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Abstract

Late accretion occurred through addition of massive impactors to Earth, leading to potential heterogeneity in the distri-
bution of highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re) within the mantle. Abyssal peridotites sample the present-
day convecting mantle, which make them useful for examining the distribution of the HSE within the mantle. Here we report
new HSE abundance data and '®70s/'®¥Os ratios, in conjunction with mineral chemistry and bulk rock major- and trace-
element compositions for abyssal peridotites from the fast-spreading Pacific Antarctic Ridge (PAR) and East Pacific Rise
(Hess Deep), and for slow to intermediate spreading ridges from the Southwest Indian Ridge, Central Indian Ridge and
Mid-Atlantic Ridge. These analyses expand the global abyssal peridotite Os isotope and HSE database, enabling evaluation
of potential variations with spreading rate, from ultraslow (<20 mm/yr, full spreading rate) to fast (135-150 mm/yr).
Accounting for likely effects from seawater modification and serpentinization, the Pacific data reveals heterogeneous and
sometimes significant melt depletion for PAR (3-23% melt depletion; '870s/'®0s from 0.1189 to 0.1336, average = 0.1267
+ 0.0065; 2SD) and Hess Deep abyssal peridotites (15-20% melt depletion; 0.1247 4+ 0.0027). Abyssal peridotites from fast
to intermediate spreading ridges reveal no systematic differences in the distribution and behavior of the HSE or Os isotopes, or
in degrees of melt depletion, compared with slow to ultraslow spreading ridges. These observations arise despite significant
differences in melt generation processes at mid-ocean ridges, suggesting that the effects of ancient melt depletion are more pro-
found on HSE compositions in abyssal peridotites than modern melting beneath ridges. Using global abyssal peridotites with
Al,Oj3 content > 2 wt.%, the average composition of the primitive mantle is 0.3 ppb Re, 4.9 ppb Pd, 7.1 ppb Pt, 7.2 ppb Ru,
3.8 ppb Ir and Os, showing no Pd/Ir, but a positive Ru/Ir anomaly, relative to chondrites. There is ~50% variation of the HSE
abundances in the oceanic mantle, with much of this variation being observed at small length scales (<1 km) and due entirely
to both modern and more ancient partial melting effects. Consequently, any significant HSE heterogeneities formed during
late accretion or early Earth differentiation processes are no longer recognizable in the mantle sampled within ocean basins,
implying generally efficient mixing of Earth’s mantle for these elements. By contrast, relatively ancient heterogeneity in Os and
other radiogenic isotopes has been effectively preserved in the convecting mantle over the last ~2 Ga, through recycling pro-
cesses and through preservation and isolation of melt-depleted refractory residues.
© 2021 Elsevier Ltd. All rights reserved.
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processes. The HSE are generally compatible during partial
melting and are characterized by elevated metal-silicate par-
tition coefficients at mantle pressures (>10% e.g., O’Neill
et al., 1995; Holzheid et al., 2000; Ertel et al., 2001;
Brenan and McDonough, 2009; Brenan et al., 2016; Suer
et al., 2021 and references therein). Assuming such high
partition coefficients, Earth’s core and mantle are not in
equilibrium for the HSE, and the mantle has abundances
of these elements only ~150 times less abundant than in
chondrites; some three orders of magnitude higher than
expected (Morgan, 1986; Snow and Schmidt, 1998;
Morgan et al., 2001; Becker et al., 2006; Fischer-Godde
et al., 2011; Day et al., 2016a; 2017a).

Three main hypotheses have been suggested to explain
this discrepancy: (1) the “late accretion” or “‘late veneer”
hypothesis where addition of ‘‘chondritic” impactors
occurred after the major phase(s) of core formation (e.g.,
Turekian and Clark, 1969; Kimura et al.,, 1974; Chou,
1978; Jagoutz et al., 1979; Winke, 1981; Meisel et al.,
1996); (2) mixing or inefficient separation of differentiated
outer-core material back into the mantle shortly after core
separation (Jones & Drake, 1986; Snow & Schmidt, 1998),
or; (3) lower metal-silicate partition coefficients at higher
pressures and temperatures (HP-HT; e.g., Ringwood,
1977; Murthy, 1991). The late accretion model is generally
the most popular given its ability to explain both the
broadly chondritic '370s/!'%80s as well as the elevated abso-
lute abundances of the HSE that are in chondritic propor-
tions within the bulk silicate Earth (BSE), requiring
between ~0.5 and 0.8 wt.% addition of mass to Earth
(Becker et al., 2006; Day et al., 2016a).

An outstanding question that remains, however, is how
evenly distributed the HSE are within the present-day con-
vecting mantle. Late accretion likely occurred through
addition of massive impactors (Bottke et al., 2010), leading
to the possibility of heterogeneous distribution of the HSE
within Earth’s mantle following late accretionary impacts,
and enhanced deposition of impactor material within the
mantle, perhaps at hemispheric scales, or at the scale of
thousands of kilometers. For example, it has been demon-
strated that metal-silicate equilibration differs depending
on the target latitude of the impactor due to the influence
of the planetary rotation on the mixing and settling history,
which may generate chemical heterogeneities (e.g., HSE)
and isotopic anomalies (e.g., '$*W anomalies) (Maas
et al., 2021). For smaller planetary bodies, such as the prob-
able asteroidal source of eucrite and diogenite meteorites,
4-Vesta, it has been proposed that the inferred patchy dis-
tribution of the HSE reflects regional rather than global late
accretion effects shortly after planet formation (Day et al.,
2012). In contrast, while Earth may have originally had a
more heterogeneous distribution of the HSE within the
mantle, compositional variations in mantle materials at
the present-day are seemingly more consistent with homo-
geneous distributions through prolonged melting and/or
solid-state convection. The evidence from mantle peri-
dotites preserved in ophiolites is that there is more limited
heterogeneity at > km length scales than at the scale of
meters or less (e.g., O’Driscoll et al., 2012; Snortum &
Day, 2020; Haller et al., 2021). Arguably, however, the

ideal test of HSE homogeneity in Earth’s mantle comes
from the study of oceanic abyssal peridotites. Abyssal peri-
dotites are samples of Earth’s present-day convecting man-
tle sampled within ocean basins, so that provide a snap-shot
of the degree of present-day HSE homogeneity within the
mantle.

