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• Data-driven optimal control methods 
are presented. 

• Controller predicts optimal operation 
schedule based on weather forecast. 

• Hybrid wind-fan operation reduces 
electric energy use. 

• Operation in extreme cold weather 
• Predictive, time-varying operation gave 

highest cost reduction.  
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A B S T R A C T   

This study presents a novel data-driven optimal control method to minimize the cost of Convection-Enhanced 
Evaporation (CEE) systems under time-varying weather conditions. CEE is the approach of evaporating water 
from saline films (brine) on packed evaporation surfaces by air convection. Here, operating variables (brine 
injection rate, brine temperature, and air speed) are actively controlled as a function of current ambient con-
ditions and daily weather forecast. The controller optimizes the process operation variables based on a dataset 
consisting of Pareto fronts, obtained in advance by solving a set of optimization problems. Three optimal 
operation strategies are presented: (1) real-time selection of operating variables, (2) predictive scheduled 
operation, and (3) hybrid wind-fan operation. The effectiveness of the proposed strategies was assessed through 
two case studies with distinct geographical locations and weather conditions: Alamogordo, New Mexico, and 
Minneapolis, Minnesota. The results show significant cost-saving potential relative to static operation. Predictive 
scheduled operation resulted in an annual average operating costs of $0.91/m3 and $6.63/m3 in Alamogordo and 
Minneapolis, respectively, with the higher costs in Minneapolis a result of the added thermal energy required to 
prevent freezing in winter.   
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1. Introduction 

Desalination generates significant volumes of saline byproduct liquid 
known as brine, which is rich in desirable minerals [1]. Brine manage-
ment is posing growing challenges from both environmental and eco-
nomic perspectives, due to its potential environmental contamination 
and the substantial expenses linked to its treatment and/or disposal. 
Frequently researched methods for treating brine, such as brine crys-
tallizers, can be expensive and require a significant amount of energy 
[2], particularly when used in smaller-scale applications (1- 
100 m3/day). To lower the expenses associated with brine treatment, 
two crucial approaches involve the creation of affordable, modular 
technologies and the systematic improvement of process operations [3]. 
By achieving cost-effective and modular solutions for brine treatment, it 
becomes possible to expand the application of inland desalination and 
enhance the safe management of brine in less regulated environments 
[4]. 

Few technologies are well-suited for addressing brine treatment in 
small-scale applications. Emerging membrane technologies include 
forward osmosis [5] and membrane distillation (MD). Evaporative 
technologies are another option for the treatment of extremely saline 
brine solutions, encompassing traditional evaporation ponds, wind- 
aided intensified evaporation (WAIV) [6], and humidification- 
dehumidification (HDH) [7]. 

In our prior research, we introduced convection-enhanced evapora-
tion (CEE) as an innovative technique for concentrating brine through 
evaporation [8]. CEE involves a series of densely arranged hydrophilic 
evaporation surfaces, where liquid brine is distributed across the width 
of each surface, resulting in the formation of thin films. An air fan is 
employed to promote air movement over these films, establishing a 
vapor pressure differential between the air and the liquid, which drives 
the evaporation process. A mathematical model for CEE was developed 
and its performance was then assessed by comparing it to experimental 
findings for both horizontally packed [8] and vertically packed [9,10] 

surfaces. Parametric analysis revealed that the key factors influencing 
both the performance and operational expenses are: (1) temperature of 
injected brine, (2) flow rate of brine, and (3) air flow speed [8,11]. 
Building on this understanding, an optimization framework which re-
ceives static ambient information and outputs the cost optimal operating 
variables was developed [12]. Nevertheless, it was observed that the 
system’s performance deviates from its optimal state due to daily and 
seasonal fluctuations in weather conditions. Consequently, implement-
ing real-time control of operational parameters based on weather con-
ditions can lead to the reduction of operating costs, while still achieving 
a desired daily evaporation rate. Achieving this goal requires the 
development of an effective control strategy. 

Desalination processes commonly employ Proportional-Integral- 
Derivative (PID) controllers due to their simplicity, reliability, and the 
existence of uncomplicated tuning guidelines [13]. Moreover, desali-
nation processes have utilized non-linear model-based control and 
optimization-driven strategies to manage process parameters and attain 
specific production targets. McFall et al. [14] devised a model-based 
control system that combines nonlinear feedforward and feedback ele-
ments for high-recovery reverse osmosis desalination systems. This 
system was designed to counteract disruptions arising from variations in 
feedwater conditions, such as changes in flow rate or internal pressure. 
Self-optimizing control methods were also investigated for the control of 
desalination plant operation [15]. Another growing control method in 
the desalination and water treatment market is model-predictive 
controller (MPC) [16]. In one instance, Abbas [17] applied an MPC 
system for process control of reverse osmosis (RO) plant and observed 
significantly enhanced performance compared to traditional PI con-
trollers. Similarly, Bartman et al. [18] introduced an MPC system 
tailored for an RO process with the aim of preventing water hammer 
incidents and mitigating pressure fluctuations. This approach could 
extend the predicted lifespan of equipment and contribute to optimizing 
system productivity. The mentioned control techniques can effectively 
sustain the process output at a designated level but do not prioritize the 

Nomenclature 

A evaporation surface area, m2 

cp specific heat, J/kgK 

CRF capital recovery factor 
CC annualized capital cost, $/year 
CC* normalized capital cost, ($/year) per ($/Whel) 
Csur material cost of an evaporation surface, $/surface 
Cfan cost of a fan, $/fan 
d vertical spacing between surfaces, m 
Evap evaporation rate, kg/s 

h heat transfer coefficient, W/m2 K 

i specific enthalpy, J/kg 

j interest rate, % 
k mass transfer coefficient, kg/m2 s 

Ψel cost of electric energy unit, $/Whel 

Ψm material cost per evaporation surface, $/surface 
Ψth cost of thermal energy unit, $/Whth 

