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Abstract

The growth of supermassive black holes is strongly linked to their galaxies. It has been shown that the population
mean black hole accretion rate (BHAR) primarily correlates with the galaxy stellar mass (M,) and redshift for the
general galaxy population. This work aims to provide the best measurements of BHAR as a function of M, and
redshift over ranges of 10°° < M, < 10'> M, and z < 4. We compile an unprecedentedly large sample with 8000
active galactic nuclei (AGNs) and 1.3 million normal galaxies from nine high-quality survey fields following a
wedding cake design. We further develop a semiparametric Bayesian method that can reasonably estimate BHAR
and the corresponding uncertainties, even for sparsely populated regions in the parameter space. BHAR is
constrained by X-ray surveys sampling the AGN accretion power and UV-to-infrared multiwavelength surveys
sampling the galaxy population. Our results can independently predict the X-ray luminosity function (XLF) from
the galaxy stellar mass function (SMF), and the prediction is consistent with the observed XLF. We also try adding
external constraints from the observed SMF and XLF. We further measure BHAR for star-forming and quiescent
galaxies and show that star-forming BHAR is generally larger than or at least comparable to the quiescent BHAR.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); X-ray active galactic nuclei (2035);
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Galaxies (573)

1. Introduction

Supermassive black holes (SMBHs) and galaxies appear to
be fundamentally linked (e.g., Kormendy & Ho 2013).
Especially the SMBH mass (Mpy) and the galaxy bulge mass
are found to be tightly correlated in the local universe, and the
cosmic evolution of the SMBH accretion density and the star
formation density are broadly similar and both peak at z =~ 2.
Therefore, it is a fundamental question in extragalactic
astronomy to understand how cosmic SMBH growth depends
on galaxy properties.

SMBHs grow primarily through rapid accretion when they
are observed as active galactic nuclei (AGNs); mergers are an
additional growth mode. X-ray emission is known to be a good
indicator of AGN activity because of its universality among
AGN:Ss, high penetrating power through obscuration, and low
dilution from galaxy starlight (e.g., Brandt & Alexander 2015;
Brandt & Yang 2022). Therefore, X-ray surveys can be used to
constrain the accretion distribution and the black hole accretion
rate (BHAR = dMgy/dr) of SMBHs (e.g., Aird et al
2012, 2018; Bongiorno et al. 2012, 2016; Georgakakis et al.
2017; Wang et al. 2017; Yang et al. 2017; Yang et al. 2018; Ni
et al. 2019; Yang et al. 2019; Ni et al. 2021b). However, the
duration of a galaxy within the AGN phase is relatively short,
and AGNss also have strong variability (e.g., Hickox et al. 2014;

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Yang et al. 2016); thus, BHAR is often averaged over a large
galaxy sample as an estimator of BHAR, the long-term
population mean BHAR.

BHAR has been shown to be redshift dependent and
correlated with both stellar mass (M,) and star formation rate
(SFR), while the M, dependence is more fundamental for the
general galaxy population (e.g., Hickox et al. 2014; Yang et al.
2017, 2018). In recent years, it has been found that BHAR is
also strongly related to galaxy morphology (e.g., Ni et al. 2019;
Yang et al. 2019; Ni et al. 2021a; Aird et al. 2022), which may
be more fundamental than the BHAR-M, relation. However,
such morphological measurements are expensive to obtain and
require superb image resolution from, e.g., the Hubble Space
Telescope, which inevitably are limited to small sky areas and
thus can only provide a limited sample size covering a limited
parameter space. In contrast, M, and SFR are much more
accessible. Notably, modern multiwavelength photometric
surveys have provided extensive photometric data, based on
which M, and SFR can be estimated by fitting the corresp-
onding spectral energy distributions (SEDs; e.g., Zou et al.
2022). Therefore, a well-measured BHAR-M, relation is still
essential to link SMBHs and galaxies.

The latest version of BHAR as a function of (M,, z) was
derived in Yang et al. (2018) using the data from the Cosmic
Evolution Survey (COSMOS; Laigle et al. 2016; Weaver et al.
2022), Great Observatories Origins Deep Survey (GOODS)-S,
and GOODS-N (Grogin et al. 2011; Koekemoer et al. 2011).
Although the relation in Yang et al. (2018) has proved to be
successful over the years, there are still some limitations.
First, although COSMOS, GOODS-S, and GOODS-N are
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sufficiently deep to probe BHAR up to z=4, they cannot
effectively sample the last half of cosmic time (z < 0.8) because
of their limited sky areas. Second, Yang et al. (2018) adopted
strong assumptions when parametrically estimating BHAR,
which may lead to underestimated BHAR uncertainties. Built
upon Yang et al. (2018), this work aims to provide the best
available map of BHAR(M,, z) with the currently best data and
statistical methodology. Now is indeed the right time to
remeasure BHAR given the fact that the past 5 yr have
witnessed the completion of several large, sensitive X-ray
surveys in fields together with deep optical-to-IR surveys (e.g.,
Chen et al. 2018; Ni et al. 2021a). These new X-ray surveys,
when combined with previous ones, can return a large AGN
sample over 10 times larger than previous ones, as will be
discussed in Section 2. In this work, we compile an
unprecedentedly large sample from nine well-studied survey
fields, many of which were finished after Yang et al. (2018) and
even within <2 yr before this work. Our adopted surveys
follow a wedding cake design and contain both deep, pencil-
beam and shallow, wide ones, allowing us to effectively
explore a wide range of parameter space. We further develop a
semiparametric Bayesian approach that can return reasonable
estimations and uncertainties, even for sparsely populated
regions in the parameter space.

This work is structured as follows. Section 2 describes the
data. Section 3 presents our methodology and BHAR
measurements. In Section 4, we discuss the implications of
our results. Section 5 summarizes this work. We adopt a flat
ACDM cosmology with Hy=70kms ™' Mpc™', 2, = 0.7, and

2. Data and Sample

We use the data within the Cosmic Assembly Near-Infrared
Deep Extragalactic Legacy Survey (CANDELS) fields, four of
the Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST) Deep-Drilling Fields (DDFs), and eROSITA
Final Equatorial Depth Survey (eFEDS) field. CANDELS and
the LSST DDFs both contain several distinct fields, and we put
those individual fields sharing similar areas and depths under
the same umbrella (CANDELS or LSST DDFs) for conve-
nience. Our adopted fields have X-ray coverage to provide
AGN information and quality multiwavelength data, which are
essential for measuring galaxy properties. We summarize our
field information in Table 1 and discuss them in the following
subsections.

2.1. CANDELS Fields

CANDELS (Grogin et al. 2011; Koekemoer et al. 2011) is a
pencil-beam  survey covering five fields—GOODS-S
(0.05 degz), GOODS-N (0.05 degz), Extended Groth Strip
(EGS; 0.06 deg?), UKIRT Infrared Deep Sky Survey Ultra-
Deep Survey (UDS; 0.06 deg?), and a tiny part of COSMOS
(denoted as CANDELS-COSMOS, hereafter; 0.06 degz). All
the fields have ultra-deep UV-to-IR data (see, e.g., Yang et al.
2019 and references therein), allowing for detections of
galaxies up to high redshift and low M, and reliable
measurements of these galaxies’ properties. The first four have
deep Chandra observations reaching ~megasecond depths
from (Luo et al. 2017; GOODS-S), (Xue et al. 2016; GOODS-
N), (Nandra et al. 2015; EGS), and (Kocevski et al. 2018;
UDS) and can thus effectively sample AGNs at high redshift
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and/or low luminosity. However, CANDELS-COSMOS
shares the same X-ray depth as the full COSMOS field, and
CANDELS-COSMOS is much smaller. Therefore, we do not
use CANDELS-COSMOS but instead will directly analyze the
full COSMOS field in Section 2.2.

We adopt the galaxy-property catalog in Yang et al. (2019),
who measured M, and SFRs by fitting SEDs for all the
CANDELS sources.

2.2. LSST DDFs

The LSST DDFs (e.g., Brandt et al. 2018; Zou et al. 2022)
include five fields—COSMOS, Wide Chandra Deep Field-
South (W-CDF-S), European Large-Area Infrared Space
Observatory Survey-S1 (ELAIS-S1), XMM-Newton Large
Scale Structure (XMM-LSS), and Euclid Deep Field-South
(EDF-S). EDF-S has been selected as an LSST DDF only
recently in 2022 and currently does not have sufficient data
available, and we thus only use the former four original LSST
DDFs with superb data accumulated over approximately a
decade. Note that this work does not use any actual LSST data
because the Vera C. Rubin Observatory is still under
construction at the time of writing this article.

COSMOS is a deg?-scale field with deep multiwavelength
data (e.g., Weaver et al. 2022). Civano et al. (2016) presented
medium-depth (=160 ks) Chandra observations in COSMOS.
The galaxy properties measured through SED fitting covering
the X-ray to far-IR are taken from Yu et al. (2023). We only
use the region with “FLAG_COMBINED = 0” (i.e., within the
UltraVISTA region and far from bright stars and image edges)
in Weaver et al. (2022) to ensure quality multiwavelength
characterizations. Ni et al. (2021a) presented ~30 ks XMM-
Newton observations in ELAIS-S1 and W-CDEFE-S, and Chen
et al. (2018) presented ~40 ks XMM-Newton observations in
XMM-LSS. The galaxy properties in these three fields are
taken from Zou et al. (2022). We limit our analyses to the
overlapping region between the X-ray catalogs and Zou et al.
(2022) because quality multiwavelength data are essential for
estimating photometric redshifts (photo-zs), M,, and SFRs.
Besides, GOODS-S and UDS in Section 2.1 are embedded
within W-CDF-S and XMM-LSS, respectively, and we remove
the regions covered by GOODS-S and UDS to avoid double
counting sources. Due to these reasons, our areas are slightly
smaller than those reported in Chen et al. (2018) and Ni et al.
(2021a).

