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Abstract

Peridotites from the Tonga Trench are some of the deepest-derived and freshest ever obtained
from the seafloor. This study reports new bulk-rock major-, trace-, highly siderophile-element (HSE)
abundance and '870s/'880s data, as well as major and trace-element abundances of mineral
phases for NOVA88D dredge peridotites. The samples are harzburgites that experienced varying
degrees of serpentinization, recorded in their loss on ignition (LOI) values, from zero to 16.7%.
Degree of serpentinization in samples is correlated with Na, B, K, Sr, Ca, Rb and U, and weakly
correlated with W, Fe, Pb, Cs and Li abundances, but is uncorrelated with other lithophile elements,
most especially the rare earth elements (REE). Serpentinization had no systematic effect on the
HSE abundances or '870s/'880s compositions in the harzburgites. NOVA88D harzburgites record
>18% melt depletion which has resulted in heterogenous distribution of the HSE within the rocks,
likely due to retention of these elements within sub-micron sized alloy or sulphide phases. Time
of rhenium depletion (Trp) ages, recorded by Os isotopes, average ~0.7 £0.4 Ga and can be
as ancient as 1.5 Ga. Some harzburgite compositions are consistent with minor melt infiltration
processes modifying incompatible trace element compositions and Re abundances, with a possible
melt infiltration event at ~120 Ma based on '87Re-"88Qs, prior to the inception of subduction at
the Tonga Trench at ~52 Ma. Evidence for ancient melt depletion, combined with limited melt
processing since inception of subduction suggests that NOVA88D harzburgites represent melt
residues incorporated into the Tonga arc, rather than their geochemical signatures being produced
beneath the recent arc. Estimates of fO, (~—0.4+0.4 AFMQ) and olivine-spinel equilibration
temperatures for the Tonga Trench samples (8304120 °C) are similar to abyssal peridotites and
some lzu-Mariana-Bonin peridotites. These values are unlikely to relate directly to recorded degrees
of melt depletion and melt depletion ages in the rocks. Refractory residues from prior melt depletion
events are probably common in the convecting mantle, and those with high degrees of melt
depletion (>18%) and relatively ancient melt depletion ages (<2 Ga) are likely to have been formed
during prior melting processes rather than melting processes within their current tectonic setting.
These refractory peridotites can be incorporated into a range of tectonic settings, including into
mid-ocean ridges, succeeding arcs, or within the continental lithospheric mantle, where they may
play a limited role in melt generation processes.
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INTRODUCTION

Mantle peridotites that have been dredged and drilled or collected as
xenoliths from within the ocean basins provide insights into a range
of Earth processes and the nature of the convecting mantle. These
insights range from understanding melting processes beneath ridges
and within subduction zones (e.g. Parkinson et al., 1998; Rampone
et al., 1998; Harvey et al., 2006), the importance of oceanic litho-
sphere in the assembly of continental margins (e.g. Liu ez al., 2018;
Snortum & Day, 2020), to the definition of the convecting mantle
composition (e.g. Snow & Reisberg, 1995; Brandon et al., 2000;
Meisel et al., 2001; Miintener & Manatchal, 2006; Becker et al.,
20065 Warren, 2016; Day et al., 2017a).

An impediment to progress in these scientific arenas has been
serpentinization within oceanic peridotites. Serpentinization results
from the hydrothermal alteration of silica-poor, olivine-rich rock in
heavily fractured and faulted areas, and commonly occurs beneath
mid-ocean ridges, and at plate margins where it is estimated between
10% and 20% of the upper mantle (i.e. spreading centers, trenches)
can be modified by such processes (e.g. Hyndman & Peacock, 2003;
Frith-Green et al., 2004; Grevemeyer et al., 2007; Frost & Beard,
2007; Cooperdock et al., 2018). Most peridotite samples that have
been dredged or drilled from the seafloor have experienced some
degree of serpentinization (e.g. Bloomer & Fisher, 1987; Brandon
et al., 2000; Dick et al., 2003; Bach et al.,, 2004; Harvey et al.,
2006; Paulick et al., 2006; Frisby et al., 2016). Serpentinization
can completely eradicate original protolith textures and can have
a profound impact on some aspects of the chemistry of peridotites,
(e.g. Snow & Dick, 1995; Mével, 2003; Bach et al., 2004; Malvoisin,
2015; Bénard et al., 2021) especially major element data (Fig. 1).
The clear and profound effects of serpentinization on some elements
(e.g. Sr, Ba) has been used as generalized evidence of its impact on
bulk chemistry, even for some of the strongly compatible but low
abundance elements, such as the highly siderophile elements (HSE:
Os, Ir, Ru, Rh, Pt, Pd, Re, Au).

Despite some perceptions that serpentinization can lead to flawed
interpretations in understanding the geochemistry of seafloor peri-
dotites, there is limited quantitative evidence to support this idea
for some elements, most especially for the HSE or Os isotopes.
Previous studies specifically investigating these elements in peridotites
spanning a wide range of seafloor alteration or serpentinization have
been unable to provide systematic evidence for alteration effects (e.g.
Snow & Reisberg, 1995; Alard ez al., 2005; Harvey et al., 2006; Liu
et al., 2009; Day et al., 2017b; Snortum & Day, 2020). Serpentiniza-
tion processes have the potential to affect elemental abundances and
isotopes in ultramafic rocks by the removal of elements (e.g. Mg or
Ca), addition of elements, especially those enriched in seawater (e.g.
B, Sr), and by volume increases that lead to dilutional effects on most
elements. Understanding the impact of serpentinization on seafloor
peridotite chemistry allows for further interpretation of important
processes, including reactions occurring during serpentinization, and
potentially enabling assessment of the delivery of water and other
volatile species into the deep Earth during subduction (e.g. Kodolanyi
et al., 20125 Guillot & Hattori, 2013). Even atmophile elements
like Xe show strong evidence for deep lithospheric subduction (e.g.
Mukhopadhyay & Parai, 2019). Consequently, addressing the behav-
ior of elements within peridotites during serpentinization remains a
critical goal for understanding mantle geochemistry.

The 1967 NOVAS8D dredge by the R/V Argo at the Tonga Trench
yielded some of the deepest and freshest recovered peridotites from
the seafloor, as well as fully serpentinized peridotites (Fisher & Engel,
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Fig. 1. Diagrams illustrating geochemical variations due to seafloor alteration
and serpentinization in abyssal peridotites as a function of (A) Al,03/SiO;
vs. MgO/SiO; and (B) LOI vs. MgO/SiO2. Shown are the compiled data from
Malvoisin (2015), Day et al. (2017a), and for Tonga Trench peridotites from
Birner et al. (2017). New results from Tonga Trench peridotites from this study
are also shown as large unfilled circles.

1969; Bloomer & Fisher, 1987; Bloomer et al., 1996; Wright et al.,
2000; Birner et al., 2017). The Tonga Trench is remarkable for being
the second deepest trench on Earth and having a fast convergence
rate of ~20 cm a year (Bevis ez al., 1995). Peridotites dredged from
this setting have been interpreted to represent forearc peridotites
sampled on the arc-side of the trench (Birner ez al., 2017). This
study investigates harzburgite samples from the NOVA88D dredge
to examine and quantify the role of serpentinization on HSE, and
Os isotopes. Due to the freshness of some of these peridotites, it is
possible to address the timing and extent of melt depletion, as well
as to examine the petrogenesis and wider implications for oceanic
mantle composition.

SAMPLES

Visually fresh to completely serpentinized Tonga Trench peridotites,
dredged during the 1967 NOVA expedition using the R/V Argo, were
examined in this study (Table 1; Fig. 2). Samples came from dredge
88D, located at 20°25°S,173°16°W, and between 9150 m and 9400 m
water depth. Based on their observations during dredging operations,
Fisher & Engel (1969) proposed that the samples were taken from the
arc-side of the trench. These samples represent the deepest dredged
suite of what have been interpreted to be forearc peridotites. In total,
peridotites have been recovered in 14 dredges from nearly 1000 km
of the Tonga Trench (Fisher & Engel, 1969; Bloomer & Fisher, 1987;
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Table 1: Modal percentages of phases in Tonga Trench peridotites and LOI for sample powders

Sample Olivine Orthopyroxene  Clinopyroxene Spinel Veins Serpentinite LOI (%)
N88-A1* 79.0 19.9 0.1 0.90

NOVAS88D-1 68.2 30.6 1.0 0.20 - 0 0.10
NOVAS8D-3 72.3 27.2 Trace 0.42 - 0 —0.07
NOVAS88D-4 63.5 34.7 1.4 0.35 - 0 0.07
NOVAS88D-6 72.0 26.0 1.5 0.50 - 0 0.46
NOVA88D-9 54.0 42.8 2.8 0.42 - 0 0.09
NOVAS8D-10 68.6 31.1 Trace 0.29 - 0 0.13
NOVAS8D-11 81.6 17.5 - 0.86 25.2 60 5.10
NOVAS88D-12 59.7 37.8 - 2.44 - 97.5 14.9
NOVAS88D-13 63.3 36.5 - 0.18 - 99.8 10.1
NOVAS88D-15 56.0 43.9 - 0.15 2.5 99.8 16.3

Modal percentages of olivine and orthopyroxene estimated prior to serpentinization are given for serpentinized samples D-11, D-12, D-13 and D-15 using

crystal morphologies preserved in samples. *Comparison sample, from same dredge, in Birner et al. (2017).
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Fig. 2. Regional map (upper image) of the Tonga Trench with inset showing
the location of NOVA 88 Dredge and study area (lower image). The Osborn
trough is at 25°S.

