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We consider a continuous-valued simulation optimization (SO) problem, where a simulator is built to optimize an expected performance
measure of a real-world system while parameters of the simulator are estimated from streaming data collected periodically from the
system. At each period, a new batch of data is combined with the cumulative data and the parameters are re-estimated with higher
precision. The system requires the decision variable to be selected in all periods. Therefore, it is sensible for the decision-maker to
update the decision variable at each period by solving a more precise SO problem with the updated parameter estimate to reduce
the performance loss with respect to the target system. We define this decision-making process as the multi-period SO problem
and introduce a multi-period stochastic approximation (SA) framework that generates a sequence of solutions. Two algorithms are
proposed: Re-start SA (ReSA) reinitializes the stepsize sequence in each period, whereas Warm-start SA (WaSA) carefully tunes
the stepsizes, taking both fewer and shorter gradient-descent steps in later periods as parameter estimates become increasingly
more precise. We show that under suitable strong convexity and regularity conditions, ReSA and WaSA achieve the best possible
convergence rate in expected sub-optimality either when an unbiased or a simultaneous perturbation gradient estimator is employed,
while WaSA accrues significantly lower computational cost as the number of periods increases. In addition, we present the regularized
ReSA which obviates the need to know the strong convexity constant and achieves the same convergence rate at the expense of

additional computation.
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1 INTRODUCTION

In this paper, we consider a simulation optimization (SO) problem where a high-resolution stochastic simulator is built
to mimic a target system’s stochastic behavior with the goal of optimizing an expected performance measure. Such a

simulator is often referred to as a digital twin [22] and is continuously improved as additional data from the target
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system are collected. Meanwhile, the decision-maker applies an SO algorithm to the simulator to find an implementable
decision for the target system. Such a decision-making framework, supported by a digital twin, has been discussed in
the literature in the context of supply chain [14, 37], manufacturing [26, 42], and more. We draw motivation from the

following application in emergency medical service (EMS), which is revisited in Section 7 for an empirical study.

e A regional emergency medical service (EMS) provider has ambulance dispatching stations and uses simulation
to support their operational decisions [38]. Their primary goal is to minimize the average response time, the time
between receiving an emergency call from a patient and picking up the patient. In addition to the dispatching
stations, the EMS provider also operates an additional “mobile station,” where the ambulances are parked
near potential sources of emergencies to minimize the average response time. The emergency call data (time,
location, emergency type, etc.) are collected continuously by the EMS provider from which the spatio-temporal
distribution of emergency calls is updated over time. Naturally, the location of the mobile dispatching station

can also be updated as the distribution is learned more precisely.

In our problem context, the logical discrepancy between the system and the simulator is deemed negligible. We
focus on the case where the parameters of the simulation input distribution function are estimated from streaming
data collected from the target system as in the EMS example. We assume that the data-generating process is stationary
regardless of the decision implemented in the system. Notice that in the EMS example, the implemented decision in the
target system (mobile station’s location) does not influence the input-generating process (distribution of emergency
calls) and only affects the output performance measure (average response time).

A generic SO problem that minimizes the expected performance measure can be written as
min E,[F(x, 6,0)], (Opt(0))
xeX

where X C R9 is the set of feasible solution, F denotes the simulation output function, and @ represents the parameter
vector of the input models. We assume that 1) F is completely characterized by x, 6, and a sequence of Uniform(0, 1)
random numbers represented by w ; and 2) no analytical expression for F and that F can only be evaluated by running a
simulation. The objective function in x is defined as the expectation of F(x, 6, ) with respect to  (i.e. E, [F(x, 0, )]).
If we denote the true parameter vector of the data-generating distribution in the system by 6*, then the true optimum
in the system, x*, is optimal for Opt(6™). In general, an optimal solution of Opt(0) for 8 # 6™ is suboptimal for Opt(6™).
Hence, when the unknown 6* is replaced with an estimate computed from finite data, there is risk of making sub-optimal
decisions due to the finite-sample error in the estimate referred to as input model risk [27]. While most SO approaches
accounting for input model risk assume a single batch of input data is available, [39] first incorporates streaming
input data in SO; they propose a sequential ranking and selection (R&S) algorithm for a discrete SO problem where
the parameter estimates for the simulator are improved from the streaming input data. However, their work only
considers the case when the parameter estimator is in the form of a sample mean and a finite solution space. Our work
can incorporate a general M-estimator for 6* and focuses on a continuous solution space. In particular, the solution
procedure considered here is stochastic approximation (SA) that takes a stochastic gradient descent step at each iteration,
where the stochastic gradient estimator is computed via simulations. Each iteration may require projecting the solution
back to the feasible region (e.g., Euclidean projection) whose computational cost depends on the complexity of X.

