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Abstract

We study the polyhedral convex hull structure of a mixed-integer set which arises in
a class of cardinality-constrained concave submodular minimization problems. This
class of problems has an objective function in the form of f(a'x), where f is a
univariate concave function, a is a non-negative vector, and x is a binary vector of
appropriate dimension. Such minimization problems frequently appear in applications
that involve risk-aversion or economies of scale. We propose three classes of strong
valid linear inequalities for this convex hull and specify their facet conditions when a
has two distinct values. We show how to use these inequalities to obtain valid inequal-
ities for general a that contains multiple values. We further provide a complete linear
convex hull description for this mixed-integer set when a contains two distinct values
and the cardinality constraint upper bound is two. Our computational experiments on
the mean-risk optimization problem demonstrate the effectiveness of the proposed
inequalities in a branch-and-cut framework.

Keywords Concave submodular minimization - Cardinality constraint - Lifting

Mathematics Subject Classification 90C10 - 90C26 - 90C57

1 Introduction

Submodular set functions have received great interest in integer and combinatorial
optimization. Many important combinatorial problems and structures, including the
set covering problem, the min-cut problem, and matroids, are closely associated with
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submodular functions. These functions have also found immense utility in applications
such as healthcare [1], viral marketing [18], and sensor placement [21]. Next, we
formally state the definition of submodular functions.

Let N = {1, 2, ..., n} be anon-empty finite set. We define the power set of N to be
2N = {S:S C N}. Aset function g : 2N 5 Ris submodular if for any X,Y € 2N

gX)+g(Y) = g(XNY)+g(XUY).

Forany X € Nandi € N\X, p;(X) := g(XU{i}) — g(X) represents the marginal
return to the function value by adding item i to the set X. This notion of marginal
return provides an alternative definition of submodularity, namely g is submodular if

pi(X) = pi(Y)

forany X € Y € N andi € N\Y. Intuitively, this definition implies that all submod-
ular functions possess a diminishing return property. Many studies have established
that unconstrained submodular minimization is solvable in polynomial time [14, 17,
22,23, 25]. However, constrained submodular minimization problems are NP-hard in
general [27]. There exist exceptions to this general observation—a class of submod-
ular functions can be minimized in polynomial time in the presence of a cardinality
constraint. We next describe this class of submodular functions in detail.

Itis known that composing a non-negative modular function with a concave function
yields a submodular function. To be more precise, let any a € R’} and any concave
function f : R — R be given. The function F' defined by F(S) = f (Zie s ai) for
all S € N, or equivalently F(x) = f (3_7_; ajx;) forall x € {0, 1}", is submodular.
The problem of minimizing such a submodular function with respect to a cardinality
constraint assumes the form of (1):

min{f(Zaix,) tx e (0.1} xSk 1)
i=1 i=1

This problem has the following equivalent mixed-integer nonlinear programming for-
mulation:

min {w : (w, x) € P}'},

where
n n
Pl =1w.x) eRx{0. )" cw> f (Zaix,-) DI k} )
i=1 i=1
The superscript m € {1, 2, ..., n} denotes the number of distinct values in a, and the

subscript k is the cardinality upper bound. In what follows, we refer to the values in
a as weights. This family of problems usually arises in applications that involve risk
aversion or economies of scale, such as mean-risk optimization [5, 6] and concave cost
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facility location [12, 15]. Studies [16, 24] have shown that problem (1) is polynomial-
time solvable. This complexity result suggests that a full characterization of conv(P;")
may be tractable.

Inspired by this implication, we take a polyhedral approach to address problem (1)
in this paper. In seminal work, for unconstrained submodular minimization, Edmonds
[10] proposes extended polymatroid inequalities and establishes an explicit linear
convex hull description for the epigraph of any submodular function using these
inequalities (see also [11]). Since this early work, polyhedral approaches have com-
monly been adopted in submodular optimization research. Such approaches have
unique advantages especially in the presence of additional complicating constraints
or when maximizing f leading to NP-hard problems. In this regard, Wolsey and
Nembhauser [28] take a polyhedral approach to tackle unconstrained submodular max-
imization problems. The authors introduce a class of valid linear inequalities, called
submodular inequalities, for the hypograph of any submodular function. This enables
the formulation of the problem as a mixed-integer linear program. This formula-
tion is later strengthened for constrained submodular maximization in [2, 26, 33].
By exploiting hidden submodularity, studies including [3-6, 13, 19] improve the for-
mulations of mixed-binary convex quadratic and conic optimization problems. Yu
and Kiic¢iikyavuz [37] consider mixed-integer extensions of submodularity, known as
diminishing returns (DR)-submodularity, and give the convex hull of the epigraph of
a DR-submodular function under box and monotonicity constraints. Atamtiirk and
Narayanan [8] extend the polyhedral results to general set function minimization,
in which the authors rewrite a set function as the difference between two submod-
ular functions and form the outer approximation of the original set function based
on the extended polymatroid inequalities and the submodular inequalities of the
pair of submodular functions. For another generalization—namely, k-submodular
optimization—where the objective function is a set function with k > 2 arguments
that maintain submodular properties, Yu and Kiiciikyavuz [35, 36] provide polyhe-
dral characterizations. In another direction, recent works [20, 29-32, 38] successfully
adopt a polyhedral approach to submodular optimization in stochastic settings.

The polyhedral study closely related to our work is [34], in which the authors
consider problem (1) and obtain a complete description of conv(P,: ) where the weights
a; are identical across all the items i € N. When m > 2, Yu and Ahmed [34] argue
that one class of facet-defining inequalities for conv(P}") can be obtained using an
0(n4) extreme point enumeration algorithm [7]. This class of facets is not sufficient
to fully describe conv(P;") when m > 2, and the explicit form of such inequalities
is not provided. Instead, the authors approximate the inequality coefficients to give a
weaker class of valid inequalities. Despite the progress made by [34] in understanding
conv(Pkl), how to fully characterize conv(7;") when m > 2 remains an open problem.
Our paper takes the first step to tackle this open problem by analyzing the structure of
conv(P,?), where the vector a contains two distinct values. We further provide valid
inequalities for conv(7;") where m > 3. Next we give a summary of our contributions.
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1.1 Our contributions

We propose three classes of strong valid linear inequalities for conv(P,f). We present
the explicit forms of these inequalities and specify the conditions under which they
are facet-defining for conv(P,%). We further show that these inequalities, along with
the trivial bounds, the cardinality constraint, and a single additional inequality, fully
describe COHV(PZZ). Our computational experiments on the mean-risk optimization
problem demonstrate the effectiveness of our proposed inequalities in a branch-and-
cut framework. Moreover, we delineate how these inequalities can be extended to the
cases with more than two distinct weights, and how they may be utilized in mixed-
binary conic optimization. We also include remarks on the facets of conv(7;") when
k > 3 or m > 3, which reflect the complexities in obtaining the complete linear
description of conv(P").

1.2 Outline

We structure this paper as follows. In Sect. 2, we set forth our notation and review
two classes of inequalities, namely the extended polymatroid inequalities (EPIs) and
the separation inequalities (SIs). In Sects. 3 and 4, we exactly lift the aforementioned
inequalities and obtain three classes of strong valid linear inequalities for conv(P,?),
which we call the lifted-EPIs, the lower-SIs, and the higher-SIs. Next, in Sect. 5, we
provide a linear description of conV(Pzz) using the proposed inequalities and prove
its completeness. We explain how to apply the proposed inequalities to the problem
instances with three or more distinct weights, as well as how they can be extended
for mixed-binary conic optimization problems in Sect. 6. In Sect. 7, we present a
computational study on the mean-risk optimization problem with varying cardinality
bounds to test the effectiveness of our proposed inequalities when used in a branch-
and-cut algorithm. Lastly, in Sect. 8, we include examples to illustrate the difficulty
in constructing the complete linear description for general conv(P}").

2 Preliminaries
2.1 Notation

Throughout this paper, f : R — R isaconcave function, and we assume that f(0) = 0
without loss of generality. To abbreviate set notations, we represent {1, 2, ..., j} by
[/] for any integer j > 1, and we use the convention that [0] = #. In addition, we let
[i,j1=1{i,i+1,...,j}for 1 <i < j; by convention, [i, i] = {i}.

Let N = [n] be a non-empty finite ground set. We let F : 2V — R be the function
such that, givena € R, F(S) = f (ZieS ai) for any S € N. We note that for any
S C N, there exists a unique characteristic vector x5 € {0, 1} such that xis =1 for
i € Sand xl.S = 0 otherwise. On the other hand, with any x € {0, 1}"*, we may recover
exactly one S* = {i € N : x; = 1}. Thus f and F are used interchangeably in later
discussions. The lemma below summarizes a crucial property of f.
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Lemma 2.1 Foranyd € Ry and y1, y» € R such that y1 < y»,

fOr+d)— fO) =z fO2+d) — f(y2)

in any concave function f : R — R.

Proof First we consider the case where y; > 0. Let g : {0, 1}3 — R be a func-
tion defined by g(x) = f(yix1 + (y2 — y1)x2 + dx3). Since f is concave and
¥1, y2 — y1,d > 0, we know that g, being the composition of a concave function and
a non-negative modular function, is submodular. To simplify the notation, we use the
alternative form of g, namely G : 2{1.2.3} — R.In particular, G ({1}) = g([1,0,0]) =
O, G({1,2) = g([1. 1,0]) = f(32), G({1,3}) = (1,0, 1]) = f(y +d) and
G({1,2,3}) = g([1,1,1]) = f(y2 +d). Then

JfOr+d) = fOD) —1f(2+d) = f(32)]
= G({1,3) - G{1h) - [G({1,2,3}) — G({1, 2))]

= p3({1}) — p3({1,2}) = 0.

If y; < 0, then we define a function f : R — R such that f(z) = f(z+ y) forall
z € R. This function f is f shifted to the right by |y1], so it is also concave. We notice
that f(y1) = f(0), f(32) = fO2—y1), f(+d) = f(d)and f(y2+d) = f(y2—
y1+d). Thus our goal now is to show that f(d)— f(0) > f(y2—y1+d)— f(y2—y1).
This relation is true according to the analysis of the previous case, which completes
the proof. O

For 73,?, we denote the two distinct weights in a by ay and ag, such that 0 < ay <
ag.WeletZy ={i e N:aq; =ar}andZy = {i € N : a; = ag}. Suppose the items
in N are permuted according to § = (81, 82, ..., 8,). We define L?, for 0 < r < |Z],
to be the set of the first r lower-weighted items according to 8. Similarly, we let H*,
for 0 < s < |Zy]|, be the set of the first s higher-weighted items consistent with §. By
convention, L0 = H? = ¢.

Next, we review two useful classes of inequalities, namely EPIs [11] and SIs [34].

2.2 Extended polymatroid inequalities (EPIs)

LetG : 2V — Rbe any submodular set function defined over the ground set N = [n],
with the equivalent form g : {0, 1} — R. Without loss of generality, we assume that
G (@) = g(0) = 0. Given any permutation § = (81, 82, ..., &,) of N, the correspond-
ing EPI is

n
w = Z P8; X5, 5 3
i=1

where ps, = G({61}) and ps; = G({61,...,8;})) — G({51,...,8;—1}) fori € [2,n].
In the unconstrained set

Q= {(w,x) eRx{O,l}”:wzg(x)},
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808 Q. Yu, S. Kiigikyavuz

EPIs are known to be facet-defining for conv(Q). In fact, conv(Q) is fully described
by the trivial inequalities 0 < x; < 1,i € [n], and all the EPIs [11].
In our problem context, the EPIs are facet-defining for conV(P,f(S )), where

PHS) = Y(w,x) e Rx {0,1}5 1w > f(zaix,) Y X §k} 4

ieS ieS

for any S € N with |S| < k. This is because the cardinality constraint trivially holds
for such S. In Section 3, we lift the EPIs with respect to the variables x; foralli € N\S.

2.3 Separation inequalities (Sls)

SIs are strong valid linear inequalities for conv(Pkl) proposed in [34]. In this case, we
have a; = o for all i € [n] given some o € R, and

P,i =1 (w,x) eRx{O,l}”:wzf(ain),in Sk}.
i=1 i=1

Given any permutation of N, § = (81,82,...,0;,), and a fixed parameter iy €
{0,1, ...,k — 1}, an SI is defined by

io n

w= Y psxs Y Y. (5)
i=1

i=ig+1
Here

_ fke) — f (o)

k — i

4

and ps; is the EPI coefficient f (i) — f((i — 1)cr). The authors further show that the
SIs, together with Z” xi <kand0 < x; < 1fori € N, fully describe conv(P,}). In

i=1
our problem context, the same convex hull characterization holds for conv(P,l )
and COHV('P]i Zp)), where

PT) = 1w x) eRx (0.1} cw>flar ) x|. > xi<kf. (6

iEIL iEIL
and
PLTm) =, 0) eRx {0, /" w=flag Y x|, Y xi<kp. (D
iely iely
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In Section 4, we lift the SIs of conv(’P,: (Z1)) and conv(P,l (Zpy)), to obtain two classes
of strong valid linear inequalities for conv(Plg).

As mentioned earlier, Yu and Ahmed [34] give an O (n*) algorithm to exactly lift
the EPIs for the multi-weighted case. However, the algorithmic approach does not
yield explicit forms of the lifting coefficients, which hinders the effectiveness of this
algorithmic approach in a branch-and-cut scheme. Due to this complexity, the authors
give approximate coefficients of the lifted EPIs. In contrast, we directly describe the
optimal solutions to the lifting problems given both EPIs and SIs as the base inequalities
for the problems involving two weights. Such a closed-form description of sequence-
dependent lifting coefficients is generally non-trivial. Furthermore, this description
paves the path for the effective use of the resulting inequalities in a branch-and-cut
framework as evidenced by our computational experiments.

3 Exact lifting of extended polymatroid inequalities

The goal of this section is to lift the EPIs (3) and derive a class of strong valid linear
inequalities for conV(P,?). We call this new class of inequalities the lifted-EPIs.

For any permutation 6 of N, we can re-index N such that § is the natural order
(1,2, ...,n).Let S beany subset of N such that |S| = k. Without loss of generality, we
assume that S = [k]. This can also be achieved by re-indexing. Letdg = |Zgy\[k —1]|
andd; = |2 N[k—1]]. Weuse H = (H1, H2, ..., Hg,) to denote the permutation of
Zu\[k—1] thatis consistent with §. Welet L = (L1, Lo, ..., Lg, ) be the permutation
of Z; N [k — 1] that is also consistent with §. For ¢ € [dy], H(g) = {H1, ..., Hy}.
If ¢ < 0, then H(g) = @. Similarly, we let L(q) = {L1,..., Ly} for g € [dL];
‘H(g) = ¥ when g < 0. The set L’ is the same as £(¢) for any ¢ € [dr]. However, L’
is defined for t > dj as well, while £(-) C [k — 1]. The next example clarifies the
new notation.

Example 1 Suppose k = 3, and N = [5] such that Z; = {1, 3} and Zy = {2, 4, 5}.
Givené§ = (1,2,3,4,5), H = (4,5) and dg = 2. Meanwhile £ = (1) and d;, = 1.
In addition, H(2) = {4, 5}, £L(1) = {1} and L(0) = ¢.

With the specified indexing,
k k
P ={(w.x) eRx {0, 1} :w> f (Zaix,-> Y oxi < k} :
i=1 i=1

This set is essentially P,% with x; fixed at O for alli € N\S = [k + 1, n]. Let a base

EPlw > Zle pix; associated with the natural ordering of S be given. The coefficient
pi is pi([i — 1]) for any i € [k] to be precise. Lifting this base inequality with the
variables x;, i € N\S, we can construct a valid inequality for conv(P,f) in the form of

k n
w > Zpixi + Z &ix;. (8)
i=1

i=k+1
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810 Q. Yu, S. Kiigikyavuz

which is what we call a lifted-EPI.
In an intermediate step of lifting x; for j € [k + 1, n], we derive a facet-defining

inequality w > Zf: 1 Pixi + Zi]=k 41 &ixi for the convex hull of the polyhedron

J J
PHLD = § w,x) eRx (0,1 cw > f | D aixi |, D xi <k
i=1

i=1

The coefficient &; is the optimal objective value of the j-th lifting problem (9a).

k j—1
§j :=min w — Zpixi - Z &ixi (%a)
i=1 i=k+1
j—1
st. w> f aj+za,~x,~ , (9b)
i=1
j—1
doxi<k—1, (9¢)
i=1
x e {0, 1}/ (9d)

In fact, every lifted-EPI is identical with w > 27:1 ¢jxj,in which ¢; is the optimal
objective of the j-th lifting problem (10) for j € [n]. This observation is formalized
in Lemma 3.1.

j—1
{j:=min w — Z{,-xi (10a)
i=1
j—1
st w> fla;j+) aixi |, (10b)
i=1
j—1
> oxi k-1, (10c)
i=1
x e {0, 1}/ (10d)

Lemma 3.1 In the base EPI w > Z{'Czl pixi, pj = ¢ forall j € [k], where ; is the
optimal objective value of the j-th lifting problem (10).