Prior attempts to estimate the HSE composition of
Earth’s mantle have assumed relative initial homogeneity
to attain a BSE composition (equivalent to primitive mantle
[PM] and referred to as primitive upper mantle [PUM] by
Becker et al., 2006), with workers utilizing a range of man-
tle rock types, including ultramafic massifs and ophiolites
(e.g., Becker et al., 2006; Zhang et al., 2020), as well as
using abyssal peridotites (e.g., Becker et al., 2006; Day
et al., 2017a). These approaches for determining the abso-
lute and relative abundances of the HSE in the bulk silicate
Earth, and the extent of heterogeneity have drawbacks. For
example, utilizing massif compositions requires effective
subtraction of the effects of sometimes complex melt refer-
tilization processes (e.g., Marchesi et al., 2014; Becker and
Dale, 2016; Lorand and Luguet, 2016). Abyssal peridotites
represent residues of ancient and modern depletion events
(2% to > 16%), which occurred > 0.5 Ga ago for some sam-
ples (e.g., Brandon et al., 2000; Harvey et al., 2006; Liu
et al., 2008; Lassiter et al., 2014; Day et al., 2017a). Compli-
cations with these samples are that melt refertilization (e.g.,
Niu, 2004; Warren, 2016; Reisberg, 2021) and serpentiniza-
tion or secondary alteration (e.g., Snow and Dick, 1995;
Snow and Reisberg, 1995; Malvoisin, 2015) processes can
affect their compositions. Furthermore, abyssal peridotites
are difficult to sample, being either dredged or drilled typi-
cally from deep water locations (>3 km) and relatively rare
exposures on the ocean floor, such that global coverage has
hitherto not been obtained.

Currently, HSE and Os isotope data for abyssal peri-
dotites are mainly from ultraslow to slow spreading ridges
(e.g., Gakkel Ridge, Southwest Indian Ridge, Central
Indian Ridge, Mid-Atlantic Ridge; Martin, 1991; Roy-
Barman & Allegre, 1994; Snow & Reisberg, 1995; Snow
& Schmidt 1998; Brandon et al., 2000; Luguet et al.,
2001; 2003; Standish et al, 2002; Alard et al., 2005;
Harvey et al., 2006; Sichel et al., 2008; Liu et al., 2008;
2009; Lassiter et al., 2014; Day et al., 2017a). More limited
data are available on the HSE abundances and Os isotopic
composition of mantle beneath intermediate and fast
spreading centers (Roy-Barman and Allegre, 1994; Snow
and Schmidt, 1998; Rehkdmper et al., 1999). Here we
report new bulk rock '#70s/'*80s and HSE abundance data
for abyssal peridotites from the Pacific Ocean (Hess Deep
along the East Pacific Rise (EPR) and from the Udintsev
Fracture Zone (UFZ) along the Pacific Antarctic Ridge
(PAR)). We compare these data with those obtained for
abyssal peridotites from ultraslow to slow spreading ridges
(e.g., Gakkel Ridge, Southwest Indian Ridge (SWIR), Cen-
tral Indian Ridge (CIR), Mid-Atlantic Ridge (MAR)).
Additionally, new bulk rock major and trace element abun-
dances and mineral chemistry are reported for some sam-
ples to examine the relationship to spreading rate and
melt depletion in abyssal peridotites, and to assess hetero-
geneity of mantle composition in terms of HSE abundances
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and Os isotope ratios, as well as the implications this might
have for mantle geodynamics.

2. SAMPLES AND METHODS
2.1. Samples

Dredged abyssal peridotites were analyzed from the fast-
spreading East Pacific Rise (EPR), at Hess Deep (denoted
AIl) from cruise 125, leg 6, aboard the RV Atlantis II in
May 1990. Dredged abyssal peridotites were also analyzed
from the Pacific Antarctic Ridge (PAR), along two different
locations of the Udintsev ridge, denoted as WEST03-MV12
and WEST03-MV13, from the WESTWARD
(WESTO03MYV) cruise aboard the RV Melville in February
1994. Details for this cruise are reported in Castillo et al.
(1998) and Niu (2004). New data are also reported for abys-
sal peridotites from slower spreading rates (Mid-Atlantic
Ridge, Central Indian Ridge and Southwest Indian Ridge)
from the 1968 CIRCE cruise (Circe97) aboard the RV
Argo, the 1970 ANTIPODE cruise (ANTP) aboard the
RV Melville, the 1984 Protea Cruise (Prot05) aboard the
RV Melville, the 1990 PLUME cruise (PLUMOS5) aboard
the RV Thomas Washington, and the 2007 KNOX11RR
cruise aboard the RV Roger Revelle. Sample locations
are reported in Fig. 1 and Table 1.

2.2. Mineral compositions

Major- and minor-element mineral compositions were
obtained from polished mounts containing olivine, pyrox-
ene and spinel, and as polished thick sections for Hess Deep
and PAR samples, using a JEOL JXA-8230 electron probe

micro analyzer (EPMA) at the University of Colorado,
USA (Department of Geological Sciences). Analyses were
made with an accelerating potential of 15 keV and a beam
size of 5 pm. Beam currents were 30 nA for olivine and
pyroxene and 20 nA for spinel. Both natural and synthetic
standards were used to calibrate the EMP and were mea-
sured throughout analytical sessions to ensure data quality.
Background and peak counting times used were 20-30 s
and standard PAP correction procedures were used. Detec-
tion limits were < 0.02 wt.% for Si, Al, Mg, Ca, Na, K and
P and < 0.04 wt.% for Fe, Ti, Mn, V, Ni and Cr.

2.3. Bulk rock major and trace element abundance analyses

Major element compositions were measured by X-ray
fluorescence (XRF) at Franklin and Marshall College using
a PW 2404 PANalytical XRF vacuum spectrometer follow-
ing the protocol described in Day et al. (2017a) and refer-
ences therein. Repeated measurements of basaltic
reference material BHVO-2 allow estimations of precision
and accuracy, with long-term reproducibility of 0.1% for
Si0,, AlLO;, Fe;O3r, MgO and CaO, 0.2% for TiO,,
MnO and Na,O, and 0.3% for P,Os (Table S1).