L evaporation surface length, m 

ṁ mass flow rate, kg/s 

n life time, years 
Nfan total number of fans 
Nsur total number of evaporation surfaces 
Ns1 number of evaporation surfaces per evaporation module 
OC annual operating cost, $/year 
OC* normalized operating cost, ($/year) per ($/Whel) 
Γ power consumption, W 

Δp pressure drop, Pa 

r1 material cost ratio, Whel/surface 
r2 energy cost ratio 
Rh relative humidity, % 
T temperature, K 

ΔT temperature difference, K 
Δt operation time during of one year, hr 

TC* normalized total cost, ($/year) per ($/Whel) 
u air speed, m/s 
V̇ volumetric flow rate, m3/s 

W evaporation surface width, m 

Greek symbols 
ηfan fan efficiency, % 
ω moisture content, kg/kg 

Subscripts 
a dry air 
e exit conditions 
el electric 
g gas phase (air-vapor mixture) 
in inlet conditions 
int liquid-air interface 
l liquid phase 
sur surface 
th thermal 
v water vapor  
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optimization of energy usage or operational expenses, particularly in the 
presence of weather condition fluctuations [13]. 

Few scholars have focused on strategies that aim to reduce the en-
ergy usage within their control frameworks. Galizia [19] introduced a 
fuzzy control system designed for optimizing RO process, with the goal 
of minimizing the operation expenses in water reclamation facilities. 
Bartman et al. [20] considered minimizing the energy usage in RO plants 
by applying optimization-based control techniques. They also proposed 
scheduled operation as a potential avenue for future research to further 
enhance energy efficiency. Ghobeity and Mitsos [21] also applied opti-
mization techniques to achieve an optimal, time-varying operation of 
RO plant with the aim of minimizing the daily electric energy usage. 
Their research demonstrated increased electricity savings by designing 
the plant with extra capacity (oversizing) and enabling shutdown during 
peak electricity cost periods. The drawback of these approaches is the 
necessity to real-time optimization which is in most cases not possible. 
This constraint restricts the applicability of optimization to problems 
that converge rapidly [20]. 

Recent studies has addressed some of the gaps commented above. Gil 
et al. [22] presented an Extremum-Seeking Control (ESC) approach to 
enhance the performance of solar membrane distillation for high salinity 
feeds. Two controllers were presented, in which the first one reduces 
thermal energy use by adapting the feed flow rate, and the second tries 
to find a trade-off between energy usage and water production. In 
addition, Gil et al. [23] also presented an online feedback optimization 
(OFO) to minimize thermal energy consumption while considering the 
variation in solar irradiation and brine salinity. The main idea behind 
the OFO is to consider the optimization algorithm as a dynamic system 
and include it in a feedback controller. Zhu et al. [24] proposed a model 
free bang-bang controller for membrane distillation to alleviate mem-
brane scaling in solar membrane distillation. Eleiwi and Laleg-Kirati 
[25] presented a Lyapunov based controller to stabilize the tempera-
ture difference across the DCMD membrane has been proposed. 
Furthermore, Karam and Laleg-Kirati [26] have applied model predic-
tive control to solar-thermal direct contact membrane distillation lead-
ing to a simplified model-free optimal controller for performance 
enhancement. 

In this study, we devise a new data-driven optimal control method 
for reducing the operational expenses of CEE system, taking into 
consideration the fluctuation in weather conditions, while ensuring the 
desired daily evaporation rate as per the system’s design specifications. 
To the best of authors’ knowledge, this is the first study to present a real- 
time optimal control of CEE systems. This work:  

• Introduces a novel data-driven control method to minimize the cost 
of CEE system in response to time-varying ambient conditions, while 
achieving a desired evaporation target;  

• Introduces a scheduled operational approach based on weather 
forecast to predicts an optimal operational schedule, which includes 
shutting down the system during high operating cost periods and 
operating it either at full or partial capacity during other periods; and  

• Investigates a hybrid operation that integrates naturally occuring 
wind availability with fan usage to decrease the electric energy 
usage, further reducing the operating cost. 

Subsequently, we evaluate the effectiveness of three approaches in 
two case studies to demonstrate the cost savings achieved. The presented 
contributions enable CEE systems to continuously update its operation 
to maintain the most cost-efficient state over various weather condi-
tions, resulting in a substantial reduction in the overall operational cost. 

2. Proposed approach 

The devised optimal control approach in this study aims to achieve 
two objectives: (1) attain the targeted daily evaporation rate amidst 
changing ambient conditions, and (2) minimize operational expenses 

(energy cost). This approach fundamentally converts a control problem 
into an optimization one, wherein the target evaporation rate (the 
controller’s setpoint) is regarded as an optimization constraint, and the 
operational cost serves as the objective function to be minimized. 
Recognizing the significant computational demands of real-time opti-
mization, an alternative data-driven approach is introduced. 

2.1. Method 1: Time-varying optimal control approach informed by data 
analysis 

Fig. 1 shows the proposed data-driven optimal operation control 
method based on time-varying ambient conditions. The method consists 
of two phases: (a) data preparation, which includes generating a dataset 
consisting of cost-optimal operating variables across distinct permuta-
tions of ambient temperature and ambient humidity, and (b) control 
strategy, which includes gathering real-time weather data at regular in-
tervals and the system responding with the cost-optimal operational 
variables. 