2.3. eFEDS

eFEDS is a 10% deg”-scale field covered by eROSITA with
~2 ks observations (Brunner et al. 2022). We focus on the
60 deg2 GAMAQ9 region (Driver et al. 2022) within eFEDS
because the remaining parts do not have sufficient multi-
wavelength data to constrain the host-galaxy properties (e.g.,
Salvato et al. 2022). Unlike Chandra or XMM-Newton,
eROSITA mostly works at <2.3 keV, which is more sensitive
to obscuration. We thus rely on the X-ray properties cataloged
in Liu et al. (2022) for eFEDS sources, which are measured
through detailed X-ray spectral fitting and thereby can largely
overcome obscuration effects. As suggested in Liu et al.
(2022), we only use sources with detection likelihoods >10
because fainter sources generally do not allow meaningful
X-ray spectral analyses.



Table 1
Basic Information on the Fields Used in This Work
Field Area Miim X-Ray Depth X-Ray References Galaxy References Photo-z References AGN Galaxies (a, b)
(deg®) (AB mag) (ks)
1) 2 (3) @ 5) (6) 7 ) ) (10)
GOODS-S 0.05 26.5 (H) 7000 (Chandra) 5 1 4.8 224 (111) 4144 (—15.87, 2.63)
GOODS-N 0.05 26.5 (H) 2000 (Chandra) 8 1 1,11 174 (167) 4603 (—15.49, 2.58)
EGS 0.06 26.5 (H) 800 (Chandra) 6 1 9 112 (10) 5889 (—15.13, 3.08)
UDS 0.06 26.5 (H) 600 (Chandra) 4 1 8 117 (25) 5010 (—15.05, 4.90)
COSMOS 1.27 24 (K) 160 (Chandra) 3 2 5,10 1459 (880) 86765 (—14.68, 5.19)
ELAIS-S1 2.93 23.5 (Ky) 30 (XMM-Newton) 7 3 6,12 676 (261) 157791 (—13.90, 4.57)
W-CDF-S 4.23 23.5 (K,) 30 (XMM-Newton) 7 3 6,12 872 (311) 210727 (—13.86, 4.97)
XMM-LSS 4.20 23.5 (Ky) 40 (XMM-Newton) 2 3 2 1765 (898) 254687 (—14.09, 5.36)
eFEDS 59.75 22 (2) 2 (eROSITA) 1 2 3,7 2667 (1156) 615068 (—13.51, 2.59)

Notes. Column (1): field names. GOODS-S, GOODS-N, EGS, and UDS belong to CANDELS and are discussed in Section 2.1. COSMOS, ELAIS-S1, W-CDF-S, and XMM-LSS belong to the LSST DDFs and are
discussed in Section 2.2. eFEDS is discussed in Section 2.3. Column (2): sky areas of the fields, only accounting for the regions we are using. Column (3): the limiting AB magnitudes we adopted in Section 2.4 to
calculate the M, completeness curves, and the reference bands are written within parentheses. Column (4): the typical depths in exposure time of the X-ray surveys, and the parentheses list the observatories with which
our adopted X-ray surveys were conducted. For XMM-Newton, the reported exposure is the typical flare-filtered one for a single EPIC camera. All three EPIC cameras (one EPIC-pn and two EPIC-MOS) were used for
the XMM-Newton observations, adding ~80-100 ks EPIC exposure in total. The “a” parameter values in column (10) of this table represent typical flux limits in 2—10 keV. Column (5): the references for the X-ray
surveys. Column (6): the references for our adopted host-galaxy properties. All of these references have appropriately considered the AGN emission for AGNs. Column (7): representative references examining the
photo-zs in the corresponding fields. Column (8): number of AGNs. The parentheses list the numbers of sources with spec-zs. The surface number density of eFEDS AGNs is much smaller than those in the other fields
primarily because the eFEDS limiting magnitude is much brighter. Column (9): number of normal galaxies. Column (10): the parameters describing the X-ray detection function; see Equation (3). There is a subtle
difference between eFEDS and other fields—the eFEDS X-ray detection function is for the intrinsic 2-10 keV flux, while the others are for the observed flux.

X-ray references. (1) Brunner et al. (2022); (2) Chen et al. (2018); (3) Civano et al. (2016); (4) Kocevski et al. (2018); (5) Luo et al. (2017); (6) Nandra et al. (2015); (7) Ni et al. (2021a); (8) Xue et al. (2016).
Galaxy references. (1) Yang et al. (2019); (2) Yu et al. (2023); (3) Zou et al. (2022).

Photo-z references. (1) Barro et al. (2019); (2) Chen et al. (2018); (3) Driver et al. (2022); (4) Luo et al. (2017); (5) Marchesi et al. (2016); (6) Ni et al. (2021a); (7) Salvato et al. (2022); (8) Santini et al. (2015);
(9) Stefanon et al. (2017); (10) Weaver et al. (2022); (11) Xue et al. (2016); (12) Zou et al. (2021).
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2.4. Sample Construction

Sources in these fields all have either spectroscopic redshifts
(spec-zs) or high-quality photo-zs, as have been extensively
examined in previous literature. Representative examples are
listed in column (7) of Table 1. Many more successful works
built upon these redshifts have also indirectly justified their
general reliability. When compared to the available spec-zs, the
photo-zs are of high quality—our sample has a onyap of 0.03
(0.04) and an outlier fraction of 4% (15%) for galaxies
(AGNs).” Spec-zs are adopted when available, and half of the
involved AGNs have spec-zs.

We select sources with 0.05 < z <4 and (log M, min = 9.5) <
logM, < (logM, nax = 12). Sources labeled as stars are
removed, as has been presented in the references in column (6) of
Table 1. Only <15% of sources in each field are classified as stars.
We apply a lower cut for z because photo-zs are less reliable when
too small (e.g., see Appendix C of Zou et al. 2021), and the
peculiar motions become nonnegligible as well. We limit
logM, > 9.5 because dwarf AGNs usually have much less
reliable measurements and require special treatment (e.g., Zou et al.
2023). We apply the same upper cuts as in Yang et al. (2018) for
both M, and z because very few sources can exceed these
thresholds.

We further construct a complete sample by applying
redshift-dependent M, cuts. To estimate the M, depth for each
field, we first adopt a reference band and denote its limiting
magnitude as my;,,. Following Pozzetti et al. (2010), we convert
the magnitude depth to the expected limiting M, for each
galaxy with a magnitude of m: logMyy, = logM, +
0.4(m — myy,). At each redshift, we adopt the M, completeness
threshold as the value above which 90% of the M,;,, values lie.
Sources below the M, completeness curves are removed. For
the CANDELS fields, we adopt the H band with a limiting
magnitude of 26.5 mag, and almost all the sources above our
log M, cut of 9.5 are above the CANDELS M, completeness
curves, enabling constraints upon BHAR in the low-M, and
high-z regime. For the LSST DDFs, we adopt the K, band, and
their limiting K; magnitudes are 24 for COSMOS (Laigle et al.
2016) and 23.5 for W-CDF-S, ELAIS-S1, and XMM-LSS
(Jarvis et al. 2013), respectively. For eFEDS, we adopt the Z
band with a limiting magnitude of 22. These M, completeness
cuts also automatically ensure the general SED-fitting relia-
bility. The typical i-band magnitudes of sources at these
limiting magnitudes are i~?24.8 at K;=23.5, i~25.3 at
K,=24, and i ~22.4 at Z=22. These i-band magnitudes are
roughly equal to the nominal depths of SEDs in (Zou et al.
2022; see their Figure 30) and Yu et al. (2023), below which
the number of available photometric bands may become small.

We then define A\=Lx/M,, where Ly is the intrinsic
2-10 keV luminosity, and we always adopt erg s Mgl as the
unit for \. We use the X-ray surveys mentioned in the previous
subsections to select AGNs. Following Aird et al. (2012) and
Yang et al. (2018), we only use sources detected in the hard
band (HB)'° for CANDELS and the LSST DDFs. The reason is
to minimize the effects of obscuration. Selecting AGNSs in soft

o Defining Az = Zphot — Zspee» ONMAD 18 then the normalized median absolute

deviation of Az/(1 + Zspec), and outlier fraction is the fraction of sources with
[Az]|/(1 + zZgpec) > 0.15. These two parameters are standard metrics used to
represent the photo-z quality.