To clearly define the problem of interest, we coin the term, multi-period SO; Figure 1 provides a schematic of how
data collection and decision-making are synchronized in multi-period SO. At the beginning of the kth period, a new
batch of input data are combined with the accumulated data from the previous periods; we do not assume the batch size
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New batch data: ny ng N
¥ ¥ ¥
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Updated decision: X1 Xo Xk

Fig. 1. The data collection and decision time line of multi-period SO problem; {ny } and {Nj } respectively represent the sequence of
incoming data size and cumulative data size; an SO algorithm is applied to solve {Opt6x } and returns {xx } at each period.

to be known a priori or can be controlled. We assume that the length of each period is much larger than the runtime of
a single simulation replication. From the combined data, the kth-period estimator, 0y, of 8* is updated. As k increases,
the sequence of ) becomes closer to 8* under some regularity conditions. For small k, on the other hand, 6, may
be a poor estimate of 6, thus the solution to Opt(6;) may perform poorly in the target system. One may attempt to
wait until k is sufficiently large so that 6 has small estimation error, then solve Opt(6;). However, the target system
requires a decision to be implemented in the meantime (e.g., the mobile station’s location must be determined in the
EMS example). Choosing an arbitrary solution to be implemented until k is “large enough” may result in a significant
loss in the system performance. Moreover, because the data streaming process is outside of our control, it is difficult to
know a priori how many periods will have to pass until the desired precision is reached. Our goal is to find a sequence
of solutions {x } such that the cumulative performance loss in the real-world system compared to x* is minimal.

Our strategy is to design a multi-period SA scheme that (approximately) solves Opt(0y) at the beginning of the kth
period and implements the updated decision in the system until the next period. The key research question here is
to determine how much computational effort to spend at each period so that the expected sub-optimality under 6*
diminishes at the fastest possible rate. Hypothetically, suppose we spend infinite computational effort at each k to find
the exact solution to Opt(6y). Of course, this is unrealistic as each period is finite. Although we assume simulation runs
are much faster than the data streaming process, there is a natural limit on how many replications can be performed
within each period. Even if Opt(6y) can be solved to optimality for each k, the resulting solution may be sub-optimal
under 6%, particularly for earlier periods when the estimate of * may be coarse. Nonetheless, the hypothetical scheme
provides a useful benchmark for our proposed multi-period SA scheme; given {6y}, observe that the performance of any
multi-period SO procedure is constrained by the rate at which the real-world 6y converges to 8*. In fact, a benchmark
that achieves the same rate is one that returns the optimal solution of Opt(6;) at each k in terms of the expected
sub-optimality for Opt(6*). This motivates the design of an SA framework that spends minimal computational effort in
solving Opt(éy) at each period k while the resulting sequence of solutions provably attains the same convergence rate
in expected sub-optimality as that displayed by the sequence of the optimal solutions to Opt(6y).

Indeed, the idea of controlling the computational effort to match the precision of the approximated problem has been
explored before to design an efficient sample average approximation (SAA) scheme [23, 32]. In particular, [23] studies
the retrospective approximation (RA) that solves a sequence of sample-average problems constructed with increasing
sample sizes with progressively tighter precision requirements (i.e., decreasing error tolerance imposed on the distance
between the kth SAA problem’s optimal solution and the solution returned by the algorithm) warm-starting from
the previous period’s solution. While philosophically multi-period SA is constructed in the same vein as RA, there
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4 He, Shanbhag, and Song

are two major differences: 1) the approximation error of Opt(6y) is determined by not only the stochasticity in the
algorithm under our control, but also the streaming input data size beyond our control; 2) the analytical expression for
the simulation output function F is unknown and thus, the sample-average version of Opt(6) cannot be written down
analytically or solved directly.

In this paper, our focus is predominantly on problems where E, [F(x, 6, )] is u-strongly convex over convex set
X for any 6 € ©. While the convergence theory established in the paper does not immediately extend to nonconvex
settings, an empirical study on a nonconvex function suggests promise (See Section 7.4). Next, we provide a brief review

of the prior work in the context of such simulation optimization problems.

1.1 Literature review

There are several recent studies that consider SO under input model risk when a batch of input data is given. In [6, 27, 28],
variations of R&S procedures are proposed to provide a probabilistic guarantee that the optimum of Opt(a), where
6 is an estimator of 6* computed from a single batch of data, is still optimal for Opt(6*). Such a guarantee typically
relies on the requirement that 0 converges to 6" as the data size tends to infinity. However, for smaller sample sizes,
the desired level of probabilistic guarantee may not be achieved by these approaches. Alternatively, [9, 12] propose
distributionally robust R&S procedures that solve Opt(6) when the uncertainty set of € contains a finite number of
candidate choices of 6.

In [7], the authors apply a Bayesian approach to model uncertainty about 8* by imposing a prior distribution and
updating it to a posterior based on the batch input data. They adopt a modified objective function E[F(x, 0, )], where
the expectation is taken with respect to the posterior distribution of 0 as well as stochastic simulation error induced
by w. In [24] and [36], Bayesian optimization (BO) algorithms are presented to address the same objective function as
in [7] defined on a continuous solution space.

All of the aforementioned approaches focus on the case when a single batch of input data is available. Some recent
research has considered the incorporation of additional data collection into the SO problem to balance the trade-off
between simulation replication and input data collection [35, 40, 41]. For continuous SO, warm-start BO algorithms
[25, 32] may be applied to solve a sequence of problems updated by the streaming data, although these algorithms are
created for more general dynamic problems. The closest SO problem to ours appears in [21], where they adopt Bayesian
input modeling and apply stochastic gradient descent to find the optimal solution for the problem where the objective
function is defined by averaging both stochastic uncertainty and Bayesian posterior uncertainty.

