). ��

We next show a lemma and its corollary, which are crucial to characterizing the
optimal solution to the primal problem (31) associated with x in category (c4).

Lemma 5.10 If x falls in category (c4), then problem (38) is feasible with a bounded
optimal objective.

min

⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ y +
∑

i∈IH

xiri (38a)

s.t. y + ri ≥ 0, for all i ∈ IH , (38b)

ri + r j ≥ 0, for all i, j ∈ IH such that i < j . (38c)

Proof We first note that y = 0, ri = 0 for all i ∈ IH is a feasible solution, so it
suffices to show that (38) does not have a feasible and objective-improving ray. For a
contradiction, we assume that such a ray, d ∈ R

1+|IH |, exists. We denote its entries
by dy and dri for i ∈ IH . Then given any feasible solution y and r i where i ∈ IH , the
following properties hold for any λ ∈ R+:

y + r i + λ(dy + dri ) ≥ 0 for all i ∈ IH ;
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ri + r j + λ(dri + dr j ) ≥ 0 for all i, j ∈ IH such that i < j;

λ

⎡

⎣

⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ dy +
∑

i∈IH

xi dri

⎤

⎦ < 0.

It follows that d must satisfy

dy + dri ≥ 0, for all i ∈ IH , (39)

dri + dr j ≥ 0, for all i, j ∈ IH such that i < j, (40)
⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ dy +
∑

i∈IH

xi dri < 0. (41)

Since 2xl ≥ ∑
i∈IL

xi and xi ≥ 0 for all i ∈ IH by assumption, we infer from (41)
that d contains at least one strictly negative entry.

If dy < 0, then by (39), dri > 0 for all i ∈ IH . In this case,

0 >

⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ dy +
∑

i∈IH

xi dri

≥
⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ dy +
∑

i∈IH

xi (−dy) because dri ≥ −dy by (39)

= dy

⎛

⎝2xl −
∑

i∈IL

xi −
∑

i∈IH

xi

⎞

⎠

= dy

(

2xl −
∑

i∈N
xi

)

.

However, dy
(
2xl − ∑

i∈N xi
) ≥ 0 because dy < 0 and 2xl ≤ ∑

i∈N xi by assump-
tion. Therefore, this case is invalid.

The remaining case is dy ≥ 0. Given our observation that the ray d contains at least
one strictly negative entry, dri < 0 for at least one i ∈ IH . In fact, due to (40), there
can be exactly one i ∈ IH such that dri < 0. We let this index be J , and abbreviate
drJ to be d

∗. In this case, (41) implies that

0 >

⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ dy +
∑

i∈IH

xi dri

≥
⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ (−d∗) + x J d
∗ +

∑

i∈IH \{J }
xi (−d∗)

because dy ≥ −d∗ by (39), and dri ≥ −d∗ for i ∈ IH\{J } by (40),
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≥
⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠ (−d∗) + xhd
∗ +

∑

i∈IH \{h}
xi (−d∗) because xh ≥ x J ,

= −d∗
⎛

⎝2xl −
∑

i∈IL

xi − xh +
∑

i∈IH \{h}
xi

⎞

⎠

= −d∗
⎛

⎝2xl −
∑

i∈IL

xi − 2xh +
∑

i∈IH

xi

⎞

⎠ .

Since−d∗ > 0 by construction and2xh−∑
i∈IH

xi ≤ 2xl−∑
i∈IL

xi by assumption,

−d∗
⎛

⎝2xl −
∑

i∈IL

xi − 2xh +
∑

i∈IH

xi

⎞

⎠ ≥ 0.

This again violates property (41).
By contradiction, we have shown that (38) does not contain a feasible, objective-

improving ray. Hence we conclude that (38) is feasible with a bounded optimal
objective. ��
Corollary 5.10.1 If x falls under category (c4), then problem (42) is feasible.

max 0 (42a)

s.t.
∑

i∈IH

Q({l, i}) = 2xl −
∑

i∈IL

xi , (42b)

Q({l, j}) +
∑

i∈IH \{ j}
Q({i, j}) = x j , for all j ∈ IH , (42c)

Q({l, j}) ≥ 0, for all j ∈ IH , (42d)

Q({i, j}) ≥ 0, for all i, j ∈ IH such that i < j .
(42e)

Proof Problem (42) is the dual linear program of (38). The variables Q({l, i}) for
all i ∈ IH correspond to the primal constraints (38b). Here l is included solely as a
placeholder to ensure notational consistency with the proof of Proposition 5.11. The
variables Q({i, j}) for all i, j ∈ IH with i < j are the dual variables for constraints
(38c). Constraint (42b) corresponds to the primal variable y, and constraints (42c)
correspond to ri for i ∈ IH . This corollary follows from Lemma 5.10. ��
Proposition 5.11 If x belongs to category (c4), then

π i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 0,

f (2aH )/2, i ∈ IH ,

f (aL + aH ) − f (2aH )/2, i = l,

f (2aL) − f (aL + aH ) + f (2aH )/2, i ∈ IL\{l},
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is an optimal solution to problem (31) associated with x. This optimal solution is the
set of coefficients for the higher-SI (27).