Physics-informed optimization-based data is generated in the data 
preparation phase as follows (Fig. 1a):  

1. A physics-based system-level simulation model capable of predicting 
the performance of CEE system as a function of operating variables 
and prevailing weather conditions is implemented, as summarized 
and discussed in-depth in Kaddoura et al. [8].  

2. A generalized cost model using cost ratios rather than absolute costs 
is used to predict the initial capital cost and the ongoing operational 
cost of each system design, as summarized and discussed in-depth in 
Kaddoura and Wright [12]. 

3. Using the models obtained in (1) and (2), a multi-objective optimi-
zation is conducted involving two objective functions, capital cost 
and operational cost, subject to prescribed design constraints (e.g. 
evaporation rate).  

4. The optimization problem of (3) is executed for various permutations 
of weather conditions (temperature and humidity) and cost ratios, 
resulting in a set of Pareto fronts. Each Pareto front describes a family 
of cost-optimal operational variables for different system sizes 
(footprint areas).  

5. The acquired Pareto fronts, compromising of cost-optimal control 
variables consisting of flow rate and temperature of injected brine, 
and fan speed, are saved in a database contingent on varying system 
sizes. 

After the dataset is created, it is stored in the memory of the 
controller. Figure1b illustrates the control approach applied in the sec-
ond phase. At the start of every time interval, the controller receives the 
real-time sensor measurement of ambient temperature and humidity. 
Subsequently, the controller retrieves from the dataset the Pareto front 
that matches the closest environmental conditions. In this example, data 
was generated in steps of 5 ◦C and 10 % relative humidity. Each indi-
vidual Pareto front illustrates the trade-offs between the operational 
expenses and the quantity of surfaces (system size), with Nmax repre-
senting the maximum number of surfaces on the Pareto front. More 
operating surfaces leads to reduced operational expenses as less heating 
is required, and conversely, as was thoroughly discussed in our prior 
study [12]. Every point on the Pareto front represents a design vector 
encompassing optimal operating variables (brine flow rate and tem-
perature, and fan speed) aligned with a particular system size and 
associated operating expenses. The controller tends to shift the design 
point along the Pareto front and select the system size that minimizes the 
cost constrained by the number of surfaces installed in the field, NField. 
According to this description, three instances can exist (Fig. 1b):  

• Instance (I): NField < Nmax 

In this instance, the controller will tend to utilize all available sur-

M.F. Kaddoura and N.C. Wright                                                                                                                                                                                                            



Desalination 578 (2024) 117426

4

faces to minimize the operational cost. As a result, the controller will 
slide the design point towards the left side of the Pareto front until 
Nsur ≈ NField.  

• Instance (II) - Partial Shut Down: NField > Nmax 

In this instance, there are surplus field surfaces. The controller will 
aim to operate the system at Nsur = Nmax to minimize the operational 
cost, deactivating any excess surfaces (excess system modules) beyond 

Nmax. We refer to this instance is as partial shut down.  

• Instance (III) - Predictive Operation: NField = αNmax 

In this instance, the number of surfaces installed in the field is greater 
than Nmax by a factor α. Considering a case where α is 2, the controller 
can activate all the available surfaces resulting in doubling the evapo-
ration rate within that time interval. This strategy allows the controller 
to completely shut down the system during times of the day when un-

Fig. 1. Diagram depicting the architecture of the proposed control method. In Phase 1, we create a dataset of cost-optimal operational variables for several per-
mutations of ambient temperature and relative humidity. Subsequently, the resulting Pareto fronts are stored. In Phase 2, the controller receives real-time data 
weather data, which is then used to determine the optimal operational conditions in accordance to three cases (A, B, and C). 
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favorable environmental conditions would result in costly operation. 
This is referred to as predictive operation. 

Fig. 2 elaborates data flow from the sensors, to controller, and finally 
to system actuators which include the pump, heat source, and modules’ 

fans. CEE system installed in the field is composed of a series of evap-
oration modules, with each module containing a collection of parallelly 
arranged evaporation surfaces. Brine is fed to the CEE modules from a 
buffer tank which holds the brine generated from the desalination or 
industrial process. At the start of each time interval, the controller re-
ceives real-time sensor measurement of weather conditions, including 
temperature and humidity, as input variables, and provides the actua-
tors with the cost-optimal values of operation variables (brine flow rate 
and temperature, and fan speed). This control method empowers the 
CEE to function autonomously, optimizing its operation according to 
prevailing weather conditions. In the following subsections, we will 
present the cost and performance models along with the optimization 
workflow used to generate the dataset of Pareto fronts. 

2.1.1. Cost model 
For the cost model (in Fig. 1a), we utilize the generalized cost model 

which we devised and thoroughly discussed in our previous work [12]. 
The initial capital cost includes the material cost of evaporation surfaces, 
fans, piping, buffer tank, labor cost, etc., which are all lumped into the 
material cost per evaporation surface coefficient, Ψm. The operational 
cost includes the cost of electric energy to drive the fans, and thermal 
energy required for preheating the brine to the desired temperature as 
specified by the controller. The model tends to normalize the capital cost 
and the operational cost by the cost of electric energy unit, Ψel, to 
generalize the Pareto fronts (optimization results) across different local 
cost scenarios (e.g. electric energy can be provided at different costs 
according to its source, such as from the grid, photovoltaics, diesel 
generators, etc. and thermal energy from solar thermal, waste heat re-
covery, burning of natural gas, etc.). The capital cost is given as 
CC = Ψm Nsur CRF, (1)  

and the normalized capital cost as 

CC* =
CC

Ψel

= r1 Nsur CRF, (2)  

where Nsur is the number of evaporation surfaces installed in the field, 
CRF is the capital recovery factor, and r1 is the material cost ratio given 
by 

r1 =
Ψm

Ψel

. (3) 