Bloomer et al., 1996; Wright et al., 2000; Birner et al., 2017), and are
notable for their remarkable freshness in some instances (Birner et al.,
2016). Hand-samples between 20 g and 100 g were cut to form blocks
using a precision saw. The cut edges were sanded using coarse grit
corundum paper to remove sawn surfaces, and blocks were sonicated
for ~5 minutes in distilled water before being dried. The cleaned
blocks were then crushed to fragments of <5 mm using a ceramic
alumina jaw crusher. A portion of the crush was then powdered to
fine flour using an alumina shatter box.

METHODS

Mineral composition determinations and modal
mineralogy

Mineral compositions and modal mineralogy were determined on
polished thin sections. Petrographic analysis and determination of
mineral modes was performed using a Nikon POL transmitted/re-
flected light microscope equipped with an imaging system for scaled-
digitization of whole- or individual areas of thin-sections. Mineral
modes were performed using methods developed previously for
meteorites (Day et al., 2006) and peridotite xenoliths (Traver, 2013).
These studies have demonstrated reproducibility of better than 5%
on samples with strong color contrasts, including fresh peridotites.
Determination of modal analyses in serpentinized samples was pos-
sible where replacement appeared to be essentially static and original
crystal morphologies were preserved.

Major element mineral compositions were obtained using a
Cameca SX electron microprobe at the CAMPARIS facility in
Paris (Universite Pierre et Marie Curie, Paris). Operating conditions
were 15 keV accelerating voltage, a 5 pm beam diameter, with a
10 nA beam current, with counting times of 10-20 seconds (s) on
background and peak for major elements. Minerals and pure oxides
were used as standards for elemental calibration. Standards used
were olivine for Mg and Si, pure magnetite for Fe, orthoclase for
Al, diopside for Ca, albite for Na, pure chromite for Cr, manganese
titanate for Mn and Ti, and vanadinite for V. Background and peak
counting times used were 20-30 s and standard PAP correction
procedures were used (Pouchou & Pichoir, 1987). Detection limits
were < 0.03 wt. % for SiO», TiO,, Al, O3, MgO, CaO, and Na, O,
<0.04 wt. % for V503 and Cry O3, <0.05 wt. % for MnO, FeO, and
NiO. Statistical uncertainties (2 standard deviations [SD]) resulting
from counting statistics were 2% for FeO, MgO, CaO and SiO,,
3% for CryO3, 5% for Al,O3, 15% for NiO, 20% for Nay O and
MnO, and 30% for TiO; and V,O3. The complete data set of these
analyses is reported in Table S1.

Laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) was used to analyze fresh silicate mineral phases using a
New Wave Research UP213 (213 nm) laser-ablation system coupled
to a ThermoScientific iCAP Qc quadrupole inductively coupled
plasma mass spectrometer (ICP-MS) at the Scripps Isotope Geochem-
istry Laboratory (SIGL). Analyses were done using ~0.5 mm long
rasters with a 100 pm beam diameter, a laser repetition rate of 5 Hz,
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and a photon fluence of ~3 to 3.5 J/cm?. Ablation analysis took place
in a 3 cm?® ablation cell. The cell was flushed with He-gas to enhance
production and transport of fine aerosols and was mixed with an Ar
carrier-gas flow of ~1 L/min, before reaching the torch. Each analysis
consisted of ~60 s data collection. Backgrounds on the sample gas
were collected for ~20 s, followed by ~40 s of laser ablation.
Washout time between analyses was >120 s. Data were collected
in time-resolved mode so effects of inclusions, mineral zoning and
possible penetration of the laser beam to underlying phases could
be evaluated. Plots of counts per second vs. time were examined for
each analysis, and integration intervals for the gas background and
the sample analysis were selected. Standardization was performed
using the standard reference material glasses NIST 610, BCR-2 g
and BHVO-2 g, yielding reproducibility of better than 8% (relative
standard deviation [RSD]). Data were reduced using an in-house
correction program and preferred concentrations of the standard
reference materials were taken from the values from GeoReM. All
data were initially corrected using NIST 610 with confirmation
by constructing calibration curves from NIST 612, NIST 610, and
BHVO-2 g, with Si as the normalizing element. The complete data
set of these analyses is reported in Table S2.

Whole-rock major and trace element analysis

Major element compositions were measured by X-ray fluorescence
(XRF) at Franklin and Marshall College using procedures outlined
in Boyd & Mertzman (1987), with identical precision and accuracy
to our previous work (Day et al., 2017a). Whole-rock powders were
measured for trace-element abundances at the SIGL. Samples were
digested at 150°C in Optima grade concentrated HF (4 mL) and
HNOj3 (1 mL) for >72 hours on a hotplate, with total analytical
blanks, and terrestrial basalt standards. Samples were sequentially
dried and taken up in concentrated HNOj3 to remove fluorides,
followed by dilution and doping with a 1 pg/ml indium solution to
monitor instrumental drift during analysis. Trace-element abundance
analyses were done using a ThermoScientific iCAP Qc quadrupole
ICP-MS in standard mode. Analyses were standardized vs. refer-
ence material BHVO-2 that was measured throughout the analytical
run. In addition, reference materials were analyzed as ‘unknowns’
(BHVO-2, BIR-1, BCR-2 and HARZ-01) to assess matrix matching,
external reproducibility, and accuracy. For trace-elements, repro-
ducibility of the reference materials was better than 5% (RSD), except
for B, W, Cs (all at 8% RSD) and Mo (17% RSD). The reproducibility
is in line with standard reference material data reported previously
for the laboratory (e.g. Day et al., 2017a).

Rhenium-osmium and highly siderophile element
abundance analysis

Osmium isotope and HSE abundance analyses were performed at
SIGL. Homogenized 1 g powder aliquots of the NOVA dredge
samples were digested in sealed borosilicate Carius tubes, or high-
pressure asher (HPA) quartz digestion vessels, with isotopically
enriched multi-element spikes (*’Ru, '%°Pd, '**Re, '"°Os, "'Ir, **Pt),
and 11 mL of a 1:2 mixture of multiply Teflon distilled HCI and
HNOj that was purged with HyO) to remove Os. Samples were
digested in Carius tubes to a maximum temperature of 270°C in
an oven for 72 hours, and in HPA vessels for 6 hours at 320°C,
and > 150 bar. Osmium was triply extracted from the acid using CCly
and then back extracted into HBr, prior to purification by micro-
distillation, with the other HSE being recovered and purified from the

residual solutions using anion exchange separation (Day et al., 2016).
Isotopic compositions of Os were measured in negative-ion mode on
a ThermoScientific Triton thermal ionization mass spectrometer.
Rhenium, Pd, Pt, Ru and Ir were measured using an Cetac Aridus
II desolvating nebulizer coupled to a ThermoScientific iCAP Qc
ICP-MS. Offline corrections for Os involved an oxide correction,
an iterative fractionation correction using '*?Os/!*Qs=3.08271,
a Os spike subtraction, and finally, an Os blank subtraction.
Precision for '®7Qs/'*Qs, determined by repeated measurement of
the UMCP Johnson-Matthey standard was better than +£0.2% (2
SD; 0.11385+17; n=6). Measured Re, Ir, Pt, Pd and Ru isotopic
ratios for sample solutions were corrected for mass fractionation
using the deviation of the standard average run on the day over
the natural ratio for the element. External reproducibility on HSE
analyses using the iCAP Qc was better than 0.5% for 0.5 ng/g
solutions and all reported values are blank corrected. The total
procedural blanks (7=4) run with the samples for Carius tubes
had %70s/"¥0s=0.22 £0.11, with quantities (in picograms) of
0.9 [Re], 6 [Pd], 20 [Pt], 10 [Ru], 5 [Ir] and 0.72 [Os]. The total
procedural blanks run using the HPA were 50% lower than these
values with '%70s/'%80s = 0.2. All data are blank corrected, with the
blanks representing between 0.1 and 46% (highest blank proportion
in NOVA88D-17), 0.1 and 6%, <0.1 and 1%, <0.1 and 57%, 0.1
and 35% (highest blank proportions in NOVA88D-16), and < 0.1-
5% of total measured Re, Pd, Pt, Ru, Ir and Os, respectively. The
high blank estimates for Re in some peridotites reflect the low Re
contents of these peridotites, rather than an elevated total procedural
blank.

Harzburgite standard powder, HARZ-01 was run with sam-
ples three times during the analytical campaign, and concentrations
and isotopic compositions for this standard reference material ([in
ng/g with 2 SD uncertainties] 0.06+0.01 [Re], 5.68+0.35 [Pd],
7.8+3.5 [Pt], 6.78 £1.55 [Ru], 4.30£0.73 [Ir], 3.74£0.78 [Os],
187Re/"80s = 0.075 £0.022, ¥70s/"*80s = 0.12503 £0.00150, are
within uncertainty of a larger set of measurements made using both
Carius tube and HPA digestion methods (Meisel & Horan, 2016;
Day et al., 2012). The harzburgite reference material, HARZ-01, is
likely to reasonably approximate the Tonga Trench peridotite compo-
sitions, and the variations in HSE abundances reflect inhomogeneous
distribution of sub-micron sized HSE-rich phases within the rock and
sample powder. This so-called ‘nugget effect’ is well described in peri-
dotite studies (e.g. Becker et al., 2006 for a discussion). Consequently,
the reproducibility on HSE abundances for the HARZ-01 reference
material is likely to be a better approximation of reproducibility
(6-45%) than the external analytical uncertainties.