Proof The proposed solution π i is feasible, shown by the validity of inequality (27)
for P2

2 . For its optimality, we construct a feasible solution to problem (32) with the
same objective value. Consider

Q(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − ∑
i∈N xi/2, S = ∅,

xi , S = {l, i}, i ∈ IL\{l},
Q̂(S), S = {l, i}, i ∈ IH ,

Q̂(S), S = {i, j}, i, j ∈ IH , i < j,

0, for all other S ⊆ N with |S| ≤ 2,

where Q̂(·) is any feasible solution to problem (42). Such Q̂(·) exists, as a result of
Corollary 5.10.1.

We now show that Q(·) is feasible to problem (32) associated with x . Since x ∈
[0, 1]n and

∑
i∈N xi ≤ 2, Q(∅) ≥ 0 and Q({l, i}) ≥ 0 for all i ∈ IL\{l}. By

constraints (42d) and (42e), Q̂(·) ≥ 0. Thus (32d) is satisfied by the proposed solution.
We observe that

∑

i∈IH

Q̂({l, i}) = 2xl −
∑

i∈IL

xi ,

due to constraint (42b). Furthermore,

∑

i, j∈IH ,i< j

Q({i, j}) =
∑

j∈IH

∑

i∈IH \{ j}
Q̂({i, j})/2

=
∑

j∈IH

Q̂({l, j})/2 +
∑

j∈IH

∑

i∈IH \{ j}
Q̂({i, j})/2 −

∑

i∈IH

Q̂({l, i})/2

=
∑

j∈IH

⎡

⎣Q̂({l, j}) +
∑

i∈IH \{ j}
Q̂({i, j})

⎤

⎦ /2 −
∑

i∈IH

Q̂({l, i})/2

=
∑

j∈IH

x j/2 −
⎛

⎝xl −
∑

i∈IL

xi/2

⎞

⎠ .

The last equality follows from constraints (42b) and (42c). With these observations,
we deduce that
∑

S:|S|≤2

Q(S) = Q(∅) +
∑

i∈IL\{l}
Q({l, i}) +

∑

i∈IH

Q({l, i}) +
∑

i, j∈IH ,i< j

Q({i, j}) + 0

= 1 −
∑

i∈N
xi/2 +

∑

i∈IL\{l}
xi + 2x̂l −

∑

i∈IL

x̂i +
∑

j∈IH

x j/2 −
⎛

⎝xl −
∑

i∈IL

xi/2

⎞

⎠

= 1 −
∑

i∈N
xi/2 +

∑

i∈IL

xi −
∑

i∈IL

x̂i +
∑

j∈IH

x j/2 +
∑

i∈IL

xi/2
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= 1 −
∑

i∈N
xi/2 +

∑

i∈N
xi/2

= 1.

Therefore, constraint (32c) is also satisfied.
To check for (32b), we note that for any i ∈ IL\{l},

∑

S:|S|≤2,S�i
Q(S) = Q({l, i}) = xi ,

and

∑

S:|S|≤2,S�l
Q(S) =

∑

i∈IL\{l}
Q({l, i}) +

∑

i∈IH

Q̂({l, i})

=
∑

i∈IL\{l}
xi + 2xl −

∑

i∈IL

xi by (42b),

= xl .

For any i ∈ IH ,

∑

S:|S|≤2,S�i
Q(S) = Q({l, i}) +

∑

j∈IH \{i}
Q({i, j}) = xi ,

which immediately follows from (42c).
Now that we have shown feasibility of Q(·) in problem (32), the remaining task is

to examine its corresponding objective.