Proof We observe that for any j € [k], constraint (10c) naturally holds. When j = 1,
w is the only decision variable in problem (10). To minimize w, constraint (10b) must
be tight at the optimal solution. Thus ¢ = f(a;) = p1. If K = 1 then the proof is
complete. Now suppose k > 2. When j = 2, £ = min{ f (a1 + a2) — f(a1), f(a2)},
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or equivalently, min{ F ({1, 2}) — F({1}), F({2})}. By submodularity of F, F({1}) +
F{2}) = F({1, 2}). Therefore, ¢, = F ({1, 2}) — F({1}) = p>. Now we have settled
two base cases. For a strong induction, our induction hypothesis is that p; is the optimal
objective of the j-th problem (10) for all j € [J — 1], where J — 1 € [k — 1]. Now
we characterize the optimal solution to the J-th problem (10). The optimal objective
value £y ismingcpy—1] F(QU{J}) — ZiGQ Z;. Let Q be an arbitrary subset of [J —1].

FQUID+ Y &

ie[J—1N\Q

=F(QU{J}) + Z Di (by induction hypothesis)
ie[J—1\Q

=F(QU{J}) + Z pi(li — 1] (by definition of p;)
ie[J—1N\Q

>F(QU{J})+ Z pi(QUIi —1])  (by submodularity of F)
ie[J-1\Q

=F(QU{Jh+ Z [F(QUiID—-F(QUI[i —1]]
ie[J—11\Q

=FQU{/HD+FQULJ-1]) - F(QUY)
=FQU{JH+ F(J—-1D) - F(Q)

=F(J = 1D+ ps(Q)

>F(J—=1D)+ p;([J —1])  (by submodularity of F)
= F(JD.

It follows that

FQUUH =Y G=FQU{ID+ Y &— > &

i€eQ ie[J-1\Q ie[J—1]

>F@ID - Y. &

ie[J—1]

Since the choice of Q is arbitrary, ;5 = F([J]) — Zie[l—l] ¢ = py. By strong
induction, we conclude that p; = ¢; forall j € [k]. a

Lemma 3.1 shows that all the coefficients in a lifted-EPI are the optimal objective
values of the corresponding lifting problems (10). This observation enables us to
compare ; across all j € [n]. Lemma 3.2 captures a descending property of these
coefficients.

Lemma3.2 Letw > ¢ x be alifted-EPI associated with S = [k]. If1 < ji < j» <n
satisfy aj, = aj,, then {j, > {j,.

Proof By Lemma 3.1, we can view the variables x;, i € S, as the first k variables to be
lifted. Since aj, = aj,, this result follows from Proposition 1.3 on page 264 of [28],
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812 Q. Yu, S. Kiigikyavuz

which states that the lifting coefficients are non-increasing with respect to the order
in which the variables are lifted. O

Before stating the explicit form of any lifted-EPI, we introduce additional notation
and make more observations about the lifting problem (10). In the j-th problem (10),
suppose x € {0, 1}/7! satisfies i1 xi < k — 1. We denote the support of x by
X ={i € [j — 1] : x; = 1}. Since the objective is minimized, we attain the lowest
objective value given x when constraint (10b) is tight. We represent the corresponding
objective value by ¢ ]X . In other words,

c}f=f(a,-+zai)—z;i,

ieX ieX
for any feasible x € {0, 1}/~!. Then

= min ;‘/X.
XClj—111X|<k—1

We observe that N = [k — 1] U (Zp\[k — 1]) U (Zy\[k — 1]), where [k — 1],
Zr\lk — 1] and Zy \[k — 1] are pairwise disjoint. Recall that |Zy \[k — 1]| = dpy, and
Iu\lk =11 =H(dy) = {H1, ..., Hay} Thus every j € Ty\[k — 1] is H; for some
unique i € [dy].

Lemma 3.3 shows that, if we restrict the solutions to the j-th lifting problem (10)

by fixing x; = 0 for all i € [k, j — 1], then {JUC_I] is the lowest attainable objective
value.

Lemma3.3 Letany j € [k + 1, n] be given. Forall Q C [k — 1], ;J.Q > (j[k_ll.
Proof We choose an arbitrary Q C [k — 1] such that |Q] < k — 1. Then

=fla+d a|-d n

ieQ i€eQ
= F(QU{jH— ) pilli —11)
ieQ
> F(QU{j} — Zp,-(Q Nn[i—1) (F is submodular)
ieQ

=F(QU{jH—F(Q)
> F(k—1]1U{j}H) — F([k—1]) (F is submodular)

=f Z ai +aj Z Pi

i€lk—1] i€lk—1]

— k=11
=¢
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The next lemma shows that, in any lifting problem (10), among all the feasible
supports with exactly ¢ lower-weighted items and s higher-weighted items, L’ U H*
has the lowest objective value.

Lemma 3.4 Let any j € [k, n] and fixed integers 0 <t < |Zp|, 0 < s < |Zy| with
t+s < k—1begiven. Forany Q C [j—1], suchthat |QNZy | =tand |QNIy| =s,
¢ > L'VE
J =7 :

Proof Consider any Q with the stated properties. It satisfies |Q| = s+1 < k—1,s0 Q
corresponds to a feasible solution to the j-th lifting problem (10). Lemma 3.2 suggests
that ) ; ;. ¢; is the sum of the highest ¢ lifting coefficients for the lower-weighted
items. There are ¢ lower-weighted items in QN7 as well, so Zie G = ZiEQﬂZL i

Similarly, Y ;. ys i = ZieQﬂIH ;. Thus

C]-Q flaj+tap +sap)— Y G— > &

ieQNZy ieQNZy
> f (aj +tap + saH) — Z & — Z ¢ (by Lemma 3.2, as discussed above)
ieL! ieH’

L'UH?
=] .
O

We may infer from this lemma that an optimal support for any lifting problem (10)
assumes the form L' U HY for some ¢ and s. In Lemma 3.5, we provide the optimal
solution to the j-th lifting problem, when all the items in [ j — 1] have the same weight.

Lemma3.5 Let any j € [k,n] be given. If [j — 11 € Iy, or [j — 1] C Ty, then

;= {j[k_l] in the j-th lifting problem (10).

Proof Without loss of generality, suppose [j — 1] € Z;. Lemma 3.4 implies that
arg mingcyj—1),]Q|<k—1 ng has the form of [¢] for some 0 < 7 < k — 1. We notice that
for any such set,

éj[ﬂ:f aj+tay) ZG

i€t]
= FAjiulh =) p
ielr]
=F{j}ultDh — F([zD
> F{j}Ulk—1]) — F([k —1])  (by submodularity of F')
é.lk 1

[k—1]

Therefore, for any Q C [j — 1] such that |Q| < k — 1, { > ¢ . We conclude

that ¢; = C[k Y The case when [j — 1] € Ty follows similarly. O

In Proposition 3.6, we present the explicit form of any lifted-EPI.
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814 Q. Yu, S. Kiigikyavuz

Proposition 3.6 A lifted-EPI assumes the form w > Y 7_, {ix;, where

Pjs ifj e lk—1],
g=1¢"" ifj € To\Ik - 11,

min {QQHH, é_j?-((min{i—l,dL})UE(dL—i—i-l)U(IHﬂ[k—l])} L ifj =M i€ ldyl,
and &y, = é_;-[(min{o,dL})UE(dL70)U(IHﬁ[k71]) _ é_]['kfl].

Before we prove Proposition 3.6, a remark is in order.

Remark 1 Proposition 3.6 allows us to efficiently derive the lifting coefficients in a
sequential fashion. Here we provide some intuition behind the proposed coefficients.
Given the base EPL, {; = p; for j € [k]. Thus the first case in Proposition 3.6
when j € [k — 1] naturally follows. Next we verify {x = px in the construction of

Proposition 3.6. When k € 71, & = ;k[k_” = py in the second case. When k € Ty,

then it falls under the third case, where { = min{g“k[k_l], g“k[k_l]} = pk. Therefore,
Lk = px 1s satisfied by the proposed construction. Such division of cases is designed
for a conciser proof by strong induction.

Now suppose j > k + 1. The second case in Proposition 3.6 states that, when j is a
lower-weighted item, the support of the optimal solution to the corresponding lifting
problem (10) is [k — 1]. This implies that ¢; is a constant for all such j. That is, lifting
is sequence independent for j € Z;. On the other hand, if j € Zy, then j = H; for
some i € [dy]. This means that j is the i-th higher-weighted item strictly after k — 1
in the fixed permutation. In this case, ¢; is the minimum of two candidates. The first
candidate is ¢ where j* = H;_; is the higher-weighted item right before j in the
given permutation. The coefficient ¢;- has already been obtained before computing ¢;
because j’ comes before j in the lifting sequence. The second candidate has a support
set H(min{i — 1, dp}) UL(dp —i+ 1}) U(Zy N[k — 1]) which always has cardinality
k — 1. Intuitively, this set is constructed by replacing the last i — 1 lower-weighted
items in [k — 1] with the first i — 1 higher-weighted items strictly after k — 1. If
i — 1 > dp, then this support set is H(dy) U (Zy N [k — 1]) which is the set of the
first k — 1 higher-weighted items.

Next, we present a proof by strong induction to show that the proposed lifted-EPI
coefficients are indeed the optimal objective values in the lifting problems (10). The
correctness of case 1, when j € [k — 1], in Proposition 3.6 is immediate from the
base EPL. It suffices to show that when j > k, cases 2 and 3 in Proposition 3.6 are
also correct. For a strong induction, we use j = k and j = k + 1 as our base cases.
Remark 1 has cleared the case of j = k. Thus it suffices to examine the case of
Jj = k + 1. Once we settle the base cases, we show the correctness of ¢; for some
J > k + 2 given the induction hypothesis that ¢;’s are correct for all j € [k, J — 1].
After that, Proposition 3.6 is formally established.

Lemma 3.7 examines the base case of j =k + 1 whenk + 1 € Z.
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Strong valid inequalities for a class... 815

Lemma3.7 Whenk + 1 € Iy, Lky1 = ;,Eill].

Proof Fori € [k], we know that ¢; = p;. Consider any Q C [k] with |Q| < k — 1.
Such a set Q is the support of any feasible solution x to the (k + 1)-th lifting problem
(10). If k ¢ Q, then Lemma 3.3 applies. For all such Q, §jQ > ;“j[.kfl]. On the other
hand, suppose k € Q. We denote Q\{k} by Q" and note that Q' C [k—1],|Q'| < k—2.
Thus } o @i < ) jepe—1) @ — ar. In this case,

CkQ_HZf Zai+ak+ak+l _Zpi_

ieQ’ ieQ
=FQ'U{kk+1) = > pili —11) — px
ieQ’
> F(Q' Uk, k+1}) — Z pi(Q'N[i —1) — px  (F is submodular)
ieQ’

=F(Q Uk k+1}) — F(Q) — px
=F(Q Uk, k+1}) — F(Q'U{k+1}) — o + F(Q" Uk + 1}) — F(Q)

=f Zai+ak+aL
ieQ’

- f ZaH-aL -\ f Z ai +ag | — Z a;
icQ’ ielk—1] ielk—1]

+F(Q'Ulk+ 1) — F(Q)

> F(Q Ulk+1}) — F(Q) f is concave and Z a; +ap < Z a;

icQ’ ielk—1]
> F(k—1]U{k+1}) — F(lk—1])  (F is submodular)

=f Z ai + akt1 Z pi

ielk—1] ielk—1]

_ Lk
=Gy

Therefore, for any Q C [k] such that |Q| < k — 1, g“kQH > g“k[]f;ll]. It follows that

k-1
S+l = C/£+1 g o

We continue to explore the base case of j = k 4+ 1 when k + 1 € Zg. Three
scenarios are possible in this case:

(1) kel
2) keIgandd, =|Ip N[k —1]| > 1;
(3) k € Ty and d;, = 0; in other words, [k] C Zy.

Lemmas 3.8, 3.9 and 3.10 address these three scenarios respectively.
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816 Q. Yu, S. Kiigikyavuz

Lemma3.8 Ifk + 1 € Iy and k € Iy, then Gy = &Y.

Proof Consider any Q C [k] such that |Q| < k — 1. For every such Q that does
not contain &, §kQ+1 > g“k[k;]l] due to Lemma 3.3. Now we consider any Q > k with
|Q| <k—1.Let Q' = Q\{k}. We know that Q' C [k — 1] and |Q’| < k —2.Letu be

argmin{a; : i € [k— 1]}, which means thatif Z; N[k—1] = @ thenuisanyi € [k—1];
otherwise, uisanyi € Zy N[k—1]. By thischoice of u,a; < a, < a;foralli € [k—1].
Let T = [k — 1]\{u}. It follows that ZiEQ, ai < Zie[k_l] ai —a, = ) _jcr a;- In this
case,

CkQ+1 =f a1 ta+ Zai) - pi—ok

ieQ ieQ

=flauw+ar+ ) ai| =D pilli =1 — pr(tk = 1D
ieQ’ ieQ’

>flan+ar+ ) ai| =Y p(Q'Nli—11) = pe(lk—11)  (F is submodular)

icQ’ icQ’
=flag+aL+) a _f(zai)_/’k([k—l])
ieQ’ ieQ’

> flan +aL+Zai) - f (Zai) = pr(lk = 11)

ieT ieT

(ag +ap >0, Z a; < Zai, so Lemma 2.1 applies)
ieQ’ ieT

ieT ieT

> flay +a + Zai) —f (Zai) — pe(T) (F is submodular, T C [k — 1])

=f aH+aL+Zai)—f(aL+Zai) (ax = ar)

ieT ieT

> flag +ay +Za[) - f (au +Zai) (by Lemma 2.1)

ieT ieT

k—1 k—1
=flayg + Zai) — f (Z ai) (T U {u} = [k — 1] by construction)
i=1 i=1

k—1 k—1
=f aH+Zai) =Y ni
i=1 i=1

_ k=1
=Syl

Therefore, forevery Q C [k]with |Q]| < k—1, ng+1 > ,E{:”.Thatis, Ckrl = gk[]_‘;l]].
O
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Lemma3.9 Suppose k,k +1 € Iy and dy, > 1. Let | = Lg,, which is the largest

index in [k — 1] such that aj = ay. Then giiq = min{¢* 1, ¢A,

Proof We partition all the feasible supports Q into two cases.

Case 1 We first consider all Q C [k] with |Q| < k — 1, such that [ ¢ Q. Let
q = |O\[!]]. We observe that g < |[k]\[/]| =k — [, and for all i € Q\[!], a; = ay.