Similar problems have been studied under the name of misspecified optimization in the optimization literature in
which the parameters of the optimization problem are estimated from idiosyncratic data. Research on misspecified
optimization and game-theoretic problems appears to be rooted in [33], [3], and [4]. More recently, [1] examines
misspecified deterministic convex optimization problems while stochastic variants have been studied in [17] and [15].
These have motivated the studies on misspecified Nash equilibrium problems [18] and misspecified Markov Decision
Processes [16]. The problem closest to ours is considered in [17], where learning 0* is cast as a stochastic convex

optimization problem while Opt(6) is a stochastic convex optimization problem.

Gaps. There is a clear gap that exists in the literature designing an SA algorithm for an SO problem defined on a
continuous solution space under input model risk, particularly when streaming input data are available from the
system. Applying an out-of-the-box gradient descent scheme to solve the problem is faced with following challenges: (i)
Cumulative regret: Each period’s decision is implemented in the real-world system and therefore, the algorithm should
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be designed to return a sequence of solutions that result in small cumulative regret for the real-world problem, Opt(6*)
(See Eq. (4)). (ii) Computational cost: Naive approaches to reduce the regret may impose significant computational
burden in computing approximate solutions of Opt(6y). To design an efficient algorithm, information from the prior
periods need to be utilized; (iii) Knowledge of problem parameters. Prior schemes rely on the problem parameters (e.g.,

strong convexity parameter) in selecting algorithm parameters, which may not be known for a typical SO problem.

1.2 Contributions

Motivated, in large part, by the gaps in the literature, this paper makes the following contributions.

(i) We define the multi-period SO problem with exogenous streaming input data and devise a multi-period SA framework
that solves Opt(6;) up to the level of error determined by the cumulative streaming data size at each period k. We propose
two variants of multi-period SA: Re-start Stochastic Approximation (ReSA); and Warm-start Stochastic Approximation
(WaSA). While at each period both variants warm-start from the previous period’s solution, the former restarts the
stepsize sequence for SA in each period, whereas the latter carefully controls the stepsize sequence for all periods as a
function of the cumulative input data size.

(ii) Under a suitable strong convexity requirement on Opt(6), we show that both ReSA and WaSA achieve the optimal
convergence rate in the expected sub-optimality given the streaming data size when combined with either an unbiased
gradient estimator or the simultaneous perturbation (SP) gradient estimator [30]. For the latter, we further investigate
the trade-off between increasing the simulation effort for gradient estimation vs. the number of gradient-descent steps
taken within each period. We show that when the projection operation is expensive, computational effort can be
significantly reduced by estimating the gradient with increasing precision, which may lead to taking fewer projection
steps in each period.

(iii) We show that WaSA can save significant computational cost over ReSA by taking fewer, smaller gradient-descent
steps in later periods. For instance, when the same number of data points stream in at each period and an unbiased
gradient estimator is available, the cumulative number of gradient-descent steps ReSA takes grows quadratically in the
number of periods, whereas that of WaSA grows linearly. The relative saving grows even more starkly when the SP
gradient estimator is adopted.

(iv) Finally, we present a regularized variant of ReSA which does not require knowledge of the strong convexity
parameter y and proceed to show that under suitable choices of the regularization sequence, the resulting expected
sub-optimality error diminishes at the same rate as ReSA and WaSA at the expense of computational effort.

In our preliminary work [29], a prior version of the multi-period SA framework is presented. However, there are
several limitations of [29] that we aim to address in this paper: (i) an unbiased gradient estimator is assumed available,
which may not for a general SO problem; (ii) the derivation of the upper bound on the expected sub-optimality was
preliminary and one of the results was afflicted by an error; and (iii) the warm-start algorithm in [29] does not control
the stepsize sequences across periods and it has proved challenging to obtain a valid upper bound on the expected
sub-optimality for this algorithm once the error in (ii) is fixed; (iv) the regularized variant of ReSA is new.

The rest of the paper is organized as follows. In section 2, we formally state the multi-period SA problem and describe
our algorithms. Section 3 summarizes the main results of this paper. Section 4 and Section 5 discuss the detailed analysis
when an unbiased gradient estimator and the SP gradient estimator is employed, respectively. A regularized variant of
ReSA is presented and analyzed in Section 6. In Section 7, we evaluate the empirical performance of our algorithms
using synthetic and realistic SO problems including the EMS example described earlier. Concluding remarks are given

in Section 8. All proofs of the theoretical results are included in the Supplementary Material (SM).
Manuscript submitted to ACM
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6 He, Shanbhag, and Song

Notation. For arbitrary sequence {ay} and positive sequence {b }, we adopt the notation, a; = O(by), if there exists

constant 0 < M < oo and ko € Z such that |ag| < Mby for all k > ko. We use || - || to represent the Euclidean norm.

2 PROBLEM AND ALGORITHM DESCRIPTION

In this section, we formally define the multi-period SA problem (Section 2.1) and then propose two multi-period SA

algorithms to solve this problem (Section 2.2). Some background on SA is provided in SM Section ?? for completeness.

2.1 Problem statement

Suppose that there are I data-generating processes in the system, each of which streams an independent and identically
distributed (i.i.d.) sequence of data. We assume that if two or more inputs are correlated, then they are collected together
as vectors. Otherwise, all I inputs are independent of each other. The parametric family of each input distribution is
assumed to be known, however, its true parameter(s) must be estimated from the data. We aggregate the true parameters
of all I inputs within the vector 8* € RI,, where I’ > I; see Section ?? of SM for further discussion.