10 The detection energy range for the HB has slightly different definitions in
different fields—2-7 keV for CANDELS and COSMOS, 2-12keV for
W-CDE-S and ELAIS-S1, and 2-10 keV for XMM-LSS.
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bands (<2 keV) is biased toward little or no absorption. Since
the obscuration level is known to be correlated with A (e.g.,
Ricci et al. 2017), soft-band-selected AGNs are expected to be
biased in terms of \. Besides, our analyses need intrinsic Lx,
and HB fluxes are the least affected by obscuration. To
calculate Ly , and consequently, A of these HB-detected
sources, we use Equation A4 in Zou et al. (2022) and adopt a
photon index of 1.6. As discussed in Yang et al. (2018), a
photon index of 1.6 returns Ly agreeing the best with those
from X-ray spectral fitting. For eFEDS, as mentioned in
Section 2.3, we use the de-absorbed 0.5-2 keV flux in Liu et al.
(2022) and convert it to Ly assuming a photon index of 1.8.
Although eROSITA observations are more prone to obscura-
tion effects, and it is less accurate to measure Ly with soft
X-rays below ~2 keV, we have verified in Appendix C that our
median results remain similar when excluding eFEDS. It
should be noted that we do not exclusively rely upon eFEDS to
provide constraints at low-z and/or high-M,. The LSST DDFs,
especially with the X-ray coverage in Chen et al. (2018) and Ni
et al. (2021a) added, already have 12.6 deg” of coverage with
useful HB sensitivity (see Table 1), and thus can also provide
beneficial constraints. We define AGNs as those with
log A > log Apin = 31.5 and neglect the contribution of
SMBHSs with A < Ay, to BHAR. This is because few of the
X-ray-detected AGNs are below Ap,, and the emission from
X-ray binaries may become nonnegligible for low-\ sources.
As we will show in Section 3.3, BHAR is indeed dominated by
sources above \pi,.

In total, we have 8000 AGNs and 1.3 million normal
galaxies, and they are plotted in the z—M, and z— A planes in
Figure 1, where each column presents fields with
comparable depths and areas. Note that Yang et al. (2019);
Zou et al. (2022), and Yu et al. (2023), from which our
adopted galaxy properties are taken, all have appropriately
considered the AGN emission for AGNs. We will also
assess the impact of AGNs that dominate the SEDs in
Appendix D.

3. Method and Results

Denoting p(A|[M,, z) as the conditional probability
density per unit log A of a galaxy with (M,, z) hosting an
AGN with A and ko (Lx) as the Lyx-dependent 2-10 keV
bolometric correction (i.e., the ratio between the AGN
bolometric luminosity and Lx), BHAR can be expressed as
follows:

BHAR(M,, z)

+00 -
_ ¢! €)kbol(M*)‘)M*)\p(/\|M*, z)dlog ), (1)

lOg Amin € Cz

where e is the radiative efficiency of the accretion. The key step
in measuring BHAR is hence to derive p(\|M,, 7). Some
literature models the Ly distribution instead of A (e.g.,
Aird et al. 2012). These two approaches are equivalent, and
p(A\IM,, z) and p(Lx|M,, z) are interchangeable. The only
reason for choosing one instead of the other is for convenience,
as A is a scaled parameter that can serve as a rough proxy for
the Eddington ratio.
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Figure 1. Our sample in the z—M, (top) and z— A (bottom) planes. The left, middle, and right panels are for CANDELS, the LSST DDFs, and eFEDS, respectively.
The points are AGNs. The background grayscale cells in the left panel are the 2-D histogram of the number of normal galaxies, with darker cells representing more
galaxies. The apparent deficiency of sources in the high-z and/or low-M, regime in the middle and right panels is due to our M, completeness cuts.

3.1. Semiparametric Modeling of p(\|M,, z)

We assume a double power law with respect to A for
p(A\[M,, 2):

pPOIM,, 2) = ' . )

The four parameters (A, A\, v, 72) are functions of (M,, z). We
require A, > Apin because, otherwise, the model will always
degenerate to a single power law and has no dependence on v,
once \. lies below Api,. We also require -, > 0; otherwise,
p(A\IM,, 7) will not be a probability measure, and the model-
predicted number of AGNs will diverge.'" It has been shown
that a double power law can indeed approximate p(\M,, z)
well (e.g., Bongiorno et al. 2016; Aird et al. 2018; Yang et al.
2018). Similarly, the observed AGN X-ray luminosity function
(XLF) also follows a double power law (e.g., Ueda et al. 2014),
and a p(\|M,, z) roughly with a double power-law shape is
needed to reproduce the XLF (Section 3.2).

3.1.1. The Detection Probability

We denote Ry (fy) as the probability that a source with a
2-10keV flux of fx is detected by a given X-ray survey.
Following Section 3.4 in Zou et al. (2023), we adopt the

1 Note that p(A\M,, z) is defined in the log A space, and thus 7, >0 is

sufficient and necessary for flogo: - p(AIM,, z)d log A < +o0.

following functional form for Py (fx):
1
Fie(fx) = E[erf(b(IngX —a)) + 1], (3)

where a and b are parameters determining the shape of Ry (fy).
We follow the same procedures as in Zou et al. (2023) to
calibrate a and b and report the results in Table 1. Briefly, we
compared the fx distribution with the 2-10keV log N—log S
relation in Georgakakis et al. (2008), which is the well-
determined expected surface number density per unit fx with
the detection procedures deconvolved. The comparison can
return best-fit (a, b) parameters such that the convolution
between the log N—log S relation and Pg. best matches the
observed fx distribution. It is necessary to adopt a functional
form because it improves the computational speed by several
orders of magnitude, as will be discussed below. The form of
Equation (3) has been shown to be appropriate for X-ray
surveys (e.g., Yan et al. 2023; Zou et al. 2023) because its
overall shape is similar to X-ray sensitivity curves, and in our
case, it indeed returns consistent BHAR as in Yang et al.
(2018), who did not adopt this functional form for Py,

There is a subtle difference between eFEDS and the other
fields. For the latter, their fx is the observed value taken from
the original X-ray catalogs. The log N—log S relation is also for
the observed fx; thus, P4 is for the observed fx. For eFEDS,
we adopt the intrinsic, de-absorbed 0.5-2 keV flux in Liu et al.
(2022) and multiply it by 1.57 to convert it to the intrinsic
2-10keV flux assuming a photon index of I'=1.8. For
consistency, we should correct the log N—log S relation such
that it works for the intrinsic fx. We use the XLF (¢;) in Ueda
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et al. (2014) to derive the correction. The XLF-predicted
intrinsic log N—1log S relation is

_ 400 5
N i > S) = Al fiops Jy 61x 2)

av
X d—;d 108 fi in 42, 4)
f in
Lx(fine> 2) = —2, )
1(z)
1+ )7
) =—"" 6
n(z) 4mD? (6)

where Ay gy is the all-sky solid angle, V¢ is the comoving
volume within a redshift of z, 7(z) is a function of z converting
Ly to the intrinsic 2-10keV flux for a power-law X-ray
spectrum with a power-law photon index of I' = 1.8, and D, is
the luminosity distance. We limit the integration to z <5
because the contribution of higher-redshift sources to the total
source number is negligible. Similarly, the predicted observed
log N—log S relation is

B +00 5 24 av;
N(fX,obs > 8)= Aalllsky f f ¢L(LX, Z)_C
logs Jo J20 dz

X p(NulLx, z)d logfx oy dzd log Ny, (7)

fX,obs i (8)
n(2) NV, 2)

where the Ny function p(Ng|Lx, z) is the conditional
probability density per unit log Ny of an AGN with (Lx, z2),
as given in Section 3 of Ueda et al. (2014). This function is
normalized such that fz 34 p(NVy|Lx, z)d log Ny = 1. a(Ny, 2) is
the absorption factor for a source with I" = 1.8 and is calculated
based on photoelectric absorption and Compton-scattering
losses (i.e., zphabsXxcabs) in XSPEC.

The XLF-predicted N(fx obs > S) is similar to the observed
log N—log S relation, with an absolute difference generally below
0.2 dex. We found that log [N (fx.ine > S)/N (fx.obs > S)] is almost
a constant around 0.15 dex at logS > 10~ "% ergcm2s~!, and
thus we add 0.15dex to the observed log N—log S relation in
Georgakakis et al. (2008) to approximate the intrinsic relation.
Applying this intrinsic relation for our calibration in Equation (3),
we can obtain the eFEDS Pg4 as a function of the intrinsic fx.
Given that the intrinsic fx instead of the observed fx is always
adopted in our analyses of eFEDS, the fact that eFEDS is more
easily affected by absorption has been appropriately accounted for
and absorbed into Pg4e. For example, the fact that obscured AGNs
may be missed by eFEDS causes the a value to slightly shift to a
larger value due to the correction applied to the observed
logN—log S relation. One may wonder why we convert the
05-2keV flux to 2-10keV flux instead of directly using
0.5-2keV flux. Since the intrinsic flux is always adopted, the
conversion, in principle, would not cause systematic biases. The
main reason is that the correction to the log N—log S relation is
considerably smaller for the 2-10keV band than for the
0.5-2 keV band.

One caveat is that we limit the integration range of Ny in
Equation (7) to be below 10** cm ™2, which equivalently means
that we neglect the contribution from Compton-thick (CT)
AGNs with Ny > 10** cm ™2 for eFEDS. Similarly, in our other
fields observed by Chandra or XMM-Newton, we also

LX(fX,obs’ z, Nu) =
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implicitly neglect most CT AGNs because they can hardly be
detected even in the HB. Generally, X-ray observations below
10keV cannot provide effective constraints for the CT
population, and the intrinsic fraction of CT AGNs is highly
uncertain (e.g., Ananna et al. 2019). Therefore, any attempt to
measure the intrinsic CT population properties using X-rays
below 10keV is likely prone to large systematic uncertainties.
The CT population might indeed contribute to the SMBH
growth and is missed by our measurements, especially at high
redshift (e.g., Yang et al. 2021), but observations in the regime
insensitive to the CT obscuration are necessary to reveal it
(e.g., Yang et al. 2023).