In other words, ¢ is the number of higher-weighted items in Q with indices greater
LI

than /. In this case, we show that §kQ+1 R

CkQH:f am + Z ai + Z ai | — Z pi — Z pi

icQ.i<l icQ,i>l icQ.i<l icQ,i>l
=flan+ Zai - Z pi+ flan + Zai+ ZCIH
ieQ.i<l icQ.i<l icQ.i<l icQ,i>l
- flan+ Z ai | — Z pi
icQ.i<l i€Q.i>l
> flan+ Zai - Z pi+ f aH+Zai+ ZaH
ieQ,i<l ieQ,i<l 1<i<l i€eQ,i>l
—flan+ Z ai | — Z pi
1<i<l i€Q.i>l
(f is concave and Z a; < Z a;)
ieQ.i<l 1<i<l
=flau+ Y al- Y o
i€eQ,i<l i€eQ,i<l
q _ -1
+Z|:f(zaz+aH+p aH) (Zai+aH+(P_l)'aH>:|
p=1 i=1 i=1
- pi  (because Q\[/] € Zp and|Q\[!]| = q)
i€eQ,i>l
>flan+ D a|l— > p
ieQ,i<l i€eQ,i<l
q

-1 -1
+ [f(zai+aH+P'aH>_f(zai+aH+(P_1)'aH>j|
p=1

i=1 i=1
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q
=Y pyp  ({l+1.....1+q) S Iy withsizeq; by Lemma32, > p;
p=1

> ZP:‘)

ieQ\[l]

=faH+Zai—Zpi

icQ,i<l icQ,i<l

I+q

i=Il+1

q -1 -1
+> |:f <Zai+aH+p'aH> _f<zai+aH+(P_ 1)'aH>]
p=1

i=1

p=1 i=1

ZfaH+Zai—Zpi

icQ,i<l ic,i<l

[ (Sann ) o

i=1

-1
> ai+aL+(p- 1)‘aH>:|

i=1

i=1

k=1 -1 -1

+Z |:f (Zai—i—ay—i—p'ay) —f(Za,-—i—aH—i—(p— 1)~aH>:|
p= i=1
k

i
-l -1

- |:f<Zai+aL+p~aH)—f<
p=l1 i=1

-1
)—f(Zai+aH+(P—1)'aH)vand

-1
(Letgf =f (Zai +apg +p-ay

i=1

-1
Qf:f(Zai—l-aL—l—p.aH)—f(

i=1
By Lemma 2.1,@{’ < Qé’
forany 1 < p <k—-1.)

-1
Y ai+aL+(p- 1)'aH>i|

i=1

i=1

-1
Zai+aL+(p— 1)-aH>~

i=1

-1
=flau + Z a; | — Z Pi([i—1])+f<zai+aH+(k_l)aH>

ieQ,i<l i€eQ,i<l
-1 k
i (Saen)- 3
i=1 i=l+1

i=1

>flan+ Y a|—- ) m@nli—1D

icQ,i<l ic0,i<l

-1 -1 k
+f(2ai +aH+(k—l)aH) - f <Zai +aH> - Z Pi
i=1

i=1
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(F is submodular)

-1
=F({k+1}U(Qﬂ[l—1]))—F(Qﬂ[l—1])+f<zai+aﬂ+(k—l)aﬂ>

i=1

-1 k
_f(zai +aH) - > n
i=1

i=l+1

-1
> F(tk+ 1)UL — 1) = F(L = 1) + f (Za,- +an +<k—l)aH)

i=1

-1 k
- f (Z a; +aH> — Z Pi (F is submodular)
i=1

i=l+1

-1 -1 -1
=f (aH +Zai> - Z,Oi +f (Zai +ay + (k—l)aH)
i=1

i=1 i=l1

[—1 k
—f(zai+ay) Y
i=1 i=l+1

1—1 k 1—1 k
=f(aﬂ+za,-+ 3 ) ST o
i=1 i=l+1 i=1 i=l+1

_ AL\
= Sk+1

Case 2 Next we consider the remaining Q C [k] with |Q| < k — 1, which satisfies
[ € Q.1If Q does not contain all the elements in Z; N [k], we let I’ € Z; N [k] be any
lower-weighted item that is not included in Q. By definition of [, I’ < 1. We observe
that

(8 =1 aun+ Yooaitar|— Y pi—p
ieQ\{l} ieQ\{l}

> flayg + Z a; +ap | — Z pi — py (becausepy > p; by Lemma 3.2)

ieO\{l} ieQ\{l}
_ LOQUI'ND
=G
> {,(U_ﬂ}{l} (follows from Case 1).

Thus it suffices to consider all Q C [k] with |Q| < k — 1 such that Z; N [k] C Q.
Givenafixed0 < s < k—1—dp,recall that H® is the set of the first s higher-weighted
items in the natural ordering of N. For any Q0 C [k] that satisfies [Q < k — 1,
TN S Qand [QNTyl =5, 82, = ¢55™ by Lemma 3.4. Hence if 0% =
arg mingciy,|0|<k—1,Z, NkI<O g“kQH, then Q* must assume the form of £(dr) U H*
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forsome 0 <s <k—1-—dg.

L(d)VUH*
G = | an + ooal- > w

ieL(d;)UHS ieL(d)UHS
= F({k4+1}U L(dL) U H) — F(L(dy) U H®)
> F(lk+ 1} U £(d) U H 179y — F(L£dy) u 174
(because F' is submodular)
=F({k+1}Ulk— 1D — F(lk— 1D

k—1 k—1
y ( +z) Y
i=1 i=1

k-1
_gk I

In summary, given any Q C [k] such that |Q| < k — 1, if O contains all the lower-

weighted items before &, then ng+1 > ;“k[]:ll]; otherwise, {,grl > {lyﬂ}{l}. Therefore,

1} 1
i = min {10 g0 0

Lemma3.10 If [k + 1] € Ty, then {ev = ¢,
Proof This result immediately follows from Lemma 3.5. O
Corollary 3.10.1 The lifted-EPI coefficients {; for j = k and k + 1 are given by

k=1 .
Cj[ I, JjelL,

{j=
min[?H,-,pijﬁ(mm{l L,d DUL(dL —i+D)U(TyNk—1]) =M1 <i<dy,

where {14, = g‘][k_l].

Proof We know that ¢ = ;“k[kfl] from the EPI coefficients, so when k € 7, the

proposed assignment is correct. If k = H1, then {H(mm{o ALPULEDVTHO=1D)

§[k 1 ,and & = mm{g“[k 1] [k 1]} which is also correct.

The caseof k +1 € I, follows from Lemma 3.7. Suppose k + 1 € Zy. Then
k+1="H;orHy. When k + 1 = H|, Lemma 3.8 shows that ¢34+ = g“k[]_:l]. When

k+1="Hy, k ="H;and g = ;,Ek_l] = k[k+_11]- Lemmas 3.9 and 3.10 prove that

[k—1 k(!
v = min {471 = g, SN 0
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We have now cleared the base cases. For a strong induction, our induction hypothesis
is that for all j € [k, J — 1] the following holds:

g, if j € ZL\lk — 11,

{j=
min {CHH, é,J’_H(mln{t—l,dL})UE(dL—l+1)U(IHﬂ[k—1])} ifj =M € [dy),

where ¢3¢, = ;H(mm{o ALDVLAL =0V Nk=1D g/[kfl] We next show that the pro-

posed coefﬁ01ents are correct for j = J, given the induction hypothesis, to complete
the induction step.

Lemma 3.11 Suppose the induction hypothesis holds. If J € Iy, then {; = C[k 1,

Proof As defined earlier in this section, L is the set of the first # lower-weighted items
in N, and H? is the set of the first s higher-weighted items. Thanks to Lemma 3.4,
we know that arg mingc[y—13,|0|<k—1 CJQ must have the form L' U H®, where 0 <

t < |Zr|,0 <s < |Zy|land s +t < k — 1. Recall that d;, = |Z; N [k — 1]| and
|Zg N[k — 1]] = k — 1 — dr. We prove the stated lemma by cases.

Case 1 Supposet < dr ands < k — 1 — dr. This means that both the lower- and the
higher-weighted items we include in the candidate set L' U H* all belong to [k — 1].
In this case, L' U HS C [k — 1]. By Lemma 3.3, {}“ UH® > { k=11,

Case 2 Suppose t > dr and s < k — 1 — dr. This means that the higher-weighted
items we include in the candidate set L’ U H* all belong to [k — 1]; in other words,

$ C [k — 1]. Meanwhile some lower-weighted items in L’ U H® are taken from
N\[k — 1]. We let g = t — d|,, which is strictly positive by assumption. We construct
twosets W =L'UH*N[k—1]C[k—1]land U = L' U HS\[k — 1] = L"\[k — 1].
By design, |U| =g and WU U = L' U H*. We also observe that [k — I\W C Zy,

and
Zal+qaL<Za,+an< Z a;. (11D
ieWw iewW ielk—1]

The latter follows from ¢t +s = |[W| +¢g < k — 1, which impliesg <k — 1 — |W|.
For any L' U H* in this case,

”U”S—f(aj+2a,+2a,)Zqu

ieW ieU ieW ieU

> f (aL + Z a; +qaL) Z pi — q{lk 1 (by the induction hypothesis and U € L")
ieW ieW

(“L+Zat)+2|: (aL+Zai+PaL) -f (GL+Zai+(p—1)aL):|
ieW ieWw ieW

k—1
- Zpl qg‘[j !
ieW
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o T
=f (aL-i- Zai) + Z S (aL+ Zai-HmL) -f (ZGH-IML)}
ieW p=11 ieW ieW

Y
ieW
o
Zf(ﬂL-i-Zai)#*Z f(aL-i- > ai) —f( > di):|
iew p=1[ ielk—11 ielk—1]
- Z pi —q;}"*”
ieW

(by concavity of f and (11))

=f (uL +y a,-) +qcf 3T g - 1) — g
ieW ieW
> F{J}UW)— Z piWNT[i—1])  (by submodularity of F)
ieW
=F{J}UW)— F(W)
> F{J}U[k—1]) — F([k —1])  (by submodularity of F)

zcﬁk—l].

Case 3 Supposet < dy ands > k— 1 —dr . In this case, the lower-weighted items we
include in the candidate set L' U H* all belong to [k — 1], and some higher-weighted
items in L' U H*® are taken from N\[k — 1]. We define W = (L' U H*) N [k — 1]. Let
[ = L;41 be the (r + 1)-th lower-weighted item. In this case, t < d,sol <k — 1,
[ ¢ Wand{ = p;. Moreover, weletg = [(L'"UH®)\[k—1]| = s—(k—1—d_). Since
s >k—1—dr,q > 0.Inaddition, t+s = t+qg+k—1—d; <k—1,s0t+qg—d; <O0.
Recall that H(g) is the set of the first ¢ higher-weighted items strictly after k — 1. We
notice that L' U H® = W U H(g). Theset V. = WU {[JUH (g — 1) C [Hy — 1] has
cardinality ¢t +k—1—dy)+1+g—1=k—1+(t+q—dy) <k—1.ThusV
corresponds to a feasible solution to the lifting problem (10) for ¢3¢, and {7‘24 > &H,-

(O =y aj+ ) ai+ Y, ai)_zpi_ DG

iew ieH(q) iew ieH(g)

=fla+d a+ ) ai+aH)— Yoohi— Y G-, +a

ieW ieH(g—1) ieWull) ieH(g—1)

=f|> ai+an —Zli—é“Hq-sz
ieV ieV
=C7Y[q —iH, oz 0

[k—1]

>¢; (because!l, J € Z7, and Lemma 3.2 applies).

We have now considered every L' U H®, forany 0 < t < |Z.|,0 < s < |Zg|
such that s + ¢ < k — 1. In all the cases, {lL[UHS > dk*”. Hence we conclude that

k-1
gy =§} I O
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Lemma 3.12 Suppose the induction hypothesis holds. If J = Hy, then {j = {Ek 1

Proof Due to Lemma 3.4, it is sufficient for us to show that §JQ > g“[k 1 for all
Q C[J—11,10| < k—1suchthat Q = L' U H® for some 0 < t < |Z;| and
0 <s < |Zy]|. Since J = Hj, the higher-weighted items that can be included in Q

must belong to [k — 1]. Thatis,s < |Zy N[k —1]|]=k—1—dL.

Case 1 Suppose t < dr. In other words, the lower weighted items we include in O
are exclusively from [k — 1]. Then Q = L' U H* C [k — 1]. According to Lemma 3.3,
§ > C k=11
Case 2 Suppose t > dy + 1. Now at least one lower-weighted item indexed between
kand J —1lisin Q. Let the number of such lower-weighted items be g > 0. We define
W=0N[k—-1]land U = Q\[k — 1]. Then [k — I\W C Ty, |W| =dr + s and
=1{k,....,k+q—1}.Since U € Ip, ¢ = ¢/* M foralli € U by the induction
hypothesis. To ensure the cardinality of Q isatmostk —1,s < k—2 —d . This means
that [k —1]NZy\H® # . We use u to denote an arbitrary elementin [k — 1]NZyz\ HY,
which satisfies @, = ay and ¢, = p,. We observe that W U {u} C [k — 1]. Since
t+s=dp+q+s<k—1,g<k—1-—(dp+s)=k—1—|W]. It follows that

Zai+aH+(q_l)aL§Zai+an§ Z a;. (12)

ieW ieW ielk—1]

For any Q of the given type in this case,

z,Q=f(aH+Za,~+ZaL>—Zm—Z¢,«

ieW ielU ieW ielU
=f (aH + Z ai + qaL) - Z pi — q{k[k 1 (by induction hypothesis)
ieW ieW

f

IR

k—1
zal+a,{+m) (zai+aH)—ch i Y w)-s
ieW ieW ieWU{u} ieW

f<0L+Zai +ap+(p— 1>aL) - (Zai +an+(p— 1>aL>} —qg!

ieW ieW

Il
M=

~
Il

+r > ai)—Zp,-

ieWU{u} iew

f (aL-I- > ai) —f( > ai)} —q{,&k”—l—f( > fli) - pi
1] ielk—11 ielk—1] ieWUlu) iew

(by Lemma 2.1 and (12))
=qcf N =gt FOV Utuh) = Y peli — 1)
ieW
> F(WU{u}) — Z pitWNI[i —1]) (because F is submodular)
ieW
=FWU{u}) — F(W)

M=

~~
Il
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> F([k —1]U{u}) — F([k — 1])  (again because F is submodular)
k—1

k-1
=f (aH +Zai> - ZC:‘ =
i=1

i=1

Therefore, {JQ > ;}kil] for all Q C [J — 1] with |Q] < k — 1. We conclude that
_ k1]
CHl = f] . O

Lemma 3.13 Suppose the induction hypothesis holds. If J = H; for some?2 < i < dp,
then

¢ = min {CHH, é‘]?—l(min{i—l,dL})Ull(dL—i+1)u(IHﬁ[k—l])} '

Proof 1In this case, there exists at least one higher-weighted item before J and strictly
after k — 1. The coefficient {7, , is the optimal objective value of the H;_-th lifting
problem (10). Since both H; 1, H; € Zy,all Q C [H;—1—1]with|Q| < k—1 arethe

supports for all the feasible solutions x to both the 7;_1-th and the H;-th lifting prob-

Jem (10). Thus EJQ >0, > min {fH,-,p é,]?-{(min{i—l,dL})UE(dL—i+1)U(ZHﬂ[k—1])}.

The following discussion focuses on O < [J — 1] with |Q|] < k — 1,

such that Q is not a subset of [H;—_; — 1]. We aim to show that §JQ >

min {;Hi_l’é-j?'l(min{i—1,dL})Uﬁ(dL—i+1)U(IHﬂ[k—1])} for any such set Q. This state-

ment is true as long as it holds for Q in the form of L' U H* for some 0 < ¢t < |Z|
and 0 < 5 < |Zg|, as a result of Lemma 3.4. Since Q is not a subset of [H;_1 — 1],
Q contains at least one item from the set {H;_1, H;—1 + 1, ..., H; — 1}. In this set,
Hi-y€Zgand {H;—1+1,..., H; — 1} C 7.

Case 1 Suppose H;—1 € Q = L'UH?* . Inthis case, Q contains all thes = (i —1)+(k—
1—dp) = k+i—2—d higher-weighted items up to and including H;_ because of
the form it assumes. This assumption implies thatk+i —2—d; <k—1,s0i—1 <dj.
Toensurethat |Q| <k—1,t <k—1—(—1)—(k—1—d;) =d; +1—i.Recall
that d; = |Z; N[k — 1]|. Therefore, L' = L(¢t) C [k—1].Forany0 <t < d;+1—1i,
we define W = L(t) U (Zy N[k — 1]), and the set Q = L' U H* satisfies

(2= a1+Zaz)—Za

leQ leQ

=f aH"’Zai“‘(i_l)aH)_Zpl_ Yoo

leW leW leH(i—1)

> f aH+Zai+(i—1)aH)—ZPl_ > oa

leW leW leH(i—1)
dr—i+1
+ Y (pe, WUWUHG = DU LGP — 1) = o, (£, — 1D)
p=t+1

(because [Lp —1] S WUL(p—1) fort +1<p <d; —i+1, and F is submodular)
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:f(aH—f— Z ai+(i—1)aH)— Z oL — Z q]

leWUL(d—i+1) leWUL(d—i+1) leH@i—1)

:f(aH+ Z a,--}—(i—l)ay)

1eL(dL—i+1)U(TyN[k—11)
- Z o= Z 9]
leLd,—i+DU(TyN[k—1]) IeHi-1)
L(dL—i+ DU Nk—1)UHG—1)
J

=
> min {CH,-_I ’ é_]?-[(min{ifl,dL})U,C(deiJr])U(IHﬂ[kfl])} .