Trace element analyses were performed on 100 mg of
homogenized bulk rock powder using a Thermo Scientific
iCAP Qc ICP-MS at the Scripps Isotope Geochemistry Lab-
oratory (SIGL, University of California San Diego), follow-
ing the method outlined in Day et al. (2014). Samples were
analyzed with several replicates of powdered peridotites
HARZ-01 and PLUMO05-49, as well as BHVO-2, BCR-2
and BIR-1a, basaltic reference materials, used as standards
to confirm accuracy, with reproducibility on most of trace
element abundances better than 10% (Table S2).
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Fig. 1. Mid-ocean ridge full spreading rates and location of abyssal peridotites analyzed for Re-Os isotopes and HSE abundance systematics
in this study (EPR, PAR, SWIR, CIR) and prior studies (modified from Rouméjon, 2014). Spreading rates are from DeMets et al. (1990). The
black circles represent locations of new HSE and Os isotope data for abyssal peridotites from Hess Deep along the East Pacific Rise (EPR)
and from the Udintsev fracture zone along the Pacific Antarctic Ridge (PAR), as well as from the Central and Southwest Indian Ridges. The
light gray circles correspond to abyssal peridotite samples from other slower spreading centers (Snow and Schmidt, 1998; Brandon et al., 2000,
2006; Luguet et al., 2001, 2003; Becker et al., 2006; Liu et al., 2009; Lassiter et al., 2014; Day et al., 2017a; Li et al., 2019).
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2.4. Highly siderophile elements and Os isotopic
compositions

Osmium isotope and HSE abundance analyses were per-
formed at the SIGL on ~900 mg of homogenized powder
from a larger powder aliquot. The samples were precisely
weighed and digested in sealed 20 cm borosilicate Carius
tubes using a mixture of multiply Teflon distilled 12 M
HCI (4 mL) and “purged” 15.7 M HNO3; (7 mL; expunged
of Os using H,0,), with isotopically enriched multi-element
spikes (99Ru, 106pq 185Re, 1900s, 1t 194Pt). Digestions
lasted 72 h hours in an oven at a maximum temperature
of 250 °C. Osmium was purified by extracting CCl, three
times from the HCI/HNOj3, spike and sample mixture and
then back extracting the Os from the CCl, using HBr
(Cohen and Waters, 1996), with further purification by
micro-distillation (Birck et al., 1997). The other HSE (Re,
Pd, Pt, Ru, Ir) were recovered and purified from the resid-
ual solutions using anion exchange column chemistry (e.g.,
Day et al., 2016b).

Acquisition of Os isotopic compositions were performed
on a Thermo Scientific Triton thermal ionization mass spec-
trometer in negative ion mode, with HSE abundances cal-
culated from isotopic ratios of Ir, Ru, Pt, Pd and Re
measured using a Thermo Scientific iCAP Qc ICP-MS cou-
pled to a Cetac Aridus II desolvating nebulizer. Osmium
data were appropriately oxide-, fractionation-, spike- and
blank corrected. Precision for '¥70s/'®80s, determined by
repeated measurements of 35 to 70 pg loads of the UMCP
Johnson-Matthey standard, was better than + 0.2% (2SD;
0.11382 4+ 0.00012; n = 10). These standard load sizes were
smaller than unknown samples, which had > 1 ng Os, and
that typically ran with signal sizes of 200 K Cps on the lar-
gest mass isotope, with stable signals similar to the stan-
dards. Rhenium, Pd, Pt, Ir and Ru isotopic ratios were
corrected for mass fractionation using the deviation of the
standard average run on the day over the natural ratio of
the element. External reproducibility on HSE analyses
was better than 0.5% for 5 ppb solutions and all reported
values are blank corrected. Peridotite standard reference
materials (MUH-1, HARZ-01) run during the period of
the analytical campaign in the SIGL are reported in Day
et al. (2016a) and Snortum & Day (2020) and show good
reproducibility and accuracy compared with literature data
(e.g., Meisel & Horan, 2016). The total procedural blanks
(n = 4) run with the samples had '¥70s/'380s = 0.209 +
0.090, with quantities (in pg) of 0.8 [Re], 7 [Pd], 22 [Pt],
15 [Ru], 3 [Ir] and 0.8 [Os]. These blanks resulted in
negligible corrections to samples (<1% in most cases,
Table S3).

3. RESULTS
3.1. Sample descriptions and mineral chemistry

Spinel grains in the PAR abyssal peridotites from
WEST03MV-12 and WEST03MV-13 span a Mg# range
of 58.4 to 70.6 and 68.7 to 72.7, and a Cr# range of 28.7
to 49.6 and 19.1 to 24.9, respectively, similar to
plagioclase-free peridotites (e.g., SWIR peridotites, Seyler

et al., 2003; global abyssal peridotite database, Warren,
2016). Spinel grains in Hess Deep (EPR) samples have
Mg# between 45.6 and 60.0, and Cr# between 47.3 and
52.0 (e.g., comparable to plagioclase-lherzolites from the
SWIR; Paquet et al., 2016) (Fig. Sla).

Forsterite contents in olivine grains range between 89.7
and 90.7, and between 90.0 and 90.6 in WEST03MV-12 and
WEST03MV-13 samples, respectively (Table S4). Orthopy-
roxenes and clinopyroxenes in PAR samples have similar
compositions: between Wog o1.9.07En0.84-0.80FS0.08-0.10 and
Wo00.32.0.490EN0.47.0.62F80.05-0.07 for WESTO3MV-12  peri-
dOtitCS, and between WO()'()].().]]EHO'81_0'89FSO'09_0']0 and
Wo0y.35.0.49EN0.46-0.50FS0.04-0.06 for the WESTO3MV-13 peri-
dotites (Fig. S1b). WEST03MV-12 and WEST03MV-13 peri-
dotites have Cr,Oj3 contents that range from 0.66 to 1.08 wt.%
and from 0.43 to 0.96 wt.% in orthopyroxenes, and from 0.95
to 1.43 wt.% and from 0.56 to 1.32 wt.% in clinopyroxenes,
respectively (Table S4). These values are within the composi-
tions of abyssal peridotites from the global ridge system (e.g.,
Warren, 2016). Olivine, orthopyroxene and clinopyroxene
grains in the EPR samples were not fresh enough to conduct
analyses on.

3.2. Bulk rock major and trace element abundances

Hess Deep abyssal peridotites tend to have lower
anhydrous-corrected Al,O3;, TiO, and CaO, and higher
MgO contents than to those from the Pacific Antarctic
Ridge (Fig. 2, Table S5). The WEST03MV-13 peridotites
generally have lower Al,O3, TiO, and CaO (and Fe,Ost
to a lesser extent) at a given MgO than the WEST03MV-
12 peridotites, suggesting heterogeneity at the scale of the
fracture zone that they were dredged from. All these peri-
dotites show a positive correlation between Al,O; and
CaO, with Hess Deep peridotites being both tightly
grouped in terms of composition and having the most
refractory (lowest) Al,O3 and CaO contents. Overall, the
Pacific abyssal peridotites overlap the trend defined by
abyssal peridotites from ridges with slower spreading rates
(Day et al., 2017a).