RESULTS

Sixteen spinel-bearing harzburgite samples were measured that
exhibited a visible range of fresh and altered mineralogical
compositions in hand specimen. One associated seafloor basalt
collected during the same dredge was also analyzed and is reported
for completeness.

Modal mineralogy and composition of mineral phases

Tonga Trench peridotites are spinel harzburgites (54-82 modal %
olivine; 17-43 modal % orthopyroxene; <0.1-2.8% clinopyroxene,
and 0.2-2.4 modal % spinel), with serpentinization ranging from
zero to 100%, with significant serpentinite veining within some sam-
ples (Table 1; Fig. 3). Magnetite grains occur within the serpentinized
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Fig. 3. Cross-polarized light photomicrographs of (a) NOVA88D-1 (0.1 wt.% LOI), (b) NOVA88D-11 (5.1 wt.% LOI), (c) NOVA88D-13 (10 wt.% LOI) and (d) NOVA88D-15
(16.3 wt.% LOI) illustrating the increasing degree of serpentinization (a is unserpentinized, d is almost completely serpentinized), corresponding to higher LOI.

material in samples that have experienced significant alteration (e.g.
D-11, D-13). Texturally, the NOVA88D harzburgites can be defined
as protogranular to porphyroclastic (after textural definitions by
Mercier & Nicolas, 1975, and others), with evidence for strain within
olivine, as well as exsolution lamellae within orthopyroxene, in the
freshest samples (Fig. 4). Olivine and orthopyroxene grain sizes are
typically in the ~1-4 mm diameter range but can exceed 5 mm in
diameter. When present in samples, clinopyroxene grains are small
(<0.5 mm in diameter). Spinel grains range in size from ~0.5 to
2 mm in diameter and are found as anhedral grains intergrown
with orthopyroxene and small grains of olivine and clinopyroxene
in some samples, as equant isolated grains, or as stringers within
samples with evidence for strain. As with Tonga Trench peridotites
examined by Birner et al. (2017), the spinel grains for samples of
this study have sharp boundaries and do not have sieve textures
or compositional zonation in backscattered electron images. Evi-
dence for later melt veins, plagioclase or amphibole is absent in the
peridotites.

Thirty-four individual olivine grains from eight samples
gave a restricted range in forsterite contents (90.1-91.9), with
low CaO (<0.05 wt.%) and NiO of 0.40£0.05 wt.% (Table
S1). Seventy-seven orthopyroxene grains measured from the
studied samples have a relatively homogeneous composition
(Wos.14+1.8Eng9.74+1.6Fsg2+0.4), with 1.6 +£0.2 wt.% A1203
and 0.60+0.06 wt.% CryOj3. Twenty-one clinopyroxene grains
from six samples are also relatively homogeneous, close to
diopside  (Woy4g2+2.3En491123Fs27403), with low NayO
(0.11£0.03 wt.%), 1.7£0.3 wt.% Al,O3, and 0.8+0.1 wt.%
CryO3. Cr-spinel compositions have Cr-numbers ranging from 53 to
76 and Mg-numbers from 46 to 57, making them some of the most
depleted spinel compositions from any oceanic peridotites worldwide
(Fig. 5). These compositions for mineral grains are broadly similar to
those reported by Birner et al. (2017) for Tonga Trench peridotites.

The extreme depletion from Cr- and Mg-numbers in spinel would be
consistent with 20 £ 1% partial melt extraction using the modified
method of Hellebrand et al. (2001), indicating that Tonga Trench
peridotites are more depleted than typical residual abyssal peridotites
(Warren, 2016).

Mineral trace-element abundances are provided in Table S2 and
Figs 6 and 7. In general, rare earth element (REE) abundances are
highest in clinopyroxene relative to orthopyroxene or olivine (Fig. 6),
as expected from general trace element partitioning behavior in
these phases. However, mineral phases analyzed for REE abun-
dances in Tonga Trench peridotites are all systematically depleted
relative to depleted mid-ocean ridge basalt mantle (DMM) (Fig. 7).
Tonga Trench peridotite clinopyroxene and orthopyroxene grains
have lower absolute abundances of the REE than ‘average DMM’
compositions (Workman & Hart, 2005) and are broadly similar
to some residual Gakkel Ridge abyssal peridotites (e.g. D’Errico
et al., 2016) and to data obtained for a selection of Tonga Trench
peridotites by Birner et al. (2017). When plotted as primitive mantle
normalized multi-incompatible trace element diagrams, orthopyrox-
enes have a broadly ‘U-shaped’ pattern, with pronounced relative
enrichment in Pb with all elements being relatively depleted from
0.01t0 0.1 x PM (Fig. 6). Orthopyroxene grains have PM normalized
(N) La/Yb of 0.016 £0.033, Dy/Yby of 0.86£0.09, Zr/Hfy of
1.06+0.61 and Nb/Tay of 1.94+0.63 (n=36). Clinopyroxene
grains have a more ‘sinusoidal’ pattern at ~0.1 x PM, with relative
enrichments in the light REE (e.g. La, Ce), relative to the heavy
REE (e.g. Tm, Yb). In one case (NOVA 88D-2-2b CPX), the analysis
yielded anomalously high Zr, Hf, Th and U indicating partial ablation
of an HFSE-rich phase or fraction during clinopyroxene analysis.
The clinopyroxene grains have La/Yby of 0.19+0.12, Dy/Yby of
0.30+£0.17, Zr/Hfy of 2.3 £2.6 and Nb/Tay of 3.8+ 1.9 (n=19).
Olivine grains (7 = 21) have low trace element abundances (typically
<0.01 x PM values), with partial enrichments in U and Pb, with
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NOVA88D-1
NOVA88D-4

NOVA88D-6

Fig. 4. Cross-polarized light photomicrographs of NOVA88D-1, NOVA88D-4,
NOVA88D-6 and NOVA88D-9 illustrating textural and mineralogical features
in the fresh harzburgites and evidence for strain in olivine and orthopy-
roxene, as well as exsolution in NOVA88D-9 orthopyroxene. Abbreviations:
Ol =olivine; Opx = orthopyroxene; Sp = spinel.

a subset of olivine grains with light REE enrichment. The light
REE enriched olivine grains have La/Yby of 3.9+0.9, Zr/Hfy of
2.1+£1.3 and Nb/Tay of 0.15£0.21. The ‘normal’ olivine grains
have La/Yby of 0.24+£0.31, Dy/Yby of 0.17+£0.25, Zt/Hfy of
1.03 £0.69 and Nb/Tay of 0.47 +0.41.
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Fig. 5. Spinel magnesium-number (Mg#) vs. chromium-number (Cr#) for
Tonga Trench peridotites (unfilled circles) vs. the residual abyssal peridotite
data set of Warren (2016) (grey circles) and the field of spinel data for ODP
Leg 125 peridotites from the Izu-Bonin Marianas forearc (Parkinson & Pearce,
1998). Also shown are data fields for Tonga Trench harzburgites, dunites and
lherzolites from Birner et al. (2017). Tonga Trench peridotites have been highly
melt-depleted relative to the global suite of residual abyssal peridotites.

Bulk-rock major and trace element abundances

Tonga Trench peridotites have highly depleted compositions, with
MgO contents from 43.2 to 47.5 wt.%, low Al, O3 (0.4 to 0.8 wt.%)
and CaO (0.12 to 0.8 wt.%), with high Ni and Cr contents (2000
to 2450 pg/g, and 2300 to 3050 pg/g, respectively) (Table 3). An
outlier in the data set is sample NOVA88D-5, which has higher
Al O3 (1.2 wt.%), K5 O and P, Oy than the other studied peridotites;
due to these differences, this sample will be treated separately from
others. Loss on ignition (LOI) ranges from negative values (likely
due to oxidation of Fe** to Fe’" during the process) to 16.7 wt.%,
consistent with petrological evidence for fresh to highly serpentinized
peridotites. These results are consistent with previously presented
data for bulk rock compositions of Tonga Trench peridotites (Birner
et al., 2017).