Case 2 Suppose H;_1 ¢ Q = L' U H*. In this case, Q must contain the lower-
weighted items H;_1 + 1, ..., H;—1 4+ g for some g > 0, so that Q is not a subset of
[Hi—1 —1].Let W = ON[H;—1 — 1], then Q = WU{H,;_1+1,..., Hi—1 + ¢} and
Wl =k—1—¢q < k—2.Giventhat’H;_1+¢g € Q, we observe that W\[k — 1] consists
of only lower-weighted items, and there are at least | W\ [k — 1]| 4 ¢ higher-weighted
items in [k — I]\W. Thus, forany p € {1, ..., q},

Y. atpa|-f D a+@-ba

leWU{H;_1} [eWU{H,;_1}
=f (Zaz +ap +PaL> - f (Zaz +an+(p— 1)aL>
leW leW

=f Z a + Z ap +ag + par,

leWNnlk—1] le|W\[k—1]|

- f Z a + Z ap +ag + (p— Dar

leWNn[k—1] le|W\[k—1]|
>fl Y a+ ) an+ta
lewnlk—1] Ie|W\[k—1]|+p

-1 Y a+ > am| (byLemma2l)

leWN[k—1] le|W\[k—1]|+p
>f Z a+ap|—f Z a
le[k—1] le[k—1]

(by the aforementioned observation and Lemma 2.1)

_ lk—1]
— SHioi+p -
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826 Q. Yu, S. Kiigikyavuz

We further derive that
q
CJQ =f (aJ + Zal +qaL) - ZQ - ZZHHH
lew lew p=1
=f (aH+Zal> Y a+f (aH+Zal+qaL> - f <aH+Zal>
leW leW leW leW

q
- ZCH;_ler
p=1
= f (aHil + Zal> - ZQ

leW leW
q

+Z f Z aj+par | - f Z ar+ (p—Dar | = &Hi+p
p=1

leWU{H,;_1} leWU{H,;_1}
: [k—1]
W —
=0 T Z |:§H,-,1+p - fH,-,1+p]
p=1

> ;’72/’, » (forany 1 < p < ¢, [k — 1] is a feasible solution support for the
(H;—1 + p)-th lifting problem)
> I, (W 1is a feasible solution support for the H;_;-th lifting problem)

> min {;Hi—l’ é,]"}-((min{ifl,dL})UL(deiqu)u(IHﬁ[kfl])} .

So far we have shown that for any Q9 < [J — 1] with |Q] < k — 1,

C,Q > min {fH,-,p é_;'{(min{i—l,dL})U[,(dL—i+l)U(IHﬂ[k—1])}. Hence £; = min {@H,-,]»

H(min{i —1,d; YUL(d, —i+1)U(ZyN[k—1]) }

¢; o

Lemma 3.14 Suppose the induction hypothesis holds. If J € Iy, then J = H; for
some i € [dy]. The J-th lifted-EPI coefficient is

¢; = min {CHH, ;_j?-[(min{i—l,dL})UE,(a’L—i+1)U(ZHﬂ[k—l])} ’

where ¢, = ;}kil].

Proof This induction step for J € Zy holds by Lemmas 3.12 and 3.13. O
With all the lemmas established above, we now prove Proposition 3.6.

Proof (Proposition 3.6) The proposed lifted-EPI coefficients ¢ are correct in the base
cases j = k and k + 1 according to Corollary 3.10.1. Given our induction hypothesis
that the proposed coefficients hold for all j € [k, J — 1], Lemmas 3.11 and 3.14 show
that the proposed ¢ is the optimal objective of the J-th lifting problem (10). Hence
we conclude that the proposed lifted-EPI coefficients ¢; for all j € [k, n] are indeed

@ Springer



Strong valid inequalities for a class... 827

the desired optimal objective values of the corresponding lifting problems (10). In
other words, our lifted-EPIs are exact from lifting the EPIs. O

Now we know that the lifting coefficients given in Proposition 3.6 are exact. In the
next corollaries, we infer the strength of the lifted-EPIs.

Corollary 3.6.1 The lifted-EPIs are facet-defining for conv( 73,% ).

Proof For any S € N with |S| = k, the cardinality constraint in P,?(S) is redundant.
Thus the EPIs are facet-defining for such conv(P,? (8)) [11]. Since the lifted-EPIs are
exactly lifted from the EPIs, they are facet-defining for conv(P,f). O

Corollary 3.6.2 For any conv( 73,3 ), the lifted-EPIs are at least as strong as the approxi-
mate lifted inequalities proposed in [34], Proposition 11. Although Yu and Ahmed [34]
call such inequalities the lifted inequalities, to distinguish them from the lifted-EPIs
with exact lifting coefficients, we refer to them as the approximate lifted inequalities
(ALIs). An ALI has the form

k n
w > Zpixi + Z ixi,
i=1

i=k+1

where p; fori € [k] are the EPI coefficients. For eachi > k, let T with |T| =k — 1
be a subset of [i — 1] such that the sum of the weights are as high as possible. Then

b = flai+2icra)) — (X jeraj-
Proof Let an EPI with respect to [k] be given. The lifted-EPT w > Zle pixi +

Yk 41 Six; is exactly lifted from this base EPI. The proof of Proposition 11 in [34]
shows that ¢; < ¢; fori € [k + 1, n]. O

Example 2 Suppose N = [6], a = [4, 100, 100, 100, 4, 4] and k = 2. Let us consider
the concave function f (@"x) = ~aTx. The ALI [34] with a permutation of N,
§=(2,5,1,6,4,3),is

w > 0.198x; + 10xp + 4.142x3 + 4.142x4 + 0.198x5 + 0.198x¢,

which coincides with the lifted-EPI, that we exactly lift from the base EPI for § =
{2, 5}. Another permutation § = (5, 2, 3, 1, 4, 6) yields an ALI

w > 0.198x1 4 8.198x7 4 4.142x3 4 4.142x4 4 2x5 4+ 0.198x6.

Consider the EPI that is associated with § = {2, 5} and 8. The corresponding lifted-EPI
is

w > 0.828x1 4 8.198x7 4 5.944x3 4 5.944x4 4 2x5 4 0.828x.

In this example, the lifted-EPI dominates the ALI.

@ Springer



828 Q. Yu, S. Kiigikyavuz

4 Exact lifting of separation inequalities

In this section, we exactly lift the SIs proposed in [34] to obtain strong valid linear
inequalities for conv(P,f). We refer the readers to Sect. 2 for a detailed introduction
to the SIs (5) and the definitions of P} (Z;) and P/ (Zx). In particular, recall that
ip € {0, 1,...,k — 1} is a fixed parameter used to construct an SI. In Sect. 4.1, we
propose the lower-separation inequalities (lower-SIs) that are exactly lifted from the
SIs of Conv(Pk1 (Zr)). In Sect. 4.2, we propose another class of inequalities that are
exactly lifted from the SIs of conV(P,i (Zy)). We call these lifted cuts the higher-
separation inequalities (higher-SIs).

Before analyzing the lifting procedures, we show some useful properties of the
coefficients in any SI constructed with an integer 0 < ip < k — 1. In the lemmas
below, we let N = [n] be the ground set, in which each item has weight « € R . For
ease of notation, we assume that the permutation § used to construct Slis (1, 2, ..., n),
so we omit § in the indices.

Lemma4.1 Foranyr € [k — ig],

r = —— [Flka) — Flioa)] < f((io +r)a) — fliow).

k —io

Proof The stated inpquality is equivalent to k;i" [f(Go+ra)— flox)] > flka)—
f(ipa) because k;—"’ > 0. We observe that

D1 f (o + rye) — fio)]

r

k — o —
= f(Go +r)a) — fliox) + l+r[f((io +r)a) — flioo)]

k o r
= F((lio +r)a) = flioa) + ——— Y [f (o + )a) = f (o +i — Do)

i=1

~

k —ig—
> f (o + @) = flioe) + ———= Y[f (o +r)e) = f(lio +7 = Dao)]
i=1
(by concavity of f)
= f (o + r)e) — flioe) + (k —io — r)[f (o + re) — f((ig +r — Da)]
k—ip—r
> f((io+r)a) = floa) + Y [f(lo+7r+Da) = f(lio+r—1+Da)]

=1
(by concavity of f)
= f((io +ra) — flioa) + f(ka) — f((io + r)a)
= f(ka) — f(io).

Therefore the stated relation holds. O
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Lemma 4.2 In the SI (5), p1 > p2 > -+ > piy > .

Proof The descending trend among p;, for i € [ip], follows from concavity of f.
By Lemma 4.1, < f((ip + 1)) — f(ipar). Moreover, f((iop + Do) — f(ip) <
f o) — f((ip — ) = p;, because of Lemma 2.1. Thus p;, > v, which completes
the proof. O

4.1 Lower-separation inequalities

Without loss of generality, we index the items in N in such a way that, [|Z;|] are
the lower-weighted items, and [|Z;| + 1, n] are higher-weighted. We assume that
|Zr| = k so that SIs are defined for conv(P,i (Z1)). Let any such SI (5) constructed
with some iy € {0, 1, ...,k — 1} be given. Suppose the permutation of Z; used to
construct this SIis §. Again without loss of generality, we assume that the permutation
8 =(1,2,...,1Zr]). This can be achieved by re-indexing the lower-weighted items
in N. Thus we omit § in the discussion below.
We would like to lift this arbitrary SI to derive an inequality of the form

io IZL| n
veYamt 3 vnt 3 0
i=1 i=ig+1 J=ITe1+1

In this expression, 7; is the optimal objective value of the j-th lifting problem (14)
for j € [|Zp] + 1, n].

io IZL| Jj—1
nj=min w— Z,Oixz' - Z VX — Z niXi (14a)
i=1 i=ig+1 i=|Tp|+1
j—1
st. w> flan +Zaixi , (14b)
i=1
Jj—1
xi <k-—1, (14¢)
i=1
x e {0, 1}/, (14d)

We call such inequalities the lower-SIs.

In the j-th lifting problem (14), any feasible x has a corresponding support X =
{i € [ —1]: x; = 1}. On the other hand, for any X C [j — 1] with | X| < k — 1, there
exists a unique feasible solution x such that x; = 1ifi € X, and 0 otherwise. We will
later analyze the optimal objective of (14) in terms of the feasible supports. Since we
are minimizing the objective function, given any feasible x, the lowest objective value
is attained when constraint (14b) is tight. We denote the best objective value evaluated
at a feasible x with support X by

nX=f<aH+Zai>— dooki— Y, Y- > om

ieX ieliglnX ielio+1,1Z.11NX iel|Tp)+1,j—11NX
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We first note that, the lifted coefficients n;’s are descending.
Lemmad4.3 Forany |Zp|+ 1< ji < j2 <n,nj > nj.
Proof This result immediately follows from Proposition 1.3 on page 264 of [28]. O

Recall that H® is the set of the first s higher-weighted items in N. In this section,
by our assumed indexing, H® = [|Z.| 4+ 1, |Z| + s]. The next lemma characterizes
a general form of an optimal solution support to any lifting problem (14).

Lemma4.4 For any j € [|I.| + 1,n], n; = nQ* for some Q* C [j — 1] with
|Q*| < k — 1, such that Q* = [t]U H®, for some 0 <t <k —1and0 <s < |Iy|
such thatt +s <k — 1.

Proof Consider any Q C [j — 1] that satisfies |Q| < k — 1. We letf = |Z; N Q| and
s = |Zyg N QJ. Then

n? = f(an +iaL +5an)— Y pi— > V- > ni

i€liolNQ ielip+1,1Z.11NQ iellZp|+1,j-11nQ
> f(an +iap +5au)— > pi— > Y= 7
ielio]Nl] i€lio+1,|ZL|1N[7] ieH®
(from Lemmas 4.2 and 4.3)
_ n[f]UHE.

Therefore the set of all the feasible supports Q in the form of [¢] U H® contains an
optimal support Q* = argmingc(;—1],|Q|<k—1 n€, such that " = nj. O

Lemma 4.4 suggests that there must exist an optimal solution support for any lifting
problem (14) that has the form [t]U H®, which concatenates the first  lower-weighted
items with the first s higher-weighted items. We next compare all feasible solutions
of this form in Lemmas 4.5, 4.6 and 4.7. It turns out that for any fixed number of
higher-weighted items s < k — 1, the support [k — 1 — s] U H* always has the lowest
objective value. This result is formalized in Lemma 4.8.

Lemma4.5 For any 0 < s < min{|Zg|, k — 1}, plt=HVH" > plUH" g0 gl ¢ €
[min{k — 1 — s, ip}].

Proof Given any [t — 1] U H* that satisfies the stated properties,

1—1 IZL1+s
! =HYHY = £ (ay + (1 — Dag, +sap) — o= D
i=1 i=|Zp|+1
= f(tag + (s + Dap) — [f (tap + (s + Dag) — f (¢ = Dag + (s + Dag))
r—1 [Zp|+s
=Y o= Y. mi=f(ap+ s+ Dap) —[f (tag) — £ (1 — Day))
i=1 i=|Tp|+1
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1—1 IZLl+s
- Z’Oi - Z n;  (because f is concave)
i=1 i=|Tp|+1
t—1 |Zp|+s
= f(ag +tag +say) — pt —Zpi - Z ni
i=l1 i=|Tp|+1

— ylrluH’

m}

Lemmad4.6 Let any 0 < s < min{|Zy|, k — 1} be given. If k — 1 — s > i, then
plVHE > min{plio V1 plk=1=sIVH"y for il t € [ig, k — 1 — s].

Proof We first observe that for every ¢ € [ig, k — 2 — 5],

pUFHOHE 00 (6 Dag + tag +ap) — £ (s + Dan +taz) — v
Since f is concave, f ((s + 1)ay +tarp +ar) — f ((s + )ay + tar) decreases as
[HTIVHT_IAVH G inks.

t increases. This implies that when ¢ becomes bigger, n i
With this observation, we prove this lemma by contradiction. Suppose there exists

io <gq <k —1—s, such that ng.‘”U”S < gliolVH® 4ng nE‘”UHS < plk=1=sIUH* Thep
g—1
p=io
and
k—2—s
plk=1=$IUH* _ lqlUH* _ Z [n[p+l]UH _ ylpluH ] - 0.
pP=q

Hence, there exists g1 € [ig, g — 1] such that pla1 VA" _ plailVH* - There also

exists g € [¢g, k — 2 — s] such that r;[qZ‘H]UHS — r;[q?]UHS > (. This contradicts our
observation that n[;H]UH — ny]UH decreases as ¢ gets larger. Thus no such g exists.

We conclude that 7l"1VH* > min{yliolVH*  plk=1=sIVH"} for all ¢ € [ig, k — 1 — s]. O

Lemmad.7 Let any 0 < s < min{|Zy|,k — 1} be given. If k — 1 — s > i, then
n[’O]UHS > n[k_l_‘Y]UHj. In other words, r;[’]UHS > n[k_l_s]UHs forallt € [ip, k —
1—ys].

Proof The difference nlio]VH* — plk=1=sIUH* tyrng out to be non-negative.

; s 1 s
pliolUH® _ lk=1=s]UH

= flag +ioaL +sag) — f (ag + (k—1—s)ap +sap) +*k—1—s5—ip)}
= fGoaL + (s + Dag) — f (k=1 —s)ap + (s + Dag)
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W [ (kap) — fioar)]
= floar + (s + Dap) — f (k=1 —=s)ag, + (s + Dap) + f(kar) — floar) — (1 + )¢
= fGoar + (s + Dap) — f (k=1 =s)ar, + (s + Dap)

+ f(kar) — f(oar) + f(oar) — f((io + 1+ s)ar)

(by Lemma 4.1)
= fGoar + (s + Dag) — f(io + 1+ s)ap) — [f ((k =1 =s)ap + (s + Dagy) — f(kap)]
= f(Go+1+say + s+ Dlag —ap)) — f(ip+1+s)ar)

—[f (kap + (s + D(ag —ap)) — f(kap)]
>0, (becauseip + 1+ s < k and f is concave).