3.1.2. The Likelihood

When compared with the observed data, the log-likelihood
function (e.g., Loredo 2004) is

nga] AGN

lnE = _Z Tgal,s + Z lnP(/\.s|M*,s, Zs)a (9)
s=1

s=1

+00
Ta= [ pOM. DRl )dlogh, (10)
08 Amin

Sx (MM, 2) = AM,1(2), 1)

where 7)(z) is given in Equation (6). We adopt I'=1.8 and 1.6
for eFEDS and the other fields, respectively. Different I" values
are adopted because the adopted fx inside our Py, function is
the intrinsic value for eFEDS, while being the observed one for
the other fields (Section 3.1.1). Equation (10) involves an
integration, and Equation (9) computes Equation (10) many
times in the summation for a single evaluation of L.
Numerically integrating Equation (10) is slow, making it
impractical to sample more than one or two dozen free
parameters (as will be shown later, we will have 10* free
parameters). Fortunately, as previously suggested in Zou et al.
(2023), Equation (10) can be analytically solved when
choosing appropriate functional forms for p(A|M,, z) and
P (fx), and our Equations (2) and (3) enable this. This is one
of the most important steps enabling our whole semiparametric

analyses.
We define
1(v, M, M, A, Ae; My, 2)
log Az by -
= A(_) Rlet(/\M*n(Z))d 10g A (12)
log A\ /\C

Using Equation (21) in Zou et al. (2023), Equation (12) can be
reduced as follows:

_ A ﬁ - 3 ﬁ Y
1= > 10 {( )\c) [erf(x) + 1] (/\L.) [erf(xp) + 1]

_ 10 \TY
[ 10T w2 erf()q i ’YlnlO)
AcM,n 2b
B erf(x2 n v In 10) ,
2b
(13)

x = bllogM,m) — al,k = 1,2. (14)
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Equation (10) can then be expressed as follows:
M*’ Z) = I(’Yl? )\min, ACv A7 )\L; M*a Z)

+ 1(72, Aes +00, A, Acs My, 2).
5)

Tgal(A7 )\Cr ”)/l, 72;

The above equations express £ as a function of (4, A, V1, 72),
which themselves are functions of (M,, z). The dependences of
(A, A, 71, 72) on (M,, z) lack clear guidelines, and we use a
nonparametric approach to model them. We divide the (M,, z)
plane into N,; X N, grids and adopt the (A, A\, 71, 72) values in
each grid element as free parameters, i.e., we have 4NN, free
parameters in total. Such an approach is conceptually similar to
and was indeed initially inspired by the gold standard
nonparametric star formation history (e.g., Leja et al. 2019)
in SED fitting. In a strict statistical sense, a method is called
nonparametric only if the number of free parameters scales
with the number of data points. In contrast, we used a fixed
number of free parameters, which does not exactly satisfy the
statistical definition. Although we can easily adjust N,; and N,
so that the number of free parameters scales with the number of
data points, this makes the computation infeasible because we
have millions of galaxies; besides, with our continuity prior in
Section 3.1.3, further increasing the number of free parameters
does not improve our results materially. In our context, we use
the word nonparametric because our number of free parameters
is far larger than that of typical parametric methods, and our
method is effectively similar to the fully nonparametric
approach. This same argument also works for nonparametric
star formation history in, e.g., Leja et al. (2019).

This method has an important advantage over a parametric
one in our case. As Figure 1 shows, most of our data are
clustered within a small region of the (M,, z) plane—the number
of sources significantly decreases at both low z (<0.8) and high z
(22), the number of galaxies strongly depends on M,, and most
AGNs are confined within 10'%° <M, <10'"*M.. This
indicates that if we assume any parametric form for (A, A., 7,
v2), the fitted parameters will be dominated by the small but
well-populated region in the (M,, z) plane. Especially, one strong
argument disfavoring parametric fitting is that our ultimate goal
is to derive BHAR across all redshifts, but any parametric fitting
will return results dominated by sources in a small redshift range
(e.g., Yang et al. 2018). Our semiparametric settings avoid this
problem.

Equation (9) then becomes

Inl = ZZ[ n,]galTal(Azjj, Aciis Vi Va,iis Mais 25)
i=1j=1

AGN

M
—+ Z lnpl»j()\_g|M*,x, Zs)]7 (16)

where nga' and n;; AGN are the numbers of galaxies and AGNs

within the @, j) bin, respectively. £ is defined for each
individual survey field, and they are added together to return
the final likelihood.
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3.1.3. The Prior
We adopt a continuity prior of

o2
Xi+1j le NN( X)s (17)

Nu

o2
Xijr1 XijNN( , Vj) (18)

where X denotes each one of (logA, log A, v, 7,), and oy is
our chosen a priori parameters to quantify the overall variations
of X across the whole fitting ranges. The goal of this continuity
prior is to transport information among grid elements. Without
this prior, the fitted parameters in each grid element become
unstable and vary strongly. This prior is defined in a way such
that the information flow is roughly independent of the grid size.
The continuity prior is defined only for the differences, and we
need a further prior for the X’s in a single cell and adopt it as flat
in the (logA, log A, ¥, 7,) space. We set bounds for these
parameters to ensure propriety of the prior (Tak et al. 2018):
—10 < logA < 10, logApim < logA. < 40, —5<~,<10,
and 0<,<10. These ranges are sufficiently large to
encompass any reasonable parameter values. Our posterior
(Section 3.1.4) may also become less numerically stable outside
these bounds. The resulting prior is explicitly shown below.

Ny—1 N, Xl ; 2
lnﬂcont—__ZlNM Z Z ( Y ])
i=1 j=1 UX
X; )2
+NZZ 7( et~ Xi)” | (19)
i=1 j=1 OX

Note that it is defined in the (log A, log A, 7;, ,) space, and an
appropriate Jacobian determinant should be added when
transforming the parameter space. For sampling purposes,
variable transformations are usually needed.

We rely on previous literature to set appropriate values for oy.
Yang et al. (2018) used a double power law similar to ours to fit
PAIM,, 2), and their best-fit parameters (see their Equation (16))
span ranges of —3.53 < logA < —0.86, 31.73 < log A, <
3498, v, = 0.43, and 1.55 <+, <3.55 across our parameter
spaces. Bongiorno et al. (2016) modeled the bivariate distribution
function of M, and \ for AGNSs, which can be converted to
p(AIM,, z) by dividing it by the galaxy stellar mass function
(SMF), and the corresponding p(A|M,, z) is also a double
power law. We use the SMF in Wright et al. (2018) for the
conversion, and the best-fit double power-law parameters in
Bongiomo et al. (2016) span ranges of —5.28 < logA < —0.08,
33.32 <logA. < 34.52, —0.67 < v, < 1.62, and ~,=3.72.
Aird et al. (2018) nonparametrically modeled p(A|M,, z), and we
use our double power- -law model to fit their results above

=10 M, by minimizing the Kullback—Leibler divergence
Of our model relative to theirs. The returned best-fit values range
between —2.87 < logA < —0.69, 31.84 < log A, < 34.04,
—0.58 <, <0.52, and 0.72 <, < 1.67. Another independent
way to estimate p(A|M,, z) is based on the fact that p(A\|M,, z), by
definition, can predict the XLF when combined with the SMF (see
Equation (22) and Section 4.1 for more details). We estimate
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parameters of p(A\M,, z) such that when using the SMF in
Wright et al. (2018), the predicted XLF can match the best
with the XLF in Ueda et al. (2014). This returns —2.81 <
logA < —1.08, 32.72 < log A\, < 33.77, —0.35 <, <0.90,
and 2.46 < v, < 2.82. Taking the union of these estimations, the
ranges should span no more than —5.28 < logA < —0.08,
31.73 < log A, < 3498, —0.67 <7y, <1.62, and 0.72 <y, <
3.72. We adopt oy as one-third of the widths,'? i.e., Olpga = 1.7,
Olog ), = 1.1, 05, = 0.8, and o, = 1.0.

In fact, our prior setting is essentially a rasterized
approximation to the continuous surface of a Gaussian process
(GP) regression (e.g., Rasmussen & Williams 2006). This is
because the blocky prior surface over the (M,, z) plane
becomes the nonparametric GP-based continuous surface as the
resolution of the grid increases (i.e., increasing Ny, and N, to
infinity). Therefore, a full GP regression involves a large
number of free parameters scaling with the galaxy sample
size (~10°), while our rasterized approach only involves
10* parameters. GP also requires computations of O(n3) for
matrix inversions, while our approach turns the matrix-
inversion problem into products of multiple univariate
Gaussian densities. Due to these reasons, a full GP regression
is computationally infeasible in our case, but our approach
effectively works similarly and is much less computationally
demanding.

