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ARTICLE INFO ABSTRACT

Keywords: This study presents a novel data-driven optimal control method to minimize the cost of Convection-Enhanced
Cost Evaporation (CEE) systems under time-varying weather conditions. CEE is the approach of evaporating water
Optimal

from saline films (brine) on packed evaporation surfaces by air convection. Here, operating variables (brine
injection rate, brine temperature, and air speed) are actively controlled as a function of current ambient con-
ditions and daily weather forecast. The controller optimizes the process operation variables based on a dataset
consisting of Pareto fronts, obtained in advance by solving a set of optimization problems. Three optimal
operation strategies are presented: (1) real-time selection of operating variables, (2) predictive scheduled
operation, and (3) hybrid wind-fan operation. The effectiveness of the proposed strategies was assessed through
two case studies with distinct geographical locations and weather conditions: Alamogordo, New Mexico, and
Minneapolis, Minnesota. The results show significant cost-saving potential relative to static operation. Predictive
scheduled operation resulted in an annual average operating costs of $0.91/m? and $6.63/m? in Alamogordo and
Minneapolis, respectively, with the higher costs in Minneapolis a result of the added thermal energy required to
prevent freezing in winter.
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Nomenclature

A evaporation surface area, m?

Lo specific heat, J/kgK

CRF capital recovery factor

cC annualized capital cost, $/year

cc normalized capital cost, ($/year) per ($/Wh)
Cour material cost of an evaporation surface, $/surface
Cran cost of a fan, $/fan

d vertical spacing between surfaces, m

Eygp evaporation rate, kg/s

h heat transfer coefficient, W/m? K

i specific enthalpy, J/kg

j interest rate, %

k mass transfer coefficient, kg/m? s

¥, cost of electric energy unit, $/Whg

Y, material cost per evaporation surface, $/surface
Y cost of thermal energy unit, $/Why,

L evaporation surface length, m

m mass flow rate, kg/s

n life time, years

Nfan total number of fans

Ngur total number of evaporation surfaces

N;; number of evaporation surfaces per evaporation module
oc annual operating cost, $/year

oc” normalized operating cost, ($/year) per ($/Wh)
r power consumption, W

Ap pressure drop, Pa

r material cost ratio, Wh,,/surface
r energy cost ratio

Rh relative humidity, %

T temperature, K

AT temperature difference, K

At operation time during of one year, hr
TC" normalized total cost, ($/year) per ($/Wh)
u air speed, m/s

14 volumetric flow rate, m3/s

w evaporation surface width, m
Greek symbols

Nfan fan efficiency, %

® moisture content, kg/kg
Subscripts

a dry air

e exit conditions

el electric

g gas phase (air-vapor mixture)

in inlet conditions

int liquid-air interface

l liquid phase

sur surface

th thermal

v water vapor

1. Introduction

Desalination generates significant volumes of saline byproduct liquid
known as brine, which is rich in desirable minerals [1]. Brine manage-
ment is posing growing challenges from both environmental and eco-
nomic perspectives, due to its potential environmental contamination
and the substantial expenses linked to its treatment and/or disposal.
Frequently researched methods for treating brine, such as brine crys-
tallizers, can be expensive and require a significant amount of energy
[2], particularly when wused in smaller-scale applications (1-
100 m3/day). To lower the expenses associated with brine treatment,
two crucial approaches involve the creation of affordable, modular
technologies and the systematic improvement of process operations [3].
By achieving cost-effective and modular solutions for brine treatment, it
becomes possible to expand the application of inland desalination and
enhance the safe management of brine in less regulated environments
[4].

Few technologies are well-suited for addressing brine treatment in
small-scale applications. Emerging membrane technologies include
forward osmosis [5] and membrane distillation (MD). Evaporative
technologies are another option for the treatment of extremely saline
brine solutions, encompassing traditional evaporation ponds, wind-
aided intensified evaporation (WAIV) [6], and humidification-
dehumidification (HDH) [7].

In our prior research, we introduced convection-enhanced evapora-
tion (CEE) as an innovative technique for concentrating brine through
evaporation [8]. CEE involves a series of densely arranged hydrophilic
evaporation surfaces, where liquid brine is distributed across the width
of each surface, resulting in the formation of thin films. An air fan is
employed to promote air movement over these films, establishing a
vapor pressure differential between the air and the liquid, which drives
the evaporation process. A mathematical model for CEE was developed
and its performance was then assessed by comparing it to experimental
findings for both horizontally packed [8] and vertically packed [9,10]

surfaces. Parametric analysis revealed that the key factors influencing
both the performance and operational expenses are: (1) temperature of
injected brine, (2) flow rate of brine, and (3) air flow speed [8,11].
Building on this understanding, an optimization framework which re-
ceives static ambient information and outputs the cost optimal operating
variables was developed [12]. Nevertheless, it was observed that the
system’s performance deviates from its optimal state due to daily and
seasonal fluctuations in weather conditions. Consequently, implement-
ing real-time control of operational parameters based on weather con-
ditions can lead to the reduction of operating costs, while still achieving
a desired daily evaporation rate. Achieving this goal requires the
development of an effective control strategy.