+

m}

Lemma 4.8 Given any 0 < s < min{k — 1, |Zg|}, n[kfl’SJUHS < n[’JUHS for any t
such that [t]U H? is a feasible solution support to the (|Zr |+ s + 1)-th lifting problem.

Proof If s > k — 1 —ip,thentoensure [[{|lUHS| <k—1,0<r<k—1—5 <ip.In
this case, Lemma 4.5 immediately suggests that nl/1V#° > plk=1=sIVH* Op the other
hand, if s <k —2 —ip, thenany t < k — 1 — s makes [¢] U H* is a feasible solution
support in the (|Z | 4+ s 4 1)-th lifting problem. For all t < ig, nl/IVH* > pliclVH”

again by Lemma 4.5. It then follows from Lemma 4.7 that for any 1 < k — 1 — s,
7,/[I]UH“ > min{r/[’O]UHs, n[k—l—s]UH“} — n[k—l—s]UH“_ O

Proposition 4.9 The exact lifting coefficients from the lifting problems (14) are

N j=1Tl+ 1,
T | mintnjop I = 1T s s € In— 1 - 2L,
Proof Recall that the optimal solution support for any lifting problem (14) has the
form [¢]U H® for some s, t < k — 1 according to Lemma 4.4. In addition, according to
Lemma4.8, such a support has s+t = k— 1. Therefore, 7, |+1 = n[k’“UHO = plk=1l
as stated in this proposition. For any j > |Zp| + 1, welet j = |Z.| + 1 + s, where
s e {l,2,...,n—1—|Zr|}. We first consider any solution support Q@ < [j — 1]
with |Q] < k — 1, such that j — 1 ¢ Q. Such solutions are feasible to both the
j-th and the (j — 1)-th lifting problems (14). Thus for any such Q, n¢ > nj-1 >
min{n;_y, n*~1=519H"} The remaining feasible supports are Q C [j — 1] with | Q] <
k — 1 that contain j — 1. Due to Lemma 4.4 we only need to consider those with the
form [t] U HS for some 0 < t < k — 1 — 5. Thanks to Lemma 4.8, we know that
plk=1=sIUH" has the lowest objective value among all these supports. Therefore, in
this case, n¢ > plk=1=sVH" > minfy; |, nlk=1=sIVH"} a5 well. We conclude that
the proposed assignments are indeed the exact lifting coefficients. O

Yu and Ahmed [34] show that the SIs constructed with all ig suchthat0 < iy < k—1,
together with the trivial 0-1 bounds and the cardinality constraint, give the convex hull
of ”P,& (ZL), as well as 73,: (Zy). We thus infer the following corollary regarding the
strength of our lower-SIs.

@ Springer



Strong valid inequalities for a class... 833

Corollary 4.9.1 Based on any SI that is facet-defining for conv( P,g (Z1)), the lower-Sls
given by Proposition 4.9 are facet-defining for conv( 77,3 ).

4.2 Higher-separation inequalities

Next, we lift the SIs of c0nv(77kl (Zy)). Throughout this section, we impose the fol-
lowing assumption.

Assumption 4.10 For a given ip € {0, 1, ..., k — 2}, the weights a; and ay satisfy

flkag) — f(oan)

k—io (1>

flap + Go+ Day) — flar +ioap) <

Note that (15) is always true when ig = k — 1. This is because f(ar + kay) —
flap+k—=1ap) = flap+k—Dag+ap)— flap+k—1Dag) < f((k—Dapg +
ag)— f((k—1)apg), where the inequality follows from concavity of f. The right-hand
side of (15) is the average marginal contribution of k — i( units of the higher-weighted
items, which matches the coefficient i in the SI, associated with ip, of conv(Pkl ).
Intuitively, Assumption 4.10 suggests that iy dominates the marginal contribution of
one unit of the higher-weighted item when it is added to a collection of at least one
lower-weighted item and at least io higher-weighted items. Under this assumption, we
will be able to quantify the net effect of adding or removing a higher-weighted item
to the objective value of the lifting problem, given any feasible support with a fixed
number of lower-weighted items (see Lemmas 4.14 and 4.15). This is crucial to the
derivation of the exact lifting coefficients.

Remark 2 Assumption 4.10 is satisfied when apy /g < ap for some real number g > 1
that depends on the given parameters i, k, and the function f. For example, for
f() = /-, k = 2,and iy = 0, this assumption holds when ap /8 < ar < ay. A
higher value of ¢ means that a wider range of a;, will satisfy Assumption 4.10 given
a fixed ay. We observe empirically that, when k is low, ¢ is high across the feasible
choices of ip. For a fixed k, ¢ is usually high when k — i is low. When f is twice
differentiable, a high curvature of f atigay for a fixed ay tends to suggest a high ¢
as well.

Similar to the setups in Sect. 4.1, we re-index N such that the first | 7| items are
higher-weighted, and the items |Zg| + 1 to n are lower-weighted. Suppose we are
given an arbitrary SI for conV(P,} (Zy)) constructed withig € {0, 1, ..., k—1}. Inthis
section, we assume that Assumption 4.10 holds for this given iy. Moreover, we assume
that | Zy| > k for this SI to be defined. Without loss of generality, § = (1,2, ..., |Zy|)
is the permutation associated with the given SI. This allows us to drop § and simplify
the notation.

In the order of j = |Zy| + 1, |Zy| + 2, ..., n, we sequentially solve the lifting
problem (16)

io |Zwl j—1
yj '=min w — Zpixi - Z Yxi — Z ViXi (16a)
i=1 i=ig+1 i=[Tg|+1
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st w> flag+ ) aixi |, (16b)
i=1
j-1
xi <k-—1, (16c)
i=1
x e {0, 1}/ (16d)

With the optimal objective values y;, we construct inequality (17), which is exactly
lifted from the given SI.

|Zu|

io n
w > Zpixi + Z Yx; + Z ViXj- (17
i=1

i=ig+1 J=ITh1+1

We call such inequalities the higher-SIs.
Similar to the discussion in Sect. 4.1, We denote the best objective value evaluated
at a feasible x with support X by

yX=f<aL+Za,->— Yoowi— Y. v- > Vi.

ieX ieliolNX ielio+1,|Zy1NX i€l Zy|+1,j—11NX

Lemma 4.11 captures the observation that the lifted coefficients y; decreases as j
becomes larger.

Lemma4.11 Forany |Zy|+1 < ji1 < jo <n,¥j, = V),
Proof This result immediately follows from Proposition 1.3 on page 264 of [28]. O

We remind the readers that L’ denotes the set of the first ¢ lower-weighted items
in N. The next lemma argues that there exists an optimal solution support to the j-th
lifting problem (16), that is the concatenation of the first # lower-weighted items and
the first s higher-weighted items for some s, < k — 1.

Lemma4.12 For any j € [|Zy|+ 1,n], yj = vy Q" for some Q* C [j — 1] with
|Q*| <k — 1, such that Q* = L' U[s). Specifically, 0 <s <k—1and0 <t < |I|
such thatt +s <k — 1.

Proof This result follows from Lemmas 4.2 and 4.11. We refer the readers to the proof
of Lemma 4.4 for more details. O

Thanks to Lemma 4.12, we know that the support with the lowest objective, among
all the feasible solution supports in given special form, gives the optimal objective of
(16). Lemmas 4.13 and 4.14 explore and compare the objectives of these candidate
solutions.

Lemma4.13 Forany 0 < ¢ < min{|Z.|, k — 1}, p L'V~ > L'US] for gl 5 €
[min{k — 1 — ¢, ip}].
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Proof This proof follows the same arguments for the proof of Lemma 4.5. O

Lemma 4.14 Recall that iy is the parameter used to construct the base SI. Suppose
Assumption 4.10 holds for this iy. Let any 0 < t < min{|Z.|, k — 1} be given. If
k—1—1t>ig then yUU[S] > yUU[k’l’t]for all s € lig, k—1 —1].

Proof We first deduce the following relation from Assumption 4.10:

0> flap + (o + Dag) — flaL +ivay) — ¥
> f(mar + (io + p)ag) — f(mar + (io + p — Dan) — ¥,

for any m, p > 1. Given any L' U [s] described in the lemma,

, io | L |+t
yE S = f(ap +tap + sap) — Zpi —(s—ip¥ — Z Vi
i=1 i=|Ty|+1

= f((t + Day +ipap)
s—ig
+ Z [f (@ + Dag + (ig+iap) — f (¢t + Dag + (io+i — Day) — ]
i=1

io | Zh |+t
=D hi— Y. v
i=1 i=|Zyl+1
> f((t+ Dag +ioag)

k—1—t—igp
+ Z Lf (¢ + Dag + (o +i)ag) — f (¢ + Dag + (io +i — Dag) — ¥]
i=1

| Ly |+t

io
- Z pi — Z y;  (follows from Assumption 4.10)
i=1 i=|Zy|+1
io | Ly |+t
=flap+tap+k—1—-tap) =Y pi—(k—1—t—ig)y— Y
i=1 i=|Ty|+1
_ yL’U[k—lft].
O
L'Ulk—1—t

In fact, yLrU[S] may be lower than y ! when Assumption 4.10 is violated,
despite the fact that its counterpart Lemma 4.7 is true in general. Lemma 4.15 summa-
rizes Lemmas 4.13 and 4.14. It establishes that, under Assumption4.10, L' U[k—1—t¢]
has the lowest objective among all the supports that contains exactly ¢ lower-weighted
items.

Lemma 4.15 Suppose Assumption 4.10 holds for a given ip € {0, 1, ...,k — 1}. For
any 0 <t < min{k — 1, |Z. |}, yL"Yk=1=11 < o L'UIS] for any ¢ such that L' U [s] is a
feasible solution support to the (| Zy| + t + 1)-th lifting problem.
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836 Q. Yu, S. Kiigikyavuz

Proof Itk — 1 —t < ip, then0 < s < k — 1 —¢. In this case, y L'VIk—1=11 < o, L'Uls] i

immediate from Lemma 4.13. Otherwise, suppose s > i is viable. Forany 0 < s < iy,
t H o - . . .

yL'Ulsl > 5, L'Ulio] Then combining this observation with Lemma 4.14, we conclude

that & Uk=1-11 < o, L'Uls] O

Next we provide the explicit form of the lifting coefficients.

Proposition 4.16 Suppose Assumption 4.10 holds for a given iy € {0, 1, ...,k — 1}.
The exact lifting coefficients from the lifting problems (16) are

At J=1Zul+1,
I T R e N R v 1))
Proof When j = |Zy| + 1, any feasible support contains only the higher-weighted
items. Thus y7, 11 = y¥*=1 immediately follows from Lemma 4.15. When j >
|ZH |+ 1, we represent j as |Zg|+ 1 + ¢, where t € [n — 1 — |Zg|]. All the solutions
to the j-th lifting problem (16) with x;_; = 0, are feasible to the j — 1-th lifting
problem. Thus the objective evaluated at these solutions are no lower than y;_;.
On the other hand, if j — 1 is included in the support, then we know that all such
solution supports have worse objective values than L' U [k — 1 — #] by Lemma 4.15.
Therefore, min{y;_1, y~"Y¥=1="1} is the lowest attainable objective value in the j-th
lifting problem (16). This completes the proof. O

Corollary 4.16.1 Based on any SI that is facet-defining for c0nv(77,§ (Zwu)), the higher-
Sls given by Proposition 4.16 are facet-defining for conv( 73,? ).

5 Full description of conv(P2)

In the previous sections, we propose the lifted-EPIs, the lower-SIs, and the higher-
SIs. These inequalities are shown to be facet-defining for conv(P,f) under certain
conditions. The readers may wonder to what extent these strong valid inequalities can
narrow the relaxed feasible space toward its convex hull. To provide insights into this,
we construct the convex hull of P22, with the help of the proposed inequalities, where
7’22 contains two types of weights and has two as its cardinality upper bound.

Throughout this section, we require Assumption 4.10 to hold for iy = 0. In other
words,

flar +ap) — flar) < f(ZZaH).

In Sect. 5.1, we will first describe an additional single constraint, which we call
the super-average inequality, and prove its validity for conv(Pzz). Then we present the
explicit forms of the lifted-EPIs, the lower-SIs, and the higher-SIs specific to conv(7722 ).
In Sect. 5.2, we enumerate all the facets of conV(Pzz) by examining its polar. Lastly,
we show that these proposed inequalities together with the 0-1 bounds and cardinality
constraint fully characterize conv(Pzz) in Sect. 5.3.
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5.1 Valid inequalities for conv(’P.f)

We begin this subsection with a summary of the properties of f that will be helpful
for describing the valid inequalities. First, by the definition of concave functions,

1 1
flap+an)=f (5 2ar, + 3 ‘2aH> > fQRar)/2+ fQRan)/2.  (18)

In addition,

flar) =1[f(ar) + flar) — f(0)]/2
> [flar) + fQar) — f(ar)]/2 (because f is concave) (19)
= fQar)/2.

With exactly the same reasoning, we derive

flan) = f(Q2an)/2. (20)
Relying on these properties, we propose a new single valid inequality for 7322.

Proposition 5.1 The inequality

we Y 10, 5 SO, e

iEIL iEIH

is valid for 7722. We call this inequality the super-average inequality.

Proof We need to show that inequality (21) is satisfied at all the feasible points of 7322.
In particular, it is sufficient to check validity at any point ( f (x), x) in 7722. We represent
such points by P(S1, S2), where S| ={i € Iy :x; =1}and S, = {i € Iy : x; = 1}.
These points fall into one of the following classes: P (¥, @), P({i}, ¥), P({i1, iz}, ¥),
P@,{jb, P@, {j1, j2}), and P({i}, {j}), where i,i1,i» € Iy and j, j1, j2 € Thq.
We first observe that P (4, @), P({i1, i2}, ¥) and P (@, {j1, j»}) satisfy inequality (21)
by construction. It follows from (18) that inequality (21) is valid for P({i}, {j}).
Inequality (21) is also valid for P({i}, ¥) and P (¥, {j}) due to properties (19) and
(20), respectively. Therefore, inequality (21) is valid for 7322. O

It is worth noting that the validity of inequality (21) does not require Assump-
tion 4.10. In the inequalities we describe below, [ denotes an arbitrary lower-weighted
item in N, and % is any higher-weighted item.

Proposition 5.2 Given Assumption 4.10 for iy = 0, the lifted-EPIs for 7322 are

w> flax+ Y [fQa)— fla)lx+ Y [f(aL +an) — flap)lxi. (22)

ieZ\{l} ieTy
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and

w= flama+ Y f @ +am) — famlxi+ Y [f Qam)— famx. (23)

i€l i€Zy\{h}

Proof Inequality (22) is lifted from the EPI with respect to {/} and any permutation
8 of N, such that §; = [. By Proposition 3.6, {; = f(ar) and for all i € Zp\{/},
¢ = fQar) — f(ar). Let the first higher-weighted item in § be &, then ¢, = f(ar +
ag) — f(ar). The next higher-weighted item i has coefficient min{ f(ar + ag) —
flar), fQany) — [f(arL + an) — f(ar)]}. We observe the second candidate minus
the former gives

fQan) =2[f(ar +an) — f(aL)]1 =0 (24)

as a consequence of Assumption 4.10. Thus this second higher-weighted item also
takes on the lifting coefficient f(a; + ay) — f(ar). Following the same reasoning,
we can iteratively show that §; = f(ar +ap) — f(ap) foreveryi € Zy.

Inequality (23) is lifted from the EPI with respect to {#} and permutation 8, in which
81 = h. Again due to Proposition 3.6, {, = f(ay) and §; = f(ap +apg) — f(ap) for
all i € 7. Moreover, the second higher-weighted item in § has coefficient f (2ay) —
f(an). Now, the third higher-weighted item in § has the coefficient min{ f 2ay) —
flan), fQ2an) — [f an) — f(an)] = f(an)}, whichis f(2ap) — f(an). This
follows from Lemma 2.1. Iteratively, we can apply the same reasoning to show that
¢ = fQay) — f(ap) foreveryi € Zy\{h}. O

As we noted in Corollary 3.6.1, inequalities (22) and (23) are facet-defining for
conv(Pzz). Next we state the explicit forms of the lower- and the higher-SIs.