3.1.4. The Posterior

The posterior is

InP = Z In L + In 7oy (20)
field

We call our overall modeling semiparametric because we adopt
p(A\|M,, 7) as a parametric function of \, while the dependences
of (A, \., 71, 72) on (M,, z) are nonparametric. Readers may
wonder why we do not also adopt a nonparametric function for
P(AIM,, z). In principle, it could be done and was presented in
Georgakakis et al. (2017) and Aird et al. (2018). Since any
model contains subjective assumptions, the choice of the
methodology should be guided by the assumptions we want to
retain or avoid. Compared to nonparametric modeling, the
assumptions of parametric models are much stronger. We
nonparametrically model (A, A., v, 72) as functions of (M,, z)
because we genuinely do not know their dependencies and thus
want to minimize assumptions. However, we are satisfied with
and thus want to retain the inherent assumption of our
parameterization of p(A|M,, z) that the true dependence is
indeed well approximated by a double power law when
A > Amin. Previous works have shown that a double power law
indeed works, and as far as we know, there is no clear evidence
suggesting that this assumption would fail. Especially, the
nonparametric form of p(A|M,, z) inferred from Aird et al.
(2018) is also roughly a double power law. The adopted
approach essentially depends on our ultimate goal. It is

12° A nominal & is often approximated by one-quarter of the range, according to
the so-called range rule of thumb. We have two dimensions in our case, and
thus the one dimension ¢ can be chosen as 1/ (4\/5 ) of the range. However, we
would like to be slightly more conservative. The reason is that previous works
mostly do not cover a parameter space as large as this work, and thus
extrapolations are employed when computing the ranges. Some conservative-
ness can enable more flexibility to accommodate possible systematic
extrapolation errors in regimes not well covered by previous works.
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certainly better to minimize the assumption for p(A|M,, z)
and adopt a nonparametric form for it if the ultimate goal is to
derive the shape of p(\|M,, z). However, our goal is different—
we are ultimately interested in BHAR and thus want to assume
a double power-law form for p(A|M,, z).

3.2. Hamiltonian Monte Carlo Sampling of p(A\|M,, z)

Given the high dimensionality, Hamiltonian Monte Carlo
(HMC; e.g., Betancourt 2017) should be one of the most
practical methods to sample the posterior. As far as we know,
other sampling methods either cannot work efficiently in our
high-dimension case (e.g., the traditional Metropolis—Hastings
algorithm) or do not have well-developed packages readily
available (e.g., Bayer et al. 2023). HMC needs both the
posterior and its gradient in the parameter space. The posterior
has been presented in the previous subsections, and we present
the gradient in Appendix A. We use DynamicHMC.51" to
conduct the HMC sampling. We adopt Ny, =49 and N, =50.
The sampling results are presented in Figure 2. These
parameter maps will be released online.

To examine our fitting quality, we compare the model
p(A\IM,, z) with the observed values. We use the ngps/fmar
method to obtain binned estimators of p(\|M,, z), as outlined in
Aird et al. (2012). For a given (z, M,, \) bin ranging from [z,
Zhigh] X [M. jows My pigh]l X [Mows Anignl, We denote the number
of observed AGNSs as ng,s and calculate the model-predicted
number as Myg:

log Anigh
Mt = 3 j; 7 POIM. . 20 Bia(f M. z)d log ).
s Og low

21

where the summation runs over all the sources within
[Ziows Zhighl X [M, 10ws M nignl. The observed binned estimator
of p(\|M,, z) is then the fitted model evaluated at the bin center
scaled by ngps/Nmar, and its uncertainty is calculated from the
Poisson error of ngps following Gehrels (1986). We present our
model p(A|M,, z) and the binned estimators in Figure 3, and
they are consistent. The uncertainties become large especially
in the high-z/low-M, and low-z/high-M, regimes because of a
limited number of AGNs being available. In the high-z/low-M,
regime, most of the constraints are from deep CANDELS
fields, especially GOODS-S, because the other fields are not
sufficiently deep in both X-rays and other multiwavelength
bands. For example, 60% (80%) of AGNs in our sample with
M,<10"M, and z>2 (z>3) are from GOODS-S. At
7< 0.5, 260% of AGNs are from eFEDS, and even the 60 deg2
eFEDS is not sufficiently large to effectively sample high-M,
sources at low redshift. We also plot several p(\|M,, z) results
from previous works and leave more detailed discussions on
the comparison between our p(A|M,, z) and previous ones in
Section 4.2.

As another independent check, p(A|M,, z), by definition, can
connect the SMF (¢,,) and XLF (¢,). That is, the SMF and
p(A[M,, ) can jointly predict the XLF (e.g., Bongiorno et al.

13 https: //www.tamaspapp.eu/DynamicHMC.jl /stable/
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Figure 2. The sampled maps of (A, A., 71, 72). The top panels are the median posteriors, and the bottom panels are the 1o uncertainties, defined as the half-width of the

posterior’s 16th—84th percentile range.

2016; Georgakakis et al. 2017):

log M, m

Grmalx D= [ pOIM., 2)9yd log M.
1Oglw*,min

log M, max

= p(Lx/M, M., z) $,,d log M,.
log M, min

(22)

Comparing ¢; ma1 and the observed XLF, ¢ b, can thus
further assess our fitting quality. We adopt ¢,, in Wright et al.
(2018) and the median parameter maps in Figure 2 to calculate
¢r.ma. We present the comparison between ¢ mar and @y obs
from Ueda et al. (2014) in Figure 4, and they agree well. Note
that for comparison purposes here, we do not need to optimize
the computation of Equation (22); however, we will present a
more optimized computation algorithm later in Section 4.1,
where we do need fast computational speed. Also, note that
Equation (22) ignores the contribution from sources with M,
below M, min = 10%3 M., or above M, . = 10> M, to the
XLF. This is appropriate because the XLF is dominated by
AGNs with 10%° < M, < 10"> M. As a simple check, for the
parameters in Figure 2, if we extrapolate the integration in
Equation (22) to (— oo, + 00), the typical ¢y ma Will only
increase by 0.01 dex at 43 < Ly < 43.5, the lowest Ly bin that
we will later adopt in Section 4.1. This increment is even
smaller for higher Ly bins.

3.3. Measuring BHAR

Equation (1) converts p(A|M,, z) to BHAR. We adopt
€=0.1 and ky, from Equation (2) in Duras et al. (2020). In
principle, ¢ may depend upon other factors such as the
accretion state (e.g., Yuan & Narayan 2014), but it is infeasible
to accurately measure € for our individual sources. We adopt ¢
as 0.1 because it is a typical value for the general AGN
population (e.g., Brandt & Alexander 2015) and has been
widely used in previous literature (e.g., Yang et al. 2017, 2018;
Ni et al. 2019; Yang et al. 2019; Ni et al. 2021b). The ky,
relation in Duras et al. (2020) diverges at high Lx. To avoid it,

we cap kyo not to exceed 363, the value when the bolometric
luminosity is 10'*> L., which is roughly the brightest sample
used in Duras et al. (2020) to calibrate the ky relation. We
show the Lyx—k;, relation in Figure 5, in which we also plot the
relation used in Yang et al. (2018), derived from Lusso et al.
(2012), for a comparison. The two relations are similar, with a
small offset of ~0.07 dex that is almost negligible compared to
the BHAR uncertain?l (Figure 6). The deviation of the two
relations at Ly > 10* ergs™' has little impact on BHAR
because BHAR has little contribution from log A = 35 (see
Figure 3).

Equation (1) ignores the contribution to BHAR from sources
atlog A < 31.5 because X-ray binaries may not be negligible at
lower A, and our X-ray surveys can hardly provide strong
constraints in the low-\ regime. However, this will not cause
material biases because BHAR is dominated by sources at
log A 2 31.5 (e.g., Section 3.2.3 in Yang et al. 2018). We have
also tried pushing the lower integration bound in Equation (1)
down by 2 dex, and the returned BHAR would only increase by
a typical value of ~0.02 dex and no more than ~0.1 dex. Such
a difference is much smaller than the fitted BHAR uncertainty.
This exercise may even overestimate the influence because
p(A\|M,, z) may bend downward or quickly vanish at very small
A (Aird et al. 2017, 2018). Therefore, the cut at log A = 31.5is
not expected to cause material biases to BHAR.

We show our sampled BHAR results in Figure 6, and the
BHAR maps will be released online. The median map clearly
shows that BHAR increases with both M, and z, qualitatively
consistent with the conclusions in Yang et al. (2018). The
uncertainty map reveals that the BHAR constraints at both the
low-z/high-M, and the high-z/low-M, regime are relatively
more limited. We will present a more quantitative comparison
with Yang et al. (2018) and other works in Section 4.2.
Besides, we verified that AGN-dominated sources do not cause
material biases to our BHAR measurements in Appendix D.

There are slight, local fluctuations in BHAR that are caused
by the statistical noise of the data and are confined within the
extent allowed by our prior, and the BHAR map is smooth
globally, as can be seen in the top panel of Figure 6. The
fluctuation levels and BHAR uncertainties depend on our prior
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Figure 4. The XLFs at different redshifts. The red (blue) data points indicate the soft-band (HB) XLFs in Ueda et al. (2014). The cyan curves indicate the best-fit XLF
models in Ueda et al. (2014), and the black curves denote our ¢; ,,q based on the median parameter maps in Figure 2 and the SMF in Wright et al. (2018). The
absorption correction has been appropriately applied for both our measurements (see Section 3.1.1) and the XLFs in Ueda et al. (2014). Our models agree with the

observed XLFs well.

settings but almost not on our bin size because our bins are set
to be correlated (Section 3.1.3). For example, relaxing the prior
by choosing larger ox would return larger fluctuations and
uncertainties. This arbitrariness is inherent in modeling.'*
Overall, our prior is reasonably constructed (Section 3.1.3) and
provides beneficial regularizations. We have assessed the
potential issue of whether such arbitrary choices affect the
following posterior inferences and the resulting scientific
conclusions qualitatively. For example, we have conducted a
sensitivity check of our priors and confirmed that the impact of
lower or higher resolution of the prior surface (corresponding
to larger or smaller bin sizes) does not influence the resulting
posterior inference in a noticeable way, and changing oy
generally would not cause material changes of the median
BHAR map.