Desalination processes commonly employ Proportional-Integral-
Derivative (PID) controllers due to their simplicity, reliability, and the
existence of uncomplicated tuning guidelines [13]. Moreover, desali-
nation processes have utilized non-linear model-based control and
optimization-driven strategies to manage process parameters and attain
specific production targets. McFall et al. [14] devised a model-based
control system that combines nonlinear feedforward and feedback ele-
ments for high-recovery reverse osmosis desalination systems. This
system was designed to counteract disruptions arising from variations in
feedwater conditions, such as changes in flow rate or internal pressure.
Self-optimizing control methods were also investigated for the control of
desalination plant operation [15]. Another growing control method in
the desalination and water treatment market is model-predictive
controller (MPC) [16]. In one instance, Abbas [17] applied an MPC
system for process control of reverse osmosis (RO) plant and observed
significantly enhanced performance compared to traditional PI con-
trollers. Similarly, Bartman et al. [18] introduced an MPC system
tailored for an RO process with the aim of preventing water hammer
incidents and mitigating pressure fluctuations. This approach could
extend the predicted lifespan of equipment and contribute to optimizing
system productivity. The mentioned control techniques can effectively
sustain the process output at a designated level but do not prioritize the
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optimization of energy usage or operational expenses, particularly in the
presence of weather condition fluctuations [13].

Few scholars have focused on strategies that aim to reduce the en-
ergy usage within their control frameworks. Galizia [19] introduced a
fuzzy control system designed for optimizing RO process, with the goal
of minimizing the operation expenses in water reclamation facilities.
Bartman et al. [20] considered minimizing the energy usage in RO plants
by applying optimization-based control techniques. They also proposed
scheduled operation as a potential avenue for future research to further
enhance energy efficiency. Ghobeity and Mitsos [21] also applied opti-
mization techniques to achieve an optimal, time-varying operation of
RO plant with the aim of minimizing the daily electric energy usage.
Their research demonstrated increased electricity savings by designing
the plant with extra capacity (oversizing) and enabling shutdown during
peak electricity cost periods. The drawback of these approaches is the
necessity to real-time optimization which is in most cases not possible.
This constraint restricts the applicability of optimization to problems
that converge rapidly [20].

Recent studies has addressed some of the gaps commented above. Gil
et al. [22] presented an Extremum-Seeking Control (ESC) approach to
enhance the performance of solar membrane distillation for high salinity
feeds. Two controllers were presented, in which the first one reduces
thermal energy use by adapting the feed flow rate, and the second tries
to find a trade-off between energy usage and water production. In
addition, Gil et al. [23] also presented an online feedback optimization
(OFO) to minimize thermal energy consumption while considering the
variation in solar irradiation and brine salinity. The main idea behind
the OFO is to consider the optimization algorithm as a dynamic system
and include it in a feedback controller. Zhu et al. [24] proposed a model
free bang-bang controller for membrane distillation to alleviate mem-
brane scaling in solar membrane distillation. Eleiwi and Laleg-Kirati
[25] presented a Lyapunov based controller to stabilize the tempera-
ture difference across the DCMD membrane has been proposed.
Furthermore, Karam and Laleg-Kirati [26] have applied model predic-
tive control to solar-thermal direct contact membrane distillation lead-
ing to a simplified model-free optimal controller for performance
enhancement.

In this study, we devise a new data-driven optimal control method
for reducing the operational expenses of CEE system, taking into
consideration the fluctuation in weather conditions, while ensuring the
desired daily evaporation rate as per the system’s design specifications.
To the best of authors’ knowledge, this is the first study to present a real-
time optimal control of CEE systems. This work:

e Introduces a novel data-driven control method to minimize the cost
of CEE system in response to time-varying ambient conditions, while
achieving a desired evaporation target;

Introduces a scheduled operational approach based on weather
forecast to predicts an optimal operational schedule, which includes
shutting down the system during high operating cost periods and
operating it either at full or partial capacity during other periods; and
Investigates a hybrid operation that integrates naturally occuring
wind availability with fan usage to decrease the electric energy
usage, further reducing the operating cost.

Subsequently, we evaluate the effectiveness of three approaches in
two case studies to demonstrate the cost savings achieved. The presented
contributions enable CEE systems to continuously update its operation
to maintain the most cost-efficient state over various weather condi-
tions, resulting in a substantial reduction in the overall operational cost.

2. Proposed approach
The devised optimal control approach in this study aims to achieve

two objectives: (1) attain the targeted daily evaporation rate amidst
changing ambient conditions, and (2) minimize operational expenses
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(energy cost). This approach fundamentally converts a control problem
into an optimization one, wherein the target evaporation rate (the
controller’s setpoint) is regarded as an optimization constraint, and the
operational cost serves as the objective function to be minimized.
Recognizing the significant computational demands of real-time opti-
mization, an alternative data-driven approach is introduced.

2.1. Method 1: Time-varying optimal control approach informed by data
analysis

Fig. 1 shows the proposed data-driven optimal operation control
method based on time-varying ambient conditions. The method consists
of two phases: (a) data preparation, which includes generating a dataset
consisting of cost-optimal operating variables across distinct permuta-
tions of ambient temperature and ambient humidity, and (b) control
strategy, which includes gathering real-time weather data at regular in-
tervals and the system responding with the cost-optimal operational
variables.

Physics-informed optimization-based data is generated in the data
preparation phase as follows (Fig. 1a):

1. A physics-based system-level simulation model capable of predicting
the performance of CEE system as a function of operating variables
and prevailing weather conditions is implemented, as summarized
and discussed in-depth in Kaddoura et al. [8].

2. A generalized cost model using cost ratios rather than absolute costs
is used to predict the initial capital cost and the ongoing operational
cost of each system design, as summarized and discussed in-depth in
Kaddoura and Wright [12].

3. Using the models obtained in (1) and (2), a multi-objective optimi-
zation is conducted involving two objective functions, capital cost
and operational cost, subject to prescribed design constraints (e.g.
evaporation rate).