∑

S⊆N :|S|≤2

Q(S) f

(
∑

i∈S
ai

)

= Q(∅) · f (0) +
∑

i∈IL\{l}
f (2aL)Q({l, i}) +

∑

i∈IH

f (aL + aH )Q({l, i})

+
∑

i, j∈IH ,i< j

f (2aH )Q({i, j})

= f (2aL)
∑

i∈IL\{l}
xi + f (aL + aH )

⎛

⎝2xl −
∑

i∈IL

xi

⎞

⎠

+ f (2aH )

⎡

⎣
∑

j∈IH

x j/2 −
⎛

⎝xl −
∑

i∈IL

xi/2

⎞

⎠

⎤

⎦

= f (2aL)
∑

i∈IL\{l}
xi + f (aL + aH )

⎛

⎝xl −
∑

i∈IL\{l}
xi

⎞

⎠
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+ f (2aH )

⎡

⎣
∑

i∈IH

xi/2 +
∑

i∈IL\{l}
xi/2 + xl/2 − xl

⎤

⎦

= f (2aL)
∑

i∈IL\{l}
xi + f (aL + aH )

⎛

⎝xl −
∑

i∈IL\{l}
xi

⎞

⎠

+ f (2aH )

2

⎡

⎣
∑

i∈IH

xi +
∑

i∈IL\{l}
xi − xl

⎤

⎦

=
[
f (aL + aH ) − f (2aH )

2

]
xl +

[
f (2aL) − f (aL + aH ) + f (2aH )

2

]

∑

i∈IL\{l}
xi + f (2aH )

2

∑

i∈IH

xi

= π0 +
∑

i∈N
π i x i .

By strong duality, π is optimal in problem (31). ��
Proposition 5.12 If x belongs to category (c5), then

π i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 0,

f (2aL)/2, i ∈ IL ,

f (aL + aH ) − f (2aL)/2, i = h,

f (2aH ) − f (aL + aH ) + f (2aL)/2, i ∈ IH\{h},

is an optimal solution to problem (31) associated with x. This optimal solution is
exactly the coefficients of the lower-SI (25).

Proof We can prove the counterparts of Lemma 5.10 and Corollary 5.10.1 for this
case, by replacing H by L , h by l in the notation. Then by switching notation again
in the proof of Proposition 5.11, we establish this proposition. ��

By now we have found the optimal solutions to problem (31) associated with all
possible (w, x) ∈ R × [0, 1]n such that

∑n
i=1 xi ≤ 2. These optimal solutions, or

extreme rays in the polar of conv(P2
2 ), match the proposed inequalities, namely the

super-average inequality (21), the lifted-EPIs (22), (23), the lower-SI (25), and the
higher-SI (27). Problem (31) can also be thought of as the separation problem for any
(w, x), whose optimal solution is themost violated inequality at this point.We proceed
to draw conclusions on the complete linear description of conv(P2

2 ) in Section 5.3.

5.3 Convex hull description ofP2
2

In this subsection, we formalize the full linear characterization of conv(P2
2 ) in Theo-

rem 5.13. After that, we make a remark on the separation of the proposed non-trivial
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inequalities. Depending on the sizes of IL and IH , some of the five subsets for
(w, x) ∈ R × [0, 1]n with

∑n
i=1 xi ≤ 2 could be empty. Therefore, we may not

always need the full set of proposed inequalities to define conv(P2
2 ). We then make a

remark to specify these cases.

Theorem 5.13 Suppose Assumption 4.10 holds for i0 = 0. We let S be the set of
(w, x) ∈ R

n+1 constructed by the super-average inequality (21), the lifted-EPIs (22),
(23), the lower-SI (25), and the higher-SI (27), together with the trivial inequalities
(29) and cardinality constraint (30). Then S = conv(P2

2 ).

Proof Propositions 5.6, 5.7, 5.9, 5.11 and 5.12 prove that the set of all the non-trivial
inequalities stated above contains all the facets of conv(P2

2 ). It follows that S =
conv(P2

2 ). ��
Recall that any x ∈ [0, 1]n falls into one of the following categories:

(c1) 2xl >
∑

i∈N xi ;
(c2) 2xh >

∑
i∈N xi ;

(c3) 2xl <
∑

i∈IL
xi and 2xh <

∑
i∈IH

xi ;
(c4)

∑
i∈IL

xi ≤ 2xl ≤ ∑
i∈N xi , 2xh ≤ ∑

i∈N xi , and 2xh − ∑
i∈IH

xi ≤ 2xl −∑
i∈IL

xi ;
(c5)

∑
i∈IH

xi ≤ 2xh ≤ ∑
i∈N xi , 2xl ≤ ∑

i∈N xi , and 2xl − ∑
i∈IL

xi ≤ 2xh −∑
i∈IH

xi .

Remark 3 Based on the discussion in Sect. 5.2, when any (w, x) ∈ R × [0, 1]n falls
under category (c1), the lifted-EPI (22) is the most violated inequality at (w, x) if a
violation occurs. In particular, the most violated lifted-EPI has l ∈ N as the first item
in the permutation of N . When any given (w, x) falls in category (c2), the lifted-EPI
(23) is the most violated inequality at this point, with permutation δ such that δ1 = h.
For any (w, x) /∈ conv(P2

2 ) that satisfies (c3), the super-average inequality (21) should
have the highest violation among all the valid inequalities. Lastly, if (w, x) /∈ conv(P2

2 )
satisfies (c4) or (c5), then the most violated cut is the lower-SI (25), or the higher-
SI (27), respectively. More specifically, the most violated lower-SI corresponds to the
permutation δ such that h is the first higher-weighted item. Similarly, the most violated
higher-SI is obtained with permutation δ in which l is the first lower-weighted item.