Minor- and trace-element compositions in the peridotite bulk
rocks are characterized by high compatible element abundances (e.g.
Ni >2000 pg/g, Cr, Co), and low incompatible element abundances
(e.g. Li, P, Sc, Ti, Cu, Zn). The samples are generally more depleted
than residual abyssal peridotites from the Gakkel Ridge, having low
REE abundances (Fig. 8). The exception to this rule is the similarity
in incompatible trace element composition in NOVA88D-5 compared
with some of the Gakkel Ridge abyssal peridotites (Day ez al., 2017a),
and the pervasively high Ga contents in all the Tonga Trench peri-
dotites, suggesting anomalous behavior for this element. Fluid mobile
elements, including Rb, Ba, Cs, U, Pb and Sr are highly variable in the
peridotites, implying varying degrees of fluid—rock interaction. Most
minor- and trace-elements do not vary with LOI, but several of the
fluid mobile elements are correlated with LOI (e.g. Na, O, B, Sr have
R? values of 0.94, 0.85, and 0.74, respectively; Figs 9 and 10. Note:
R? values are reported here to define general trends in data. It should
be recognized that the largely bimodal nature of the sample set [i.e.
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Fig. 6. Primitive mantle (PM) normalized incompatible trace element diagrams
for (a) orthopyroxene, (b) clinopyroxene, and (c) olivine in Tonga Trench
peridotites determined by LA-ICP-MS. Primitive mantle normalization from
McDonough & Sun (1995).

fresh vs. serpentinized peridotites] will inevitably lead to correlations
or anticorrelations in some comparisons).

REE compositions are consistent with strong depletions for both
the light REE (LREE) and the heavy REE (HREE), with strong
concave up profiles. There are two patterns that most samples fall
within, with either a decrease in abundance from the LREE to the
middle REE (MREE), and a subsequent increase to the HREE (LREE
> MREE < HREE), or a gradual increase from LREE to MREE and
a sharper increase from MREE to HREE (LREE < MREE < HREE).
The one exception to this is NOVA88D-5, which shows much higher
abundances of the MREE and HREE than the rest of the samples and
follows a concave down trend.

The lava sample (NOVA88D-16) dredged with the peri-
dotite samples is a basanite composition with high total alkalis
(NayO+K,O0=~7.3 wt.%) and 9.4 wt.% MgO and a high LOI
(8.6 wt.%). The lava is characterized by relatively low compatible
trace element abundances relative to the peridotites, with much
higher incompatible trace element compositions and an incompatible
trace element enriched signature (Fig. 8).
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Fig. 7. Cl-chondrite normalized REE diagram for orthopyroxene, clinopyroxene
and olivine in Tonga Trench peridotites relative to mean compositions of these
minerals in the DMM. Smaller symbols are data for Tonga Trench peridotites
from Birner et al. (2017). DMM data from Workman & Hart (2005), and Cl-
chondrite normalization from McDonough & Sun (1995).

Highly siderophile element abundances and *’Os/**¢0s
ratios

Peridotites from the Tonga Trench have variable absolute and relative
abundances of the HSE relative to primitive mantle compositions
(Becker ez al., 2006; Day et al., 2017a) and can be highly depleted
in Re and Pd, and even Ir and Os, in some samples (Table 4;
Fig. 11). Replicate analyses of six samples were accomplished using
Carius tube and HPA digestion, with any differences reflecting the
previously noted ‘nugget effect’ of uneven distribution of the HSE
within peridotite samples. The most fractionated patterns for the
peridotites occur in NOVA88D-5 (16.7 wt.% LOI), NOVA88D-
15 (16.3 wt.% LOI) and NOVASSD-11 (5.1 wt.% LOI), but less
fractionated patterns, relative to the primitive mantle also occur in
peridotites with high LOI (e.g. NOVA88D-12). Rhenium abundances
are highest in the most strongly serpentinized samples and Pt and
Pd abundances are generally lowest in these rocks, with no relation
between abundance and LOI for Os, Ir or Ru. Nonetheless, Os/Ir
and Ru/Ir are generally higher in serpentinized than fresh peridotites,
but these samples also have the highest estimated degrees of melt
depletion (Fig. 12). Compared with abyssal peridotites from the
Indian, Atlantic and Arctic oceans (Day et al., 2017a), Tonga Trench
peridotites are generally more depleted in Re and can have higher
absolute Os, Ir, Ru and Pt abundances. The single lava sample that
we measured is depleted in Os, Ir and Ru and has higher Re and Pd,
consistent with typical basaltic partial melts (Day, 2013).

Isotopic ratios for '#Re/'*¥Os and '¥7Os/'*$ Os for the peridotites
range from 0.006 to 9.6 and 0.1192 to 0.1432, respectively
with an average '®70s/'®Os ratio of 0.1265+0.098 (2 SD;
n=16). NOVA8SD-5 is the most radiogenic peridotite sample
(170s/'*0s = 0.1368-0.1432). Given the geochemical distinction
of this sample, noted above, its removal from the data set gives
an average '%70s/'*¥Os ratio of 0.125240.0050 (2 SD). The most
unradiogenic sample is NOVA88D-7 with ¥7Os/'%8Os of 0.1192 with
a Re depletion age (Trp) of ~1.5 Ga. On a '¥’Re/'*¥Os-1870s/!* Os
plot some samples, including the lava (D-16) and D-5 lie along
a~ 125 Ma isochron (Fig. 13). This age is older than the interpreted
age of the subducting seafloor in this region (P. Castillo & J. Gee,
Pers. Comm.), which is held to be associated with the formation of
the ~90 Ma Osborn Trough (Downey et al., 2007). This inferred age
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Fig. 8. Primitive mantle normalized incompatible trace element diagram
for bulk rock samples from the NOVA88D dredge of the Tonga Trench.
Shown for comparison are fields for Gakkel Ridge abyssal peridotites (GRAP;
orange) from Day et al. (2017b) and lzu-Bonin-Mariana (IBM; blue) forearc
peridotites from Parkinson & Pearce (1998). Primitive mantle normalization
from McDonough & Sun (1995).
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Fig. 9. Diagram illustrating the relationship between LOI values and boron
contents in Tonga Trench samples (unfilled circles are peridotites, the grey
circle is the lava sample). Shown are the LOI contents for NOVA88D-1
(a), NOVA88D-11 (b), NOVA88D-13 (c), and NOVA88D-15 (d), shown in Fig. 3.

is also much older than the assumed date of subduction initiation at
no later than ~52 Ma (Meffre et al.,2012), and is instead closer to the
ages of the ~120 Ma Ontong-Java, Manihiki and Hikurangi Plateaus
(e.g. Taylor, 2006). Notably, many of the low-Re/Os harzburgite
samples show significant scatter and are more likely to reflect isotopic
heterogeneity due to more ancient melt depletion events, recorded
in the TRp ages (average of 0.7 Ga, excluding D-5), as observed
previously in Pacific plate lithosphere (Snortum ez al., 2019), and not
through '¥"Re-'*"Os decay (Fig. 13).

DISCUSSION

Tonga Trench harzburgites from the NOVASSD dredge site have
significance for two reasons relevant to this work. First, they experi-
enced varying degrees of serpentinization, allowing appraisal on the
effects of these processes on primary peridotite composition, espe-
cially related to the HSEs. Second, the Tonga Trench peridotites are
highly melt-depleted based on both mineralogy and bulk-rock com-
position and may record discrete melt depletion or melt refertilization
events preceding subduction initiation. Effects of serpentinization
and seafloor alteration are first considered, followed by evaluation of

the formation of the Tonga Trench peridotites, enabling comparison
between these samples and peridotites thought to be formed in mid-
ocean ridge and supra-subduction zone settings.

Effects of seafloor alteration and serpentinization

The majority (>90%) of abyssal peridotites collected from the ocean
basins have experienced moderate to extensive alteration, either from
serpentinization (<400°C) or seafloor weathering (<10°C). Serpen-
tinization results from reaction between seawater and ultramafic
rock, following several paths. Serpentinization occurs at low silica
activity under reducing conditions (Frost & Beard, 2007), where
olivine can be converted to serpentine, magnetite, and brucite (Bach
et al., 2004). Serpentinization causes a volume increase (up to 35%
in harzburgites, and 48% in dunites) and a decrease in density
(from 3.3 g/cm? to 2.5 g/cm?) (Mével, 2003). During these processes
there is an associated volatile increase in the serpentinized rock,
resulting in water contents ranging from 10 to 15 wt.% (Mével, 2003;
Niu, 2004). Serpentinized rocks can be further modified in some
tectonic settings from the carbonation of serpentine to talc-magnesite
assemblages, leading to loss of Mg or gain of Si, and very high water
(>15 wt.%) contents in such ‘steatised’ rocks (e.g. Day et al., 2017b).
Low-temperature seafloor alteration (<10°C) is less pervasive than
serpentinization and occurs close to pre-existing fracturing in sam-
ples. Low-temperature alteration can occur after serpentinization and
is revealed by addition of Mg-rich clays, Fe-oxides, hydroxides, and
carbonate minerals in peridotites (Frith-Green et al., 2004). Products
of serpentinization are the prevailing alteration products in affected
NOVAS88D harzburgites.

Seawater composition has a major influence on elements that
will be modified during both high and low temperature alteration.
Seawater dominantly consists of (>1 mg/L) H, O, Na, Mg, Cl, K, Ca,
C,N, S, St, Br, E, Si and B. Prior work has shown that serpentinites are
enriched in Cl, E S (Mével,2003), Si (Malvoisin, 2015) and B (Harvey
et al., 2014). Fluid mobility and concentration likely plays a major
role in elements that are impacted by serpentinization. Other less
abundant and fluid immobile elements are less likely to be strongly
impacted.