4. The optimization problem of (3) is executed for various permutations
of weather conditions (temperature and humidity) and cost ratios,
resulting in a set of Pareto fronts. Each Pareto front describes a family
of cost-optimal operational variables for different system sizes
(footprint areas).

5. The acquired Pareto fronts, compromising of cost-optimal control
variables consisting of flow rate and temperature of injected brine,
and fan speed, are saved in a database contingent on varying system
sizes.

After the dataset is created, it is stored in the memory of the
controller. Figurelb illustrates the control approach applied in the sec-
ond phase. At the start of every time interval, the controller receives the
real-time sensor measurement of ambient temperature and humidity.
Subsequently, the controller retrieves from the dataset the Pareto front
that matches the closest environmental conditions. In this example, data
was generated in steps of 5 °C and 10 % relative humidity. Each indi-
vidual Pareto front illustrates the trade-offs between the operational
expenses and the quantity of surfaces (system size), with Ny, repre-
senting the maximum number of surfaces on the Pareto front. More
operating surfaces leads to reduced operational expenses as less heating
is required, and conversely, as was thoroughly discussed in our prior
study [12]. Every point on the Pareto front represents a design vector
encompassing optimal operating variables (brine flow rate and tem-
perature, and fan speed) aligned with a particular system size and
associated operating expenses. The controller tends to shift the design
point along the Pareto front and select the system size that minimizes the
cost constrained by the number of surfaces installed in the field, Ngjeiq.
According to this description, three instances can exist (Fig. 1b):

e Instance (I): Ngield < Nimax

In this instance, the controller will tend to utilize all available sur-
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(b) Phase 2: Control strategy and approach.

Fig. 1. Diagram depicting the architecture of the proposed control method. In Phase 1, we create a dataset of cost-optimal operational variables for several per-
mutations of ambient temperature and relative humidity. Subsequently, the resulting Pareto fronts are stored. In Phase 2, the controller receives real-time data
weather data, which is then used to determine the optimal operational conditions in accordance to three cases (A, B, and C).

faces to minimize the operational cost. As a result, the controller will
slide the design point towards the left side of the Pareto front until
Nur = NField-

e Instance (II) - Partial Shut Down: Ngielq > Ninax
In this instance, there are surplus field surfaces. The controller will

aim to operate the system at Ny, = Ny, to minimize the operational
cost, deactivating any excess surfaces (excess system modules) beyond

Niax- We refer to this instance is as partial shut down.
e Instance (III) - Predictive Operation: Ngjelq = @Npax

In this instance, the number of surfaces installed in the field is greater
than Ny, by a factor a. Considering a case where « is 2, the controller
can activate all the available surfaces resulting in doubling the evapo-
ration rate within that time interval. This strategy allows the controller
to completely shut down the system during times of the day when un-
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favorable environmental conditions would result in costly operation.
This is referred to as predictive operation.

Fig. 2 elaborates data flow from the sensors, to controller, and finally
to system actuators which include the pump, heat source, and modules’
fans. CEE system installed in the field is composed of a series of evap-
oration modules, with each module containing a collection of parallelly
arranged evaporation surfaces. Brine is fed to the CEE modules from a
buffer tank which holds the brine generated from the desalination or
industrial process. At the start of each time interval, the controller re-
ceives real-time sensor measurement of weather conditions, including
temperature and humidity, as input variables, and provides the actua-
tors with the cost-optimal values of operation variables (brine flow rate
and temperature, and fan speed). This control method empowers the
CEE to function autonomously, optimizing its operation according to
prevailing weather conditions. In the following subsections, we will
present the cost and performance models along with the optimization
workflow used to generate the dataset of Pareto fronts.

2.1.1. Cost model

For the cost model (in Fig. 1a), we utilize the generalized cost model
which we devised and thoroughly discussed in our previous work [12].
The initial capital cost includes the material cost of evaporation surfaces,
fans, piping, buffer tank, labor cost, etc., which are all lumped into the
material cost per evaporation surface coefficient, ¥;,. The operational
cost includes the cost of electric energy to drive the fans, and thermal
energy required for preheating the brine to the desired temperature as
specified by the controller. The model tends to normalize the capital cost
and the operational cost by the cost of electric energy unit, ¥, to
generalize the Pareto fronts (optimization results) across different local
cost scenarios (e.g. electric energy can be provided at different costs
according to its source, such as from the grid, photovoltaics, diesel
generators, etc. and thermal energy from solar thermal, waste heat re-
covery, burning of natural gas, etc.). The capital cost is given as

CC =Y, N, CRF, (€Y

and the normalized capital cost as
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where Ny, is the number of evaporation surfaces installed in the field,
CREF is the capital recovery factor, and r; is the material cost ratio given
by

—_m 3
r v, 3)
The operating cost of CEE is expressed as

OC = (Taur Yo+ Uinsir W) Nuw Al 4

and the normalized operating cost as

oc' = (ng,surJrF,hAw rz) Ny At )

where T g is the electric power consumption per surface, I'y, g is the
thermal power consumption per surface, Wy, is the cost of thermal en-
ergy unit, At is the operation time duration, and r, is the energy cost
ratio defined as

\Prh

= v, (6)

Formulating the capital cost (Eq. (2)) as a function of the material
cost ratio, r;, irrespective of material cost of individual components
generalizes the capital cost formulation to various market factors such as
location, inflation, etc.. Similarly, formulating the operating cost (Eq.
(5)) as a function of energy cost ratio, r,, irrespective of individual costs
of electric and thermal energy generalizes the operating cost formula-
tion to various sources and costs of energy. If the values of ¥,,, ¥, and
¥, are varied such that their ratios, r; and r,, are held constant, the
normalized capital cost and the normalized operating cost are not
affected. This allows the presented results of the current study to be
generalizable to any combination of ¥,,, ¥y, and ¥, [12]. Therefore,
each value of material cost ratio, r;, and energy cost value, r,, simulate a
distinct material and energy scenario in terms of price, source, and
location. For the reader to get a sense of the costs obtained in this study,
normalized costs can be multiplied by the cost of electric energy unit,
Y., to obtain the absolute cost. In this study, an example value for ¥,; of
$0.1/kWh, is used [27].