Abyssal peridotites from the UFZ along the PAR are
characterized by having subchondritic rare earth element
(REE) abundances, and show pronounced LREE-
depleted patterns, which are similar to abyssal peridotites
from the Mid-Atlantic Ridge, and some samples from the
SWIR and Gakkel Ridge (Day et al., 2017a) (Figs. 3, S2
and Table S6). Samples from the WEST03MV-12 dredge
span a larger range of REE abundances. Abyssal peri-
dotites from Hess Deep are depleted in the heavy REE,
with REE patterns slightly depleted in the light REE
(LREE) relative to the HREE, and strong positive anoma-
lies for Eu, suggesting melt impregnation and plagioclase
crystallization. A few samples from the PAR, SWIR and
CIR also show negative Ce anomalies. Overall, abyssal
peridotites from the WEST03MV-13 dredge tend to have
higher Nb and Ta abundances, and lower Zr and Hf abun-
dances than those from the WEST03MV-12 dredge. Abys-
sal peridotites from Hess Deep exhibit depleted patterns in
Rb, Ba, Nb, Ta, Zr and Hf compared to other Pacific peri-
dotites. In general, incompatible trace element (ITE) and
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Fig. 2. Variations (in wt.%) of (a) Al;O; as a function of MgO and
(b) CaO as a function of Al,O3 for bulk rock abyssal peridotites
from the dredges WEST03MV-12 and WEST03MV-13 (abbrevi-
ated WWO03-12 and WWO03-13, respectively) along the Pacific
Antarctic Ridge, the Hess Deep region along the East Pacific Rise,
the Southwest Indian Ridge, the Central Indian Ridge and the
Mid-Atlantic Ridge. Also shown for comparison are abyssal
peridotites from the Gakkel Ridge, the Southwest Indian Ridge,
the Central Indian Ridge and the Mid-Atlantic Ridge for which
HSE and Os isotope data are available (see Table S7 for
references). The star corresponds to the Primitive Mantle estimate
from McDonough & Sun (1995). (For interpretation of the
references to color in this figure legend, the reader is referred to
the web version of this article).

REE abundances for abyssal peridotites from the SWIR are
in good agreement with data reported in previous studies
(e.g., Day et al., 2017a) (Figs. 3, S2 and Table S6).

Abyssal peridotites from the CIR reported in this study
show more depleted patterns in the REE, and for the ITE in
general with lower Nb contents (and slightly higher Ta
abundances), than previously reported samples (e.g., Day
et al., 2017a). PLUMOS abyssal peridotite samples from
the MAR have HREE similar to those from the same ocean
basin in the literature but are more enriched in the LREE
and have more pronounced positive Eu anomalies. They
also exhibit higher contents in Rb, Ba, Nb and Ta, but
lower Zr and Hf abundances than those from Day et al.
(2017a). Most abyssal peridotites show elevated concentra-
tions in fluid mobile elements such as U and Sr which are
enriched in seawater (Fig. S2).

3.3. Highly siderophile element abundances and Os isotopic
compositions

Bulk rock Re-Os isotope and HSE abundance measure-
ments for Pacific abyssal peridotites and some Southwest
Indian Ridge and Central Indian Ridge peridotites are
reported in Table 1. PAR samples from the WEST03M V-
13 dredge have BSE-like HSE patterns with variable rhenium
depletion, whereas samples from the WEST03MV-12 dredge
have more variable Re, Pd and Pt abundances (Fig. 4), sim-
ilar to those reported previously (Roy-Barman and Allegre,
1994; Snow and Schmidt, 1998; Rehkidmper et al., 1999).
Two of the Hess Deep samples have patterns that are akin
to BSE, while the other samples show variable degrees of rhe-
nium depletion relative to BSE. WEST03MV-12 and
WEST03MV-13 abyssal peridotites have average Pd/Ir
ratios of 1.4 4 0.6 and 1.4 4 1.1 (2 SD), and average Ru/Ir
ratios of 1.7 £+ 0.2 and 1.8 + 0.4, respectively (Fig. 5). Hess
Deep samples show average ratios slightly higher but within
uncertainties at 1.9 4= 1.1 and 2.0 4= 0.6 for Pd/Ir and Ru/Ir
ratios, respectively. Moreover, HSE patterns for the Pacific
abyssal peridotites are like those from the Mid-Atlantic
Ridge, and some of the abyssal peridotites from the
Southwest Indian Ridge (Day et al., 2017a and references
therein).

Pacific Antarctic Ridge peridotites show similar ranges
and averages in '370s/!%80s (WEST03MV-12: 0.1264 + 0.
0054; WEST03MV-13: 0.1272 4 0.0082; all uncertainties
are 2 SD), and are slightly more radiogenic, on average,
than the samples from Hess Deep (0.1247 + 0.0030)
(Fig. 6), with an average value of 0.1264 + 0.0063 for all
Pacific abyssal peridotites from this study. Using the Os
abundances in the samples to calculate a weighted mean,
we obtained a '370s/'*80s ratio of 0.1263. These new data
overlap the trend defined by abyssal peridotites from slower
spreading ridges (Snow & Schmidt, 1998; Rehkdmper et al.,
1999; Luguet et al., 2001; Liu et al., 2009; Lassiter et al.,
2014; Day et al., 2017a), but are generally more radiogenic
than mantle peridotites obtained from Pacific Ocean
Islands (Snortum et al., 2019), which offer an alternate view
of the Pacific oceanic mantle lithosphere.