The operating cost of CEE is expressed as 
OC =

(

Γel,sur Ψel +Γth,sur Ψth

)

Nsur Δt, (4)  

and the normalized operating cost as 
OC* =

(

Γel,sur +Γth,sur r2

)

Nsur Δt, (5)  

where Γel,sur is the electric power consumption per surface, Γth,sur is the 
thermal power consumption per surface, Ψth is the cost of thermal en-
ergy unit, Δt is the operation time duration, and r2 is the energy cost 
ratio defined as 

r2 =
Ψth

Ψel

. (6) 

Formulating the capital cost (Eq. (2)) as a function of the material 
cost ratio, r1, irrespective of material cost of individual components 
generalizes the capital cost formulation to various market factors such as 
location, inflation, etc.. Similarly, formulating the operating cost (Eq. 
(5)) as a function of energy cost ratio, r2, irrespective of individual costs 
of electric and thermal energy generalizes the operating cost formula-
tion to various sources and costs of energy. If the values of Ψm, Ψth, and 
Ψel are varied such that their ratios, r1 and r2, are held constant, the 
normalized capital cost and the normalized operating cost are not 
affected. This allows the presented results of the current study to be 
generalizable to any combination of Ψm, Ψth, and Ψel [12]. Therefore, 
each value of material cost ratio, r1, and energy cost value, r2, simulate a 
distinct material and energy scenario in terms of price, source, and 
location. For the reader to get a sense of the costs obtained in this study, 
normalized costs can be multiplied by the cost of electric energy unit, 
Ψel, to obtain the absolute cost. In this study, an example value for Ψel of 
$0.1/kWhel is used [27]. 

Finally, costs are function of the number of surfaces installed in the 
CEE system which is a function of weather conditions, estimated as 

Fig. 2. Control diagram showing data flow between measurement sensors, controller, and CEE system.  
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Nsur =
Evap,Target

Evap,sur

. (7)  

where Evap,Target and Evap,sur are target evaporation rate, and the nominal 
surface evaporation rate (m3/surface), respectively. The resulting cost 
model is dependent on weather conditions becasue Evap,sur is influenced 
by ambient temperature and humidity. 

2.1.2. Performance model 
The physics-based performance prediction model used to generate 

the data (in Fig. 1a) is based on conservation of mass and heat, solved 
numerically using the finite difference method. Mass and energy bal-
ances accompanied with interphase heat and mass transfer were derived 
by considering a control volume over an evaporation surface covered by 
a liquid (brine) film. Interfacial mass transfer (evaporation) is driven by 
the difference in moisture content between the air layer immediately 
adjacent to the liquid brine interface and the mean stream air. The rate 
of change of air enthalpy is due to the combination of the simultaneous 
sensible (convection) and latent (evaporation) heat transfer occurring at 
the air-liquid interface. A conservation of mass and conservation of 
energy within the control volume result in predicting the volume of 
liquid (brine) evaporated, the spatial temperature of liquid and air, and 
air humidity. The boundary conditions for the numerical model are the 
ambient conditions (air inlet temperature and humidity), liquid inlet 
conditions (flow rate and temperature), and air flow speed, which are 
used for solving the model equations. The pressure drop across the 
evaporation surfaces and the liquid inlet temperature are used to predict 
the electric and thermal energy used. Experimental validation via pilot 
testing showed good agreement between model predicted and experi-
mentally measured evaporation rates with an error bounded between 
10 % and 20 % for most cases [8]. The model outputs required for the 
cost model (Section 2.1.1) are the evaporation rate, Evap,sur, and the 
electric and thermal energy use, Γel,sur and Γth,sur, respectively. 

2.1.3. Optimization framework and data preparation 
In Phase 1: data preparation, a dataset of Pareto fronts is created 

offline by running a series of optimization problems at various permu-
tation of ambient conditions. The optimization problem is set up as 
follows: 
min

x
F(x, p)

s.t. G(x, p) ≤ 0,
(8) 

F(x) is the objective function to be minimized, given as F = [F1, F2], 
where F1 is the normalized operating cost (Eq. (5)), and F2 is the 
normalized capital cost (Eq. (2)). Note that F2 is directly proportional to 
the number of evaporation surfaces, Nsur, therefore individual Pareto 
fronts resulting from this optimization cover optimal designs over a wide 
range of system sizes (footprint areas). 

G(x) is the constraints function, given as g = [g1, g2] ≤ 0, (where) 
g1 = Evap,Target −Evap,sur Nsur. (9)  

g2 = 0∘C−Tl,e(
∘C). (10)  

where Tl,e(∘C) is the temperature of the liquid exiting the evaporation 
surface. The first constraint (g1) ensures achieving the target daily 
evaporation rate. The second constraint (g2) prevents the brine from 
reaching the freezing point while flowing on the evaporation surface, in 
the case of cold weather. 

Vector x represents the design vector which includes (1) air flow 
speed, (2) flow rate of the brine per evaporation surface, and (3) inlet 
temperature of the brine, as optimization variables (manipulated control 
variables). The optimization was conducted for the following variable 
ranges: 1 L/h/surface to 6 L/h/surface for brine flow rate per surface, 
prevailing ambient temperature value to 90 ◦C for the inlet temperature 
of brine, and 1 m/s to 10 m/s for air flow speed. These operation 

variables and their respective ranges were identified as having the most 
significant influence on energy usage and evaporation performance of 
CEE systems [8]. Finally, vector p represents the constant model pa-
rameters vector which mainly includes the ambient temperature and 
relative humidity. The dataset is generated by creating permutations of 
the parameters vector p. 