. CC . . . .
cC = v= r; Ny, CRF, (2) Finally, costs are function of the number of surfaces installed in the
o CEE system which is a function of weather conditions, estimated as
@ sensors @ Controller @ Actuators
! CEE SYSTEM OF SIZE N, WIND SPEED SENSOR !
I 1
I ACTUATORS N L = Y ? . ]
1 Ny =u R ~ |
1 1
WIND CEE Module1 | FAN CEE Module3 | FAN ,
: . |= S =
! r a :
1 1
I
| | N ~u | NY '
'FEED Nowr T pu—T) |\, ’;A"j N =
! ‘ , SOURCE Pe CEE Module 2 IN A CEE Modulen |} :AN |
! PUMP /' I e 2 I i
1 1
g R rete e e
; | CONTROLLER |
| 1 |
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Fig. 2. Control diagram showing data flow between measurement sensors, controller, and CEE system.
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E\ap Targe
Nyr = pigf (7)

Evap.sur

where E,qp Targer and E,qp 5 are target evaporation rate, and the nominal
surface evaporation rate (m3/surface), respectively. The resulting cost
model is dependent on weather conditions becasue E,qp qr is influenced
by ambient temperature and humidity.

2.1.2. Performance model

The physics-based performance prediction model used to generate
the data (in Fig. 1a) is based on conservation of mass and heat, solved
numerically using the finite difference method. Mass and energy bal-
ances accompanied with interphase heat and mass transfer were derived
by considering a control volume over an evaporation surface covered by
a liquid (brine) film. Interfacial mass transfer (evaporation) is driven by
the difference in moisture content between the air layer immediately
adjacent to the liquid brine interface and the mean stream air. The rate
of change of air enthalpy is due to the combination of the simultaneous
sensible (convection) and latent (evaporation) heat transfer occurring at
the air-liquid interface. A conservation of mass and conservation of
energy within the control volume result in predicting the volume of
liquid (brine) evaporated, the spatial temperature of liquid and air, and
air humidity. The boundary conditions for the numerical model are the
ambient conditions (air inlet temperature and humidity), liquid inlet
conditions (flow rate and temperature), and air flow speed, which are
used for solving the model equations. The pressure drop across the
evaporation surfaces and the liquid inlet temperature are used to predict
the electric and thermal energy used. Experimental validation via pilot
testing showed good agreement between model predicted and experi-
mentally measured evaporation rates with an error bounded between
10 % and 20 % for most cases [8]. The model outputs required for the
cost model (Section 2.1.1) are the evaporation rate, E,q s, and the
electric and thermal energy use, sy and ' s, respectively.

2.1.3. Optimization framework and data preparation

In Phase 1: data preparation, a dataset of Pareto fronts is created
offline by running a series of optimization problems at various permu-
tation of ambient conditions. The optimization problem is set up as
follows:

min  F(x,p)

s.t. G(x,p) <0, ®)

F(x) is the objective function to be minimized, given as F = [F;, F,],
where F; is the normalized operating cost (Eq. (5)), and F, is the
normalized capital cost (Eq. (2)). Note that F, is directly proportional to
the number of evaporation surfaces, Ny, therefore individual Pareto
fronts resulting from this optimization cover optimal designs over a wide
range of system sizes (footprint areas).

G(x) is the constraints function, given as g = [g1,82] < 0, (Where)

&1 = Evp 1arger — Evapsur Nour- ©)
g = 0'C — T,,(C). 10)

where T;.(°C) is the temperature of the liquid exiting the evaporation
surface. The first constraint (g;) ensures achieving the target daily
evaporation rate. The second constraint (g2) prevents the brine from
reaching the freezing point while flowing on the evaporation surface, in
the case of cold weather.

Vector x represents the design vector which includes (1) air flow
speed, (2) flow rate of the brine per evaporation surface, and (3) inlet
temperature of the brine, as optimization variables (manipulated control
variables). The optimization was conducted for the following variable
ranges: 1 L/h/surface to 6 L/h/surface for brine flow rate per surface,
prevailing ambient temperature value to 90 °C for the inlet temperature
of brine, and 1 m/s to 10 m/s for air flow speed. These operation
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variables and their respective ranges were identified as having the most
significant influence on energy usage and evaporation performance of
CEE systems [8]. Finally, vector p represents the constant model pa-
rameters vector which mainly includes the ambient temperature and
relative humidity. The dataset is generated by creating permutations of
the parameters vector p.