4. DISCUSSION
4.1. Alteration and melt infiltration

Most abyssal peridotites have experienced serpentiniza-
tion (<400 °C) and/or seafloor weathering (~0°C) under
both oxidizing and reducing conditions (e.g., Snow &
Dick, 1995; Bach et al., 2004; Paulick et al., 2006; Klein
et al., 2013; Malvoisin, 2015). Samples in this study exhibit
evidence for secondary alteration, manifested as loss on
ignition (LOI) values of between ~5 and 17%, reflecting
the presence of serpentine and other alteration minerals.
As noted for abyssal peridotites from a range of spreading
ridge environments (Niu, 2004; Harvey et al., 2006; Day
et al., 2017a), elevated concentrations of fluid mobile ele-
ments occur in many of the samples, consistent with modi-
fication by interaction with seawater (e.g., U, Sr, K, P, Na,
LREE; e.g., Frisby et al., 2016). However, most major and
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Fig. 3. Bulk Silicate Earth-normalized rare earth element (REE) concentrations in abyssal peridotites from the dredges WEST03MV-12
(a) and WEST03MV-13 (b) along the Pacific Antarctic Ridge (PAR), the Hess Deep region along the East Pacific Rise (EPR) (c), the SWIR (d),
the CIR (e) and the MAR (f). Shaded fields are abyssal peridotites from Day et al., (2017a). Normalizing values from McDonough & Sun
(1995). Gray lines represent 1% melt increments for a non-modal fractional melting model (see Day et al., 2017a for model parameters). An
increase of melt depletion is associated with lower absolute REE abundances and higher depletion in the LREE relative to the HREE.

trace elements appear unaffected by alteration processes.
Prior work has suggested that '870s/'®%0s ratios (e.g.,
Snow & Reisberg, 1995; Standish et al., 2002), Re and Pd
(e.g., Luguet et al., 2003; Harvey et al., 2006) can be mod-
ified by serpentinization and seafloor alteration processes
but that, in general, abyssal peridotite HSE abundances
are typically not strongly affected by such processes (e.g.,
Liu et al., 2009; Day et al., 2017a). In agreement with those
studies, we find no correlation with LOI and HSE contents
and Os isotopic compositions (Fig. S3). Indeed, it has been
shown that even strongly steatized serpentinite rocks faith-
fully preserve original HSE abundances (Day et al., 2017b).
Overall, we conclude that the bulk rock abyssal peridotite

HSE compositions predominantly reflect their high temper-
ature mantle petrogenesis.

Melt refertilization in abyssal peridotites (Niu, 2004;
Seyler et al., 2004; Warren et al., 2009; Warren, 2016) can
also lead to precipitation of metasomatic sulfides rich in
Pd and the other HSE (Alard et al., 2000; Luguet et al.,
2003). Evidence for melt refertilization in the sample suite
is provided by the enrichments of non-fluid mobile highly
incompatible elements in all samples (Fig. 3 and S2).
Enrichments of two or three orders of magnitude in the
high field strength elements (HFSE: Nb, Ta, Ti, Zr, Hf) rel-
ative to what would be expected for partial melting residues
are strong indicators of melt refertilization in Pacific
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Fig. 5. Time of Re depletion model ages (Trp) versus Pd/Ir.
Primitive mantle (also referred to as BSE) Pd/Ir is from Day et al.
(2017a). Literature data are from Snow and Schmidt (1998), Becker
et al., 2006, Liu et al. (2008, 2009), and Day et al. (2017a). (For
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).

abyssal peridotites (Fig. S2), along with some LREE-
enriched peridotites, as observed in slower-spreading ridges
(Niu et al., 2004; Warren, 2016; Day et al., 2017a). This

melt infiltration has been variable between the sample
suites, with plagioclase-rich melt infiltration possible in
some sample suites (e.g., Hess Deep). These observations
match with hand-specimen observations for AII125-6-4D-
18, which include minor melt infiltration veins that are
cross-cut by serpentine. Moreover, spinel grains in the Paci-
fic abyssal peridotites plot within the lower part of the abys-
sal peridotite field, with relatively low Cr# at a given Mg#,
which is often associated with the presence of pyroxenite-
veins in the samples (e.g., Warren, 2016).

Melt infiltration events appear to have limited impact on
Pt, Ru, Ir or Os abundances or Os isotopes in Pacific abys-
sal peridotites. In contrast, samples display variable Re
contents, and Pd contents to a lesser extent (Fig. 4), which
may be attributed to various degrees of refertilization by
melts. As shown previously, basaltic melts typically have
more radiogenic '¥70s/!%80s ratios, but substantially lower
Os contents than peridotites, meaning that only high
degrees of melt-rock reaction will lead to modification of
peridotite HSE compositions (Day et al., 2017a). The gen-
erally high Os contents of the samples (~2-9 ppb) means
that melt refertilization would only be notable at melt-
rock ratios in excess of ten, which is not consistent with
immobile incompatible trace element addition in all sam-
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Fig. 6. Relationship between '*70s/!#80s ratios and (a) Os and (b)
Al,O5 contents in abyssal peridotites. The dashed and solid lines in
(b) correspond to the linear regression for the WEST03MV-12
(r* = 0.64) and WEST03MV-13 peridotites (r> = 0.5), respectively.
Literature data for abyssal peridotites are given in the text and can
be found in Table S7. The green field represents the peridotite
xenoliths from the Pacific Ocean (Bizimis et al., 2007; Jackson
et al., 2016; Snortum et al., 2019). The dotted gray lines in (a) are
the depletion ages for a BSE composition. (For interpretation of
the references to color in this figure legend, the reader is referred to
the web version of this article).

ples and suggests melt-rock ratios less than one. Even the
peridotite with the lowest Os content in the sample set
(CIRCE97-HD-2; 0.19 ppb Os) has a '370s/!'%80s ratio
within the range of the other peridotites, and distinct from
more radiogenic MORB melts (e.g., Gannoun et al., 2016).
These lines of evidence suggest that sulfide melt addition is
not a significant driver in Pt, Ru, Ir or Os abundances or
18705/1880s ratios in the studied abyssal peridotites. Con-
versely, melt refertilization can be pervasive and variable
in extent from ultraslow to fast spreading ridges in modify-
ing Re and Pd abundances (up to a factor 10 for Re abun-
dances; Fig. 4).

4.2. Recent versus ancient processes acting on abyssal
peridotites

Melt depletion processes can fundamentally modify
peridotite compositions (e.g., Becker et al., 2006;
Reisberg, 2021). It is possible to estimate the degree of melt
depletion experienced by peridotites using a range of meth-
ods. For example, non-modal fractional melting models can
be used to estimate melt depletion in abyssal peridotites
based on REE abundances (here using model parameters

outlined in Day et al., 2017a). An increase in melt depletion
is associated with lower absolute REE abundances and
higher depletion in the LREE relative to the HREE. The
REE modeling calculations suggest 3-20% melt extraction
for the WEST03MV-12 peridotites, 8-13% for the
WESTO03MV-13 peridotites, and 15-20% for the EPR peri-
dotites. These estimates are consistent to slightly higher
than calculations of melt depletion using Cr# in spinel
grains from the same samples (e.g., Batanova et al., 1998;
Hellebrand et al., 2001): 13.7-19.0%, 9.6-12.3% and
18.4-19.5%, respectively (Table S4). The more BSE-like
HSE patterns in the WEST03MV-13 peridotites relate to
more limited melt depletions than in other abyssal peri-
dotite samples from the PAR and Hess Deep. The esti-
mated high degrees of melt loss in some of the peridotites
(WEST03MV-12 and Hess Deep) are consistent with
clinopyroxene being nearly consumed within the mineral
assemblage (Ol + Opx + Cpx + Sp) during partial melting.
Correspondingly, melt extraction at fast-spreading ridges
ranges up to higher values than those calculated for slow
and ultraslow-spreading ridges (e.g., Warren, 2016; Day
et al., 2017a) (Fig. S4).