For this study, LOI is used as a proxy for degree of serpentiniza-
tion. This parameter, rather than an alteration index (e.g. Birner ez al.,
2016) was chosen for three reasons. First, there is a strong relation-
ship with visual evidence for serpentinization (Fig.3) and fluid mobile
elements, such as B (Fig. 9). Second, LOI is typically measured on
almost every published peridotite sample, whereas alteration indices
are not always reported, or may be subjective. Similarly, fluid mobile
elements or modal abundances of phases are not always reported, or
are not reported in a standardized way, such as quantitative (e.g. pg/g)
values. Finally, LOI encompasses the loss of volatile compounds at
>900°C, indicating that Hy O, OH, CO, CO, should all be included
in this parameter. Using linear regression between LOI and major,
minor and trace elements, it is possible to identify those elements
most well-correlated with serpentinization in the NOVA88D dredge
samples. Sample with R? values less than 0.3 are defined as poorly
correlated and less than 0.5 as weakly correlated. For the major
elements and lithophile to siderophile trace elements, using this
definition Si, Ti, Al, Mn, Mg, Sc, V, Cr, Co, Ni, Cu, Zn, Y, Ge, Zr, Nb,
Mo, Ba, the REE, Lu, Hf, Ta and Th are all poorly correlated with
LOI and—even excluding NOVA88D-5—seem essentially unaffected
by alteration processes. Tungsten (R?>=0.45), Fe;O3T (R*=0.4),
Pb (R?=0.39), Cs (R?=0.38), Li (R?=0.37), P (R>=0.34) and Ga
(R? =0.32) are all weakly correlated.
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Fig. 10. LOIl vs. Na,O, Sr, CaO, W, U and Al,03 in NOVA88D dredge peridotites. Filled circle denotes anomalous harzburgite NOVA88D-5.

For elements with R* values greater than 0.5, we find a gen-
eral order of correlation between LOI and: Nay O (R>=0.95), B
(R2=0.82), K,0 (R2=0.82), St (R2=0.79), CaO (R =0.77), Rb
(R?=0.61) and U (R*=0.52). For some elements, such as Na or B,
the correlations match a monotonic increase in the concentration of
the element with increasing LOI (Figs 9 and 10). However, even for
reasonably robust correlations (e.g. U), this relationship is in fact
dominated by two or three samples, possibly due to the broadly
bimodal nature of the samples as being strongly serpentinized or
fresh. All these elements and compounds show a positive correlation
with LOI, with the notable exception of CaO, where there is an
anticorrelation, possibly through the loss of Ca?* from clinopyroxene
during serpentinization (Frost & Beard, 2007).

The data for NOVAS88SD peridotites are consistent with some
elements (e.g. Al, Sc, V, Co, Ni, high field strength elements, the
REE) being unaffected by serpentinization, while others are strongly
affected (Na, B, K, Sr, Ca, Rb), especially in strongly depleted peri-
dotites. These observations are consistent with prior work noting the
importance for fluxes of elements into the mantle during subduc-
tion zone processes. Previously, it has been shown that the basaltic
portions of down-going lithosphere will have a profound effect on
the composition of recycled components in the mantle (e.g. Kelley
et al., 2005; Chauvel et al., 2008). For mature oceanic lithosphere,
typically the crustal component is ~8% of the total slab, with >90%
being peridotite. Although the amount of serpentinization in oceanic
lithosphere is typically poorly constrained, this indicates that ele-

ments that are enriched in peridotites during serpentinization may be
a significant component of elemental fluxes during subduction. These
include elements such as the heavy noble gases (e.g. Mukhopadhyay
& Parai, 2019). For the NOVA88D peridotites, these elements would
include B, W, Sr, and U. Assuming that the abundances of these
elements in the NOVAS88D peridotites are in some way representative
of Tonga Trench lithosphere, then the flux of these elements could
represent between 30% and 70% of the total subduction flux. These
observations are consistent with enhanced **U/?%Pb in recycled
oceanic lithosphere being an important contributor to the HIMU
signature of some OIB (e.g. Day er al., 2010; Pettke er al., 2018),
or to other geochemical features, such as Os isotopes (e.g. Lassiter &
Hauri, 1998).

Limited effects of serpentinization on the HSE in
oceanic peridotites

A particular concern in studies of seafloor mafic and ultramafic
rocks has been the effect of seafloor alteration and serpentinization
on the abundances and distributions of the HSE. The HSE are not
fluid mobile elements, which means that they should be resilient to
hydrothermal alteration in peridotites. Previous studies have exam-
ined highly serpentinized samples for Re and Os concentrations
and "¥70s/'*8Os (Snow & Reisberg, 1995; Harvey et al., 2006; Day
et al., 2017b), or compared seafloor altered rinds and fresh cores
from Gakkel Ridge peridotites (Liu ez al., 2009). Due to the general
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Fig. 11. Primitive mantle normalized HSE diagrams for Tonga Trench peri-
dotites. Upper diagram shows replicate measurements of bulk rock aliquots
using Carius tube and HPA digestion methods for the same samples. Lower
diagram shows NOVA88D samples vs. abyssal peridotites from the Indian,
Atlantic and Arctic ridges. Highlighted are samples NOVA88D-5 (solid fill)
and lava sample NOVA88D-16 (grey fill). Abyssal peridotite data and primitive
mantle normalization from Day et al. (2017b).

lack of availability of fresh oceanic peridotite samples, it has not been
possible to examine HSE abundances and Os isotopes variations in a
peridotite suite from the same location that exhibit a wide variation
in degree of serpentinization.

For the Tonga Trench peridotites there is a general increase in
Re and decrease in Pd and Pt abundance variations with increasing
LOI, as well as in '¥’Re/'*®Os. Correlations with Re and U, as
noted by prior studies examining sea floor alteration (Harvey ez al.,
2006), are not evident in the Tonga Trench samples. A larger com-
pilation of HSE abundances and LOI in oceanic peridotites reveals
no strong correlations (Fig. 14). Instead, there is significant overlap
between HSE concentrations measured in relatively unaltered sam-
ples with low LOI, and those measured in strongly serpentinized
peridotites. All samples show a significant degree of heterogeneity
in abundances regardless of degree of serpentinization. For Tonga
Trench peridotites, Pt has the largest degree of variance observed
in unaltered samples, ranging from 2 to 37 ng/g. Correlation in
trends for NOVA88D samples, measured by the R? value, is highest
for Re (R>=0.33). There are no correlations for Pd (R*?=0.19), Pt
(R2=0.04), Ru (R? = 0.007), Ir (R =0.09), and Os (R?=0.03). As
noted above, fresh Tonga Trench peridotites have lower Os/Ir and
Ru/lr than serpentinized samples, but these peridotites also have
generally lower estimated degrees of melt depletion (Fig. 12). The
higher Os/Ir in the serpentinized Tonga Trench peridotites is also
converse to the trend to lower Os/Ir in Kilbourne Hole samples,
attributed to subaerial weathering (Harvey et al., 2015). As with HSE
abundances, osmium isotopes are not controlled by serpentinization
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Fig. 12. Comparison of estimates of Os/Ir and Ru/Ir vs. LOl and melt depletion
from spinel (Melt Sp) in Tonga Trench peridotites. Higher Os/Ir and Ru/Ir
occur in peridotites with both higher LOI and estimates of melt depletion.
Fractionation of Os, Ir and Ru at high degrees of melt depletion are consistent
with experiments (e.g. Ballhaus et al., 2006) and observations (e.g. Luguet &
Reisberg, 2016).
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0.02 0.06 0.10 0.14
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Fig. 13. '87Re/'880s-1870s/88 0s diagram for Tonga Trench samples, showing
a 125 Ma reference isochron anchored to an initial mantle 87 0s/'880Os ratio of
0.124. Also shown are 90 Ma and 52 Ma reference isochrons, corresponding
to opening of the Osborn Trough and the inferred inception of Tonga Trench
subduction, respectively. Symbols are the same as for the lower panel of
Fig. 11. Inset shows details of the region on the far left of the host diagram
for harzburgite samples. Error bars are smaller than symbols.

processes, and have no correlation with LOI (R? = 0.0003) (Fig. 14).
The increased dispersion of '7Os/'*8Os with increasing LOI could be
attributed to a greater sampling of serpentinized peridotite popula-
tions during dredging operations rather than from alteration effects,
a statement supported by the HSE abundances and LOL Indeed, this
statement remains valid even when steatised rocks (LOI >16 wt.%)
are included in comparisons (Figs 14 and 15; Day ez al., 2017b).
The results of this study, and those of previous works (Snow &
Reisberg, 1995; Harvey et al., 2006; Liu ez al., 2009; Snortum & Day,
2020) do not provide compelling evidence that seafloor alteration
or serpentinization systematically control the HSE abundances or
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Fig. 14. LOI vs. HSE (Os, Ir, Ru, Pt, Pd, Re) abundances in NOVA88D samples vs. abyssal peridotites (compilation in Day et al., 2017a) and lapetus-aged ophiolites
(Shetland, Leka; O'Driscoll et al., 2012, 2015; Day et al., 2017b). Stippled line shows average ‘primitive mantle’ composition from Becker et al. (2006) and modified

by Day et al. (2017b).

0.15 . . .

LOI (wt.%)

Fig. 15. LOI vs. '870s/'880s in NOVA88D Tonga Trench samples, abyssal
peridotites and ophiolites. Stippled line is the estimated primitive mantle
1870s/'880s composition. Symbols and data sources are the same as for
Fig. 14.