The resultant Pareto front from solving the optimization problem
illustrates the trade-offs between the operational expenses and the
footprint area (represented by the number of surfaces or the capital
cost), as shown in Fig. 1b. More operating surfaces leads to reduced
operational expenses, and conversely. In this study, the dataset gener-
ated spans over diverse permutations of weather conditions which
consist of fourteen values of ambient temperature (in the span of —20 °C
to 45 °C with step increments of 5 °C) and ten values of ambient hu-
midity (in the span of 10 % to 90 % with step increments of 10 % and an
extra point at 85 %), which sums up to a 140 optimization cases and
Pareto fronts. Each Pareto front contains 150 optimal designs, corre-
sponding to various system sizes (N, ); therefore, resulting in a total of
21,000 design points. Each design point represents an optimal design
vector, X, consisting of the optimal operating variables. Due to cost
formulation in terms of cost ratios, each Pareto front curve represents a
family of cost scenarios as different combinations of costs can result in
the same values of material and energy cost ratios, as discussed in
Kaddoura et al. [12]. The material cost ratio and energy cost ratio
considered in the dataset generated in this study are: r; =
55 kWh,/surface and r, = 0.25; and it can be readily extended to
include other ratios. The selected optimization algorithm is the non-
dominated sorting genetic algorithm II (NSGA-II) implemented in
MATLAB (named as gamultiobj) [28,29]. Computations were conducted
at Minnesota Supercomputing Institute (MSI). The average time for
obtaining an optimization problem to converge ranges from 3h to 6 h on
32 AMD CPU cores.

2.2. Method 2: Predictive operation approach

The ability of the controller to predict an optimal operation time plan
using the weather forecast will further reduce the operational cost. This
capability allows the system to completely shut down when the cost of
energy usage is high, and to operate either at full capacity or with
reduced capacity (partial operation) during other periods to further
reduce operational costs, all while maintaining the desired evaporation
rate.

> Receive Weather Forecast for Subsequent Period
(e.g. next 24 hours)

CONTROLLER

Estimate the Minimum Operating Cost in
Each Time Interval
(e.g. each hour)

v

Identify Time Intervals Having Lowest Cost

v

Generate Operation Schedule

Operate According to the Generated Schedule

Fig. 3. Predicting optimal operation schedule.
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The process of forecasting (predicting) an optimal operation
schedule is illustrated in Fig. 3. First, the controller obtains weather
forecast encompassing ambient temperature and relative humidity for a
upcoming time frame, with this study focusing on a 24 h period. Second,
the controller uses the weather forecast to simulate the system and
predict the operational costs in the upcoming time frame (solely relying
on the stored dataset of Pareto fronts as explained in Fig. 1b and Section
2.1). Third, the controller formulates an optimal operation timetable
(schedule) by choosing the time intervals associated with the least ex-
penses. In this study, the controller select 12 h duration from the initial
24 h time frame. Finally, the controller operates the system actuators
according the generated schedule for the upcoming time frame. Its to be
noted that the actual real-time control of the operating variables during
the operation schedule is based on the real-time sensor measurement of
prevailing ambient conditions, and is not relying on the forecast values.
The forecast values are only used to predict the operational timetable
(schedule).

2.3. Method 3: Combined wind-fan operation (hybrid approach)

To further reduce the electric power usage of the fan, we can utilize
the natural airflow from the wind for evaporation. The control scheme of
combining the wind-driven airflow and fan-driven airflow is illustrated
in Fig. 4. The CEE modules are oriented parallel to the prevailing wind
direction enabling wind to blow through them. In the cases where the
wind matches the alignment of the CEE, the fan operates just to account
for the disparity between the controller’s preferred air speed (optimal
value) and the wind speed currently accessible. This operation scenario
allows CEE to utilize the evaporative potential of wind, whenever it is
present, thereby enhancing the sustainability and energy efficiency of
the CEE system.

3. Results and discussion

In this section, we present the outcomes obtained for a full year of
hourly data simulation for two distinct geographical areas: Alamogordo,
New Mexico, USA (32.8995° N, 105.9603° W) and Minneapolis, Min-
nesota, USA (44.9778° N, 93.2650° W). Alamogordo is the address of
The Brackish Groundwater National Desalination Research Facility
(BGNDRF), which is a focal point for developing technologies for the
desalination of brackish and is a part of the Bureau of Reclamation, and
its location offers a four-season climate enabling system evaluation
under various weather conditions, while Minneapolis offers a very cold
weather conditions. The objective is to evaluate the potential cost re-
ductions achieved through the devised optimal control methods. Hourly
temperature and relative humidity data for a representative year (2020)
were acquired from NASA Prediction Of Worldwide Energy Resources
(POWER) [30] (Figs. 5a, b and 10). An arbitrary optimal design was
picked from the Pareto front to test the proposed control methods in this
study.

Wind Direction
Aligns with
CEE Orientation

Electric Fan Speed
Equals
Optimal Air Speed

Electric Fan Speed
Equals the Difference Between
Optimal Air Speed and Available Wind Speed
(Saves Electric Energy)

Fig. 4. Operation involving a combination of wind and fans.

Desalination 578 (2024) 117426

Ambient Temperature [°C]

L

. . | I . . I I . I |
744 1440 2184 2904 3648 4368 5112 5856 6576 7320 8040 8784
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Time of Year [hour]

(a) Alamogordo, New Mexico: Hourly profile of ambient temperature.

Relative Humidity [%)]
=)
S © O © O

oo

744 1440 2184 2904 3648 4368 5112 5856 6576 7320 8040 8784
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Time of Year [hour]

(b) Alamogordo, New Mexico: Hourly profile of ambient relative hu-
midity.

*

)]

el
=2
=

—Time-Varying — Time-Varying Average
Time Invariant ~ Time Invariant Average

h

[($/m>) per ($/kW!
£

0 T b b S Aot bt i b bl

0 744 1440 2184 2904 3648 4368 5112 5856 6576 7320 8040 8784

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Time of Year [hour]

Normalized Operating Cost, OC

(c) Operational cost comparison between time-varying strategy and
time invariant strategy. The dotted lines represents the yearly mean
cost.

Fig. 5. Profiles of ambient conditions [30] and resulting operating cost for
Alamogordo, New Mexico.