Melt extraction in the mantle typically leads to the for-
mation of residual peridotites depleted in Re, Pd + Pt, rel-
ative to Ru, Ir and Os, reflecting the extraction of sulfide
melt along with silicate melt, or dissolution of sulfides into
the melt and formation of refractory platinum group min-
erals (e.g., Alard et al., 2000; Luguet et al., 2003; Ballhaus
et al., 2006; Liu et al., 2009; Reisberg, 2021). Notably, Paci-
fic abyssal peridotites tend to have BSE-like to fractionated
HSE patterns with relative depletion in Re, Pd and Pt: all
Pacific abyssal peridotites show similar ranges for (Pd/Ir),
and (Pt/Ir), (WEST03MV-12 dredge: 0.5-1.2 and 0.6-0.9;
WEST03MV-13 dredge: 0.5-1.6 and 0.5-1.0; EPR: 0.9—
1.8 and 0.6-1.6, respectively). Pacific Antarctic Ridge sam-
ples with low degrees of melt depletion (WEST03MV-13)
have BSE-like HSE patterns with variable rhenium deple-
tion, whereas samples with higher degrees of melt depletion
(WEST03MV-12) have more variable Re, Pd and Pt abun-
dances (Fig. 4). Two of the Hess Deep samples have pat-
terns that are akin to BSE, while the other samples show
different degrees of rhenium depletion, suggesting that, in
all cases, melt depletion has modified the original HSE
abundances. The average total HSE content decreases with
decreasing melt depletion degree (Fig. S5), suggesting that
the variability observed between the different ocean basins
in terms of HSE abundances can be explained by petroge-
netic processes.

Melt depletion in peridotites decreases the incompatible
element abundances. Positive correlations exist between
ALOs, as well as the HREE and Y, and '¥70s/'®0s ratios
for the Pacific abyssal peridotites (Fig. 6), as observed for
peridotites from slower spreading ridges (e.g., Reisberg
and Lorand, 1995; Parkinson et al., 1998; Lassiter et al.,
2014; Day et al., 2017a). Positive relationships also exist
between Al,O; and Re/Ir and Pd/Ir, but do not occur for
Pt/Ir, Ru/Ir or Os/Ir, which are essentially invariant with
decreasing Al,O5 (Table 1). Rhenium and Pd abundances
in abyssal peridotites are depleted during melt loss, whereas
Pt, Ru, Ir and Os abundances and '*70s/'%80s ratios are less
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affected by such processes. Consequently, these correlations
reflect variable melt loss in the peridotite suite. The correla-
tion between '¥70s/'%80s ratios and Al,O5 contents in bulk
rock abyssal peridotites further implies that some of this
melt depletion is also ancient, as 18705/1%80s in these rocks
tracks long-term melt depletion, where rocks with low Al,O3
also have low '®’Re/'*®0s. Pre-existing heterogeneities in
peridotites have been noted in previous '¥’Re-'%"Os studies,
reporting Re depletion ages (Trp = 1/1.67 x 1071 x
In{[(0.127 — "¥70s/"®¥08ump1c)/0.40186] + 1}; where Trp
ages represent minimum depletion ages, assuming no
ingrowth from '8Re in abyssal peridotites since melt deple-
tion) as ancient as 2 Ga for abyssal peridotites (e.g., Harvey
et al., 2006; Liu et al., 2008; Lassiter et al., 2014; Day et al.,
2017a), as well as for ophiolite peridotites (e.g., Biichl et al.,
2004; Schulte et al., 2009; O’Driscoll et al., 2012, 2015) and
mantle peridotites from ocean islands (Snortum et al., 2019).
In this respect, it is notable that the concept of the Trp
model age was originally developed for highly refractory
cratonic peridotites, where the estimated degree of melt
extraction is ~30 to 50%, leading to nearly Re-free peri-
dotitic residues (Walker et al., 1989; Luguet and Pearson,
2019; Reisberg, 2021, and references therein). Nonetheless,
measured '¥70s/'*80s below the BSE or even chondritic val-
ues in mantle peridotites must reflect long-term rhenium
depletion.

Rhenium depletion ages for Pacific abyssal peridotites
range up to 1.3 Ga for peridotites from the WEST03M V-
12 dredge, up to 1.5 Ga for those from the WEST03MV-
13 dredge, and up to 0.9 Ga for Hess Deep (Fig. 5). The old-
est rhenium depletion ages are therefore in the samples with
the lowest degrees of melt depletion. The average Re deple-
tion ages are 0.5 £ 0.3 Ga, 0.6 = 0.5 Ga and 0.7 + 0.2 Ga
respectively, which are similar to previous estimates from
abyssal peridotites (Lassiter et al., 2014; Day et al.,
2017a). The distinction between ancient melt depletion
and recent melt depletion at the ridge remains one of the
most challenging issues to deconvolve in abyssal peridotites.
No correlations between '370s/'®%0s ratios or Trp ages
with degree of partial melting (or melt depletion, F) are
observed, suggesting that separating pre-existing melt deple-
tion from recent-ridge melt depletion cannot be directly
established. Nevertheless, Pacific abyssal peridotites with
low Pd/Ir also show ancient Trp ages, similar to samples
from slower spreading ridges (e.g., Lassiter et al., 2014;
Day et al., 2017a), indicating that abyssal peridotites pre-
serve significant pre-existing melt depletion, up to or exceed-
ing 2 Ga, in some cases (Fig. 5).