Proposition 5.3 Suppose Assumption 4.10 holds for iy = 0. When |Z1| > 2, the
lower-Sls for 7322 are

w > Z f(ZzaL)Xi + |:f(aL +ay) — _f(22aL)} Xp
iEIL

+ > [f(zaH>—f<aL+aH>+

i€Zp\{h}

f(22aL)] .. 25)

forig =0, and for iy =1,

w> flap)x+ Y [fQa)— fla)lxi+ Y [f(aL +au) — f(aw)lxi. (26)

i€ \{l} iely

Proof We show that the coefficients constructed according to Proposition 4.9 is iden-
tical with those in the given inequalities. When ig = 0, ¥ = f(2ar)/2, which is the
lifting coefficient for all i € Z;. We can interpret / as the first higher-weighted item
being lifted, then n;, = f(ar + ay) — f(2ar)/2. The next higher-weighted item to
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be lifted takes on the coefficient min{ f(a;, + ag) — f2ar)/2, f2ag) — f(ar +
apg) + f(2ar)/2}. We observe that

flar +ap) — fQar)/2 = [f Qan) — flaL +an) + f(2ar)/2]
>2f(aL +an) — fQar) — fQan)
>0  (dueto (18)).

Therefore, this higher-weighted item has lifting coefficient f (2ag) — f(ar +an) +
fQar)/2. Following the exact same reasoning, we infer that n; = f(2ag) — f(ar +
ag) + f(Q2ar)/2 for all i € Zy\{h}. Hence the lower-SI with iy = 0 constructed
according to Proposition 4.9 is the same as (25).

In the case of ip = 1, py = f(ar) and the remaining lower-weighted items take
the coefficient v = f(2ar) — f(ar). The first higher-weighted item i has n; =
f(ar +ag) — f(ar). For the higher-weighted item j right after i in the permutation
of N,nj =min{f(ay +ap) — f(ar), fRay) —[f(aL +an) — f(ar)l} = flaL +
ap) — f(ar). We have justified this in (24) which relies on Assumption 4.10. Hence,
ni = flar +ap) — f(ap) forall i € Iy, and inequality (26) is exactly the lower-SI
with ig = 1. |

Proposition 5.4 Suppose Assumption 4.10 holds for ic = 0. When |Zy| > 2, the
higher-Sls are

w = [f(aL +am) — f(22aH)} X1+ Z [f(ZaL) — flar +an) + f(22aH)} Xi
ieZ\{l}
fQan)
Ty 27)

iEIH

forig =0, and for iy = 1,

w> flam)xn+ Y [flar +am) — flamlxi+ Y [fQau) — flam)lx:.
iel; i€eZy\{h}
(28)

Proof We construct the higher-SIs as given in Proposition 4.16, then show that they
match the given inequalities. Recall that Proposition 4.16 is true when Assumption4.10
for i) = 0 holds. When iy = 0, all the higher-weighted items have coefficient Y =
fQag)/2. Suppose [ is the first lower-weighted item in a fixed permutation of N.
Theny; = f(ar +apg)— f(Rag)/2.Leti € Iy beright after /. The lifting coefficient

vi = min{f(ap +ay) — fQRan)/2, fRar) — [f(aL + ay) — fRan)/2]}. We
examine the difference between the two candidates, which is

flar +an) — fQan)/2 = [fQar) — flaL +an) + [ Qan)/2]
>2f(aL +an) — fQar) — fQan)
=0 (by (18)).
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Thus y; = f(2ar) — f(ar +ag) + f2ag)/2. In fact, we can iteratively show that
all the lifting coefficients for the lower-weighted items are f(2ay) — f(ar + any) +
f(Qap)/2 with the same argument. Therefore, inequality (27) is correct.

Now suppose ip = 1. The corresponding SI over Zy is w > f(ay)xy +
Ziel’H\{h} [fQag) — f(ag)]x;. By Proposition 4.16, the coefficient of the first lifted
lower-weighted item is f(a;, + ag) — f(ag). Let j € I; be the second lifted item.
Then y; = min{f(ar +ap)— f(an), f(2ar)— f(ar +ag)+ f(an)}. Furthermore,

fQar) — flap +apn) + flan) — [ f(aL +an) — f(an)]
=[flar) — fO]+[fQaL) — fla)] = [f(aL +an) — f(an)]
—[f(aL +an) — flaw)] = [f(ar) — fFO)]+ [f2ar) — f(aL)]
—[f(ar) = f(O)] = [fQar) — f(ar)](due to Lemma 2.1)
=0.

Therefore y; = f(ap +ap) — f(an). By iteratively applying the same argument, we
conclude that the foralli € 7y, y; = f(ar +ap) — f(ay). Hence inequality (28) is
the higher-SI with i = 1. O

Note that the lower-SI (26) and the higher-SI (28) coincide with the lifted-EPIs (22)
and (23). To avoid confusion, we will refer to these inequalities as the lifted-EPIs, and
refer to inequalities (25) and (27) as the lower- and higher-SIs, respectively.

Lastly, the trivial inequalities

0<x; <1, foralli e N, 29)

and the cardinality constraint
Y oxi<2, (30)
ieN

are naturally valid for 7722.

5.2 Polarity and facets of conv(’P.f)

Our next goal is to prove that the inequalities provided in Sect. 5.1 fully describe
conv(Pzz). We show this by enumerating the extreme rays of the polar IT of conv(Pzz),
where

I1= {(_nw, T, —m0) € R —mpw+7'x +7m <0, Y(w, x) € conv(Pzz)} .

It is well-known that, for any full-dimensional polyhedron, any non-zero element of
its polar is an extreme ray, if and only if the corresponding inequality is a facet of the
polyhedron (see Theorem 5.2, pg. 99 [28]). In our context, if conv(Pzz) is full dimen-
sional, then m,w > my + 7 Tx is a facet of conv(Pzz) if and only if (—my,, 7, —7m0)
is an extreme ray of I, where (—m, 7) # 0. The trivial inequalities (29) and the
cardinality constraint (30) are the trivial facets of conv(Pzz). To obtain all the other
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non-trivial facets of conv(Pzz), itis sufficient to find all the optimal solutions to problem
(31) given any (w, x) € R x [0, 1]" such that >/, %; < 2.
max 7o + Zfim (31a)
ieN

s.t. 7o+ Z”i <f (Zal) , for all S € Nwith|S| < 2. (31b)

ieS ieS

This is because all such optimal solutions are the desired extreme rays of I1. We
note that 7r,, > 0 because (1, 0) is the recession direction of conV(Pzz). Therefore, my,
is normalized to one in problem (31) to avoid unboundedness. In this subsection, we
first show that conv(Pzz) is full-dimensional. Then we prove that the optimal solutions
to problem (31) for any (w,x) € R x [0, 1]" with Z?:l X; < 2, are exactly the
coefficients of the proposed non-trivial inequalities (21), (22), (23), (25) and (27).

Proposition 5.5 The polyhedron conv( 7322 ) is full-dimensional.

Proof Let 0 € R” be a zero vector, and ¢! € R” be a vector with 1 in the i-th entry and
0 everywhere else. The points (0, 0), (1, 0), and {(f(a"¢'), ¢! )}i_, allliein conv(Pzz)
and are affine independent. Hence, dim(conv(P%)) =n+1. O

We proceed to enumerate the optimal solutions to problem (31). Forany x € [0, 1],
we define/ = arg max; ¢z, X; and h = arg max;c7,, X;. We partition the setof (w, X) €
R x [0, 1]" with Z?: 1 X; < 2 into the following five subsets, where X additionally
satisfies

(cl) 2x; > Y ey Xis
(c2) 2xy > ZieN Xi;
(c3) 2x; < ZieIL X; and 2xj, < ZieIH Xi;
(c4) ZieIL X <2x; < ZieNfi’ 2xp < ZieNfl" and 2x; — ZieIH X, <2x; —
iel; X
(c5) ZieIH xX; <2xp < ZieN Xi, 2x] < ZieN X;, and 2x; — ZieIL xX; < 2xp —
iely Xj.
These subsets are pairwise disjoint and their union is the original set of (w, X). Later,
we may refer to these subsets as categories as well. Given any (w, x) from each subset,
we show that the corresponding problem (31) has the coefficients of one of the five
classes of inequalities, (21), (22), (23), (25) and (27), as its optimal solution. Problem
(32) is the dual problem of problem (31), where Q(S) is the dual variable associated
with constraint (31Db).

min Y QS)f (Zai) (32a)

SCN,|S|<2 ieS

s.t. Z 0(S) =xi, foralli € N, (32b)
S:181<2,83i
Y o =1, (32¢)
S:181<2
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o(S) =0, for all S such that |S| < 2. (32d)

This dual linear program is crucial in the succeeding discussions because we will
use strong duality to show the optimality of the proposed primal feasible solutions.

Now, let any (w,X) € R x [0, 1]" with }"7_, X; < 2 be given. Recall that [ =
argmax;cz, X; and h = argmax;cz, X;.

Proposition 5.6 (c1) If2x; > Y ;_y Xi, then

0, i =0,

7 = flar), i=1,
fQRar) — f(ar), ieZr\{l},
flar +ap) — f(ar), i €Iy,

is an optimal solution to problem (31) associated with X. This T corresponds to the
coefficients of the lifted-EPI (22).

Proof Given that inequality (22) is valid for 7322, 7 is a feasible solution to problem
(31). To prove its optimality, we first propose a solution to the dual problem (32):

Xi, S={li},i € N\{l},
_ 2% =Y . vxi, S={l},
0(s) = | ¥~ 2jen i
1—Xx, S =40,
0, for all other S € N with |S| < 2.

Since X € [0, 11" and 2X; > ),y Xi, ‘0(S) > 0 forall § € N with |S| < 2. Thus
constraint (32d) is satisfied. We observe that

dYo®)= ) xmHw-)Yy ¥+l-x=1,

S5:8]<2 ieN\{l} jeN

so constraint (32c¢) is also satisfied by the proposed solution. For any i € N\{/},

> 0 =0(lih=x.

S:181<2,83i

In addition,

Y. 0®= ) oWLih+oWy= ) T+2m-) =1

5:/8]<2,831 ieN\{l} ieN\{l} jeN

Therefore, (32b) is satisfied, and Q(-) is a feasible solution to the dual problem (32).
The objective of (31) evaluated at 7 is

fapxi+ Y [fQaL) - fa)lxi+ Y [f(aL +an) — (@)%

ieZ\{l) iely
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The dual objective evaluated at Q(-) is

FOOW) + fa) QWY + fQar) Y QUL N+ flap +ap) Y Ol i) (33)

ieZr\{l}) i€ly
= f(ar) (2x1 - xj) + Y. fQapxi+ Y flap +ap)x; (34)
JEN ieZp\{l} iely
= fa) (sz—xz— PBEETEDY x,-)
JETL\{L} J€Lln
+ Y fQapxi+ Y flap +ap)X; (35)
ieTr\{l} i€ly
= fapx+ Y [fQap) — f@apIxi+ Y [f(ap +ay) — flap)l%;, (36)
ieZr\{l} i€ly

which is identical with the primal objective at . By strong duality, 7 is optimal in
problem (31). O

Proposition 5.7 (c2) If2x;, > Y ;. Xi, then

0, i =0,
7= flan), i =h,

flar +an) — flan), i €1y,

fQRan) — f(an), i € Ig\{h},

is an optimal solution to problem (31) associated with x. This optimal solution is
exactly the coefficients of the lifted-EPI (23).

Proof The proposed solution is feasible in (31) due to the validity of inequality (23)
for 7322. Similar to the proof of Lemma 5.7, we again construct a dual solution as the
following:

Xi, S =1{h,i},i € N\{h},
— 2Xp — ) ionvXi, S=1{h},
0(S) = xh_ Z,,eNxJ {h}
l_xh, SZQ,
0, for all other S € N with|S| < 2.

First we show the feasibility of §(~). Given that x € [0, 11" and 2x; > Zi en Xis
constraint (32d) is satisfied. In addition,

0= Y mA2m -y Tl -T =1,

NN ieN\{h} JjeN

@ Springer



844 Q. Yu, S. Kiigikyavuz

indicating that constraint (32c) is also satisfied. For any i € N\{A},

> 009 =0(h.i}) =x;.

S:|8)1<2,85i
Moreover,
Y 0®= Y 0Uhih+0hn= Y m+2% -3 F =%
S:|S1<2,85h ieN\{h} ieN\{h} JeN

Hence, constraints (32b) are satisfied.
The objective of (32) evaluated at Q(-) is

FOOW) + fap) QW) + fQRap) Y OUh. i)+ flap +ag) Y Ok, i})

ieTy\{h} i€l
= f(an) (2xh % - Y. Xj— Y x,-) + ) fQap)x;
J€Tu\{h} JeIL i€Zy\{h}
+ ) flap +ap)x;
iEIL
= flap¥n+ Y_fGap +ap) — flapxi+ Y [fQag) — flam)x
iel; ieTy\{h}
=70+ Y Ti¥;.
ieN
By strong duality, we conclude that 7 is optimal in problem (31). O

Before characterizing the optimal solution to problem (31) for category (c3) of
(w, x), we state a useful lemma.

Lemma 5.8 (Yu and Ahmed [34] Lemma 4 and Proposition 5) Suppose N = 1y, or
N = Iy. In either case, we denote ay, or ay, by «. Let any (w, x) € R x [0, 1]" that
satisfies Y ;o Xi < 2 be given, in which X™ = max;en X;. If 2™ < ",y X,
then

_ i =0,

il

0,
= {f(2a)/2, ieN,

is an optimal solution to the primal problem (31) associated with X. There exists a
corresponding optimal solution Q(S), forall S < N with |S| < 2, to the dual problem
(32); in particular, QW) =1 — Y,y Xi/2.

(37)

Proposition 5.9 (c3) If 2x; < 3 7, Xi and 2X; < ), 7, Xi, then

0, i =0,
i =fQRar)/2, i€,
fQRap)/2, i €lpy,
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is an optimal solution to problem (31) associated with x. This solution corresponds to
the super-average inequality (21).

Proof Feasibility of 7 follows from validity of inequality (21). Next we construct a
solution to problem (32). Let ¥ be a sub-vector of ¥ that contains only ¥;, for all
i € Ir, and we define xH similarly.

By Lemma 5.8, problem (31) associated with X’ has optimal objective f(2ay)/2 -
ZieL xi, for J € {L, H}. Again for J € {L, H}, an optimal dual solution in prob-
lem (32) associated with x”’, which we denote by EJ (), attains the same objective.

Given the feasibility of @J (S) in the corresponding dual problem (32), the following
properties hold:

e 07(S) > 0for any S C Z; such that |S| < 2,
° ngL,mgz EJ(S) =1,
o Y scT, Is|<2.550 EJ(S) =X, foranyi € 7y,
0’ =1~ /2,

where J € {L, H}. We claim that

1= Y, yXi/2, S=0

= 0" (s). SCI.1<IS|<2
0 =1"y
0 (9, SCZpy, 118512
0, for all other S € N with |S| < 2.

is optimal in the dual problem (32) associated with x. Sincex € [0, 11" and ) ; _y X; <

2,13 ;cn %i/2 = 0. Given the non-negativity of @L (S) and EH (5), O(S) satisfies
constraint (32d). Next, we check for constraint (32¢).

Yo =o0m+ Y 0®+ Y 0'®+o

S:S1<2 SCZp:1<|8|<2 SCTy:1<|S|=<2
— —L —L —H —H
=0+ Y. 0W®O-0W+ Y 0 ®H-0®
SCT;:|S|<2 SCTy:|S|<2
=1-> %2+ |11+ ) %2+ [1-1+) %/2
ieN ielr iely
=1.

Foranyi € 7,

' o= Y 0'®+o=x

S:|8]<2,85i SCT;:|S]<2,85i
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and forany i € Z7p,

' osm= Y  o'®+o=x.

S:181<2,83i SCTy:IS|<2,83i

Hence, constraints (32b) are satisfied. o
To show the optimality of 7=, we note that the objective of (32) evaluated at Q(-) is

> o®f (Z m)

SCN:|S|<2 ieS

=00 - fO+ Y 0S)f (Zm)

SCN:1<|S|<2 ieS

=0+ Y §L<S>f(ZaL)—§L(@>-f<0>

SCT;:|S|<2 ieS
—H —H
+ Y 0 (S)f(ZaH)—Q @) - f(0)
SCTy:|S|<2 ieS

= fQap)/2- Yy %+ fQam)/2- Y .

iely iely

The last inequality holds due to the optimality of EL (S) and @H (S). This objective
value coincides with the objective of (31) at . By strong duality, 7 is optimal in
problem (31). O

We next show a lemma and its corollary, which are crucial to characterizing the
optimal solution to the primal problem (31) associated with X in category (c4).