3.1. Operational strategies and case studies

In this study, four operation strategies are explored, in which each
strategy is a combination of the control methods discussed in Section 2:

(A) Continuous, time invariant operation (baseline case): In this
strategy, the operation of CEE system is optimized according to a
single static value of ambient conditions (temperature and hu-
midity) which represents the annual average values. Thus, the
operating variables remain unchanged throughout the year,
leading to hourly fluctuations in evaporation rate. This case is
regarded as a baseline scenario for comparing the control
methods outcomes against it.
Continuous, time-varying operation: This illustrates Method 1. In
this scenario, the controller obtains the prevailing real-time
ambient conditions at the beginning of each time interval, and
accordingly modifies the operational variables to sustain the cost-
optimal operation. In this scenario, the system can enter a Partial
Shut Down; however, it operates continuously (24/24 h).
Predictive scheduled operation: This illustrates the combination
of Method 1 and Method 2. In this scenario, weather forecast are
given to the controller to enable it to predict an optimal operation
timetable (schedule) which minimizes the operational costs
further, such as implementing a full shut down when the opera-
tional cost is high. This scenario results in a equal evaporation
rate as in scenario (B).
(D) Hybrid wind-fan operation: This illustrates the combination of
Method 1 and Method 3. In this scenario, the wind-driven air flow

B

-

(C

—
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is utilized along with the fan to induce evaporation. The system
evaporates an equal volume as in scenarios (B) and (C).

Each of these four operation strategies are simulated for Alamo-
gordo, New Mexico to access the cost savings in comparison to the
baseline scenario (Strategy A). Next, these strategies were simulated for
Minneapolis, Minnesota case to evaluate the controller’s performance in
severely cold weather conditions.

3.2. Continuous, time-varying strategy (Alamogordo)

The first strategy examined in this study is the continuous, time
varying operation (strategy B) as opposed to the continuous, time
invariant (static) operation (strategy A). In both scenarios, air flow is
driven by electric fan, and the system operates continuously for 24 h per
day. The purpose of this comparison is to evaluate the potential cost
saving achieved when running the system with adaptable (optimized)
operating settings based on prevailing ambient conditions. A compari-
son of the hourly normalized cost between strategy (B) (blue bars) and
strategy (A) (black bars) are shown in Fig. 9. It is observed that the time-
varying strategy leads to reduced hourly and annual operational costs
since it consistently optimize its operating settings throughout the entire
duration. The annual average cost savings accomplished by the
controller is 28 % (from 6.0 x 10 ($/m°) per (3/kWhe) to 4.32 x 10
($/m>) per ($/kWhy))).

3.3. Predictive scheduled operation strategy (Alamogordo)

This section compares the predictive scheduled operation (strategy
C) to the continuous, time invariant (static) operation (strategy A).
Through this operation strategy, in addition to optimizing the operation
in real-time, the system generates an optimal operation schedule based
on weather forecast, and consequently the controller choose to operate
the system during the 12 h corresponding to the lowest operational cost,
as explained in Section 2.2. Fig. 6 shows an illustrative 24 h day
example. Elevated humidity levels during night hours results in the
highest operating costs (Fig. 6b). Therefore, the optimal operation
schedule generated by the controller will include the 12 h corresponding
the lowest predicted cost (between 9:00 and 20:00), and exclude the
remaining 12 h (shut down the system). To achieve the daily evapora-
tion target as in the continuous, time-varying case (strategy B), the
installed number of evaporation surfaces implemented should be
doubled, resulting in doubling the evaporation rate during the operation
hours. Fig. 6d shows the normalized operating cost after applying the
optimal operation schedule. The integration of the time-varying opera-
tion strategy in conjunction with the predictive operation led to a sub-
stantial decrease in the daily average operating cost (from 8.4 x 10 to
1.4 x 10 ($/m>) per ($/kWhe))).

Finally, red bars in Fig. 9 show the normalized operational cost of
strategy C which includes the integration of time-varying operation in
conjunction with predictive scheduled operation. A substantial decrease
in the annual normalized operating cost of 84 % is achieved (from 6.0 x
10 t0 0.91 x 10 ($/m>) per ($/kWhe))); this is equivalent to $0.91/m°® at
an example electricity unit cost of $0.1/kWhe which is considered
economically competitive in comparison to other brine treatment
technologies studied in the scientific literature.

To enable the scheduled 12-hour daily operation, it is necessary to
oversize the system so that it can evaporate twice as much as water per
hour compared the continuous 24-hour operation. However, the
reduction in the operational cost may offset the additional capital cost
required to oversize the system, as the operational cost dominates the
capital cost, as we discussed in our prior research study on CEE system
optimization [12], and as illustrated in the following paragraph.

Fig. 7 demonstrates the increase in the capital cost against the
reduction in the total cost resulted from oversizing the system in the
predictive (scheduled) operation over various values of the material cost
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(c) Operational cost comparison between continuous operation be-
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(d) Operational cost comparison between predictive, scheduled, time-
varying operation scenario (strategy C) and time invariant scenario
(strategy A).

Fig. 6. An illustrative day example of scheduled, predictive operation scensrio
(Alamogordo, New Mexico). Annual average costs is represented by dotted
lines indicate.

ratio, r; (Eq.(3)). At a material cost ratio r; = 27.5 kWh,/surface,
oversizing the system results in a 5.8 % increase in the capital cost;
however, the total cost is reduced by 69.1 %. When the material cost is
quadrupled to 110 kWh,/surface, the increase in the capital cost be-
comes 19.8 %; however, the reduction in total cost is still dominating
(44 %). At high material cost ratios (greater than 220 kWh,/surface),
the trend is changed in which the increase in the capital cost become
larger than the savings in the total cost. As a conclusion, predictive
scheduled operation with oversized system is economically beneficial
for relatively low values of material cost ratios (less than
220 kWh,/surface in this case).