Let n}(, nZ, ..., ni denote the number of observations obtained from I real-world input distributions at the kth period
and ng = ZLI ni, ie. ng is the sum of incoming data size at the kth period from all I input-generating processes.
We assume that n; /ny converges to constant p; with probability 1 as k — oo for each i =1,2,...,I. Without loss of
generality, it can be assumed that nj. > 0, because any period in which no data are collected can be merged with the
next period. The cumulative average number of observations by the kth period is denoted by Ny, i.e. Ny = Z];:l ne. Let
Z be the collection of all input data observed from the system up to the kth period. Given Z, 0™ is approximated by

its estimator 6. Our scheme allows 6 to be any parametric estimator that satisfies
a.s. % #12 -1
O — 0" and E[||6 - 67[|)] =O N, (1)
where a.s. denotes almost sure convergence. An example of such 6 is an M-estimator defined as a solution to

Ieneig L0 | Zy), )

where ® C R! for I > I is a feasible set for @ and £(- | Zy) is a sample loss function given cumulative observations
Zy. For instance, if L(- | ) is chosen to be the negative log-likelihood function of Zy, then the resulting 6 is a
maximum likelihood estimator; see Section ?? of SM for the exact form of £ in this case. For this choice of £, assuming
that (2) can be solved to optimality, 6 satisfies (1) under some regularity conditions presented in Section ??.

We introduce the following notation for the conditional mean of the simulation output at fixed x given 6:
f(x0) = Ey[F(x,6,0)]. ®)

Recall that E,, indicates the expectation is taken with respect to w. Note that (3) allows x to be either a deterministic
feasible solution or a random solution returned by an SO algorithm.

Recall that Opt(6*) is defined on the d-dimensional continuous feasible solution space, X, and its solution is denoted
by x*. Let XZ represent the optimal solution to Opt(6y), i.e, XZ = arg minye x f(x, Oy ). Since Oy is progressively getting
closer to 6% as k increases, we may expect X, to get closer to x* under some suitable smoothness assumption on f.

Consider a multi-period SA scheme that takes M. stochastic gradient-descent steps to solve Opt(6) and returns xj
as its (approximate) solution at each period k. Here, the stochastic gradient estimator is computed from simulation
replications; we elaborate on the types of stochastic gradient estimators considered in our analyses in Sections 4.1
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Algorithm 1 (ReSA). Re-start multi-period SA
Given xo, yo, p, {N}; Set k := 1;

[1] Compute 6 using Nj samples; Set X} ; := X} and M := max {1, [N]i/‘o-‘};

[2] Xf, j+1 = My [Xk,j - Yk,jG(xk,js O, (A)k,j)] given Yk,j = % forj=1,---, My;
[3] Xk = Xg pp 415 k = k + 1 and go to [1];

and 5.1. Since M;, is finite, x; is subject to stochastic error, i.e., x; # x]*c in general. The performance loss of implementing
X) in the system at the kth period can be measured by the optimality gap between x; and x* under the target system
problem, Opt(6*), as 0* characterizes the system for which the sequence of decisions, {xy}, is implemented. To evaluate
the performance loss over K periods, we consider the following expected cumulative sub-optimality (regret) of the

sequence of solutions, {xy }, for Opt(6*):

S E[f(5.0°)  f(x",6°)]. @

where the expectation is taken with respect to the sampling error in 6. caused by finiteness of N as well as the stochastic
variability in computing x;. We emphasize that the kth-period expected sub-optimality in (4) is not B[ f(xx, O¢) —
f(x*, 0%)]; this is because we implement x. in the target system whose true, but unknown parameter, is 6*.

As mentioned in Section 1, the cumulative expected sub-optimality of {XZ} provides a benchmark for any multi-period
SA scheme. Hypothetically, suppose simulation is instantaneous so that for each Opt(6;), we can take infinitely many
gradient-descent steps to find x;.. Still, E[f(x, 8%) — f(x*, 0*)] > 0 as 6 # 0" in general due to the sampling error in
0. Therefore, even if the kth period’s SA scheme is stopped after My < oo gradient-descent steps, as long as

E[f(x;.0%) - f(x",09)] ~ E[f (x., 0") - f(x",67)] ®)

for each k, the expected cumulative sub-optimality of {x;} would be similar to that of {x, }. Thus, our goal lies in
developing a multi-period SA algorithm such that both expected sub-optimality terms in (5) have the same convergence

rate in N by carefully selecting M as a function of Nj at each k.

Remark: Instead of xj, one may consider adopting X; = arg min, ¢ x E[f(x, 6)], where the expectation is with respect
to the (approximate) sampling distribution of 6. In Appendix ??, we show that under assumptions similar to those made
in Section 3, {X;} and {x; } have the same rates of convergence in expected sub-optimality and discuss computational

advantage of x; over X.

2.2 Algorithm definition

We propose two variants of multi-period SA. The first is the re-start multi-period SA (ReSA) scheme presented in
Algorithm 1. ReSA initializes (restarts) the stepsize sequence for gradient descent at each period while adopting
the previous period’s solution as the initial solution. In the kth period, ReSA solves Opt(6;) by taking M projected
gradient-descent steps starting from x;_;. For the first period, we assume xq is randomly selected in X in our analyses.
Let x j, j = 1,2,..., M denote the sequence of solutions returned by the algorithm in the kth period.