Remark 4 We note that any (w, x) ∈ R × [0, 1]n with
∑n

i=1 xi ≤ 2 can only belong
to category (c3) when |IL | ≥ 3 and |IH | ≥ 3; otherwise, either 2xl ≥ ∑

i∈IL
xi

or 2xh ≥ ∑
i∈IH

xi must be true. Thus when either |IL | ≤ 2, or |IH | ≤ 2, the
super-average inequality (21) is not needed in the full linear description of conv(P2

2 ).

Remark 5 Suppose |IL | = 1. We further assume that (w, x) satisfies 2xl ≤ ∑
i∈N xi ,

and 2xh ≤ ∑
i∈N xi . We observe that

∑
i∈IL

xi = xl ≤ 2xl . Also,
∑

i∈N xi =∑
i∈IH

xi + xl . Thus 2xh − ∑
i∈IH

xi = 2xh − ∑
i∈N xi + xl ≤ 0 + xl ≤ 2xl −∑

i∈IL
xi . These observations imply that the category (c5) is empty. Therefore, when

|IL | = 1, the lower-SI (25) is not necessary in the linear description of conv(P2
2 ).

Similarly, when |IH | = 1, category (c4) is empty, and the higher-SI (27) can be
omitted from the linear description of conv(P2

2 ) while not affecting its completeness.
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6 Extensions

The proposed inequalities for conv(P2
k ) can be applied to problem (1) with more than

two distinct weight values. LetA be the set of distinct weight values.We define amin =
mina∈A{a} and amax = maxa∈A{a}. With any aH ∈ A such that amin < aH ≤ amax,
we construct a new weight vector â such that âi = amin if ai < aH , and âi = aH
otherwise. This new weight vector contains two distinct weights amin and aH .

Proposition 6.1 Letw ≥ c�x denote any valid inequality (e.g., lifted-EPI, lower-SI or
higher-SI) for conv(P2

k ) with respect to â. If f is monotone increasing, then w ≥ c�x
is valid for conv(Pm

k ) that arises from the original multi-weighted problem.

Proof For any x ∈ {0, 1}n with∑n
i=1 xi ≤ k,

c�x ≤ f (â�x) ≤ f (a�x),

by validity ofw ≥ c�x for the cardinality-constrained epigraph of f (â�x) andmono-
tonicity of f . ��

It follows from Proposition 6.1 that valid inequalities can be derived similarly when
f is monotone decreasing.
We next introduce another way to generate valid inequalities for conv(Pm

k ) when
m ≥ 3. Suppose this set is associated with a multi-weighted vector a ∈ R

n+ and a
normalized concave submodular function f (a�x). For any pair of distinct weights in
a, sayα1 andα2,we let S = {i ∈ [n] : ai ∈ {α1, α2}}. Consider the casewhere |S| ≥ k.
Without loss of generality, we assume that the labeling of [n] satisfies S = [|S|]. We
then extend any valid inequalityw ≥ ∑

i∈S ci xi for conv(P2
k (S)) (see (4)) to themulti-

weighted setting. Specifically, for any i ∈ [n]\S, we define Ti := max{∑ j∈T a j :
T ⊆ [i − 1], |T | = k − 1}.
Proposition 6.2 The inequality w ≥ ∑

i∈S ci xi +∑n
i=|S|+1[ f (Ti + ai ) − f (Ti )]xi is

valid for conv(Pm
k ).

This proposition generalizes Proposition 11 in [34], which restrictsw ≥ ∑
i∈S ci xi

to be an EPI and derives ALIs.We omit its proof, because it follows similar arguments.
Here, the inequality w ≥ ∑

i∈S ci xi can be any lifted-EPI, lower-SI or higher-SI for
conv(P2

k (S)). When it is a lifted-EPI, the resulting inequality is at least as strong as the
corresponding ALI. This observation immediately follows from Corollary 3.6.2. The
inequalities described above can be used in a branch-and-cut framework when solv-
ing the original multi-weighted minimization problems. For certain multi-weighted
problem (1), our proposed inequalities defined for the subspace involving a pair of
distinct weights are valid and even facet-defining for conv(Pm

k ), as demonstrated in
the example below.