The resultant Pareto front from solving the optimization problem 
illustrates the trade-offs between the operational expenses and the 
footprint area (represented by the number of surfaces or the capital 
cost), as shown in Fig. 1b. More operating surfaces leads to reduced 
operational expenses, and conversely. In this study, the dataset gener-
ated spans over diverse permutations of weather conditions which 
consist of fourteen values of ambient temperature (in the span of −20 ◦C 
to 45 ◦C with step increments of 5 ◦C) and ten values of ambient hu-
midity (in the span of 10 % to 90 % with step increments of 10 % and an 
extra point at 85 %), which sums up to a 140 optimization cases and 
Pareto fronts. Each Pareto front contains 150 optimal designs, corre-
sponding to various system sizes (Nsur); therefore, resulting in a total of 
21,000 design points. Each design point represents an optimal design 
vector, x, consisting of the optimal operating variables. Due to cost 
formulation in terms of cost ratios, each Pareto front curve represents a 
family of cost scenarios as different combinations of costs can result in 
the same values of material and energy cost ratios, as discussed in 
Kaddoura et al. [12]. The material cost ratio and energy cost ratio 
considered in the dataset generated in this study are: r1 =

55 kWhel/surface and r2 = 0.25; and it can be readily extended to 
include other ratios. The selected optimization algorithm is the non- 
dominated sorting genetic algorithm II (NSGA-II) implemented in 
MATLAB (named as gamultiobj) [28,29]. Computations were conducted 
at Minnesota Supercomputing Institute (MSI). The average time for 
obtaining an optimization problem to converge ranges from 3 h to 6 h on 
32 AMD CPU cores. 

2.2. Method 2: Predictive operation approach 

The ability of the controller to predict an optimal operation time plan 
using the weather forecast will further reduce the operational cost. This 
capability allows the system to completely shut down when the cost of 
energy usage is high, and to operate either at full capacity or with 
reduced capacity (partial operation) during other periods to further 
reduce operational costs, all while maintaining the desired evaporation 
rate. 

Fig. 3. Predicting optimal operation schedule.  
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The process of forecasting (predicting) an optimal operation 
schedule is illustrated in Fig. 3. First, the controller obtains weather 
forecast encompassing ambient temperature and relative humidity for a 
upcoming time frame, with this study focusing on a 24 h period. Second, 
the controller uses the weather forecast to simulate the system and 
predict the operational costs in the upcoming time frame (solely relying 
on the stored dataset of Pareto fronts as explained in Fig. 1b and Section 
2.1). Third, the controller formulates an optimal operation timetable 
(schedule) by choosing the time intervals associated with the least ex-
penses. In this study, the controller select 12 h duration from the initial 
24 h time frame. Finally, the controller operates the system actuators 
according the generated schedule for the upcoming time frame. Its to be 
noted that the actual real-time control of the operating variables during 
the operation schedule is based on the real-time sensor measurement of 
prevailing ambient conditions, and is not relying on the forecast values. 
The forecast values are only used to predict the operational timetable 
(schedule). 

2.3. Method 3: Combined wind-fan operation (hybrid approach) 

To further reduce the electric power usage of the fan, we can utilize 
the natural airflow from the wind for evaporation. The control scheme of 
combining the wind-driven airflow and fan-driven airflow is illustrated 
in Fig. 4. The CEE modules are oriented parallel to the prevailing wind 
direction enabling wind to blow through them. In the cases where the 
wind matches the alignment of the CEE, the fan operates just to account 
for the disparity between the controller’s preferred air speed (optimal 
value) and the wind speed currently accessible. This operation scenario 
allows CEE to utilize the evaporative potential of wind, whenever it is 
present, thereby enhancing the sustainability and energy efficiency of 
the CEE system. 

3. Results and discussion 

In this section, we present the outcomes obtained for a full year of 
hourly data simulation for two distinct geographical areas: Alamogordo, 
New Mexico, USA (32.8995◦ N, 105.9603◦ W) and Minneapolis, Min-
nesota, USA (44.9778◦ N, 93.2650◦ W). Alamogordo is the address of 
The Brackish Groundwater National Desalination Research Facility 
(BGNDRF), which is a focal point for developing technologies for the 
desalination of brackish and is a part of the Bureau of Reclamation, and 
its location offers a four-season climate enabling system evaluation 
under various weather conditions, while Minneapolis offers a very cold 
weather conditions. The objective is to evaluate the potential cost re-
ductions achieved through the devised optimal control methods. Hourly 
temperature and relative humidity data for a representative year (2020) 
were acquired from NASA Prediction Of Worldwide Energy Resources 
(POWER) [30] (Figs. 5a, b and 10). An arbitrary optimal design was 
picked from the Pareto front to test the proposed control methods in this 
study. 

3.1. Operational strategies and case studies 

In this study, four operation strategies are explored, in which each 
strategy is a combination of the control methods discussed in Section 2:  

(A) Continuous, time invariant operation (baseline case): In this 
strategy, the operation of CEE system is optimized according to a 
single static value of ambient conditions (temperature and hu-
midity) which represents the annual average values. Thus, the 
operating variables remain unchanged throughout the year, 
leading to hourly fluctuations in evaporation rate. This case is 
regarded as a baseline scenario for comparing the control 
methods outcomes against it.  

(B) Continuous, time-varying operation: This illustrates Method 1. In 
this scenario, the controller obtains the prevailing real-time 
ambient conditions at the beginning of each time interval, and 
accordingly modifies the operational variables to sustain the cost- 
optimal operation. In this scenario, the system can enter a Partial 
Shut Down; however, it operates continuously (24/24 h).  