Os isotope composition in oceanic peridotites. Instead, our results
expand the results of work by Liu ez al. (2009) for Gakkel Ridge
peridotites. When comparing the weathered rims (LOI ~3 wt.%) to

the fresh interiors (~0 wt.% LOI), they found that the concentrations
were statistically the same. As noted previously, by Alard ez al. (2005),
concentrations of Os in seawater (~107° ng/g) are much lower than
the average abyssal peridotite (~3 ng/g) requiring significant volumes
of seawater (seawater:rock ratios of 1000 to 10 000) to noticeably
affect rock concentrations. The NOVAS88D peridotites provide strong
evidence that the HSE abundance and Os isotopic variations in
abyssal peridotites reflect melt-depletion or melt-infiltration sig-
natures during mantle processes, rather than being systematically
affected by serpentinization or seawater alteration.

Petrogenesis of Tonga trench peridotites

The NOVA88D Tonga Trench peridotites were dredged in 1967—at
the inception of the theory of plate tectonics and well before global
positioning systems—making the exact location of the dredge, with
>9000 m of extended cable, uncertain. Nonetheless, Fisher & Engel
(1969) considered the dredge to come from what is the arc-side of
the trench. Later dredges to the north of the NOVA8S8D dredge site
obtained peridotites from the arc-side of the trench, supporting this
contention (Bloomer & Fisher, 1987; Bloomer et al., 1996; Wright
et al., 2000). Geochemical results presented here also support such a
conclusion. The NOVA88D samples are considerably more refractory
than typical abyssal peridotites and are more consistent with the
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composition of peridotites from northerly dredges in the Tonga
Trench (Birner et al., 2017), or from Izu Bonin-Mariana forearc
peridotites studied previously (Parkinson & Pearce, 1998; Parkinson
et al., 1998).

Important features of Tonga Trench spinel harzburgites from
the NOVA88D dredge are that they have low modal clinopyroxene
(<3%), U-shaped REE profiles and low absolute incompatible trace
element abundances and similar Os concentrations and '¥7Os/'* Os
values to some forearc peridotites (e.g. Parkinson ez al., 1998).
Melt refertilization processes are well-documented for oceanic peri-
dotites (e.g. Seyler ez al., 2007), but evidence for such effects on the
NOVASS8D peridotites are limited. The clearest lines of evidence are
the U-shaped bulk rock REE patterns in some of the harzburgites.
To examine the effects of melt infiltration, modal recombination was
performed for the freshest NOVA88D harzburgites (NOVA88D-1,
D-3, D-4, D-6, D-9, D-10) by taking the average olivine, orthopy-
roxene and clinopyroxene trace element abundances measured by
LA-ICP-MS. This method assumes all the melt infiltration is cryptic
and unassociated with the minerals, and that spinel has only a minor
contribution to the modeled incompatible trace elements. The data
are plotted logarithmically in Fig. 16 since many of the elements
would not be visible on a linear scale. This also means propagated
uncertainties from modal analysis (~5% uncertainty) and external
uncertainty from LA-ICP-MS (<8%) are not shown. Nonetheless,
the similarity between modal recombination using olivine + orthopy-
roxene =+ clinopyroxene and the bulk rock supports only limited
melt infiltration effects on samples. Possible exceptions are limited
excesses in Ba, La, Ce and Pr. In most cases, the modal recombina-
tion suggests trace element abundances in the upper range of bulk
rock abundances (Fig. 16). It is important to note that the modal
recombinations for rocks with clinopyroxene will incorporate melt
infiltration if the clinopyroxene comes from secondary crystallization
from melt infiltration. As noted by Birner et al. (2017), in their
modeling of clinopyroxene compositions, it is difficult to quantify the
exact extent of melt refertilization for most samples, but it is limited
by the abundance of clinopyroxene. Assuming that the clinopyroxene
is secondary, then the degree of melt infiltration will correlate with
their modal abundances, from zero to <3%.

Melt infiltration has had no obvious effects on most of the
harzburgites in terms of Os isotopes or the HSE. The exception is
harzburgite NOVA88D-5 that is distinct from all the other measured
samples. This sample has elevated bulk rock REE abundances (Fig. 8)
and high """Re/'®Os and '¥0s/'*¥Os (Fig. 12). Notably, the Re-Os
isotope systematics of different bulk rock aliquots of NOVA88D-5
plot along an ~125 Ma isochron, along with the basaltic sample
analyzed from the same dredge; NOVA88D-16. This basalt is strongly
alkalic and does not appear spilitized (assuming Na is inherent
to the sample, a basanite composition) with relatively high MgO
(9.8 wt.%), TiO (3 wt.%), and has high La/Yb (12) making it distinct
both from mid-ocean ridge basalt (MORB), as well as high-MgO
rocks from the Tonga Arc (e.g. Falloon et al., 2008; Meffre er al.,
2012; Todd et al., 2012). No other samples clearly lie along the
isochron line, and the Re-Os isotope compositions for NOVA88D-
5 and D-16 cannot be interpreted as being consistent with younger
apparent ages.

Samples NOVA88D-5 and D-16 possibly record a Cretaceous
magmatic modification event rather than being consistent with the
likely age of the subducting plate (~90 Ma; Downey et al., 2007),
or inception of subduction in the Tonga Trench at ~52 Ma (e.g.
Meffre et al., 2012). The most significant known magmatic event
occurring in the region during the Cretaceous was the formation of
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Fig. 16. Primitive mantle normalized plots of unserpentinized bulk rocks
and their modal recombination from NOVA88D (upper), and comparison of
clinopyroxene abundance data from fresh NOVA88D harzburgites vs. Tonga
Trench clinopyroxene data from Birner et al. (2017). The modal recombina-
tions were done by taking the model abundances of olivine, orthopyroxene
and clinopyroxene (Table 1) and the average abundances of these mineral
phases measured in the data set, after removing olivine grains with high
apparent Sc. The lower plot shows in red the model results for melting
and melt addition from Birner et al. (2017) assuming 18% melt depletion
and < 0.005% melt addition. These authors showed that the input melt com-
position is minor such that melt-rock reaction is minimal in samples. Primitive
mantle normalization from McDonough & Sun (1995). Error bars are not
shown but are +8%.

the Ontong Java-Manihiki-Hikurangi large igneous province (Taylor,
2006). This event produced vast quantities of basaltic melt products
that led to the formation of an oceanic plateau, with subsequent
break-up during plate tectonic configuration at ~90 Ma (Downey
et al., 2007). Basaltic melts in these events are tholeiitic in com-
positions ranging from ~7 to 11 wt.% MgO and~1 wt.% TiO,
(e.g. Fitton and Godard 20045 Golowin et al., 2018), so are distinct
from the composition of NOVA88D-16. Nonetheless, the Re-Os
isotope evidence implies that formation of this sample, and melt
refertilization in NOVA88D-5, took place at around this time. Par-
ticularly notable in this observation is that any subsequent melting
or processing after ~120 Ma did not erase evidence for these events.

In contrast with melt refertilization, melt depletion is overwhelm-
ingly evident in the peridotites, from their harzburgite mineral-
ogy, refractory bulk compositions, with low Al,O3, and the high
Cr# recorded in spinel (Fig. 5). In fact, the Cr-rich nature of the
spinel in the Tonga Trench samples, and the more incompatible
element-depleted nature of the samples, compared with Izu-Bonin-
Mariana forearc peridotites make them an extreme endmember for
dredge oceanic peridotites. Calculation of melt depletion using spinel
compositions and employing the empirical calculation method of
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Fig. 17. Cl-chondrite normalized plot of NOVA88D dredge harzburgites ana-
lyzed in this study. Gray lines indicate 1% melt increments for a non-modal
fractional melting model, where increasing melt depletion results in lower
absolute abundances of the REE and increasing depletion in the LREE relative
to HREE. Model parameters and normalization are provided in Day et al.
(2017b).

Hellebrand ez al. (2001) are consistent with the NOVA88D peri-
dotites having experienced between ~18% and 22% partial melt
loss, assuming a fertile mantle starting composition. These estimates
of partial melt loss are much greater than for abyssal peridotite
spinel which typically record evidence for ~10% partial melt loss
(Warren, 2016), and range between 2% and 16% (D’Errico et al.,
20165 Day et al., 2017a; Paquet et al., 2021). Similar estimates
for melt loss can be obtained from modeling of middle and heavy
REE abundances in bulk rocks unaffected by melt refertilization
(i.e. NOVA88D-3), revealing >20% partial melt loss for the Tonga
Trench peridotites (Fig. 17). These melt loss estimates are higher
than clinopyroxene based estimates which indicate between ~14%
and 18% melt loss (Birner ef al., 2017). Modeling of near-fractional
melting suggests that a spinel Cr# of 60 is an upper boundary
corresponding to ~18 to 20% melt extraction, where clinopyroxene
is exhausted during peridotite partial melting (e.g. Hirschmann et al.,
1998). For these reasons, the rare clinopyroxene grains found within
samples are unlikely to record the significant melt loss observed
from spinel compositions or bulk rock REE abundances, with the
implication that the clinopyroxene grains may be secondary from
limited melt infiltration by depleted melts. Such a mode of origin for
the clinopyroxene would be consistent with the modal recombination
of rocks, since the clinopyroxene is an inherent part of the mineralogy
in some studied peridotites.