Example 3 Let f (a�x) = 64 − (a�x − 8)2, k = 2 and a = [4, 4, 6, 6, 8]. The
inequality

w ≥ 32x1 + 32x2 + 28x3 + 20x4
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is a lower-SI for the convex hull of {(w, x) ∈ R×{0, 1}4 : w ≥ f (4x1 + 4x2 + 6x3 +
6x4), 1�x ≤ 2}. This inequality is facet-defining for the original conv(Pm

2 ).

We can also obtain strong formulations for mixed-binary conic optimization with
our proposed inequalities. Consider the set

S(F,K) := {(x, y) ∈ B
n × R

m : ∃w ∈ R+ s.t. w ≥ F(x), 1�x ≤ k,Ay + Bw ∈ K},

where K is a convex cone that contains the origin, F : Bn → R+ is a nonnegative
function, and A, B are matrices of proper dimensions. A special case of this set is
studied by Atamtürk and Gómez [3], in which the set captures a single second-order
conic constraint and F is the composition of a square root function and a nonneg-
ative affine function. This mixed-binary set arises in chance-constrained programs
and mean-risk minimization. The authors provide its convex hull description, which
involves the convex hull of the epigraph of F . Kılınç-Karzan et al. [19] extend this
result to the general set S(F,K). Based on their work, our proposed inequalities are
strong valid inequalities for the convex hull of S(F,K) under a cardinality constraint
on x , when F is any nonnegative concave function composed with a nonnegative
affine function. Recall that S is the set constructed with our proposed inequalities and
is equivalent to conv(P2

2 ) (see Theorem 5.13). When the affine function contains two
weights and the cardinality bound is two, conv(S(F,K)) = {(x, y) ∈ [0, 1]n × R

m :
∃w ∈ R+ s.t. (w, x) ∈ S, 1�x ≤ k,Ay + Bw ∈ K}.

7 Computational Study

In this section,we test the effectiveness of our proposed inequalities in a branch-and-cut
algorithm. We consider instances of cardinality-constrained mean-risk minimization
with correlated random variables [3, 5]:

min
x∈{0,1}n

{

−μ�x + �
√

(x�Qx) :
n∑

i=1

xi ≤ k

}

. (43)

Here, Q is a positive semidefinite matrix, � is a constant parameter, and k ∈ Z+ is
the cardinality upper bound. Problem (43) can be interpreted asminimizing a stochastic
objective over a discrete feasible set. Suppose that the losses on all the investments
i ∈ N , denoted by p̃, are normal random variables with mean μ and covariance Q.
Let� be the standard normal cumulative distribution function.We set� to be�−1(β)

where 0.5 < β < 1. Then problem (43) is equivalent to the value-at-risk minimization
problem minx∈{0,1}n {z : P ( p̃�x ≤ r

) ≥ β,
∑n

i=1 xi ≤ k} [3, 5, 6, 9]. We denote a
diagonal matrix with main diagonal in the vector form, ν, by diag(ν). The covariance
matrix Q is commonly rewritten as the sum of Q − diag(a) and diag(a), such that
a ∈ R

n+ and Q − diag(a) � 0. Given that x ∈ {0, 1}n , the separable quadratic term
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x�diag(a)x = a�x . Therefore, problem (43) has an equivalent formulation (SOCP):

min
(w,y,z,x)∈R3+×{0,1}n

⎧
⎨

⎩
−μ�x + �z : w ≥

√∑

i∈N
ai xi ,

n∑

i=1

xi

≤ k, y ≥
√
x�(Q − diag(a))x, z2 ≥ w2 + y2

⎫
⎬

⎭
. (44)

When a consists of two distinct weights, the proposed inequalities are directly
applicable; this case will be discussed in Sect. 7.1. When a ∈ R

n+ is a general vector,
we may write a as atwo+ares such that atwo, ares ∈ R

n+, and atwo contains two distinct
weights. Problem (44) may be reformulated as

min
(v,w,y,z,x)∈R4+×{0,1}n

⎧
⎨

⎩
−μ�x + �z : w ≥

√∑

i∈N
atwoi xi ,

n∑

i=1

xi ≤ k,

v ≥
√∑

i∈N
aresi xi , y ≥

√
x�(Q − diag(a))x, z2 ≥ v2 + w2 + y2

⎫
⎬

⎭
.