4. Discussion

Given that this article is already lengthy and full of technical
details, we decide to present more scientific investigations of
our results in future dedicated works. However, we would like
to present brief, immediate, but sufficiently informative
explorations of our results in this section, which helps justify

14 For the widely used method of binning the parameter space and assuming
each bin is independent, there is a similar arbitrariness in choosing the bin size,
and the uncertainties in this case would depend on the bin size.
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Figure 5. The adopted Lx—ky,o relation, taken from Duras et al. (2020). The
adopted relation used in Yang et al. (2018), which is adjusted from Lusso et al.
(2012), is also plotted for comparison.

the quality and serves as a precursor of further detailed
scientific investigations.

4.1. Adding External Constraints from the SMF and XLF

Section 3.2 uses the SMF and XLF to examine the fitting
quality of p(A|M,, z). It is also possible to follow a reversed
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generally increases with both M, and z.
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12.0

direction—we can add external constraints from the SMF and
XLF (named the SMF-XLF constraints, hereafter) into our
posterior. This approach was adopted in Yang et al. (2018). As
a start, we revisit the numerical computations of ¢, ma in
Equation (22). Again, numerical integrations should be avoided
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whenever possible, and we hence derive an analytical formula
for ¢ ma. ¢um is expressed as a two-component Schechter
function in Wright et al. (2018):

, M aj+1 M ar+1
=Inl10e —_= + — ,
l¢1(Mc) %(Mc

(23)

dn

o= dlogM,

where (M., o, ay, @1, ¢,) are redshift-dependent parameters.
We further define an auxiliary function 1 such that the model-
predicted XLF in Equation (22) can be simplified as
summations of ¢ (see below).

w(er Ml7 M27 A» A(,‘; LX)

log M, Lx -
= A dlogM,
log M, (M*)\C) ¢M &
Lx )’ M, M,
=A Teflaon +v+ 1, —, —
(M*Ac) [¢1 GI( R AN Y)
M, M,
+ ¢2F01(a2 +y+1, ﬁc, E)], (24)

where Ig1(C, 1, x3) = j; TZ t¢~le~'dt is the generalized incom-

plete Gamma function. The contribution of each grid element
to the integration in Equation (22) is

Ypp(A, Ao, Vis Yoo My, My; Lx)
log My

= f p(Lx/M,M,, 2)$),d log M,
log M

(v My, My, A, A5 Lx), A < Lx/M,
¥y My, Lx/Aes A, Aes Lx)
+ Y (s Lx/Aes Ma, A, A Lx), Lx/My < Ao < Lx/Mj,
(v, My, My, A, Ae; Lx), Ae 2 Lx/My
(25)

Equation (22) is thus

Ny
Grma = D Yop(Aiis Aciis Viio V2iis Mibis Mip.iv1s Lx),
i=1
(26)

where 10gj‘/ILB,i = 1Ogﬁ/[*,min + (l - 1)/]\IM X log(M*,max/M*,min)
is the lower bound of the ith M,-grid element, and j, is the index of
the z-grid element containing z.

We then follow the procedure in Yang et al. (2018) to
compare ¢; ma1 and ¢pops in Ueda et al. (2014). ¢ obs 1S
evaluated at several (Lx, z) values, and the number of sources
(n*XF) in Ueda et al. (2014) contributing to ¢ s is recorded.
Followin§ Yang et al. (2018), we use the soft-band XLF at
Ly > 10* erg s~ ! in Ueda et al. (2014). Their soft-band XLF
has been corrected for obscuration and spans a wider Ly range
compared to their HB XLF, and their soft-band and HB XLFs
are also consistent (see Figure 4). The Ly cut at 10% erg s 'is
adopted to avoid contamination from X-ray binaries. The log-
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likelihood when comparing ¢, ma1 and ¢r ops 1S

. 0
In Lsmp-x1r = Y, InPr| Poisson LmdLk ) XLF |y XLE
k L.,obs,k
¢ o)
= 5" | In| LndtE f ZEmdK ] const .,
k ¢L,0bs,k ¢L,obs,k
(27)
¢L,mdl,k = ¢L,md1 (Lx,k, Zk)s (28)

where k runs over all the Lx and z bins of the observed XLF in
Ueda et al. (2014). This term is called the SMF-XLF likelihood
in Yang et al. (2018).

To add the SMF-XLF constraints, Equation (20) should be
modified as follows:

InP = Z InL + In ACSMFfXLF + In Tlcont-
field

(29)

Its gradient is presented in Appendix B for HMC sampling. We
then sample the above posterior with HMC and present the
resulting BHAR in Figure 7. The BHAR curves with or
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without the SMF-XLF constraints are largely consistent with a
small (<10) difference. This is expected because Figure 4
shows that our BHAR without the SMF-XLF constraints leads
to consistent XLFs with those in Ueda et al. (2014).

Although there is good consistency after adding the SMF-
XLF constraints in our case, extra cautions are generally
needed. The SMF and XLF taken from other literature works
usually involve inherent assumptions about their parametric
forms. When putting the SMF and XLF into our posterior, we
will inevitably absorb these assumptions. Besides, the original
data used to measure the XLF may overlap with one’s data set,
especially given that the X-ray data in GOODS-S are also
necessary to constrain the XLF at low-Lyx and/or high-z. Such
an overlap causes double counting of the involved sources.
Especially, more considerations would be needed if the
posterior is dominated by the SMF-XLF constraints.

4.2. Comparison with Previous Works

Figure 3 compares our p(A\|M,, z) with some representative
results in previous literature. (Aird et al. 2012; black solid lines
in Figure 3) used a single power law to fit p(Lx|M,, z) at z < 1,
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which is converted to a single power law p(\|M,, z) in Figure 3.
The single power-law curves broadly follow our double power-
law ones, and the single power-law index lies within the range
between 7, and ~,. This indicates that a single power-law
model can serve well as the first-order approximation of
p(A\IM,, z), as has been widely adopted in other works (e.g.,
Bongiorno et al. 2012; Wang et al. 2017; Birchall et al.
2020, 2023; Zou et al. 2023), especially when the data are
limited. However, the real p(A\|M,, z) is more complicated, and
a double power-law model can return better characterizations.
As Figure 3 shows, the binned p(A\|M,, z) estimators generally
do not show systematic deviations from our double power-law
curves (e.g., no further breaks are visible), and thus a double
power-law model is sufficient to capture the main structures of
PAIM,, 2) at A > Apin.

Bongiorno et al. (2016) and Yang et al. (2018) adopted a
double power-law model similar to ours, and we plot their
results as the dashed—dotted and dashed lines in Figure 3,
respectively. Our p(A|M,, z) curves are nearly identical to those
in Yang et al. (2018) at 10 < logM, < 11.5 and 1 $z<2.5
but begin diverging in other parameter ranges. In the lowest-
mass bin (9.5 < logM, < 10), our p(A|M,, z) is still similar
to those in Yang et al. (2018) at log A < 33.5 but is lower
than theirs at higher A. In the highest-mass bin (11.5 <
logM, < 12), our p(A\|M,, z) is larger at z <2 and smaller at
z 2 2 than for Yang et al. (2018). It should be noted that these
parameter regions with noticeable p(A\M,, z) differences
generally have limited data and are far away from the bulk of
other data points, and the results in these regions are subject to
large uncertainties. For Bongiorno et al. (2016), their p(A|M,, z)
is similar to ours at 10 < logM, < 11.5 and 1.5 <z<2 but
has a much steeper low-\ power-law index at z < 1.5. Two
reasons may be responsible for the difference—the data used in
Bongiorno et al. (2016) are not sufficiently deep to effectively
probe the low-\ regime; their model always fixes the break-
point at log A = 33.8 when M, =10"' M., while our results
suggest that the breakpoint tends to become smaller as redshift
decreases.

Georgakakis et al. (2017) and Aird et al. (2018) adopted
nonparametric methods to measure p(\|M,, z) without assum-
ing a double power-law form. Our results show good
agreement with theirs, especially in regimes well covered by
the data, suggesting that a double power-law is indeed a good
approximation of p(A\|M,, z). Nonetheless, some differences are
worth noting. At log A 2 34 where the data become limited,
the p(A|M,, z) in Aird et al. (2018) tends to be flatter than ours,
while that in Georgakakis et al. (2017) tends to be steeper than
ours. This high-\ regime is highly uncertain and subject to the
adopted methodology—for instance, the prior adopted in Aird
et al. (2018) prefers a flatter slope at high \. Another feature is
that the p(\|M,, z) in Aird et al. (2018) sometimes shows
downward bending at log A ~ 32-33, while that in Georgaka-
kis et al. (2017) does not show a clear bending, although the
large uncertainty may be responsible for the lack of bending. In
principle, a downward bending at some low A is expected;
otherwise, p(A\|M,, z) would diverge. Such bending can also be
seen in Georgakakis et al. (2017), but below log A\, = 31.5
(see, e.g., their Figure 7). Our double power-law model is
unable to capture this feature, and Figure 3 shows that the
bending in Aird et al. (2018) mainly becomes prominent at
high redshift (z > 3).
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Figure 8. fogn evaluated at several (M,, z) values vs. z. Our results are plotted
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The dashed lines denote those in Aird et al. (2018).