Lemma 5.10 IfXx falls in category (c4), then problem (38) is feasible with a bounded
optimal objective.

min | 2x; — Z xXi|y+ Z X;ri (38a)
i€ly i€ly

st y4+r >0, foralli € Ty, (38b)

ri+r; >0, foralli, j € Ty suchthati < j. (38c)

Proof We first note that y = 0, r; = O for all i € Zp is a feasible solution, so it
suffices to show that (38) does not have a feasible and objective-improving ray. For a
contradiction, we assume that such a ray, d € R+ ZH | exists. We denote its entries
by dy and d,, fori € Ty. Then given any feasible solutiony and r; where i € Ty, the
following properties hold for any A € R:

Y +7Fi+Ady+dy) > 0foralli € Zy;
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ri +rj+ Ady, +dr].) > (O foralli, j € Zy such thati < j;

| 2x =D % |dy+ ) Wy | <.

iely i€y

It follows that d must satisfy

dy +dy, >0, foralli € 7y, (39)

dy, +dy; > 0, foralli, j € Ty such thati < j, (40)

2% — Y X |dy+ Y Xidy, <0. (41)
ielr i€ly

Since 2x; > ZieIL x; and x; > O for all i € Zy by assumption, we infer from (41)
that d contains at least one strictly negative entry.
If dy < 0, then by (39), d,;, > Oforalli € Zy. In this case,

0> 2%, - > % |dy+ > xidy,

iel; iely

> |25 - > % |dy+ ) Xi(—dy) because dy, > —dy by (39)

ielr iely
=d, (2% - ) % - Y ¥
iely iely
=d, (2;?, -~ Zf,-) :
ieN

However, dy (2X; — Y,y Xi) = 0 because dy < 0 and 2X; < )", X; by assump-
tion. Therefore, this case is invalid.

The remaining case is dy > 0. Given our observation that the ray d contains at least
one strictly negative entry, d,, < O for at least one i € Zp. In fact, due to (40), there
can be exactly one i € Iy such that d,, < 0. We let this index be J, and abbreviate
dy, to be d*. In this case, (41) implies that

0> |26 - > % |dy+ > %id,

i€l i€ly

> |2 - Y x| (—aH)+xd + ) xi(=d)
ielr i€Zy\{J}
because dy > —d* by (39), and d,, > —d* fori € Ty\{J} by (40),
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> | 2% — Z X | (—=d*) +xpd" + Z X; (—d™*) because X;, > x,

el ieTy\{h)
=—d*|2x; — le—xh—i— Z X;
ZEIL IEIH\{h}
=—d*|2x; — le—th—i—le
ZEIL ZEIH

Since —d* > 0by constructionand 2x;,—» 7, X¥i < 2X;—) ;c7, X; by assumption,

—d* | 2x; — Zx,—th+Zx, >0

i€l iely

This again violates property (41).

By contradiction, we have shown that (38) does not contain a feasible, objective-
improving ray. Hence we conclude that (38) is feasible with a bounded optimal
objective. O

Corollary 5.10.1 If X falls under category (c4), then problem (42) is feasible.

max 0 (42a)
Y odnih=2%-Y . (42b)
iEIH iEIL
odL. jh + Z odi,jh =x;, foraljeTy, (42¢)
i€Zy\{j}
ol jh =0, forall j € 7y, (42d)
odi,jh =0, for alli, j € 7y such thati < j.
(42e)

Proof Problem (42) is the dual linear program of (38). The variables Q({/, i}) for
all i € Zy correspond to the primal constraints (38b). Here / is included solely as a
placeholder to ensure notational consistency with the proof of Proposition 5.11. The
variables Q({i, j}) forall i, j € Zy with i < j are the dual variables for constraints
(38c). Constraint (42b) corresponds to the primal variable y, and constraints (42c)
correspond to r; for i € Zy. This corollary follows from Lemma 5.10. O

Proposition 5.11 If'x belongs to category (c4), then

0, 1 =0,
= _ | f@an)/2, i €Th,
"7 ) flar +an) — fQRan)/2, i=1,

fQar) — flar +an) + fQRan)/2, i € Ip\{l},
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is an optimal solution to problem (31) associated with x. This optimal solution is the
set of coefficients for the higher-SI (27).

Proof The proposed solution 7; is feasible, shown by the validity of inequality (27)
for 7322. For its optimality, we construct a feasible solution to problem (32) with the
same objective value. Consider

1= Yy Ti/2, S=0,

Xi, S={l,i},i e Ip\{l},

0(8) =1 0(5), S={li}ieTy,
0(9), S={i,jhi jeIn,i=<]j,
0, for all other S € N with|S| < 2,

where Q(~) is any feasible solution to problem (42). Such Q(~) exists, as a result of
Corollary 5.10.1.

We now show that a(-) is feasible to problem (32) associated with X. Since x €
[0,11" and Y,y X < 2, QW) > 0 and Q({l,i}) > O for all i € Z;\{/}. By
constraints (42d) and (42e), Q(-) > 0. Thus (32d) is satisfied by the proposed solution.

We observe that

Yo odLip=2x-) %,

icly ielr

due to constraint (42b). Furthermore,

> o0di.jh=)Y_ > 0di jn/r

i,jeZh.i<j JET ieZy\{j}
=Y 0L n2+ Y. Y 0di.jh/2= )] 0dlin/2
JETH J€Zy ieZy\{j} i€Ty
=y [Q({l,j}H > Q({t,m} /2= 0L ip/2
J€Ty ieZy\{j} i€eZy
=Y x2-|m-)Y ®m/2).
Jj€TH ieZr

The last equality follows from constraints (42b) and (42c). With these observations,
we deduce that

Yo o®=00+ Y, OdLih+ Y 0dLih+ Y. OWi,jh+0

MM ieZp\{l} €Ty i,jely,i<j
=1-) %/2+ Y W42 -y K+ Y X/2-|X- ) %/)2
ieN ieZp\{l} iely Jj€Ty i€l
=]—Zf,’/2+2fi—2fi+ij/z-i-Zfl’/z
ieN i€l i€y JE€Ly i€l

@ Springer



850 Q. Yu, S. Kiigikyavuz

=1-) %/2+ ) %i/2

ieN ieN

=1.

Therefore, constraint (32c¢) is also satisfied.
To check for (32b), we note that for any i € Zp\{l},

Y o) =0dLih =%,

S:81<2,83i

and

Yo 0®= ) odLih+ Y odLip

§:18]1<2,831 i \{I} ieTy
- Z X+ 2% — Z)_ci by (42b),
ieZ\{l} iely
= X].

Forany i € 7y,

Yo o®=0dLih+ Y, 0di.jh =%,

5:18|<2,83i J€Tu\li}
which immediately follows from (42c).

Now that we have shown feasibility of Q(-) in problem (32), the remaining task is
to examine its corresponding objective.

> 0w®f (Z m)

SCN:|S|<2 ieS
=00 - fO)+ Y fQa)OULiN+ Y. flar+am)QUl i)
ieZp\{l} i€y
+ Y. fQaw)0Ui, jh
i,jelp.i<j

=fQay) Y T+ flaL+an) |26 - Y %

ieZp\{l} iely

+ fQam) | Y xi2— 3= ) xi/2

jely i€l

=fQar) Y X+ flr+aw) [Ti— D ¥

ieTr\{l} ieZp\{l}
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+ fQan) | D X2+ D Xi/24%/2-%

ieTy ieZ\{1)

=fQay) Y X+ flaL+an) |%i— Y X

i€ \{1} i€ \{1}
(2an) - - -
+fT 'in‘l-. Z Xi — x|
lEIH lEIL\{Z}
Qap)]_ (2ap)
= [f(ClL +an) — fT] X+ [f(ZaL) — flar +am) + fT]
- fQan) —
' Z Xi + 5 Z X
ieZp\{1} i€ly
=70+ Zﬁ,’)_ci.
ieN
By strong duality, 7 is optimal in problem (31). O

Proposition 5.12 If x belongs to category (c5), then

0, i=0
= _ ) f@an)/2, i €1y,
") flar +an) — fQap)/2. i=h,

fQan) — flar +an) + fQ2ar)/2, i € Iy\{h},

is an optimal solution to problem (31) associated with x. This optimal solution is
exactly the coefficients of the lower-SI (25).

Proof We can prove the counterparts of Lemma 5.10 and Corollary 5.10.1 for this
case, by replacing H by L, h by [/ in the notation. Then by switching notation again
in the proof of Proposition 5.11, we establish this proposition. O

By now we have found the optimal solutions to problem (31) associated with all
possible (w,X) € R x [0, 1]" such that ) !_, X; < 2. These optimal solutions, or
extreme rays in the polar of conv(Pzz), match the proposed inequalities, namely the
super-average inequality (21), the lifted-EPIs (22), (23), the lower-SI (25), and the
higher-SI (27). Problem (31) can also be thought of as the separation problem for any
(w, X), whose optimal solution is the most violated inequality at this point. We proceed
to draw conclusions on the complete linear description of conv(P%) in Section 5.3.

5.3 Convex hull description of ’Pzz

In this subsection, we formalize the full linear characterization of conv(Pzz) in Theo-
rem 5.13. After that, we make a remark on the separation of the proposed non-trivial
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inequalities. Depending on the sizes of Z; and Zy, some of the five subsets for
(w,x) € R x [0, 1]7* with Z?:l X; < 2 could be empty. Therefore, we may not
always need the full set of proposed inequalities to define conv(Pzz). We then make a
remark to specify these cases.

Theorem 5.13 Suppose Assumption 4.10 holds for ip = 0. We let S be the set of
(w, x) € R""! constructed by the super-average inequality (21), the lifted-EPIs (22),
(23), the lower-SI (25), and the higher-SI (27), together with the trivial inequalities
(29) and cardinality constraint (30). Then S = conv( 7722 ).

Proof Propositions 5.6, 5.7, 5.9, 5.11 and 5.12 prove that the set of all the non-trivial
inequalities stated above contains all the facets of conv(Pzz). It follows that S =
conv(P3). O

Recall that any x € [0, 1]" falls into one of the following categories:

(cl) 2x; > D ;e Xis

(€2) 2Xp > Y jen Xis

(c3) 2x; < ZieIL x; and 2xj < Zidﬁ Xi;

(c4) ZieIL X <2x; < ZieNfi’ 2xp < ZieNEi’ and 2x;, — ZieIH xX; <2x; —
i€ely fi;

(©5) Yiez, Xi < 2%h < Yoy Xis 251 < Yoy Xir and 25 — g, T < 2T —
iely Xj.

Remark 3 Based on the discussion in Sect. 5.2, when any (w, x) € R x [0, 1]" falls
under category (c1), the lifted-EPI (22) is the most violated inequality at (w, x) if a
violation occurs. In particular, the most violated lifted-EPI has [ € N as the first item
in the permutation of N. When any given (w, x) falls in category (c2), the lifted-EPI
(23) is the most violated inequality at this point, with permutation § such that §; = A.
For any (w, ) ¢ conv(Pzz) that satisfies (c3), the super-average inequality (21) should
have the highest violation among all the valid inequalities. Lastly, if (w, X) ¢ conv(Pzz)
satisfies (c4) or (c5), then the most violated cut is the lower-SI (25), or the higher-
SI (27), respectively. More specifically, the most violated lower-SI corresponds to the
permutation § such that / is the first higher-weighted item. Similarly, the most violated
higher-SI is obtained with permutation § in which [ is the first lower-weighted item.

Remark 4 We note that any (w, x) € R x [0, 1]" with Z?:l X; < 2 can only belong
to category (c3) when |Zy| > 3 and |Zy| > 3; otherwise, either 2x; > ZieIL X
or 2x;, > ZieIH x; must be true. Thus when either |Z;| < 2, or |Zyg| < 2, the

super-average inequality (21) is not needed in the full linear description of conv(Pzz).

Remark 5 Suppose |Z;| = 1. We further assume that (w, X) satisfies 2x; < Y,y Xi,
and 2x;, < ) ;. Xi. We observe that ZieIL Xi =X < 2x;. Also, ),y Xi =
ZieIH X; + x;. Thus 2x;, — ZieIH xX; = 2xp — ZieN Xi+x <0+x <2x; —

iez, Xi- These observations imply that the category (c5) is empty. Therefore, when
|Zr| = 1, the lower-SI (25) is not necessary in the linear description of conv(Pzz).
Similarly, when |Zy| = 1, category (c4) is empty, and the higher-SI (27) can be
omitted from the linear description of conv(Pzz) while not affecting its completeness.
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6 Extensions

The proposed inequalities for conv(P,?) can be applied to problem (1) with more than
two distinct weight values. Let A be the set of distinct weight values. We define amin, =
minge g{a} and amax = max,ec 4{a}. With any ay € A such that ayin < ag < @max,
we construct a new weight vector a such that a; = apiy if a; < ap, and a; = ap
otherwise. This new weight vector contains two distinct weights apin and ag.

Proposition 6.1 Letw > ¢! x denote any valid inequality (e.g., lifted-EPI, lower-SI or
higher-SI) for conv( P,? ) with respect to a. If f is monotone increasing, then w > ¢ ' x

is valid for conv(P}") that arises from the original multi-weighted problem.

Proof For any X € {0, 1} with Y/, X; <k,
¢'¥< f@'x) < fa'x),

by validity of w > ¢ x for the cardinality-constrained epigraph of f(a ' x) and mono-
tonicity of f. O

It follows from Proposition 6.1 that valid inequalities can be derived similarly when
f is monotone decreasing.

We next introduce another way to generate valid inequalities for conv(7;") when
m > 3. Suppose this set is associated with a multi-weighted vector a € R and a
normalized concave submodular function f (a " x). For any pair of distinct weights in
a,sayayandag,weletS = {i € [n] : a; € {o1, a2}}. Consider the case where | S| > k.
Without loss of generality, we assume that the labeling of [n] satisfies S = [|S|]. We
then extend any valid inequality w > ), ¢ c;x; for conv(P,f (8)) (see (4)) to the multi-
weighted setting. Specifically, for any i € [n]\S, we define 7; := max{)_ jer@j :
T<Li—-1,|T|=k—1}.

Proposition 6.2 The inequality w > 3" g cixi + 3 i 5141 Lf (T +ai) — f(T)]xi is
valid for conv(P[").

This proposition generalizes Proposition 11 in [34], which restricts w > >, ¢ ¢ix;
to be an EPI and derives ALIs. We omit its proof, because it follows similar arguments.
Here, the inequality w > » ", _g ¢;x; can be any lifted-EPI, lower-SI or higher-SI for
conv(P,?(S )). When it is a lifted-EPI, the resulting inequality is at least as strong as the
corresponding ALI. This observation immediately follows from Corollary 3.6.2. The
inequalities described above can be used in a branch-and-cut framework when solv-
ing the original multi-weighted minimization problems. For certain multi-weighted
problem (1), our proposed inequalities defined for the subspace involving a pair of
distinct weights are valid and even facet-defining for conv(P;"), as demonstrated in
the example below.

Example3 Let f(a'x) = 64 — (a'x — 8)%, k = 2 and a = [4,4,6,6,8]. The
inequality

w > 32x1 4+ 32xp + 28x3 + 20x4
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is a lower-SI for the convex hull of {(w, x) € R x {0, 1}* : w > f(4x1 +4x2 + 6x3 +
6x4), 17x < 2}. This inequality is facet-defining for the original conv(P3").