This casewill be explored in Sect. 7.2. Tomaintain generality of the test instances of
problem (43), we do not impose any assumption, such as Assumption 4.10, on the two
weights aL and aH in addition to non-negativity. Therefore, we only incorporate lifted-
EPIs (LEPIs) and lower-SIs (LSIs) in our branch-and-cut algorithm. We add one valid
inequality after exploring every ten branch-and-bound nodes in the following way. At
a fractional solution (w, x), we generate an LEPI with respect to δ = (δ1, δ2, . . . , δn),
such that xδ1 ≥ xδ2 ≥ · · · ≥ xδn . Let x

H be the sub-vector of x that corresponds to
all the higher-weighted items. With the descending order of xH and i0 = k − 1, we
construct the corresponding LSI. If the violation of LEPI at (w, x) is higher than that
of LSI, then the LEPI is added to update the relaxation problem. Otherwise, the LSI
is added. We refer to this branch-and-cut algorithm as BC-LEPI-LSI.

To evaluate the effectiveness of the proposed inequalities, we test our method BC-
LEPI-LSI against another branch-and-cut algorithm that incorporates the ALIs [34]
(see Corollary 3.6.2). We add one ALI after exploring every ten branch-and-bound
nodes, and such an ALI is constructed according to the descending order of x . More-
over, we compare the computational performance of BC-LEPI-LSI against directly
solving the SOCP using a mixed-integer SOCP solver. Later we refer to this method
simply as SOCP.

The experiments are executed on one thread of a Linux server with Intel Haswell
E5-2680 processor at 2.5 GHz and 128 GB of RAM. All the solution methods are
implemented in Python 3.6 and Gurobi Optimizer 9.5.1. The internal cut parameters
are in the default setting. Multithreading, heuristics and concurrent MIP solver are
disabled. The MIP optimality gap is at the default level of 0.01%, and the time limit
for each instance is set to one hour.
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7.1 awith twoweights

Inspired by [3], we generate the test instances in the following way. The covariance
matrix Q = Q0 + diag(a), where Q0 = ZGG�Z� following a factor model. In
particular, G ∈ R

r×r with Gi j ∼ U [−1, 1], and Z ∈ R
n×r such that Zi j ∼ U [0, 1]

with probability 0.2 and Zi j = 0 otherwise. We compute q = ∑n
i=1 Q0i i/n, and

generate âi ∼ U [0.2q, q]. We then set the two weights aL = min(â) and aH =
median(â). The diagonal vector a is constructed by letting ai = aL when âi <

aH , and ai = aH otherwise. We further generate μi ∼ U [0.7√Qii ,
√
Qii ]. In our

experiments, we let n = 200, r = 40, k ∈ {5, 10, 15}, and � = �−1(β), with
β ∈ {0.95, 0.975, 0.99}.

Table 1 summarizes the computational performance of BC-LEPI-LSI, BC-ALI and
SOCP on problem (43) in which diag(a) contains two distinct weights. The first two
columns report the risk tolerance parameter β and the cardinality upper bound k. The
fourth column reports the average running time in seconds. The next column lists the
average end gaps, computed by (UB-LB)/UB×100% in which UB and LB are the
best upper- and lower-bounds attained at the time limit. The average end gaps are
computed across all the trials, including the instances solved to optimality. The sixth
and the seventh columns present the average numbers of branch-and-bound nodes
visited and the average numbers of cuts added. The statistics are averaged across five
trials. Each superscript i means that out of the five trials, i instances are solved within
the time limit of one hour, and the remaining 5− i instances exceed the time limit. For
BC-LEPI-LSI, the average number of total cuts is represented as mLEPI + mLSI = m
in each test case, where mLEPI is the average number of LEPIs added across five trials,
and mLSI is that of LSIs.

Our BC-LEPI-LSI algorithm outperforms BC-ALI and SOCP in all the test cases as
shown in Table 1. BC-LEPI-LSI solves all instances to optimality under sixminutes on
average. SOCP manages to solve all five instances in only one test case with β = 0.95
and k = 5. BC-ALI fails to solve within the one-hour time limit in two test cases
(i.e., k = 10 and β = 0.975, 0.99 respectively) and has significantly longer average
runtime than BC-LEPI-LSI. For instance, when β = 0.99 and k = 10, the average
runtime of BC-ALI is 34 minutes longer than that of BC-LEPI-LSI; SOCP fails to
reach optimality in an hour in all five instances of this test case, with a large average
optimality gap of 26.8%. In general, BC-LEPI-LSI explores fewer branch-and-bound
nodes than the other two methods and adds fewer cuts than BC-ALI. As k increases,
the number of LSIs being added decreases relative to the number of LEPIs.

7.2 awithmultiple weights

In this section, we do not restrict the number of weights in vector a. We construct
Q0 and compute q the same way described in Sect. 7.1. Then we generate a with
ai ∼ U [0.2q, q] for all i ∈ {1, 2, . . . , n}. Now given Q = Q0 + diag(a), we again
let μi ∼ U [0.7√Qii ,

√
Qii ] for all i . Next, we decompose a into atwo and ares.