(C) Predictive scheduled operation: This illustrates the combination 
of Method 1 and Method 2. In this scenario, weather forecast are 
given to the controller to enable it to predict an optimal operation 
timetable (schedule) which minimizes the operational costs 
further, such as implementing a full shut down when the opera-
tional cost is high. This scenario results in a equal evaporation 
rate as in scenario (B).  

(D) Hybrid wind-fan operation: This illustrates the combination of 
Method 1 and Method 3. In this scenario, the wind-driven air flow Fig. 4. Operation involving a combination of wind and fans.  

(a) Alamogordo, NewMexico: Hourly profile of ambient temperature.

(b) Alamogordo, New Mexico: Hourly profile of ambient relative hu-

midity.

(c) Operational cost comparison between time-varying strategy and

time invariant strategy. The dotted lines represents the yearly mean

cost.

Fig. 5. Profiles of ambient conditions [30] and resulting operating cost for 
Alamogordo, New Mexico. 
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is utilized along with the fan to induce evaporation. The system 
evaporates an equal volume as in scenarios (B) and (C). 

Each of these four operation strategies are simulated for Alamo-
gordo, New Mexico to access the cost savings in comparison to the 
baseline scenario (Strategy A). Next, these strategies were simulated for 
Minneapolis, Minnesota case to evaluate the controller’s performance in 
severely cold weather conditions. 

3.2. Continuous, time-varying strategy (Alamogordo) 

The first strategy examined in this study is the continuous, time 
varying operation (strategy B) as opposed to the continuous, time 
invariant (static) operation (strategy A). In both scenarios, air flow is 
driven by electric fan, and the system operates continuously for 24 h per 
day. The purpose of this comparison is to evaluate the potential cost 
saving achieved when running the system with adaptable (optimized) 
operating settings based on prevailing ambient conditions. A compari-
son of the hourly normalized cost between strategy (B) (blue bars) and 
strategy (A) (black bars) are shown in Fig. 9. It is observed that the time- 
varying strategy leads to reduced hourly and annual operational costs 
since it consistently optimize its operating settings throughout the entire 
duration. The annual average cost savings accomplished by the 
controller is 28 % (from 6.0 × 10 ($/m3) per ($/kWhel) to 4.32 × 10 
($/m3) per ($/kWhel)). 

3.3. Predictive scheduled operation strategy (Alamogordo) 

This section compares the predictive scheduled operation (strategy 
C) to the continuous, time invariant (static) operation (strategy A). 
Through this operation strategy, in addition to optimizing the operation 
in real-time, the system generates an optimal operation schedule based 
on weather forecast, and consequently the controller choose to operate 
the system during the 12 h corresponding to the lowest operational cost, 
as explained in Section 2.2. Fig. 6 shows an illustrative 24 h day 
example. Elevated humidity levels during night hours results in the 
highest operating costs (Fig. 6b). Therefore, the optimal operation 
schedule generated by the controller will include the 12 h corresponding 
the lowest predicted cost (between 9:00 and 20:00), and exclude the 
remaining 12 h (shut down the system). To achieve the daily evapora-
tion target as in the continuous, time-varying case (strategy B), the 
installed number of evaporation surfaces implemented should be 
doubled, resulting in doubling the evaporation rate during the operation 
hours. Fig. 6d shows the normalized operating cost after applying the 
optimal operation schedule. The integration of the time-varying opera-
tion strategy in conjunction with the predictive operation led to a sub-
stantial decrease in the daily average operating cost (from 8.4 × 10 to 
1.4 × 10 ($/m3) per ($/kWhel)). 

Finally, red bars in Fig. 9 show the normalized operational cost of 
strategy C which includes the integration of time-varying operation in 
conjunction with predictive scheduled operation. A substantial decrease 
in the annual normalized operating cost of 84 % is achieved (from 6.0 ×
10 to 0.91 × 10 ($/m3) per ($/kWhel)); this is equivalent to $0.91/m3 at 
an example electricity unit cost of $0.1/kWhel which is considered 
economically competitive in comparison to other brine treatment 
technologies studied in the scientific literature. 

To enable the scheduled 12-hour daily operation, it is necessary to 
oversize the system so that it can evaporate twice as much as water per 
hour compared the continuous 24-hour operation. However, the 
reduction in the operational cost may offset the additional capital cost 
required to oversize the system, as the operational cost dominates the 
capital cost, as we discussed in our prior research study on CEE system 
optimization [12], and as illustrated in the following paragraph. 

Fig. 7 demonstrates the increase in the capital cost against the 
reduction in the total cost resulted from oversizing the system in the 
predictive (scheduled) operation over various values of the material cost 

ratio, r1 (Eq.(3)). At a material cost ratio r1 = 27.5 kWhel/surface, 
oversizing the system results in a 5.8 % increase in the capital cost; 
however, the total cost is reduced by 69.1 %. When the material cost is 
quadrupled to 110 kWhel/surface, the increase in the capital cost be-
comes 19.8 %; however, the reduction in total cost is still dominating 
(44 %). At high material cost ratios (greater than 220 kWhel/surface), 
the trend is changed in which the increase in the capital cost become 
larger than the savings in the total cost. As a conclusion, predictive 
scheduled operation with oversized system is economically beneficial 
for relatively low values of material cost ratios (less than 
220 kWhel/surface in this case). 

3.4. Combined wind-fan hybrid operation strategy (Alamogordo) 

This case study demonstrates strategy D which illustrates the 
advantage of the combined wind-fan operation (hybrid operation) in 
continuous, time-variant mode (discussed in Section 2.3). The controller 
optimizes the operating variables during each time interval over a 24 h 
operation per day. 

(a) Hourly profile of ambient temperature.

(b) Hourly profile of relative humidity.