4.3. Pacific Ocean mantle composition

Collectively, Pacific abyssal peridotites have similar dis-
tributions and variations in the abundances of the HSE, as
well as slightly more radiogenic '%70s/'*®0s, relative to
Pacific mantle xenoliths (Fig. 6a) (Bizimis et al., 2007;
Jackson et al., 2016; Snortum et al., 2019). Mantle xenoliths
preserve melt depletion ages up to 1.5 Ga in Aitutaki (Cook
Islands: Snortum et al., 2019), 1.5 Ga in Savai’i, 1.8 Ga in
Tubuai (Samoa and Austral Islands, respectively: Jackson
et al., 2016) and as ancient as 2 Ga in O’ahu (Hawaii:

Bizimis et al., 2007), similar to Trp ages reported for Pacific
abyssal peridotites. These observations indicate that the
Pacific oceanic mantle records heterogeneous melt-
depletion from both ancient and more recent melt depletion
events. These melt depletion events can be up to 2 Ga and,
in this sense, are similar to observations from global ocea-
nic lithosphere (e.g., Brandon et al., 2000; Harvey et al.,
2006; Liu et al., 2008, 2009; Lassiter et al., 2014; Day
et al., 2017a). Even though Pacific abyssal peridotites and
mantle xenoliths only provide a glimpse of the Pacific ocea-
nic plate, often at the hand-sample scale, they show evi-
dence for significant heterogeneities at short length scales
due to prior melt depletion events up to 2 Ga ago, as well
as strong similarities in average HSE abundances and Os
isotope compositions to abyssal peridotites from the Atlan-
tic, Indian or Arctic Ocean basins.

4.4. Composition of the Bulk Silicate Earth deduced from
abyssal peridotites

Average HSE abundances and Os isotope compositions
for measured abyssal peridotites from the global mid-ocean
ridge system show no correlation with spreading rate
(Figs. 7 and S6). This observation is important because dif-
ferent melting processes at slow and ultraslow spreading
ridges versus fast spreading ridges could conceivably yield
differences in modern melt depletion recorded in abyssal
peridotites, but this is not the case. The 18705/1880s compo-
sition of the BSE recalculated with the new Pacific abyssal
peridotites is 0.1265 + 0.0031 (n = 230), and 0.1250 + 0.0
040 for peridotites with > 2 ppb Os. These values are close
to those reported by Lassiter et al. (2014) for the convecting
upper mantle and by Day et al. (2017a) for the depleted
MORB mantle (0.1245 and 0.1247 4+ 0.0075, respectively).
Following a similar approach as Day et al. (2017a), we
recalculate the average composition of the BSE
using abyssal peridotites with Al,O; content > 2 wt.% from
all mid-ocean ridge systems (Fig. 8). We obtain
0.34 + 0.38 (1 s.d.) ppb [Re], 4.87 + 2.67 ppb [Pd],
7.29 + 1.88 ppb [Pt], 7.40 £ 1.89 ppb [Ru], 3.84 + 1.12 pp
b [Ir] and 3.36 £+ 1.09 ppb [Os] (Fig. 8). Estimates for the
Arctic and Indian Oceans give comparable values to those
of the global ridge system estimate (Fig. 8). Note that the
Atlantic Ocean estimate appears slightly depleted, and the
Pacific Ocean is slightly enriched in HSE, compared with
the global BSE estimate (Fig. 8). These differences can be
attributed to variable degrees of ancient and modern partial
melting affecting the peridotites. Similar results are
obtained when the data are regressed to a BSE Al,O3 value
of 4 to 4.5 wt.% (see Day et al., 2017a).

The reevaluated composition for the BSE, including the
new Pacific abyssal peridotite data, does not significantly
change the average estimates for the BSE previously
reported for abyssal and oceanic peridotites (Becker et al.,
2006; Chatterjee and Lassiter, 2016; Day et al., 2017a), or
for continental peridotites (Becker et al., 2006; Chatterjee
and Lassiter, 2016). Our results for Pacific abyssal peri-
dotites confirm that the BSE estimated from abyssal peri-
dotites does not show high Pd/Ir and Pd enrichment as
reported by Becker et al. (2006), and Chatterjee and
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Lassiter (2016). This discrepancy between the two estimates
of the BSE composition is thought to result from Pd enrich-
ment in the continental-derived peridotites used for the cal-
culation due to melt-refertilization (e.g., Aulbach et al.,
2016; Luguet and Reisberg, 2016; Becker and Dale, 2016).
Overall, these observations lead to the idea that the BSE
shows an abundance range for the most incompatible
HSE (Re, Pd) that can exceed one hundred percent, but
that more compatible HSE (Pt, Ru, Ir, Os) show less than
30% abundance variation. These variations can be
accounted for by melting processes acting on abyssal peri-
dotites over < 2 Ga.

4.5. Implications of a relatively homogeneous convecting
mantle for the HSE

Abyssal peridotites from fast to intermediate spreading
ridges reveal few, if any, systematic differences in the distri-
bution and behavior of the HSE, compared with slow to
ultraslow spreading ridges, despite generally higher degrees
of melt depletion (Figs. 7 and 8). Additionally, estimates of
the '®70s/'%80s isotope composition of the BSE based on
abyssal peridotites show little to no difference to oceanic
mantle xenoliths (e.g., Chatterjee and Lassiter, 2016;
Snortum et al., 2019) and samples from peridotite massifs
(e.g., Becker et al., 2006). Taking the available global abys-
sal peridotite sample set and using Al,O; > 2 wt.%, HSE
and Os isotope compositions argue in favor of present-
day convecting mantle composition, with Pt, Ru, Ir and
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ratios as a function of spreading rate. Spreading rates are as
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Os abundance variations at <430% and '¥’0s/'*®0s varia-
tions at ~6% (2SD) for the global abyssal peridotite data-
set. As noted previously, this variation can be accounted
for by recent rather than ancient (>2 Ga) processes.

Compared with abyssal peridotites (e.g., Day et al.,
2017a and this study), Archean mantle peridotites from
West Greenland (3.8 Ga) and Western Australia
(3.46 Ga) have similar broadly chondritic '¥’0s/'®0s com-
positions and Os concentrations, arguing in favor of the
HSE being added to the Earth, transported and homoge-
nized within the mantle by ~3.8 Ga (Bennett et al., 2002;
van de Locht et al., 2018). Homogeneous Ru isotope com-
positions have been reported in Archean ultramafic rocks
younger than 3.5 Ga (Pilbara Craton, Australia: 3.5-
3.2 Ga; Abitibi greenstone belt, Canada: 2.7 Ga; Bushveld,
South Africa: 2.05 Ga), as well as in Phanerozoic oceanic
and continental mantle domains, and are undistinguishable
from the modern terrestrial mantle (Bermingham and
Walker, 2017; Fischer-Godde et al., 2020). These lines of
evidence all support a relatively homogenized BSE in terms
of HSE abundances and Os isotope ratios since at least the
Archaean, where variations reflect melting processes within
the mantle, rather than heterogeneities incorporated during
Earth’s accretion.