We let aL = min(a), aH = median(a) and let atwoi = aL when ai < aH , and
atwoi = aH otherwise. As a result, atwo ∈ R

n+, and ares = a − atwo is a non-negative
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Table 1 Computational performance of BC-LEPI-LSI, BC-ALI and SOCP on problem (43) in which
diag(a) decomposed from the covariance matrix Q contains two distinct weights

β k Method Time (s) End gap (%) # nodes # cuts

0.95 5 BC-LEPI-LSI 42.75 0.0 2112.0 119.4 + 72.4 = 191.8

BC-ALI 219.95 0.0 7376.4 731.2

SOCP 1741.65 0.0 92,132.4 N/A

10 BC-LEPI-LSI 37.45 0.0 1734.6 147.0 + 14.0 = 161.0

BC-ALI 99.95 0.0 3791.6 376.8

SOCP 2924.02 2.8 73,682.2 N/A

15 BC-LEPI-LSI 56.05 0.0 2136.4 196.6 + 3.0 = 199.6

BC-ALI 67.45 0.0 2505.8 247.8

SOCP 2664.12 1.6 59,483.4 N/A

0.975 5 BC-LEPI-LSI 109.65 0.0 4764.8 280.2 + 169.6 = 449.8

BC-ALI 608.05 0.0 20,233.6 2013.4

SOCP 2773.53 13.8 19,1009.0 N/A

10 BC-LEPI-LSI 258.55 0.0 10,196.6 773.4 + 231.2 = 1004.6

BC-ALI 1337.44 1.4 32,009.8 3196.4

SOCP 3316.41 13.9 69,974.2 N/A

15 BC-LEPI-LSI 80.85 0.0 3219.6 312.0 + 6.0 = 318.0

BC-ALI 250.35 0.0 6880.4 685.4

SOCP –0 5.5 74772.0 N/A

0.99 5 BC-LEPI-LSI 125.15 0.0 5997.4 242.6 + 343.4 = 586.0

BC-ALI 1284.55 0.0 36,510.2 3648.4

SOCP 3476.21 76.0 16,0858.0 N/A

10 BC-LEPI-LSI 339.45 0.0 11,414.8 633.8 + 496.8 = 1130.6

BC-ALI 2413.93 4.3 73,554.6 7351.0

SOCP –0 26.8 72,702.6 N/A

15 BC-LEPI-LSI 96.35 0.0 3465.4 268.2 + 72.8 = 341.0

BC-ALI 1440.15 0.0 34,640.0 3462.4

SOCP –0 10.6 57,566.0 N/A

vector as well. We let n = 200, r = 40, k ∈ {5, 10, 15}, and � = �−1(β), with
β ∈ {0.95, 0.975, 0.99}. We note that the ALIs are generated with respect to a, while
LEPIs and LSIs are constructed with respect to atwo in the branch-and-cut algorithms
for this set of experiments.

Table 2 summarizes the computational performance of BC-LEPI-LSI, BC-ALI and
SOCP on problem (43) in which diag(a) has no restriction on its number of weights.
The layout of this table is consistentwithTable 1. In this set of experimentswith general
weight vector a, our BC-LEPI-LSI algorithm outperforms BC-ALI and SOCP in all
the test cases. In Table 2, BC-LEPI-LSI solves to optimality in all but one test case
with β = 0.99 and k = 15. In this challenging case, BC-LEPI-LSI achieves a small
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Table 2 Computational performance of BC-LEPI-LSI, BC-ALI and SOCP on problem (43) with uniformly
generated a