Note that G(x j, O, w, j) in Step [2] is a stochastic estimator of Vxf(xg ;, 0x). Depending on the choice of G,
wg,j may be a sequence of Uniform (0, 1) random numbers or a collection of such sequences if G requires multiple
replications to compute. In addition, IT x (u) represents the Euclidean projection of vector u € R? onto X while Yo
denotes the constant of the stepsize sequence. Note that we use the parameter p to define the {My } sequence, where p
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Algorithm 2 (WaSA). Warm-start multi-period SA

Given Xo, y0, Yo, P> {Nk}; Choose 0 < A < 1/p; Set k := 1;
[1] Run ReSA with yy and x¢ for k = 1 to obtain x;; Update k := 2;

NP _

2] Compute 6 using N samples; My := [ e

N,?_l-‘; Set xp 1 = Xg—1;

Yo 1forjzl,-w,Mk;

(2]

(3] Xk ju1 = TIx [xk j = ¥k jG (X j» Ok i )| given v j = ol
k-1t

(4]

4] X = Xp p+15 K == k + 1 and go to [2];

is chosen so that E [ [Ix1,; — %] ||2| 01] = O(j™?), which can be achieved by choosing M; and {y; j} appropriately. The
value of p depends on the gradient estimator. In the remainder of the paper, we refer to O(j ™) as the single-period MSE
convergence rate to differentiate it from the convergence rate of the expected sub-optimality, E[ f (x, %) — f(x*, 6")],
which we simply refer to as the convergence rate. Notice that in Step [2], yj ; is reset to yo for each k. The algorithm
parameters are left unspecified here because their choices depend on the properties of Opt(6) and G; these are clarified
in Sections 4-5 with corresponding assumptions on Opt(0) and G.

ReSA is a generalization of the scheme adopted by [17], where a single projected gradient-descent step was taken at
each period, i.e. M = 1 for every k > 1. ReSA sets M to be a function of N at each k. The choice of M in ReSA
ensures that we spend just enough computational effort in the kth period for {x; } to achieve the same convergence rate
as {xi}, given the streaming data sequence. In fact, the choice of {M}} in ReSA guarantees that the convergence rate
matches the rate at which 6 — 6 even when the initial solution to the kth problem, x; ;, is chosen randomly in X
under appropriate assumptions made in Sections 3-5. Since 6 I%: 0% and x;_, and x; become closer as k increases,
one may expect that taking x;_; close to x; | as the initial solution of the kth period would improve the computational
efficiency of the algorithm by letting us take fewer and smaller SA (gradient-descent) steps while achieving the same
convergence rate. Based on this intuition, we propose the warm-start multi-period SA (WaSA) scheme in Algorithm 2.

The constant, A, can be any value in (0, 1/p); the closer A is to 1/p, the fewer gradient-descent steps WaSA takes in
each period. The choices for the parameters are discussed in Sections 4-5 along with the assumptions on Opt(@) and G.

Observe from Step [1] of Algorithm 2 that ReSA and WaSA make identical progress for k = 1. For k > 2, WaSA
displays two key distinctions from ReSA:

(a) By setting the jth stepsize at period k as yy ; = Jo/ (N/?_ , +J—1), WaSA takes increasingly smaller steps within
each period as k increases.
(b) By choosing M. smaller than its corresponding value in ReSA, WaSA takes increasingly fewer SA steps than

ReSA as k increases.

Hence, as k increases and more input data are accumulated, WaSA takes smaller and also fewer gradient-descent steps
recognizing that it is in the vicinity of x*.

To summarize, both ReSA and WaSA warm-start from the previous period’s implemented solution. The difference
lies in the choices for {y; ;} as well as {M}. While both algorithms are designed so that E[f(xg, 0%) — f(x", 0")]
achieves the same convergence rate as E[ f (x}, 0%) - f(x*, 8%)], employing WaSA may lead to significant computational

savings by taking fewer and more carefully specified gradient-descent steps.

3 OVERVIEW OF MAIN RESULTS

In this section, we summarize the main theoretical properties of ReSA and WaSA. To facilitate the discussion, we first

provide a set of conditions on Opt(8).
Manuscript submitted to ACM
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AssUMPTION 1. The feasible solution set, X C R?, is closed, convex, and nonempty and © C R is nonempty and

compact. For each 0 € ©, f(-, 0) is p-strongly convex and continuously differentiable on an open set containing X.

AssUMPTION 2. There exist Ly > 0 and Lg > 0 such that ||Vxf(x,0) — Vxf(y, 0)|| < Lx|lx —y|| forallx,y € X and
forall @ € © and ||Vxf(x,601) — Vxf(x,02)|| < Lol|61 — 02|| for all 61, 65 € © and forallx € X.

AssUMPTION 3. The optimal solution of Opt(0*), denoted by x*, is an interior point of X.

Note that our algorithms do not not require Ly and Lg to be known; they only need to exist. On the other hand, we
assume the strong convexity parameter, y, is known in Sections 4-5. Smooth function A with domain X C R is said to
be p-strongly convex, if for any x,x’ € X, (VA(x) — VA(x"))" (x — x’) = p||x — x’||? for some y > 0. Depending on
the problem context, this may or may not be a restrictive assumption. For instance, Section 7.2 features a stochastic
activity network problem for which the objective function includes a deterministic cost function with a known strong
convexity parameter. On the other hand, in the EMS example in Section 7.3 we cannot analytically confirm that the
problem is strongly convex nor can we derive the value of 1 even if the problem is strongly convex. In Section 6, we
investigate a regularized version of ReSA (r-ReSA) scheme that does not require known p; we further elaborate on
this scheme at the end of this section.