The high degrees of melt loss experienced by the NOVA88D
harzburgites are consistent with the observed HSE abundances in
the samples. The HSE are mainly hosted by sulphides in fertile
mantle samples, with exhaustion of sulphide during melt depletion of
peridotites leading to the release of more incompatible HSE (e.g. Re,
Pt, Pd) into the melt, and the sequestration of more compatible HSE
(e.g. Ru, Ir, Os) into HSE-rich residual sulphide and alloy phases (e.g.
Luguet & Reisberg, 2016). Assuming a fertile mantle composition
has 250 pg/g S (e.g. McDonough & Sun, 1995) then complete S
exhaustion in harzburgite residues occurs as ~23% partial melt loss
(Day, 2013), which is at approximately the same degree of melt
depletion observed for some NOVAS88D harzburgites. Melt deple-
tion is known to result in harzburgites having more heterogenous
distribution of the HSE than lherzolites (e.g. Luguet & Reisberg,
2016), due to the presence of micro-inclusions of HSE-rich sulphides
and alloys formed during partial melting and melt-rock reaction.

The absence of observable sulphides in polished thin sections of
fresh NOVAS88D harzburgites and the heterogenous HSE abundances
of replicate analyses of bulk rock sample powders (Fig. 11a) are
consistent with nugget heterogeneities from alloys within the samples.
Several harzburgites (D-5, D-11, D-15) show relative depletions in
Os, Ir and Ru relative to primitive mantle (Fig. 11). Furthermore, the
most extensive melt depleted peridotites also have the highest Os/Ir
and Ru/Ir, consistent with preferential retention of Os and Ru relative
to Ir in the samples (Fig. 12). These fractionations are consistent with
progressive exhaustion of sulphur in the source during melting and
stabilization of Os, Ir, Ru-rich phases (Ballhaus et al., 2006), but
are opposite to observations of loss of Os and Ru from Ir, likely
during alloy stabilization in peridotites (e.g. Kepezhinskas & Defant,
2001; Lorand & Luguet, 2016; O’Driscoll & Gonzalez-Jiménez,
2016; Snortum & Day, 2020). The cause of these differences requires
further investigation. One possibility is that more reducing conditions
of melting occurred within the Tonga Trench peridotites resulting
in distinct behavior of the redox sensitive elements, Os and Ru.
This would be consistent with the low Os/Ir and Ru/Ir measured
in Point Sal ophiolite peridotites, interpreted to have experienced
melt depletion in an oxidizing forearc environment (Snortum & Day,
2020),

Did Tonga Trench peridotites form in the modern
forearc?

The straight-forward interpretation of the NOVA88D peridotites is
that, as with Tonga Trench peridotites in general (Birner et al., 2017),
they have been minimally affected by melt refertilization and are
the products of significant melt depletion (>18%). These depletions
have been interpreted to reflect that Tonga Trench harzburgites,
which are exposed on the trench wall of the overriding plate, are
forearc peridotites, recording processes occurring during and fol-
lowing subduction initiation to form the Tonga arc (Birner et al.,
2017). A notable aspect of the new Re-Os isotope data for the
NOVAS8SD peridotites, however, is that all the harzburgites record
evidence for melt depletion events well before 52 million years ago,
with some recording a possible Cretaceous melt refertilization event
(NOVAS88D-5; section 4.3), with the average Trpy age of the suite at
710 £ 350 million years, with some harzburgites with Trp ages as
ancient as 1500 million years.

A critical question is when the bulk of melt depletion took
place in the harzburgites. For example, the ancient Trp ages in
the harzburgites might merely be recorded because extensive melt
depletion in the forearc led to removal of the majority of the HSE,
as recorded in the spinel compositions and bulk rock REE abun-
dances. This would lead to only residual Os-rich and Re-poor alloys
that stabilized in the rock during a prior episode of melt deple-
tion. In this case, processes recorded in the peridotites would likely
reflect conditions in the Tonga forearc. Alternatively, it is pos-
sible that the most extensive melt depletion in the harzburgites
occurred prior to their incorporation into the overriding plate. In
this scenario, the peridotites act as refractory residues, uninvolved
in modern forearc processes and the extensive melt depletion in
the samples is not related to the conditions of their recent tectonic
environment.

There are several lines of evidence that favor the latter—not the
former—explanation. In the first instance, the apparent Cretaceous
refertilization event in NOVA88D-5 would suggest that any later
melt depletion events in the forearc may not have been efficient at
eradicating this prior history. Secondly, samples with old Trp ages
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(>500 Ma) record >18% melt depletion (from spinel compositions),
and can have some of the highest Ru, Ir and Os contents and
highest Os/Ir and Ru/lr of the sample set. This would be most
consistent with ancient melt depletion in harzburgites leading to
heterogenous HSE distributions, rather than modern melt depletion
beneath the Tonga arc. Finally, the range in '¥7Os/'*¥ Os measured in
the harzburgites is similar to that observed both for global abyssal
peridotites (Day et al., 2017a; Paquet et al., 2021), within Izu-
Bonin-Mariana forearc xenoliths (Parkinson et al., 1998), as well
as for Pacific mantle rocks in general (Snortum et al., 2019; Paquet
et al., 2021). These heterogeneous Os isotope distributions within
Pacific mantle are remarkably distinct from the mantle sections of
the Point Sal or New Caledonia ophiolites that have been shown to
have formed in a forearc setting (Liu ez al., 2018; Secchiari et al.,
2020; Snortum & Day, 2020). Peridotites from these ophiolites
do not have particularly ancient melt depletion ages, despite hav-
ing experienced >20% melt depletion, suggesting their derivation
from relatively fertile asthenospheric protoliths (Snortum & Day,
2020). The Tonga Trench peridotites appear quite distinct from
this mode-of-origin, and indications are that they were significantly
melt depleted prior to being incorporated into their present tectonic
configuration.

Implications for redox conditions beneath the modern
Tonga Trench

Oxygen fugacity (fO;) is an intensive variable that controls the
geochemical behavior of redox-sensitive elements such as Fe, V, Cr,
S, C and H. It has been well-established that fO, in arc basalts are
elevated by ~ + 1 to +35 log units AFMQ above ambient mantle, with
likely cause(s) being from subduction-related metasomatism of their
mantle source, or from differentiation and degassing processes (Lee
et al. 2005; Kelley & Cottrell, 2009; Brounce et al., 2014). Studies
of peridotites from subduction zones and some forearcs suggest that
the subducting mantle is likely to be oxidized (Brandon & Draper,
1996; Parkinson & Pearce, 1998; Parkinson et al., 2003) relative to
the MORB mantle source (e.g. Bryndzia & Wood, 1990). Birner
et al. (2017) concluded that the Tonga Trench peridotites rep-
resented forearc peridotites and were less pervasively influenced
by oxidation related to subduction processes than previously
reported.

The NOVASSD harzburgites reported in this study have similar
fO, and equilibration temperatures to those reported by Birner
et al. (2017) (Fig. 18). Calculations were performed in an identical
fashion to those completed in that study, assuming phase equilibrium
between olivine, orthopyroxene, and spinel, using the fO, method
described in Davis ez al. (2017), and using the two pyroxene and
calcium-in-orthopyroxene thermometers of Brey & Kohler (1990),
and the olivine-spinel thermometer of Li ez al. (1995). For consistency
with prior work (e.g. Birner ez al., 2017), pressures of equilibration
were assumed to be 0.6 GPa. Particularly notable in these compar-
isons are that Tonga Trench peridotites have similar /O, to abyssal
peridotites at ~—0.44+0.4 AFMQ and generally lower than in
subduction related peridotite compositions (Fig. 18). The estimated
temperatures of equilibration from olivine and spinel are relatively
low at ~830 4120 °C and similar to those reported for Tonga Trench
peridotites (874 +73 °C; Birner e al.,, 2017), and are similar to
abyssal peridotites (between 840 and 950 & 50 °C; Bryndzia & Wood,
1990; data from Paquet et al., 2021). As discussed in the previous
section, however, the ancient TRy ages of some of these rocks suggest
that the estimated fO, compositions may not in fact be representative
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Fig. 18. (a) Plot of oxybarometry vs. Cr-number of spinels for Tonga Trench
peridotites vs. abyssal peridotite, subduction peridotite xenoliths, forearc
peridotite and continental peridotite data from Bryndzia & Wood (1990),
Parkinson & Pearce (1998), Parkinson et al. (2003), recalculated by Birner et al.
(2017) and Wang et al. (2008, 2013) and Woodland et al. (2021). Estimate
of continental lithospheric mantle from Parkinson & Pearce (1998). (b) His-
togram diagram of equilibration temperatures in the same samples. Thermo-
oxybarometry is from olivine-spinel-orthopyroxene equilibration.

of modern forearc mantle. Instead, the estimated temperatures of
equilibration and fO, may reflect both ancient melt depletion and
more recent modification, such as melt infiltration processes, that
have occurred in the samples.