β k Method Time (s) End gap (%) # nodes # cuts

0.95 5 BC-LEPI-LSI 171.95 0.0 6295.2 394.6 + 140.2 = 534.8

BC-ALI 244.15 0.0 10,723.2 1071.4

SOCP 1702.15 0.0 17,3698.4 N/A

10 BC-LEPI-LSI 577.55 0.0 15,612.2 1251.0 + 248.6 = 1499.6

BC-ALI 958.35 0.0 26,572.0 2656.6

SOCP –0 5.8 82,144.0 N/A

15 BC-LEPI-LSI 124.35 0.0 3414.6 258.0 + 73.0 = 331.0

BC-ALI 217.25 0.0 5907.4 590.0

SOCP 2789.62 1.7 79,930.6 N/A

0.975 5 BC-LEPI-LSI 827.45 0.0 20,236.2 1176.2 + 705.2 = 1881.4

BC-ALI 1254.15 0.0 41,768.4 4175.6

SOCP 3349.51 31.1 16,6471.6 N/A

10 BC-LEPI-LSI 838.95 0.0 21,996.8 1498.6 + 648.8 = 2147.4

BC-ALI 1187.44 1.2 40,896.2 4088.8

SOCP –0 12.9 74,527.4 N/A

15 BC-LEPI-LSI 988.65 0.0 19,225.8 1575.0 + 324.2 = 1899.2

BC-ALI 1912.73 0.8 43,951.8 4393.8

SOCP –0 6.9 52,940.8 N/A

0.99 5 BC-LEPI-LSI 650.15 0.0 20,280.0 1175.6 + 715.4 = 1891.0

BC-ALI 947.55 0.0 38,703.6 3869.4

SOCP 3355.91 72.3 25,9287.8 N/A

10 BC-LEPI-LSI 1855.75 0.0 38,376.0 2946.4 + 842.4 = 3788.8

BC-ALI 3068.41 4.7 88,635.6 8862.6

SOCP –0 30.8 75,435.8 N/A

15 BC-LEPI-LSI 1354.14 0.6 24,718.6 2269.6 + 184.4 = 2454.0

BC-ALI 2434.12 1.8 70845.8 7083.4

SOCP –0 10.5 65,965.4 N/A

end gap of 0.6%. BC-ALI and SOCP have longer average running times than BC-
LEPI-LSI and fail to solve in many test cases, especially with higher β values. For
example, when β = 0.99 and k = 10, BC-LEPI-LSI solves all five instances with an
average runtime of around 30 minutes, whereas BC-ALI fails to attain optimality in
four out of five instances of this test case. SOCP fails in all five instances, resulting in a
large average end gap of 30.8%. Overall, the statistics in Table 2 are higher than those
in Table 1, suggesting that the problem instances with general a are computationally
more difficult than the instances in which a contains two distinct weights. As before,
BC-LEPI-LSI explores fewer branch-and-bound nodes than the other two methods
and adds fewer cuts than BC-ALI. The observation that the number of LSIs being
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added decreases relative to the number of LEPIs as k increases continues to hold in
this set of experiments.

8 Concluding remarks

In this paper, we tackle the cardinality-constrained concave submodular minimization
problem (1) with two distinct weights. We propose three classes of strong valid linear
inequalities, namely the lifted-EPIs, the lower-SIs and the higher-SIs, for the convex
hull of the epigraph for the objective function with a cardinality constraint. These
inequalities are computationally effective when incorporated in a branch-and-cut
framework as demonstrated by our experiments on a cardinality-constrained mean-
risk optimization problem. We further show that the proposed inequalities, together
with a single additional inequality and trivial inequalities, fully describe conv(P2

k )
when the cardinality upper bound k is set to two. Moreover, the proposed inequalities
give rise to valid inequalities for the multi-weighted instances and can be applied in
mixed-binary conic optimization. Next we include a few final remarks about the future
exploration directions and the associated challenges.

The characterization of conv(P2
2 ) in Sect. 5 assumes that Assumption 4.10 holds

for i0 = 0. The convex hull conv(P2
2 ) becomes more challenging to linearly describe

when we lift this assumption, which we illustrate with the example below.

Example 4 Suppose f (a�x) = 64 − (a�x − 8)2, k = 2 and a = [2, 2, 5, 5, 5, 5, 5].
Note that this function is normalized. In this example, f (2+ 5) − f (2) > f (2 · 5)/2,
so Assumption 4.10 is violated. The inequality

w ≥ −11 + 20x1 + 39x2 + 35x3 + 35x4 + 35x5 + 35x6 + 35x7 + 35x8

is facet-defining for conv(P2
k ) because it is an extreme ray in its polar. Although

f (0) = 0, there still exists a non-zero constant term in this facet. Thus this inequality
does not fall into any of the three classes of homogeneous inequalities we propose. It
seems non-trivial to find an explicit specification for the constant term, as well as the
remaining coefficients in relation to this constant.

A natural next step from this paper is to examine conv(Pm
k ) where m ≥ 3 or k ≥ 3.

When k ≥ 3, conv(P2
k ) has other types of facets in addition to the three classes of

inequalities we propose. Below is an example of such facets.

Example 5 Suppose f (a�x) = 64 − (a�x − 8)2, k = 3 and a = [6, 6, 6, 6, 8, 8, 8].
The inequality

w ≥ −20

3
x1 − 44

3
x2 − 44

3
x3 − 44

3
x4 − 176

3
x5 − 200

3
x6 − 200

3
x7

is an extreme ray in the polar of conv(Pm
k ), and thus a facet. However, this inequality

does not belong to any of the proposed classes of inequalities.
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Despite the challenge of fully characterizing conv(Pm
k ) for general m and k, we

may still obtain valid and even facet-defining inequalities for it, by further lifting the
proposed inequalities.
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