We consider two types of stochastic gradient estimator G: a generic unbiased gradient estimator and the simultaneous
perturbation (SP) gradient estimator. The latter is biased in general [30]; to balance its bias and variance, we introduce
an additional algorithm parameter s ; when the SP gradient estimator is adopted to control the number of simulation
replications made to compute G at the jth SA step within the kth period.

For both ReSA and WaSA, the upper bound on the expected sub-optimality at the kth period is determined by how
close x; and 6y are to x* and 0%, respectively. The following lemma connects these two pieces together to provide
an upper bound on E[f(xg, 0%) — f(x*, 6%)] for any generic multi-period SO framework that returns the sequence of

solutions, {xy }, at each period.

LEMMA 3.1. Suppose Assumptions 1-3 hold. Consider the sequences {xy} and {0} generated by any multi-period SO
framework. Then, the following holds for any k > 1:

LyL2
E[f (xx, 0") — f(x*,0")] < LxE[llxf - X”,;IIZ] + ); OE[l16f - 67|1°]. (6)

2

Notice that when x; = xl*c, the first term of the upper bound in (6) vanishes. Hence, the expected sub-optimality of
{XZ} converges at the same rate as E[||6; — 0*||%]. Lemma 3.1 provides guidance on how accurately Opt(6;) needs to
be solved at each k to achieve the best possible convergence rate. Both ReSA and WaSA can control E[||x; — Xl*c 1] by
choosing My and y; ; appropriately. Since E[[|6; — 0* I12] = O(Nk’l), the best convergence rate can be obtained when
E[llxg — X;; I12] = O(Nk_l); there is no reason to put additional effort to make E[||xz — X;; |I?] decay at a faster rate. Note
that we focus on the convergence rate rather than minimizing the upper bound in (6) since Ly and Lg are unknown.

Table 1 summarizes the convergence rates of ReSA and WaSA; for both types of gradient estimators, both algorithms
achieve the best-possible rate of O(N, Izl). Table 1 also presents how the cumulative number of SA steps, Zszl M., spent
by ReSA and WaSA grows at each period K for K > 1 to achieve this convergence rate. Recall from Algorithms 1-2,
the choice of My depends on the exponent of the single-period MSE convergence rate, O(j ™). The smaller p is, the
more SA steps are required at each period to achieve the best convergence rate. When G is an unbiased gradient
estimator, we have p = 1. When the SP gradient estimator is adopted, choosing sy ; to be a constant leads to p = 2/3.

Increasing sy ; as a polynomial in j, p can be pushed to 1. The last two columns of Table 1 show the growth rate of the
Manuscript submitted to ACM
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Table 1. The convergence rates of expected sub-optimality, cumulative number of SA steps, and cumulative simulation effort of ReSA
and WaSA at the end of the Kth period under different sets of assumptions. The rates marked with * can be achieved when A is
pushed to its upper bound.

Convergence rate | Cumulative number of SA steps | Cumulative simulation effort
ReSA WaSA ReSA WaSA ReSA WaSA
Unbiased

= o) | o) | o(ZK M) | o | oK N | ok
eisp<ny | O [ovgh [o (s, N) [ o(w*) o(s W) [ o(v)

Gradient estimator

cumulative simulation effort ReSA and WaSA respectively spend on estimating the gradients up to period K. Notice
that the growth rate of the cumulative simulation effort does not depend on p for the SP gradient estimator, whereas
the cumulative number of SA steps does. Given that Opt(0) is a constrained optimization problem, each SA step may
require a Euclidean projection to ensure feasibility, which can be computationally expensive when X is a complex set.
In this case, it is sensible to push p closer to 1 so that fewer projections are required.

Recall that in WaSA, parameter A determines the computational cost; the closer A is to 1/p, the more computational
saving is achieved. When A = 0, WaSA essentially reduces to ReSA. We note that Table 1 provides the upper bounds
(marked with ‘«’) on the smallest-possible cumulative SA steps and simulation effort that WaSA can achieve when A
is pushed to 1/p, which clearly demonstrates significant computational benefits of WaSA over ReSA. Notice from
Table 1 that WaSA achieves the same convergence rate in terms of expected sub-optimality regardless of the choice of
A, which favors A close to 1/p.

When y is unknown, inspired by the classical theory of Tikhonov regularization [34], we propose regularized-ReSA
(r-ReSA) in Section 6. We convert Opt(6y) into a regularized problem with known convexity parameter yj and solve it
instead of Opt(6y) to obtain x;.. We show that by choosing {y; } and the algorithm parameters carefully, the resulting
expected sub-optimality diminishes at the rate of O(N, 1). However, r-ReSA requires a larger number of SA steps (and

simulation effort), which is the price we pay for not knowing y. See Section 6 for details.

4 MULTI-PERIOD SA FRAMEWORK WITH UNBIASED GRADIENT ESTIMATOR

In this section, we analyze the theoretical properties of ReSA and WaSA when unbiased estimator G of Vxf(x, 0)
is available. While the analysis in this section is applicable to general unbiased gradient estimator G, we discuss an
example of a simulation-based unbiased gradient estimator in Section 4.1. In Section 4.2, we analyze the expected

sub-optimality and computational costs of ReSA and WaSA.