3.4. Combined wind-fan hybrid operation strategy (Alamogordo)

This case study demonstrates strategy D which illustrates the
advantage of the combined wind-fan operation (hybrid operation) in
continuous, time-variant mode (discussed in Section 2.3). The controller
optimizes the operating variables during each time interval over a 24 h
operation per day.
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Fig. 7. Percentage change in system’s capital cost and total cost (summation of
capital cost and operational cost) resulting from oversizing the system in the
predictive scheduled operation scenario. The potential operating cost savings
surpass the increase in the capital cost.

The profile of wind speed and direction for Alamogordo, New Mexico
is shown in Fig. 8. It is noticed that the prevailing wind direction pre-
dominantly falls within the southern sector within the angular range of
220 to 240. For that, the CEE system modules will be installed and
aligned in the N-S direction to allow wind to naturally flows into the
evaporation modules. During time intervals when the prevailing wind
direction falls within the specified range [120°, 240°], the fan will
operate a speed corresponding to the difference between the optimal
airflow speed specified by the time-variant control strategy and the
prevailing wind speed. Green bars in Fig. 9 shows the monthly
normalized operating cost of the hybrid, time-varying case (strategy D).
Utilizing the hybrid wind-fan operation resulted in 12 % reduction in the
electric energy usage and thus, the operational cost (from 4.32 x 10 to

Wind Speed in m/s

—, 1
-T2 W <14 Alamogordo, NM
10 < W, <12 _N@E)

W, <10 e
_—<W, <8 330°_~ 30°
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2<W, <4 / X
0<W <2 / |

“sase)

Fig. 8. Wind chart displaying the annual wind direction and speed data, and
CEE alignment in the dominant wind direction (Alamogordo, New Mexico).
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3.80 x 10 ($/m>) per ($/kWhe)).
3.5. Summary of operational strategies results (Alamogordo)

Cost savings resulting from each operational strategy is illustrated in
Table 1 and Fig. 9. As expected, the highest costs are obtained in the
baseline case (continuous, time invariant operation) corresponding to a
total cost of $6.52/m> and annual operating cost of $6.0/m>, at an
example electric energy unit cost, ¥, of $0.1/kWh,. Strategy (B)
(continuous, time-varying strategy) resulted in a cost reduction of 28 %
($4.32/m3) at no additional capital cost. Strategy (D) (hybrid, time-
varying, continuous operation) accomplishes an operational cost of
36 % ($3.8/m>). It is noticed that the predictive operation (strategy C)
has the most substantial effect on reducing the operating cost, bringing it
down to $0.91/m?, with an overall total cost reduction of 70 %; even
though the capital cost is doubled. This agrees with the observations of
Ghobeity and Mitsos [21] regarding RO system operation, in which they
found that the major savings in electric energy usage was accomplished
when oversizing the system enabling it to turn off during time periods of
high energy cost. This also aligns with the future work recommended by
Bartman et al. [20], who also advocated for scheduled operation of RO
systems as a mean to decrease energy usage. Finally, the combination of
the three strategies (predictive, hybrid, time-varying operation) leads a
total cost savings of 74 % at an operating cost of $0.66/m>.

3.6. Severe cold weather scenario (Minneapolis)

The devised control methods in this study enable the system to
operate in various weather conditions, in addition to reducing its
operational costs. Minneapolis, Minnesota, USA is selected to evaluate
the control methods in cold weathers (subzero temperatures) (Fig. 10).
To overcome the risk of liquid freezing on the evaporation surfaces as
the ambient temperature drops below 0 °C, the liquid must be preheated
to a sufficient inlet temperature to avoid it reaching the freezing point
while it undergoes evaporation. This condition is accommodated to via
the optimization constraint presented in Eq. (10).

Fig. 11 presents an illustrative simulation depicting how the liquid
(brine) outlet temperature (at the end of the evaporation surface) varies
with changing ambient temperatures, considering various liquid preheat
temperature (brine inlet temperature). For instance, when the ambient
temperature is —10 °C, the liquid should be preheated to at least 30 °C to
ensure its temperature does not drop below freezing point; also, when
the ambient temperature is —15 °C, the liquid should be preheated to at
least 50 °C. As a result, colder climates require greater thermal energy
usage to enable safe operation without freezing, leading to an increased
operational cost.

Fig. 12 provides a summary of the monthly normalized operational
costs over the course of the simulated year in Minneapolis, Minnesota. It
is noticed that the time-varying operational strategy has a limited effect
on reducing the operational costs, mainly due to the consistently high
humidity throughout most days of the year. Nonetheless, applying the
time-varying operation strategy becomes imperative in cold climates, as
the inherent optimization constraint (Eq.(10)) ensures that the liquid
does not freeze, thus facilitating safe system operation in cold condi-
tions. Time invariant operation, on the other hand, carries the risk of
freezing. Conversely, the predictive scheduled operational strategy has
lowered the operational cost by approximately 53 % (from 14.3 x 10
($/m>) per ($/kWhy) to 6.63 x 10 ($/m>) per ($/kWh)). The yearly
average operational cost in Minneapolis case is about seven times higher
than that in Alamogordo case, which is expected and attributed to the
additional thermal energy usage needed to prevent liquid freezing, and
also to the relatively higher levels of humidity in Minneapolis compared
to Alamogordo.
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Fig. 9. Operating cost comparison across different operational strategies in Alamogordo, New Mexico. Annual mean costs are represented by dotted lines. Material
and energy cost ratios of r; = 55 kWh,/surface and r, = 0.25, respectively, are used in this study.