An alternative means with which to compare fO, and melting
conditions in peridotites was proposed by Parkinson & Pearce (1998)
who developed melt depletion models based on Ti-V-Yb abundance
systematics (Fig. 19). Using the same methods, Tonga Trench peri-
dotites can be compared along with Izu-Bonin-Mariana forearc rocks
and forearc ophiolite mantle from Point Sal. The fO, and partial
melting constraints from these models are consistent with estimates
from mineral compositions, at <0 AFMQ and extensive melt deple-
tion in the spinel stability field for Tonga Trench peridotites, with
similar conditions for Izu-Bonin-Mariana forearc peridotites with
ancient Trp ages. However, both these locations lack radiogenic
1870s/1%8Os like some Point Sal peridotites and other sub-arc mantle
wedge peridotites (Brandon et al., 1996; Saha er al., 2005; Widom
et al., 2003; Snortum & Day, 2020). Experimental data (Xiong &
Wood, 2000; Righter et al., 2002) and observations have been used
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Fig. 19. Plots of (a) Ti vs. Yb and (b) V vs. Yb for NOVA88D and Tonga Trench
peridotites (this study; Birner et al., 2017) vs. forearc peridotites (Parkinson
& Pearce, 1998) and the forearc Point Sal ophiolite (Snortum & Day, 2020).
Modeled melt extraction and oxygen fugacities (quartz-magnetite-fayalite
[QFM] buffer) are from Parkinson & Pearce (1998). Theoretical composition of
fertile MORB mantle is shown as FMM. In the spinel stability field, both Ti and
Yb are highly incompatible. In the garnet stability field, extraction of Yb into
the melt is suppressed relative to Ti, because of its favorable incorporation
into garnet such that it behaves instead as a slightly incompatible, or even
compatible element (Pearce & Parkinson, 1998). In mid-ocean ridge settings
(~QFM to QFM-1; quartz-fayalite-magnetite buffer), V behaves as a moder-
ately incompatible element, whereas under the more oxidizing conditions
that may occur during SSZ melting of peridotites modified by aqueous fluids
rising from the down-going slab (~QFM + 1), V acts as a highly incompatible
trace element.

to propose that the radiogenic '*”Os originates from slab derived Cl-
rich, oxidized fluids, where there is increasing solubility of Os. These
are quite distinct from the peridotites interpreted to have come from
forearc settings such as the Tonga Trench (Birner et al., 2017), or
the Izu-Bonin-Mariana region (Parkinson & Pearce, 1998; Parkinson
et al., 1998). Consequently, the fO, conditions in the NOVA88D
samples may not be recording conditions in the forearc, but rather
prior melting conditions, or an amalgamation of processes.

Ancient refractory residues caught up in continuing
upper mantle processes

The ancient rhenium depletion ages for both Tonga Trench and Izu-
Bonin-Mariana mantle rocks might suggest that geochemical features
within them (e.g. calculated O, and melt depletion estimates) may

not record conditions acting in recent forearc mantle with fidelity.
Instead, these peridotites can be interpreted to represent previously
strongly melt-depleted residue accidentally caught up in its present
tectonic setting. As such, the high extents of melt depletion will not
relate to fluid-assisted melting in these particular cases. Instead, the
peridotites may represent refractory residues that played a limited
role in melt production beneath their respective arcs. While such
a conclusion might contradict prior work on peridotites like those
found in the Tonga Trench and Izu-Bonin-Mariana forearec, it is also
consistent with ongoing studies of general mantle melt depletion and
may inform on models for the formation of continental lithosphere.

Ancient melt depletion in the oceanic mantle is now well described
for abyssal peridotites (Harvey et al., 2006; Miintener & Manatschal,
2006; Lassiter et al., 2014; Day et al., 2017a; McCarthy et al., 2018;
Sanfilippo et al., 2019; Paquet et al., 2021) and in oceanic mantle
xenoliths (Bizimis et al., 2007; Simon et al., 2008; Jackson et al.,
2016; Snortum et al., 2019). The ancient TRp ages, extending to
as ancient as ~2 Ga, have been interpreted to reflect heterogeneities
in the HSE imparted by earlier melt depletion events either at mid
ocean ridges, during subduction, or even from plume influence, that
have been stirred into the convecting mantle through Wilson cycles.
Evidence from ophiolites suggests that, of all these potential melting
regimes, subduction zones and particularly forearcs are likely to
lead to the greatest extents of partial melting (e.g. O’Driscoll et al.,
2012,2015; Liu ez al., 2018; Snortum & Day, 2020). In this respect,
the NOVAS88D harzburgites have variable to high Os contents, low
Aly O3 and unradiogenic '87Os/'*¥ Os, similar to supra-subduction
zone peridotites (Fig. 20). In the case of the Tonga Trench peridotites,
they have exhibited some of the greatest extents of melt loss of all
known oceanic peridotites, but the evidence from Re-Os isotopes
favors these events occurring long before they became entrained into
the Tonga arc. Consequently, the origin of these rocks as deriving
from subduction melting processes is possible, but this most likely
did not occur in the arc setting they are currently within. In turn,
these rocks would not be source rocks to volcanic products found
within the Tonga arc region. This conclusion is consistent with those
from other locations where the underlying mantle and overlying
crustal rocks are not genetically related (e.g. Rampone ez al., 1998;
McCarthy et al., 2018).

Another feature of the Tonga Trench peridotites is that their
refractory spinel compositions and fO, lie within the range of
the more refractory continental lithospheric mantle compositions
reported previously (e.g. Ballhaus, 1993; Parkinson & Pearce, 1998;
Wang et al., 2008, 2013; Woodland et al., 2021). Continental litho-
spheric mantle is considered to have fO; between 0 AFMQ and — 4
AFMQ, with shallower-derived spinel peridotites generally recording
higher O, than garnet peridotites (Stagno & Fei, 2020). Models for
continental lithospheric mantle formation have invoked substantial
melt extraction of mantle residues either by deep plume melting
(Boyd, 1989; Griffin et al., 1998), shallow melting and subduction
(e.g. Schulze, 1986; Canil & Wei, 1992), or through lithospheric
melt extraction prior to subduction stacking (Canil, 2004; Simon
et al.,2008). Peridotites such as those from the Tonga Trench indicate
that strongly depleted melt residues have been readily formed by
shallow fluid-assisted melting within subduction zones from the
Proterozoic to the present-day and may be quite extensive based on
studies of ophiolites as well as oceanic peridotites in general. These
results would be consistent with shallow melting and subduction
or subduction stacking of depleted lithosphere to form continental
lithosphere, while strongly depleted residues can also occur with
subduction zones and at mid-ocean ridges.
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Fig. 20. Diagrams of Al,03 vs. (a) Os concentration and (b, c) '870s/'880s
for Tonga Trench peridotites vs. peridotites from a range of tectonic settings,
including abyssal peridotites (Day et al., 2017b), Pacific forearc peridotites
(Parkinson et al., 1998), Pacific plate peridotites (Snortum et al., 2019), ophi-
olite peridotites (Schulte et al., 2009; Hanghgj et al., 2010; O'Driscoll et al.,
2012, 2015; Snortum & Day, 2020) and continental (SW USA) peridotites
(Byerly & Lassiter, 2012). Panel b shows Tonga Trench sample vs. abyssal
peridotites, Pacific oceanic peridotites and forearc peridotites. Panel ¢ shows
the relationship of ophiolites including Taitao, Chile (T), Shetland, Scotland
(S), Oman (0), New Caledonia (NC), Point Sal, California (PS) and Leka,
Norway (L).

CONCLUSIONS

Harzburgites from the Tonga Trench that experienced varying
degrees of serpentinization enable the examination of both the pet-
rogenetic processes acting upon them and effects of serpentinization.
This study has revealed that:

1. Serpentinization has had limited effect on Si, Ti, Al, Mn, Mg, Sc,
V, Cr, Co, Ni, Cu, Zn, Y, Ge, Zr, Nb, Mo, Ba, the REE, Lu, Hf,
Ta and Th in the studied samples, but is correlated with Na, B,
K, Sr, Ca, Rb, U, and weakly correlated with W, Fe, Pb, Cs, Li P
and Ga abundances.

2. Serpentinization has had no systematic effect on the HSE abun-
dances and '*”Qs/!"* Os compositions in the harzburgites.

3. The NOVAS88D harzburgites record evidence that they
are strongly melt depleted (>18%), which has resulted in
the heterogenous distribution of the HSE within samples.
Time of rhenium depletion ages recorded by Os isotopes
average ~ 0.7 £0.4 Ga and can be as ancient as 1.5 Ga.

4. A few of the harzburgites, and the lava sample from the associ-
ated dredge, suggest melt infiltration processes have modified
some incompatible trace element compositions, with at least
one melt infiltration event probably at ~120 Ma, prior to the
inception of subduction at the Tonga Trench at ~52 Ma.

5. Evidence for ancient melt depletion, combined with evidence
for limited melt processing since inception of subduction sug-
gests that the NOVAS8SD peridotites represent melt residues
incorporated into the Tonga arc, rather than their geochemical
signatures being produced during processes beneath the modern
arc itself.

6. The similar estimates of fO, (~ — 0.4 £ 0.4 AFMQ), as well as
similarities in melt depletion ages obtained using Os isotopes
with abyssal peridotites and Izu-Bonin-Mariana peridotites sug-
gests that refractory residues from prior melt depletion events
are common in the convecting mantle and are likely formed dur-
ing extensive fluid-assisted melting beneath arcs. These refrac-
tory peridotites can be incorporated into a range of tectonic
settings, including into later arcs or within the continental
lithospheric mantle.
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