(c) Operational cost comparison between continuous operation be-

tween time-varying scenario (strategy B) and time invariant scenario

(strategy A).

(d) Operational cost comparison between predictive, scheduled, time-

varying operation scenario (strategy C) and time invariant scenario

(strategy A).

Fig. 6. An illustrative day example of scheduled, predictive operation scensrio 
(Alamogordo, New Mexico). Annual average costs is represented by dotted 
lines indicate. 

M.F. Kaddoura and N.C. Wright                                                                                                                                                                                                            



Desalination 578 (2024) 117426

9

The profile of wind speed and direction for Alamogordo, New Mexico 
is shown in Fig. 8. It is noticed that the prevailing wind direction pre-
dominantly falls within the southern sector within the angular range of 
220 to 240. For that, the CEE system modules will be installed and 
aligned in the N-S direction to allow wind to naturally flows into the 
evaporation modules. During time intervals when the prevailing wind 
direction falls within the specified range [120◦, 240◦], the fan will 
operate a speed corresponding to the difference between the optimal 
airflow speed specified by the time-variant control strategy and the 
prevailing wind speed. Green bars in Fig. 9 shows the monthly 
normalized operating cost of the hybrid, time-varying case (strategy D). 
Utilizing the hybrid wind-fan operation resulted in 12 % reduction in the 
electric energy usage and thus, the operational cost (from 4.32 × 10 to 

3.80 × 10 ($/m3) per ($/kWhel)). 

3.5. Summary of operational strategies results (Alamogordo) 

Cost savings resulting from each operational strategy is illustrated in 
Table 1 and Fig. 9. As expected, the highest costs are obtained in the 
baseline case (continuous, time invariant operation) corresponding to a 
total cost of $6.52/m3 and annual operating cost of $6.0/m3, at an 
example electric energy unit cost, Ψel, of $0.1/kWhel. Strategy (B) 
(continuous, time-varying strategy) resulted in a cost reduction of 28 % 
($4.32/m3) at no additional capital cost. Strategy (D) (hybrid, time- 
varying, continuous operation) accomplishes an operational cost of 
36 % ($3.8/m3). It is noticed that the predictive operation (strategy C) 
has the most substantial effect on reducing the operating cost, bringing it 
down to $0.91/m3, with an overall total cost reduction of 70 %; even 
though the capital cost is doubled. This agrees with the observations of 
Ghobeity and Mitsos [21] regarding RO system operation, in which they 
found that the major savings in electric energy usage was accomplished 
when oversizing the system enabling it to turn off during time periods of 
high energy cost. This also aligns with the future work recommended by 
Bartman et al. [20], who also advocated for scheduled operation of RO 
systems as a mean to decrease energy usage. Finally, the combination of 
the three strategies (predictive, hybrid, time-varying operation) leads a 
total cost savings of 74 % at an operating cost of $0.66/m3. 

3.6. Severe cold weather scenario (Minneapolis) 

The devised control methods in this study enable the system to 
operate in various weather conditions, in addition to reducing its 
operational costs. Minneapolis, Minnesota, USA is selected to evaluate 
the control methods in cold weathers (subzero temperatures) (Fig. 10). 
To overcome the risk of liquid freezing on the evaporation surfaces as 
the ambient temperature drops below 0 ◦C, the liquid must be preheated 
to a sufficient inlet temperature to avoid it reaching the freezing point 
while it undergoes evaporation. This condition is accommodated to via 
the optimization constraint presented in Eq. (10). 

Fig. 11 presents an illustrative simulation depicting how the liquid 
(brine) outlet temperature (at the end of the evaporation surface) varies 
with changing ambient temperatures, considering various liquid preheat 
temperature (brine inlet temperature). For instance, when the ambient 
temperature is −10 ◦C, the liquid should be preheated to at least 30 ◦C to 
ensure its temperature does not drop below freezing point; also, when 
the ambient temperature is −15 ◦C, the liquid should be preheated to at 
least 50 ◦C. As a result, colder climates require greater thermal energy 
usage to enable safe operation without freezing, leading to an increased 
operational cost. 

Fig. 12 provides a summary of the monthly normalized operational 
costs over the course of the simulated year in Minneapolis, Minnesota. It 
is noticed that the time-varying operational strategy has a limited effect 
on reducing the operational costs, mainly due to the consistently high 
humidity throughout most days of the year. Nonetheless, applying the 
time-varying operation strategy becomes imperative in cold climates, as 
the inherent optimization constraint (Eq.(10)) ensures that the liquid 
does not freeze, thus facilitating safe system operation in cold condi-
tions. Time invariant operation, on the other hand, carries the risk of 
freezing. Conversely, the predictive scheduled operational strategy has 
lowered the operational cost by approximately 53 % (from 14.3 × 10 
($/m3) per ($/kWhel) to 6.63 × 10 ($/m3) per ($/kWhel)). The yearly 
average operational cost in Minneapolis case is about seven times higher 
than that in Alamogordo case, which is expected and attributed to the 
additional thermal energy usage needed to prevent liquid freezing, and 
also to the relatively higher levels of humidity in Minneapolis compared 
to Alamogordo. 

Fig. 7. Percentage change in system’s capital cost and total cost (summation of 
capital cost and operational cost) resulting from oversizing the system in the 
predictive scheduled operation scenario. The potential operating cost savings 
surpass the increase in the capital cost. 

Fig. 8. Wind chart displaying the annual wind direction and speed data, and 
CEE alignment in the dominant wind direction (Alamogordo, New Mexico). 
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Fig. 9. Operating cost comparison across different operational strategies in Alamogordo, New Mexico. Annual mean costs are represented by dotted lines. Material 
and energy cost ratios of r1 = 55 kWhel/surface and r2 = 0.25, respectively, are used in this study. 