Another metric that can be measured from p(\|M,, z) is the
fraction of galaxies hosting accreting SMBHs above a given A
threshold (Ares), as calculated below

+0o0
fAGN ()\ > )\lhres) = f

IOg )\lhres

p(AIM,, 2)d log . (30)

For a consistent comparison with Aird et al. (2018), we adopt
the same Agqes = 32 as theirs. We calculate fagn at several
(M,, z) values and plot the results in Figure 8. Our results
generally agree well with those in Aird et al. (2018) and follow
similar evolutionary trends with respect to M, and z. At
log M, 2 10, fagn increases with z up to z &~ 1.5-2 and reaches
a plateau at higher redshift; while for less-massive galaxies, the
redshift evolution is weaker. At low redshift (z < 0.5), fagn is
similar regardless of M,, and this conclusion can be further
extended down to logM, < 9.5, as Zou et al. (2023) showed
that the A-based fagn in the dwarf galaxy population in this
redshift range is also similar to fagn in massive galaxies. At
higher redshift (z 2 1), the dependence of fygn on M, becomes
more apparent due to M,-dependent redshift evolution rates of
facn, and there is a positive correlation between fagn and M, at
logM, < 10.5. However, for massive galaxies with

~

logM, 2 10.5, fagn nearly does not depend on M,. A full
physical explanation of these complicated correlations between
fagn and (M, z) will require further detailed analyses of
P(AIM,, z) with at least partially physically driven modeling,
and we leave these analyses for future work.

We further compare our BHAR with those in Yang et al.
(2018) in Figure 9. Our median relation is largely similar to
theirs, but some subtle differences exist. Our low-mass BHAR
at logM, < 10 is slightly smaller across all redshifts, though
not very significant. Our high-mass BHAR at logM, = 11.5
differs the most from that in Yang et al. (2018), and ours tends
to be smaller at z>3 while being larger at z <2. These
differences originate from different p(A|M,, z), as discussed
earlier in this section. As shown in Figure 3, our low-mass
P(AM,, 7) is smaller than for Yang et al. (2018) only at high A,
and thus the low-mass BHAR difference is small. Our high-
mass p(A|M,, z) at logM, = 11.5, instead, shows a redshift-

~

dependent difference in the normalization. Nevertheless, the
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Figure 9. The comparison of our BHAR with those in Yang et al. (2018). The blue curves represent our median BHAR, and the cyan-shaded regions represent the
corresponding 1o and 20 uncertainty ranges. The BHAR and the corresponding 1o uncertainty in Yang et al. (2018) are plotted as the black curves.

uncertainties in these extreme regimes are large, and they are
also subject to model choices. Dedicated analyses of these
extreme-mass sources with deeper or wider data may be
necessary to further pin down the uncertainty. Another
important difference is that the BHAR-M, relation in Yang
et al. (2018) flattens at low redshift, but ours does not show
such a trend. Therefore, the BHAR in Yang et al. (2018) is less
reliable at z < 0.8, as they noted; if their relation is further
extrapolated below z=0.5, their BHAR-M, relation would
become flat and is thus unphysical. Our BHAR uncertainties
are also considerably larger than those in Yang et al. (2018),
even though we used more data. This is because Yang et al.
(2018) adopted a parametric modeling method, which includes
strong a priori assumptions. In contrast, this work minimizes
such assumptions, and thus the fitted uncertainties reflect those
directly inherited from the data.

4.3. Star-forming versus Quiescent Galaxies

Star-forming galaxies generally have stronger AGN activity
than quiescent galaxies (e.g., Aird et al. 2018, 2019). We hence
examine if star-forming and quiescent galaxies have the same
BHAR in this section.

To separate star-forming and quiescent galaxies, we adopt
the star-forming main sequence (MS) in Popesso et al. (2023)
and define quiescent galaxies as those lying at least 1dex
below the MS; the remaining galaxies are star-forming ones.
Since the star-forming and quiescent subpopulations do not
individually follow the SMF and XLF, we do not apply the
SME-XLF constraints as in Section 4.1. We measure their
BHAR and present the results in Figure 10. The BHAR of both
star-forming and quiescent galaxies increases with M, and z.
When comparing the BHAR of these two subpopulations, star-
forming galaxies generally have larger BHAR, suggesting that
star-forming galaxies indeed host more active SMBHs,
possibly due to more available cold gas for both star formation
and SMBH accretion. The BHAR difference between the two
populations also depends on M, and z. At logM, < 10.5, the
difference is generally small across most of the redshift range.
At higher mass, the difference is small at low redshift but
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becomes apparent when z increases to 1 and further decreases
at higher redshift. There is also tentative evidence suggesting
that the redshift at which the difference reaches its peak might
also shift with M,, with the peak of the BHAR difference of
higher-mass galaxies occurring at higher redshift.

One caveat that should be noted is that our results depend on
the classification between star-forming and quiescent galaxies.
Such a classification is more reliable at M, < 10'°> M., but it
may become sensitive to the adopted method at higher M, and
lower z (e.g., Donnari et al. 2019). Cristello et al. (2024) show
that the star-forming and quiescent subpopulations cannot be
safely defined for massive galaxies, and Feldmann (2017) also
argued that the bimodal separation is not necessarily appro-
priate. The proposed redshift-dependent maximum M, values
for reliable classifications in Cristello et al. (2024) can be well
described by the following equation:

log M, = 10.65 + 0.81log(z) + 0.831log(1 + 2),

3D

and they are explicitly plotted in Figure 10. We also plot the
BHAR of the whole population in Figure 10, and it is similar to
the star-forming BHAR below the M, threshold in
Equation (31) and becomes more in the middle between the
star-forming and quiescent BHAR with rising M,. Therefore,
Equation (31) can also serve as an approximate threshold of
whether the contribution of the SMBH growth in quiescent
galaxies to the overall SMBH growth is important.

Our results suggest that the BHAR(M,, z) function may also
depend on SFR, with star-forming galaxies hosting enhanced
AGN activity (e.g., Aird et al. 2018, 2019; Birchall et al. 2023).
However, such a dependence is only secondary (Yang et al.
2017), and SFR is usually more challenging to measure and
more subject to confusion with AGN emission. Still, more
physical insights can be gained by incorporating SFR-based
parameters, especially when probing p(A|M,, z) instead of
BHAR (Aird et al. 2018). We leave further analyses on
including SFR into the BHAR(M,, z) function to the future, in
which different classification schemes from binary (star-
forming versus quiescent) up to four categories (starburst,
star-forming, transitioning, and quiescent) will be explored.
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Figure 10. BHAR for star-forming (blue) and quiescent (red) galaxies. The shaded regions represent 1o uncertainty ranges. The black dashed curves denote the

BHAR with all the galaxies included, i.e., those in Figure 6. The vertical black lines mark the maximum M, values where star-forming and quiescent galaxies can be
reliably classified at the corresponding z (Cristello et al. 2024). Star-forming galaxies have larger BHAR.

5. Summary and Future Work

In this work, we mapped BHAR as a function of (M,, z) over

the

vast majority of cosmic time, and our main results are

summarized as follows:

1. We compiled an unprecedentedly large sample from nine

fields—CANDELS (including GOODS-S, GOODS-N,
EGS, and UDS), the LSST DDFs (including COSMOS,
ELAIS-S1, W-CDF-S, and XMM-LSS), and eFEDS.
These fields include both deep, small-area surveys and
shallow, large-area ones. The former provides rich
information in the high-z, low-M,, and/or low-\ regime,
while the latter provides complementary information in
the low-z, high-M,, and/or high-\ regime. Therefore, our
sample can effectively constrain BHAR across a large
range of the relevant parameter space. See Section 2.
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2. We developed a semiparametric Bayesian method to

measure BHAR, where a double power-law model with
respect to A is used to measure p(A|M,, z), and the
relevant parameters nonparametrically depend on (M,, z).
This method has two main advantages. It avoids the
extrapolation of parameters from well-populated regions
in the parameter space to less-populated regions. It also
adopts much weaker assumptions than parametric
methods, enabling more flexible constraints and more
representative fitting uncertainties from the data. See
Section 3.1.

. We sampled p(A|M,, z) and measured BHAR at

10°° <M, < 10" M, and z < 4. We have verified the
fitting quality by comparing our model p(\|M,, z) and the
corresponding binned estimators and also by comparing
our inferred XLF with the observed one. We showed that
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BHAR increases with both M, and z. Our BHAR
measurements are largely consistent with those in Yang
et al. (2018) at z 2 0.8, and we also, for the first time,
provide reasonable constraints upon BHAR at lower
redshift (z < 0.5). See Sections 3.2 and 3.3.

4. We measured BHAR for both star-forming, and for the
first time, quiescent galaxies. Both groups show BHAR
increases with M, and z, and the star-forming BHAR is
generally larger than or at least comparable to the
quiescent BHAR across the whole (M,, z) plane. See
Section 4.3.

It should be noted that, besides BHAR, our p(A|M,, z)
parameter maps in Figure 2 also contain rich information, and
we release p(A\|M,, z) and the corresponding parameter maps
and BHAR maps in Zenodo, doi:10.5281/zenodo.10729248.
As first examples, we have briefly and phenomenologically
discussed different scientific questions in Sections 4.2 and 4.3,
which justified that our results can reveal interesting depen-
dences of SMBH growth on the galaxy population.