4.1 Infinitesimal perturbation analysis gradient estimator

The infinitesimal perturbation analysis (IPA) gradient estimator is a well-studied unbiased gradient estimator [10]. Recall
that in our notation, the simulation output, F(x, 6, »), is a function of x and 0 as well as a sequence of U(0, 1) random
numbers o that drives the stochasticity in simulation. For simplicity, consider the case where each simulation run requires
a single random number, i.e., 0 ~ U(0, 1). Given x and 0, we can write f(x,0) = E,[F(x, 0,0)] = /01 F(x,0,w)dw. If
the exchange of derivative with respect to x and the integral is allowed (see [10] for the conditions under which the

exchange operation is allowed), then we have

1
VxEo [F(x,0,w)] = / VxF(x,0,w)dw. (7)
0
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Therefore, we have an unbiased gradient estimator of Vx f(x, 8), G = VxF(x, 0, w). A caveat here is that VxF(x, 6, »)
must be computable given w. If F(x, 6, ») can be written as a function of some other intermediate random variable
generated by transforming o, then the chain rule can be applied to find VxF(x, 6, ). This may be difficult, however, if
the simulation logic is complex. In such a case, the SP gradient estimator discussed in Section 5.1 can be applied. In
Section 7.2, we present a numerical example in which the IPA gradient estimator can be computed. Since G may be
obtained from a single simulation replication, the number of SA steps taken at each period equals the simulation effort

at each period. Thus, we do not differentiate between these two measures of computational effort in Section 4.2.

4.2 Rate analysis

We start by making the following additional assumptions on Opt(6) as well as G.

AssUMPTION 4. The feasible solution set, X € Rd, is convex, compact, and has a nonempty interior. Further, there exists
Cx > 0 such that ||Vxf(x,0)|| < Cx forallx € X and 6 € ©.

AsSUMPTION 5. Forallx € X and 6 € ©,E, [G(x, 0, w) — Vxf(x,0)] = 0. Moreover, there exists 0 < v < oo such that
EulllG(x, 0,w) = Vxf(x, 0)|1?] < v? forallx €e X and 0 € ©.

Under Assumptions 4 and 5, E,, [||G(x, 0, w)||2] < 2B, [||G(x, 0,0) — Vxf(x, 9)||2] +2||Vxf(x 0)]1? < 2(v2 + Cg()
for all x € X and @ € ©. In the remainder of the paper, we adopt C? £ 2(v? + Cg(). We explicitly specify the values of
the parameters to be adopted in ReSA and WaSA when Assumptions 1-5 are satisfied as follows.

Definition 4.1. For both ReSA and WaSA let p = 1 and yo = 1/p. For WaSA, let o = 1/p and choose 0 < A < 1.

Recall that p in both algorithms should be chosen to match the exponent of the MSE convergence rate of x1, i.e.,
E [HX]J - x;‘||2| 01] < O(j7P). The following lemma shows that under Assumptions 1-5, p is indeed 1 when the

algorithm parameters are chosen as in Definition 4.1.

LEMMA 4.2 (SINGLE-PERIOD MSE CONVERGENCE RATE). Suppose Assumptions 1, 2, 4, and 5 hold and the algorithm
parameters are chosen as in Definition 4.1. Consider {x;.} generated by ReSA. Then, fork > 1 and1 < j < M,
1

2c?| - . C? .
Elllxg. j - x[1%16;] < max {E[ka_l — 112161, 7}] U a.s. Moreover; when j 2 3, Bl Ix.; - x¢I216¢] < G as

Notice that B[||x;_; — xZ||2|9k] appears in the bound on E[||xx ; — xZ||2|0k] only for 1 < j < 2. For j > 3, we have
a tighter bound that does not depend on E[||xz_; — XZ [12|6%]. In other words, even if X1 is chosen to be an arbitrary
solution in X, the same bound holds. This reveals that the standard SA analysis conducted in Lemma 4.2 provides little
leverage on a better initial solution to obtain a tighter upper bound on the convergence rate. From Lemma 4.2, we show
the following theorem stating that the convergence rate and the complexity of the cumulative number of SA steps of
ReSA are as stated in Table 1.

THEOREM 4.3 (RESA WITH UNBIASED G). Suppose Assumptions 1-5 hold and the algorithm parameters are chosen as
in Definition 4.1. Then, the following hold for {x;.} generated by ReSA.
(i) There exists finite U > 0 such that fork > 1, E [ f(xg, 0%) — f(x*,0%)] < I;J—“}'(LéU + Cz)Nk_l.
(ii) Given K > 0, the cumulative number of SA steps at the end of the K th period is ZII<<=1 Np.
Theorem 4.3 implies that ReSA indeed achieves the optimal convergence rate of O (N ' 1), Although this is reassuring,

the number of SA steps, My, taken at each iteration is tied to Ny and keeps increasing as more streaming data accumulate.
Manuscript submitted to ACM
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12 He, Shanbhag, and Song

In WaSA, not only do we choose x 1 = Xi_;, but also select yj ; to be a decreasing function in k for each j, i.e.
correspondingly smaller steps are taken as k grows. The core idea is the following: since each period starts with an
increasingly better initial solution (in terms of proximity to x*), we may take fewer and smaller SA steps at each period.
However, exactly how to control yi ; so that the benefit of selecting xi; = x,_; is reflected in the upper bound on the
convergence rate of E[||x; — XZ”Z] is not a trivial question. The following theorem shows that with our choice of yy ;,
WaSA indeed achieves the optimal convergence rate, O(N,- 1), with much reduced computational cost than ReSA. In

particular, as A tends to 1, the cumulative number of SA steps after k periods tends to O(Ng).