Table 1 
Operational cost associated across each strategy in Alamogordo, New Mexico. An example cost of electric energy unit, Ψel, of $0.1/kWhel is used in this table to convert 
normalized costs to absolute costs.  

Control Strategy Continuous, time invariant - 
baseline 

Continuous, time- 
varying 

Continuous, hybrid, time- 
varying 

Predictive scheduled, time- 
varying 

Predictive scheduled, hybrid, 
time-varying  

(strategy A) (strategy B) (strategy D) (strategy C) (strategies B + C + D) 
Mean operating cost 

($/m3)  
6.0  4.32  3.80  0.91  0.66 

Capital cost ($/m3)  0.52  0.52  0.52  1.04  1.04 
Total cost ($/m3)  6.52  4.84  4.32  1.95  1.70  

(a) Minneapolis, Minnesota: Hourly profile of ambient temperature.

(b) Minneapolis, Minnesota: Hourly profile of ambient relative hu-

midity.

Fig. 10. Profiles of ambient condition for Minneapolis, Minnesota [30].  Fig. 11. Illustrative simulation showing liquid outlet temperature in relation to 
ambient temperature, under 60 % relative humidity. 
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3.7. Uncertainty and real-world implementation 

Although the proposed data-driven methods in this study show a 
high advantage in enabling CEE systems to maintain the most cost- 
efficient state over various weather conditions, uncertainties may arise 
in real-world implementation from the following sources:  

1. Accuracy and uncertainty associated with the computed Pareto 
fronts (the generated dataset): The performance model used in Sec-
tion 2.1.2 for dataset generation was experimentally validated via a 
pilot plant testing, and results showed good agreement between the 
model predictions and experimentally measured values, with an 
error bounded within 10 % and 20 % for most cases [8]. Errors or 
uncertainties associated with the computed Pareto fronts may result 
in either under-evaporating (evaporating lower volume than 
desired) or over-evaporating (evaporating larger volume than 
desired). This can be addressed in future work by adding feedback in 
the control loop (e.g. checking whether the targeted evaporation rate 
was achieved during each time interval, and compensating for any 
discrepancies in the next time interval). 

2. Uncertainty in weather forecast: weather forecast of ambient tem-
perature and humidity is only used to predict an optimal operation 
schedule (timetable); however, real-time control of the operating 
settings (liquid flow rate, temperature, and fan speed) is based on 
real-time sensor measurement. Thus, uncertainty in weather forecast 
will not have any effect on achieving the targeted evaporation set-
point, and is expected to only affect the predicted operation 
schedule, which will have a minimal impact on the overall process 
operation optimality. 

Future work will include pilot testing of the developed control 
approach to assess the control methods/strategies experimentally under 
real-world conditions. Pilot testing will quantify the effects of the 
mentioned uncertainties, and lessons learned will act as a guideline for 
future enhancement of the controller. 

4. Conclusion 

This research introduces an innovative data-driven control approach 
to minimize the operational costs of CEE systems in real-time while 
adapting to time-varying weather conditions. The controller relies on a 
dataset comprising Pareto fronts derived from solving a series of opti-
mization problems. Furthermore, the controller obtains weather fore-
casts to anticipate an optimal operation schedule, enabling predictive 
operation. Three approaches to reduce the cost were investigated: (1) 
adjusting operating variables over time, (2) implementing predictive 
scheduled operation, and (3) utilizing a hybrid wind-fan operation. The 
controller performance was assessed through two separate case studies 
set in two distinct geographical locations and weather conditions. The 
cost model used in this study relies on normalizing the capital and 
operating costs to generalize the controller results to various cost sce-
narios. Key findings include:  

• In the continuous, time-varying operational strategy, the controller 
receives real-time measurement of prevailing ambient temperature 
and humidity during each time interval, and adjust the CEE system 
operational variables to minimize the operational cost. This strategy 
leads to 26 % reduction in the total cost in comparison to continuous, 
time invariant (static) operation. 

• In the predictive scheduled operational strategy, the controller ob-
tains weather forecast for the upcoming hours and accordingly 
generates an optimal operational schedule (timetable) to further 
minimize the cost. During the time periods corresponding to high 
operational costs (for example, humid hours), the controller turns off 
the system, and compensate for the decrease in evaporation rate at 
other times as the system is enlarged in this strategy. This leads to a 
total cost savings of 70 % in comparison to continuous, time 
invariant (static) operation. This strategy results in an operational 
cost of $0.91/m3 and total cost of $1.95/m3.  

• In the combined wind-fan operation (hybrid approach), air flow is 
induced by a combination of natural wind and fan on the purpose of 
reducing the electric energy use of the fan. Applying this strategy led 
to cost savings of 34 % in comparison to the baseline case (contin-
uous, time invariant (static) operation).  

• When the three strategies (predictive scheduled, hybrid, time- 
varying operation) are integrated, it leads to a substantial 74 % 
cost savings. A total cost of $1.70/m3 and an operating cost of $0.66/ 
m3 are achieved. 

• The predictive scheduled operational strategy led to the most sig-
nificant cost reduction (at low material cost ratios).  

• In severe cold weather, it is imperative to preheat the liquid to avoid 
freezing and to enable CEE safe operation. Consequently, this lead to 
an increase in the operating cost. The predictive scheduled operation 
is still an effective strategy to minimize the cost. 

The cost reductions attained through the proposed control strategies 
highlight CEE’s potentials to serve as a cost-efficient solution for brine 
treatment. The case studies also illustrate how CEE can effectively adapt 
to various fluctuations in ambient conditions. 
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