Based on HSE abundances, it has been proposed that
~0.5 to 0.8% of Earth’s present mass was accreted after
core formation, if all HSE delivered by these impacts were
retained in the mantle, rather than being lost to the core or
through inefficient impact retention (Becker et al., 2006;
Day et al., 2016a). Consequently, late accretion impacts
might have been expected to leave graininess in HSE abun-
dances in Earth’s mantle. This is because some moderate to
large size impactors may not have been capable of com-
pletely remelting Earth’s mantle. From a geological per-
spective, Eoarchean ultramafic rocks from Greenland
(3.8-3.7 Ga), and Mesoarchean chromitites from Seqi,
Greenland (minimum age of 3 Ga) exhibit '"Ru excess
(Fischer-Godde et al., 2020), arguing in favor of a heteroge-
neous delivery of the HSE to the Earth during late accre-
tion. Similarly, evidence for grainy accretion has been
suggested for other bodies, such as Vesta (Day et al.,
2012). Numerical impact models also support that delivery
of silicate and metal to the Earth by large planetesimals was
heterogeneous, leading to projectile material being concen-
trated within localized domains of Earth’s mantle and pro-
ducing isotopic anomalies in W, Mo and Ru isotopes
(Marchi et al., 2018; Maas et al., 2021).

Geochemical arguments in favor of heterogeneities
imparted to the mantle during accretion include positive
u!'82W preserved in most Eoarchean rocks studied to date,
which have been interpreted to indicate that late accreted
materials were not evenly distributed in Earth’s mantle,
and not well mixed in the BSE (Willbold et al., 2011). Such
heterogeneities are not evident in the convecting mantle,
with basalts from mid-ocean ridges and ocean islands mea-
sured to date lacking positive p'®W anomalies (e.g., Mundl
et al., 2017). The HSE have also been argued to have been
heterogeneously distributed within the early mantle from
observations that Archean (3.5-3.2 Ga) komatiites
from the Barberton greenstone belt (South Africa) and
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the Pilbara craton (Western Australia) apparently record
depleted HSE compositions for their mantle sources rela-
tive to late Archean and younger komatiites (Maier et al.,
2009). Arguments in favor of HSE heterogeneities imparted
to the mantle by late accretion are not without controversy,
however, where it has been argued that komatiites are not
faithful recorders of mantle source compositions
(Waterton et al., 2021).

Because the HSE appear to be homogeneously mixed in
the present-day convecting mantle, we favor that whatever
HSE input was accreted to the Earth, these heterogeneities
have been relatively efficiently mixed into the mantle
through convective processes. Anomalies in the HSE,
including Ru, as well as Mo and W in Archean crustal
rocks can be interpreted to reflect late accretion heterogene-
ity within the Earth that is well-recorded within isolated

crustal and lithospheric fragments. For example, the mantle
beneath southwest Greenland had not yet fully equilibrated
with late accretion material by 3.7 Ga ago (Fischer-Godde
et al, 2020). This is consistent with the average
mantle homogenization timescale of ~1.2 Ga calculated
from the combined '*°0s/'®0s-'*70s/'%¥0s isotopic and
Pt/Os and Re/Os variability in peridotites (e.g., Chatterjee
and Lassiter, 2016). Other isotopic systems, such as the
short lived '*°Sm-'**Nd system, lead to younger mantle
homogenization timescales (~0.4 Ga) as well as a fast man-
tle stirring rate (e.g., Chatterjee and Lassiter, 2016; Hyung
and Jacobsen, 2020).

In contrast with lithophile incompatible elements, which
are sensitive to resetting by melt refertilization in peri-
dotites, the Re-Os and Pt-Os isotope systems are less sus-
ceptible to similar petrogenetic processes. As such, the
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mixing timescale inferred from Os isotopes in abyssal peri-
dotites of around 0.5-0.7 Ga is approximately consistent
with timescales predicted for the whole mantle convection.
Hoffman and McKenzie (1985) showed that any convecting
region of the upper mantle will be well mixed on a horizon-
tal scale of at least 2000 km in 400 Ma, or 8500 km in
1.5 Ga, suggesting that large scale heterogeneities would
be destroyed within Earth’s lifetime. Our data support this
contention. Nonetheless, elemental and isotopic anomalies
that are thought to reflect mantle heterogeneities have been
recorded in ocean island basalts (e.g., HSE in the Réunion
cumulate xenoliths, Peters et al., 2016; W isotope anomalies
in modern flood basalts: Rizo et al., 2016; and modern
ocean island basalts: Mundl et al., 2017; Mundl-
Petermeier et al., 2019, 2020; Peters et al., 2021). These sug-
gest that distinct mantle domains might have been effec-
tively isolated and preserved from the convecting upper
mantle through most of the Earth’s history (e.g., Allegre
and Turcotte, 1985).

5. CONCLUSIONS

This global survey of abyssal peridotites from fast to
intermediate spreading ridges reveals few if any systematic
differences in the distribution and behavior of the HSE,
compared with slow to ultraslow spreading ridges, despite
variable degrees of melt depletion. Melt refertilization is
pervasive and variable in extent from ultraslow to fast
spreading ridges and can modify Re and Pd quite signifi-
cantly. Across ocean basins and independently of spreading
rates, the HSE appear relatively homogeneous in the BSE.
Using abyssal peridotites with Al,O; content > 2 wt.% from
all mid-ocean ridge systems, including the new Pacific abys-
sal peridotite data, we recalculated the average composition
of the BSE of 0.30 4 0.33 ppb [Re], 4.94 + 2.35 ppb [Pd],
7.13 &+ 2.16 ppb [Pt], 7.22 + 3.71 ppb [Ru], 3.79 + 1.84 pp
b [Ir] and 3.77 + 1.45 ppb [Os]. Variability observed
between the different ocean basins, if any, can most likely
be explained by partial melting processes. The variations
in HSE abundances currently observed within the convect-
ing mantle sampled by abyssal peridotites are primarily due
to partial melting and melt refertilization processes over the
past 2 Ga rather than to significant HSE heterogeneity of
the post-Archean mantle. Preservation of ancient melt
depletion heterogeneities in some oceanic peridotites, with
osmium Tgrp ages exceeding 1 Ga and highly depleted Hf
isotope signatures measured in clinopyroxene grains
(Stracke et al., 2011; Sanfilippo et al., 2019) suggests some
refractory domains formed through ancient melt depletion
can also be partially preserved in the convecting upper
mantle.
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