Table 1

Operational cost associated across each strategy in Alamogordo, New Mexico. An example cost of electric energy unit, ¥, of $0.1/kWh,, is used in this table to convert

normalized costs to abso!

lute costs.

Control Strategy

Continuous, time invariant -
baseline

Continuous, time- Continuous, hybrid, time- Predictive scheduled, time-

Predictive scheduled, hybrid,

varying varying varying time-varying
(strategy A) (strategy B) (strategy D) (strategy C) (strategies B + C + D)
Mean operating cost 6.0 4.32 3.80 0.91 0.66
($/m%
Capital cost ($/m>) 0.52 0.52 0.52 1.04 1.04
Total cost ($/m>) 6.52 4.84 4.32 1.95 1.70
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Fig. 10. Profiles of ambient condition for Minneapolis, Minnesota [30].
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Fig. 11. Illustrative simulation showing liquid outlet temperature in relation to

ambient temperature, under 60 % relative humidity.
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Fig. 12. Comparison of operational costs between the predictive (scheduled),
continuous time-varying strategy and the continuous time invariant operation
strategy in Minneapolis, Minnesota. Annual cost mean values are represented
by dotted lines.

3.7. Uncertainty and real-world implementation

Although the proposed data-driven methods in this study show a
high advantage in enabling CEE systems to maintain the most cost-
efficient state over various weather conditions, uncertainties may arise
in real-world implementation from the following sources:

1. Accuracy and uncertainty associated with the computed Pareto
fronts (the generated dataset): The performance model used in Sec-
tion 2.1.2 for dataset generation was experimentally validated via a
pilot plant testing, and results showed good agreement between the
model predictions and experimentally measured values, with an
error bounded within 10 % and 20 % for most cases [8]. Errors or
uncertainties associated with the computed Pareto fronts may result
in either under-evaporating (evaporating lower volume than
desired) or over-evaporating (evaporating larger volume than
desired). This can be addressed in future work by adding feedback in
the control loop (e.g. checking whether the targeted evaporation rate
was achieved during each time interval, and compensating for any
discrepancies in the next time interval).

2. Uncertainty in weather forecast: weather forecast of ambient tem-
perature and humidity is only used to predict an optimal operation
schedule (timetable); however, real-time control of the operating
settings (liquid flow rate, temperature, and fan speed) is based on
real-time sensor measurement. Thus, uncertainty in weather forecast
will not have any effect on achieving the targeted evaporation set-
point, and is expected to only affect the predicted operation
schedule, which will have a minimal impact on the overall process
operation optimality.

Future work will include pilot testing of the developed control
approach to assess the control methods/strategies experimentally under
real-world conditions. Pilot testing will quantify the effects of the
mentioned uncertainties, and lessons learned will act as a guideline for
future enhancement of the controller.

11
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4. Conclusion

This research introduces an innovative data-driven control approach
to minimize the operational costs of CEE systems in real-time while
adapting to time-varying weather conditions. The controller relies on a
dataset comprising Pareto fronts derived from solving a series of opti-
mization problems. Furthermore, the controller obtains weather fore-
casts to anticipate an optimal operation schedule, enabling predictive
operation. Three approaches to reduce the cost were investigated: (1)
adjusting operating variables over time, (2) implementing predictive
scheduled operation, and (3) utilizing a hybrid wind-fan operation. The
controller performance was assessed through two separate case studies
set in two distinct geographical locations and weather conditions. The
cost model used in this study relies on normalizing the capital and
operating costs to generalize the controller results to various cost sce-
narios. Key findings include:

e In the continuous, time-varying operational strategy, the controller
receives real-time measurement of prevailing ambient temperature
and humidity during each time interval, and adjust the CEE system
operational variables to minimize the operational cost. This strategy
leads to 26 % reduction in the total cost in comparison to continuous,
time invariant (static) operation.

In the predictive scheduled operational strategy, the controller ob-
tains weather forecast for the upcoming hours and accordingly
generates an optimal operational schedule (timetable) to further
minimize the cost. During the time periods corresponding to high
operational costs (for example, humid hours), the controller turns off
the system, and compensate for the decrease in evaporation rate at
other times as the system is enlarged in this strategy. This leads to a
total cost savings of 70 % in comparison to continuous, time
invariant (static) operation. This strategy results in an operational
cost of $0.91/m> and total cost of $1.95/m>.

In the combined wind-fan operation (hybrid approach), air flow is
induced by a combination of natural wind and fan on the purpose of
reducing the electric energy use of the fan. Applying this strategy led
to cost savings of 34 % in comparison to the baseline case (contin-
uous, time invariant (static) operation).

When the three strategies (predictive scheduled, hybrid, time-
varying operation) are integrated, it leads to a substantial 74 %
cost savings. A total cost of $1.70/m? and an operating cost of $0.66/
m? are achieved.

The predictive scheduled operational strategy led to the most sig-
nificant cost reduction (at low material cost ratios).

In severe cold weather, it is imperative to preheat the liquid to avoid
freezing and to enable CEE safe operation. Consequently, this lead to
an increase in the operating cost. The predictive scheduled operation
is still an effective strategy to minimize the cost.

The cost reductions attained through the proposed control strategies
highlight CEE’s potentials to serve as a cost-efficient solution for brine
treatment. The case studies also illustrate how CEE can effectively adapt
to various fluctuations in ambient conditions.
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