We can also obtain strong formulations for mixed-binary conic optimization with
our proposed inequalities. Consider the set

S(F,K) :={(x,y) e B" xR" : 3w e R, s.t.t w > F(x),1'x < k,Ay + Bw € K},

where K is a convex cone that contains the origin, F' : B" — R, is a nonnegative
function, and A, B are matrices of proper dimensions. A special case of this set is
studied by Atamtiirk and Gémez [3], in which the set captures a single second-order
conic constraint and F is the composition of a square root function and a nonneg-
ative affine function. This mixed-binary set arises in chance-constrained programs
and mean-risk minimization. The authors provide its convex hull description, which
involves the convex hull of the epigraph of F. Kiling-Karzan et al. [19] extend this
result to the general set S(F, ). Based on their work, our proposed inequalities are
strong valid inequalities for the convex hull of S(F, KC) under a cardinality constraint
on x, when F is any nonnegative concave function composed with a nonnegative
affine function. Recall that S is the set constructed with our proposed inequalities and
is equivalent to COHV(PZZ) (see Theorem 5.13). When the affine function contains two
weights and the cardinality bound is two, conv(S(F, K)) = {(x, y) € [0, 1] x R™ :
Jw e Ry st. (w,x) € S,1Tx <k,Ay+ Bw € K}.

7 Computational Study

In this section, we test the effectiveness of our proposed inequalities in a branch-and-cut
algorithm. We consider instances of cardinality-constrained mean-risk minimization
with correlated random variables [3, 5]:

min {—u'x+QVxTOx) Y x < k} ) (43)
i=1

xe{0,1}"

Here, Q is a positive semidefinite matrix, €2 is a constant parameter, and k € Z is
the cardinality upper bound. Problem (43) can be interpreted as minimizing a stochastic
objective over a discrete feasible set. Suppose that the losses on all the investments
i € N, denoted by p, are normal random variables with mean p and covariance Q.
Let @ be the standard normal cumulative distribution function. We set Q to be ®~! B)
where 0.5 < B < 1. Then problem (43) is equivalent to the value-at-risk minimization
problem minyeo 12 {z : P (ﬁTx < r) > B, Z?:l x; < k}[3,5,6,9]. We denote a
diagonal matrix with main diagonal in the vector form, v, by diag(v). The covariance
matrix Q is commonly rewritten as the sum of Q — diag(a) and diag(a), such that
ae ]R’_ﬁr and Q — diag(a) > 0. Given that x € {0, 1}", the separable quadratic term
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deiag(a)x = a ' x. Therefore, problem (43) has an equivalent formulation (SOCP):

n
min —u'x4+Qziw> Zaixi, in
(w,y,z,x)eR3 x{0,1} ieN im1

<k y = \xT(Q —diag@)x, 22 = w? +37 . (44)

When a consists of two distinct weights, the proposed inequalities are directly
applicable; this case will be discussed in Sect. 7.1. When a € R’} is a general vector,
we may write a as a™° 4a"* such that a™°, a"™* € R/}, and a""° contains two distinct
weights. Problem (44) may be reformulated as

n
min —n'x+Qziw> Zafwoxi, in <k,
(v,w,y,z,x)eRix{O,l}" ieN =
vz [ Ay 2 X7 — diag@)x, 2 2 0P 4 w? 42
ieN

This case will be explored in Sect. 7.2. To maintain generality of the test instances of
problem (43), we do not impose any assumption, such as Assumption 4.10, on the two
weights a;, and ay in addition to non-negativity. Therefore, we only incorporate lifted-
EPIs (LEPIs) and lower-SIs (LSIs) in our branch-and-cut algorithm. We add one valid
inequality after exploring every ten branch-and-bound nodes in the following way. At
a fractional solution (w, x), we generate an LEPI with respectto § = (81, 82, ..., 8,),
such that x5, > x5, > --- > X5,. Let 1 be the sub-vector of X that corresponds to
all the higher-weighted items. With the descending order of X and ip = k — 1, we
construct the corresponding LSI. If the violation of LEPI at (w, X) is higher than that
of LSI, then the LEPI is added to update the relaxation problem. Otherwise, the LSI
is added. We refer to this branch-and-cut algorithm as BC-LEPI-LSI.

To evaluate the effectiveness of the proposed inequalities, we test our method BC-
LEPI-LSI against another branch-and-cut algorithm that incorporates the ALIs [34]
(see Corollary 3.6.2). We add one ALI after exploring every ten branch-and-bound
nodes, and such an ALI is constructed according to the descending order of X. More-
over, we compare the computational performance of BC-LEPI-LSI against directly
solving the SOCP using a mixed-integer SOCP solver. Later we refer to this method
simply as SOCP.

The experiments are executed on one thread of a Linux server with Intel Haswell
E5-2680 processor at 2.5 GHz and 128 GB of RAM. All the solution methods are
implemented in Python 3.6 and Gurobi Optimizer 9.5.1. The internal cut parameters
are in the default setting. Multithreading, heuristics and concurrent MIP solver are
disabled. The MIP optimality gap is at the default level of 0.01%, and the time limit
for each instance is set to one hour.
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7.1 a with two weights

Inspired by [3], we generate the test instances in the following way. The covariance
matrix Q = Qq + diag(a), where Q9 = ZGG ' ZT following a factor model. In
particular, G € R"™" with G;; ~ U[~1, 1], and Z € R"*" such that Z;; ~ U[0, 1]
with probability 0.2 and Z;; = 0 otherwise. We compute ¢ = >/, Qo;i/n, and
generate a; ~ U[0.2q, q]. We then set the two weights a; = min(a) and ag =
median(a). The diagonal vector a is constructed by letting ¢; = ar when a; <
ay, and a; = ap otherwise. We further generate u; ~ U[0.7+/Q;i, v/ Qiil. In our
experiments, we let n = 200, r = 40, k € {5,10, 15}, and @ = ®~!(B), with
B €1{0.95,0.975, 0.99}.

Table 1 summarizes the computational performance of BC-LEPI-LSI, BC-ALI and
SOCP on problem (43) in which diag(a) contains two distinct weights. The first two
columns report the risk tolerance parameter 8 and the cardinality upper bound k. The
fourth column reports the average running time in seconds. The next column lists the
average end gaps, computed by (UB-LB)/UBx100% in which UB and LB are the
best upper- and lower-bounds attained at the time limit. The average end gaps are
computed across all the trials, including the instances solved to optimality. The sixth
and the seventh columns present the average numbers of branch-and-bound nodes
visited and the average numbers of cuts added. The statistics are averaged across five
trials. Each superscript © means that out of the five trials, i instances are solved within
the time limit of one hour, and the remaining 5 — i instances exceed the time limit. For
BC-LEPI-LSI, the average number of total cuts is represented as m“EP1 4 mIST = m
in each test case, where m"F! is the average number of LEPIs added across five trials,
and m™! is that of LSIs.

Our BC-LEPI-LSI algorithm outperforms BC-ALI and SOCP in all the test cases as
shown in Table 1. BC-LEPI-LSI solves all instances to optimality under six minutes on
average. SOCP manages to solve all five instances in only one test case with 8 = 0.95
and k = 5. BC-ALI fails to solve within the one-hour time limit in two test cases
(i.e., k = 10 and B = 0.975, 0.99 respectively) and has significantly longer average
runtime than BC-LEPI-LSI. For instance, when § = 0.99 and k = 10, the average
runtime of BC-ALI is 34 minutes longer than that of BC-LEPI-LSI; SOCP fails to
reach optimality in an hour in all five instances of this test case, with a large average
optimality gap of 26.8%. In general, BC-LEPI-LSI explores fewer branch-and-bound
nodes than the other two methods and adds fewer cuts than BC-ALI. As k increases,
the number of LSIs being added decreases relative to the number of LEPIs.

7.2 a with multiple weights

In this section, we do not restrict the number of weights in vector a. We construct
Qo and compute g the same way described in Sect. 7.1. Then we generate a with
a; ~ U[0.2q,q] foralli € {1,2,...,n}. Now given Q = Qo + diag(a), we again
let u; ~ U[0.73/Q;i, ~/0i;] for all i. Next, we decompose a into a™° and a™.
We let a; = min(a), ay = median(a) and let ¢™° = a; when a; < ay, and

i
ai™° = ap otherwise. As a result, a™° € R}, and " = a — a™° is a non-negative
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Table 1 Computational performance of BC-LEPI-LSI, BC-ALI and SOCP on problem (43) in which
diag(a) decomposed from the covariance matrix Q contains two distinct weights

B k Method Time (s) End gap (%) # nodes # cuts
0.95 5  BC-LEPLLSI  42.7° 0.0 2112.0 1194 +724=191.8
BC-ALI 219.9° 0.0 7376.4 7312
SOCP 1741.6 0.0 92,1324  N/A
10  BC-LEPLLSI  37.4° 0.0 1734.6  147.0+ 14.0 = 161.0
BC-ALI 99.9° 0.0 3791.6  376.8
SOCP 2924.02 2.8 73,6822  N/A
15  BC-LEPI-LSI  56.0° 0.0 2136.4  196.6+3.0 =199.6
BC-ALI 67.4° 0.0 2505.8  247.8
SOCP 2664.12 1.6 59,4834  N/A
0.975 5  BC-LEPILSI  109.6° 0.0 4764.8  280.2 4 169.6 = 449.8
BC-ALI 608.0° 0.0 20,233.6  2013.4
SOCP 277353 138 19,1009.0 N/A
10 BC-LEPI-LSI  258.5° 0.0 10,196.6  773.4 +231.2 = 1004.6
BC-ALI 1337.4% 1.4 32,009.8  3196.4
SOCP 331641 139 69,9742  N/A
15  BC-LEPI-LSI  80.87 0.0 3219.6  312.0+6.0 = 318.0
BC-ALI 250.3° 0.0 6880.4  685.4
SOCP 0 55 747720  N/A
0.99 5  BC-LEPI-LSI  125.1° 0.0 5997.4  242.6 4 343.4 = 586.0
BC-ALI 1284.5° 0.0 36,5102 3648.4
SOCP 347621 76.0 16,0858.0  N/A
10 BC-LEPI-LSI  339.4° 0.0 11,4148  633.84496.8 = 1130.6
BC-ALI 2413.93 43 73,5546  7351.0
SOCP -0 26.8 72,7026  N/A
15  BC-LEPI-LSI  96.3% 0.0 34654 268.2+72.8 =341.0
BC-ALI 1440.15 0.0 34,640.0 34624
SOCP 0 10.6 57,566.0  N/A

vector as well. We let n = 200, r = 40, k € {5,10, 15}, and Q = <I>_1(ﬂ), with
B € {0.95, 0.975, 0.99}. We note that the ALIs are generated with respect to a, while
LEPIs and LSIs are constructed with respect to a™° in the branch-and-cut algorithms
for this set of experiments.

Table 2 summarizes the computational performance of BC-LEPI-LSI, BC-ALI and
SOCP on problem (43) in which diag(a) has no restriction on its number of weights.
The layout of this table is consistent with Table 1. In this set of experiments with general
weight vector a, our BC-LEPI-LSI algorithm outperforms BC-ALI and SOCP in all
the test cases. In Table 2, BC-LEPI-LSI solves to optimality in all but one test case
with 8 = 0.99 and k = 15. In this challenging case, BC-LEPI-LSI achieves a small
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Table2 Computational performance of BC-LEPI-LSI, BC-ALI and SOCP on problem (43) with uniformly
generated a

B k Method Time (s) End gap (%) # nodes # cuts
0.95 5  BC-LEPI-LSI  171.9° 0.0 62952 394.6+ 140.2 = 534.8
BC-ALI 244.1° 0.0 10,7232 1071.4
SOCP 1702.1° 0.0 17,3698.4  N/A
10  BC-LEPLLSI  577.5° 0.0 15,6122 1251.0 4 248.6 = 1499.6
BC-ALI 958.37 0.0 26,5720  2656.6
SOCP 0 5.8 82,1440 N/A
15  BC-LEPI-LSI  124.3% 0.0 3414.6  258.0 +73.0 = 331.0
BC-ALI 217.23 0.0 5907.4  590.0
SOCP 2789.62 1.7 79,930.6  N/A
0.975 5  BC-LEPI-LSI  827.4° 0.0 20,2362  1176.2+705.2 = 1881.4
BC-ALI 1254.1° 0.0 41,768.4  4175.6
SOCP 3349.50 311 16,6471.6  N/A
10  BC-LEPI-LSI  838.9° 0.0 21,996.8  1498.6 4 648.8 = 2147.4
BC-ALI 1187.4% 1.2 40,896.2  4088.8
SOCP 0 12.9 74,5274  N/A
15  BC-LEPLLSI  988.67 0.0 19,225.8  1575.0 4+ 324.2 = 1899.2
BC-ALI 1912.73 0.8 43,951.8  4393.8
SOCP 0 6.9 52,940.8  N/A
0.99 5  BC-LEPI-LSI  650.1° 0.0 20,280.0  1175.6 4 715.4 = 1891.0
BC-ALI 947.5° 0.0 38,703.6  3869.4
SOCP 335591 723 25,9287.8  N/A
10  BC-LEPI-LSI  1855.7° 0.0 38,376.0  2946.4 + 842.4 = 3788.8
BC-ALI 3068.41 4.7 88,635.6  8862.6
SOCP 0 30.8 75,4358  N/A
15  BC-LEPI-LSI  1354.14 0.6 24,718.6  2269.6 4 184.4 = 2454.0
BC-ALI 2434.12 1.8 70845.8  7083.4
SOCP 0 10.5 65,9654  N/A

end gap of 0.6%. BC-ALI and SOCP have longer average running times than BC-
LEPI-LSI and fail to solve in many test cases, especially with higher g values. For
example, when 8 = 0.99 and k = 10, BC-LEPI-LSI solves all five instances with an
average runtime of around 30 minutes, whereas BC-ALI fails to attain optimality in
four out of five instances of this test case. SOCP fails in all five instances, resulting in a
large average end gap of 30.8%. Overall, the statistics in Table 2 are higher than those
in Table 1, suggesting that the problem instances with general a are computationally
more difficult than the instances in which a contains two distinct weights. As before,
BC-LEPI-LSI explores fewer branch-and-bound nodes than the other two methods
and adds fewer cuts than BC-ALI. The observation that the number of LSIs being
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added decreases relative to the number of LEPIs as k increases continues to hold in
this set of experiments.

8 Concluding remarks

In this paper, we tackle the cardinality-constrained concave submodular minimization
problem (1) with two distinct weights. We propose three classes of strong valid linear
inequalities, namely the lifted-EPIs, the lower-SIs and the higher-SIs, for the convex
hull of the epigraph for the objective function with a cardinality constraint. These
inequalities are computationally effective when incorporated in a branch-and-cut
framework as demonstrated by our experiments on a cardinality-constrained mean-
risk optimization problem. We further show that the proposed inequalities, together
with a single additional inequality and trivial inequalities, fully describe conv(P,f)
when the cardinality upper bound & is set to two. Moreover, the proposed inequalities
give rise to valid inequalities for the multi-weighted instances and can be applied in
mixed-binary conic optimization. Next we include a few final remarks about the future
exploration directions and the associated challenges.

The characterization of conv(P%) in Sect. 5 assumes that Assumption 4.10 holds
for ip = 0. The convex hull conV(Pzz) becomes more challenging to linearly describe
when we lift this assumption, which we illustrate with the example below.

Example 4 Suppose f(a'x) =64 — (a'x — 8%, k=2anda =[2,2,5,5,5,5,5].
Note that this function is normalized. In this example, f(2+5) — f(2) > f(2-5)/2,
so Assumption 4.10 is violated. The inequality

w > —11420x; 4+ 39x2 + 35x3 + 35x4 + 35x5 + 35x¢ + 35x7 + 35x3

is facet-defining for conV(P,f) because it is an extreme ray in its polar. Although
f(0) = 0, there still exists a non-zero constant term in this facet. Thus this inequality
does not fall into any of the three classes of homogeneous inequalities we propose. It
seems non-trivial to find an explicit specification for the constant term, as well as the
remaining coefficients in relation to this constant.

A natural next step from this paper is to examine conv(P;") where m > 3 or k > 3.
When k > 3, conv(P,%) has other types of facets in addition to the three classes of
inequalities we propose. Below is an example of such facets.

Example 5 Suppose f(a'x) =64 — (a'x —8)>, k =3anda = [6,6,6,6,8, 8, 8].
The inequality

- 20 44 44 44 176 200 200
w > 3x1 3x2 3x3 3x4 3x5 3x6 3x7

is an extreme ray in the polar of conv(7;"), and thus a facet. However, this inequality
does not belong to any of the proposed classes of inequalities.
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Despite the challenge of fully characterizing conv(P}") for general m and k, we
may still obtain valid and even facet-defining inequalities for it, by further lifting the
proposed inequalities.
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