Figure 3 visually illustrates that p(A|M,, z) evolves over
(M., z). Observationally, it is still unclear what the exact
evolution pattern is, let alone the physics driving such an
evolution. It is also unknown from a theoretical perspective
because no simulations appear to produce consistent evolution
patterns of p(A|M,, z) with the observed ones (e.g., Habouzit
et al. 2022). It even complicates matters further that p(A|M,, z)
may evolve differently for star-forming and quiescent galaxies,
as proposed in a phenomenological scenario in Aird et al.
(2018). We leave detailed analyses of the p(\|M,, z) evolution
to a subsequent future work. We will first identify the
qualitative evolution pattern of the dependence of p(A|M,, z) on
M, and z for different galaxy populations and then develop a
quantitative, parametric model to depict the identified evolution
pattern. With the clearly understood p(\|M,, z), we will address
the following scientific questions. Is the broad decline in
SMBH growth below z & 1 due to the shift of accretion activity
to smaller galaxies or a reduction of the typical A? How large is
the AGN duty cycle, which is an integration of p(A|M,, z), in
different galaxy populations? Does M, modulate the duty cycle
or modulate the typical outburst luminosity in the AGN phase?
Is there any difference in the SMBH feeding in star-forming
and quiescent galaxies?
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Appendix A
Gradient of the Posterior

This appendix presents the gradient of our posterior in
Equation (20). We found that, at least in our case, analytical
differentiation enables a much higher computational speed
and/or less memory compared with other differentiation
algorithms. We thus adopt the analytically derived gradient
and directly present the derivation results below.

First, the partial derivatives of I(y, A;, A2, A, A\;; My, z) in
Equation (12) are
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(A4)

Defining Inp(X\; A, Ac, ¥, 1) as Inp(MM,, z), its partial
derivatives are

Olnp 1 (AS)
0A A
TN\
Olnp _ Ae (A6)
N |22 A>a
Ac
Oln —In i A< A
5 P _ N ) (A7)
n 0,A> A,
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0, A < A,

—ln(i), A> A
Ac

VIn L corresponding to Equation (16) can then be expressed as
follows:

Olnp
o
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The partial derivatives of In 7o, in Equation (19) are
OInTeont  NuXi—1; + Xiv1; — 2Xy)
(9Xij J%(
N.(X; i Xii1— 2X;
+ z( J 1+ 2,j+1 j)’ (AIZ)

Ox

in which X denotes each one of (logA, log ., v, %), and we
define XO] Xl/’ XNM+I j= XNM]’ XiO EX”, and Xi,M+1 = Xi,M
to incorporate X’s at the boundary.

The gradient of the log-posterior in Equation (20) is thus

VInP =3 VInL + VInTeon. (A13)
field
When transforming the parameter space, the gradient of the
corresponding Jacobian should also be added.

Appendix B
Gradient of the Posterior with the SMF-XLF Constraints
Added

This appendix presents the gradient of our posterior after
adding the SMF-XLF constraints in Equation (29). First, the
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partial derivatives of (v, My, M,, A, A.; Lx) in Equation (24)
are

w_¥ B1)
oA A
%:ﬂ’ (B2)
FIVEDY
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YA + v+ 1,
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S
8—¢:(2k—3)i( Lx ) e
aMk Mc Ma/\c

aj+y Qr+7y
x[«él(%) +¢2(%) ](kzl,z), (B4)

where %“(Q , X1, X2) is the partial derivative relative to the first
argument of I'gi((, x1, x»). The partial derivatives of ¥pp(A, A,

Y1, Y2, My, My; Ly) in Equation (25) are
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Based on Equation (26), we have

a¢ ,mdl
#f@x’ ) = 0j

« OYpp

2

Lx

1

——(Ayis Aciis Miis V2,00 Mis,is Migiv1s Lx),

10).¢

Zou et al.

Equation (27) are

OlnLovie xie g~ xorf 11
(B8) R

0Xjj X Prmdie  PLobsk

8¢L mdl

———(Lx k, 2x). B10
X (Lx k> 2k) (B10)

The gradient of the posterior in Equation (29) is

VInP=> VInL + VinLswr—xir + VInTeon, (B11)
field

where VIn £ and V In 7., were presented in Appendix A.

(B9) Appendix C

Results without eFEDS

where 6;; = 0 (1) if j=j. (j=J.), and X denotes each one of eFEDS is primarily observed through soft X-rays below
(A, A\, 71, 72)- The partial derivatives of In Lgyp_xip in 2 keV, which are more prone to obscuration compared to our

1
z=0.1

logBHAR (M, yr 1)

z=0.3 z=0.5

9.5 10.0 105 11.0
logMy (Mo)

115

12.0 9.5

100 105 11.0 115 12.0 9.5 100 105 11.0 11.5 12.0

logMy (M) logMy (M)

Figure 11. Comparison between BHAR with eFEDS included (red) and excluded (blue) in the fitting. The shaded regions represent 1o uncertainty ranges. The red
curves are similar to the blue ones, and the red uncertainties are smaller than the blue ones in certain regimes, indicating that eFEDS does not cause systematic biases

and helps constrain BHAR.
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other fields. To examine if our results are biased by this effect,
we try excluding eFEDS in this appendix, and the corresp-
onding BHAR results are shown in Figure 11. There is not any
material systematic difference in the median BHAR after
excluding eFEDS, and the uncertainty becomes larger in certain
parameter ranges; e.g., the difference in width of the shaded
regions in Figure 11 is apparent at M, ~ 10'"*® M and z =0.5.
The uncertainties generally grow by no more than 60%.
Therefore, no strong systematic biases are introduced by
eFEDS, and eFEDS also helps constrain BHAR. This verifies
that the absorption effects have been appropriately considered,
as detailed in Section 3.1.1. Besides, given that the LSST DDFs
already cover 12.6deg® with sensitive HB data, eFEDS
provides useful constraints but is not fully dominant.

Appendix D
Impact of AGN-dominated Sources

It is generally more challenging to reliably measure M, from
the galaxy component for sources with SEDs dominated by the
AGN component. We assess whether the less reliable M,
measurements for such sources have a strong impact on our
BHAR results. It has been shown that the CANDELS fields are
largely free from this potential issue (Aird et al. 2018; Yang
et al. 2018) due to their small solid angles, superb multi-
wavelength coverage, and deep X-ray surveys. For the LSST
DDFs and eFEDS, their X-ray surveys are wider and shallower,
and thus a larger fraction of the detected AGNs are luminous
and may dominate the SEDs. We thus primarily focus on the
AGN-dominated sources in the LSST DDFs and eFEDS.

M, is largely constrained by the rest-frame near-infrared
(NIR) data because the old-star emission peaks in the NIR. For
the purpose of assessing the M, measurements, we define a
source to be AGN dominated if its AGN component contributes
>50% of the rest-frame 1 pm light, as measured from its
decomposed SED. A similar definition was also adopted in
Aird et al. (2018). About 10%—15% of our AGNs are classified
as AGN dominated. Note that this definition significantly
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overlaps but is not the same as the broad-line AGN definition.
In a general sense, broad-line AGNs are sources with strong
AGN signatures (e.g., spectroscopically detected broad emis-
sion lines) in the optical. However, a large fraction of broad-
line AGNs are not necessarily AGN dominated in the NIR
because the galaxy emission usually reaches a peak, while the
AGN emission reaches a valley in the NIR. We found that
around half of the broad-line AGNs in Ni et al. (2021a) are
classified as AGN dominated under our definition, and the non-
AGN-dominated ones indeed generally have lower Ly. We
adopt our current definition because it is simpler and also more
physically related to the M, measurement.

We remove AGN-dominated sources in the LSST DDFs and
eFEDS and measure BHAR again following Section 3.3. We
further estimate the AGN number density maps in the (M,, z)
plane using kernel density estimations before and after
excluding these AGN-dominated sources and apply the number
density ratio as a function of (M,, z) as a correction of BHAR
to account for the fact that fewer AGNs are included after
removing AGN-dominated sources. These procedures are
conducted for the whole population as well as star-forming
and quiescent galaxies. We compare BHAR with the original
ones in Figure 12. The quiescent curves almost do not change
after removing AGN-dominated sources, while the whole
population and star-forming BHAR become slightly smaller.
The difference at high redshift is slightly larger than that at low
redshift because high-z sources need higher Ly to be detected in
the X-ray and are hence more likely to be AGN-dominated, but
the difference is still generally no more than the lo
uncertainties. Besides, our number-based correction under-
estimates the real loss of accretion power because AGN-
dominated sources, by construction, tend to have higher A than
the remaining ones. The difference in BHAR should be even
smaller. Therefore, the relatively larger M, uncertainties of
AGN-dominated sources are not expected to cause material
biases to our BHAR.
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Figure 12. Comparison between BHAR with AGN-dominated sources included (solid curves) and excluded (dashed curves) in the fitting. Black, blue, and red curves
represent the whole population, star-forming galaxies, and quiescent galaxies, respectively. The gray-shaded regions denote the 1o uncertainty ranges of the black
solid curves. The solid and dashed BHAR curves are generally consistent within 1o uncertainties, indicating that AGN-dominated sources do not cause material biases

in our results.
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