THEOREM 4.4 (WASA WITH UNBIASED G). Suppose Assumptions 1-5 hold and the algorithm parameters are chosen as
in Definition 4.1. Then, the following hold for {x;} generated by WaSA.

k—oo
(i) There exist finite U > 0 and sequence {Ql’c} such that fork > 1, Q,’< ==, C%/y? and

E [f(xc 0%) - f(x*,0%)] < Ly (UL@,/,,Z + Q,g) N
(ii) GivenK > 2, there exists 0 < A < 1 sufficiently close to 1 such that the cumulative number of SA steps at the end of
the Kth period is bounded as 2115:1 My < Nk +K-1.

Observe that the upper bound on the expected sub-optimality of WaSA converges to that of ReSA as k increases,
because Q;( — C? / ”2. Hence, as more streaming data accumulate, WaSA returns a solution essentially as accurate as
that from ReSA at much reduced computational cost. Nevertheless, both algorithms require increasing computational
effort as k increases, albeit M} increases significantly slower for WaSA when A is close to 1. The closer A is to 1, the
longer it takes Ql’c to converge to C2/y2, implying that the upper bound on the expected sub-optimality may be inflated
for earlier periods. However, A cannot be equal to 1, which makes the {Ql/c} sequence diverge. On the other hand, if A is
close to zero, WaSA essentially reduces to ReSA. In practice, it often suffices to obtain a solution close to x*. We refer
to random x¢ € X satisfying

E[f(xe,0°) - f(x",0%)] <€
as an e-solution. The next corollary establishes the computational complexity for both algorithms to obtain an e-solution

assuming ny = [k4] fora > 0.

COROLLARY 4.5 (SAMPLE COMPLEXITY COMPARISON). Suppose Assumptions 1-5 hold and the algorithm parameters are
chosen as in Definition 4.1. Given nj. = [k%], a > 0, and € > 0, ReSA requires O (e~ (@+2)/(a+1)) SA steps to obtain an
e-solution, whereas WaSA requires no more than Ce,le_(”z)/(““) - Ceyge_l_l/(“*'l) SA steps, where Ce 1 and Ce are

such that Ce;1 > Ceg > 0.

Practically, employing these upper bounds to determine when to stop either algorithm is difficult as constants in the
expected sub-optimality bounds are unknown. Nevertheless, it is sensible to stop the multi-period scheme when Ny is

large enough (e.g. 1/Ni < €) as the expected sub-optimality bound is controlled to be O(N 1) in both algorithms.

5 MULTI-PERIOD SA FRAMEWORK WITH BIASED GRADIENT ESTIMATOR

In this section, we consider a more general SO setting; when unbiased G is not available. In Section 5.1, we introduce
the SP gradient estimator for the choice of G and analyze the expected sub-optimality and computational costs of ReSA
and WaSA in Section 5.2.
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5.1 Simultaneous perturbation gradient estimator

Let e(x, 6, ) represent the simulation error such that F(x, 0, w) = f(x, 0) + ¢(x, 0, w). Clearly, E,, [¢(x, 0, w)] = 0 as
f(x,0) = E,[F(x 0, ®)]. The SP estimator of Vxf(xy j, 6x) requires running simulation replications at two points
x * ¢ jAg j given window size ¢ ; > 0 and perturbation vector Ay ; € R4 sampled from a distribution independently
from simulation replications. We consider increasing the number of replications spent to compute the SP gradient
estimator as a function of j so that the estimator becomes increasingly more precise as iterations continue. Namely, s ;
iid. replications are run at each of x + ¢ ;A j, where s ; is a non-decreasing sequence on in j. The SP estimator of

Vxf(Xk, j» Ok) is computed as

Fr —F. Fr —F 17
Glxp g O o ) = | T S ®)
" " 2¢p, j (A i1 2¢y,j (A, j)d
o+ - + - + - . . _
where ;= {wk’j’l, wk’j’l, a)k’j’z, wk,j,z’ e wk,j,sk,j’ wk,j,sk‘j } is the collection of random number sequences used to cal

culate G, Flij = s];; Z;k:jl F(xg j £k, jAx ), Ok, (‘)If,j,h)’ and (A ;); denotes the Ith element of Ay ;. Furthermore, we de-
fine fki,j £ f(xg jcx jAr,j» O) and Elf,j = Flf,j _fki:j' Letby ;(xg j» Ok) £ E [ G(xx j. O, @y j) — Vo f (Xp o 0c)| Xk j» Ok |
represent the conditional bias of G(x j, O, wg, ;) given x ; and 6.

Spall [30] presents a set of regularity conditions (see Appendix ??) under which (8) is strongly consistent as j — oo for
what we call a single-period problem. In the following, we provide a slightly different set of conditions and assumptions

to facilitate the analyses in Sections 5.2.

2
. . Yk.j
(Cl) Yk,j» Ck,j >0, Vk’J;Yk,j — 0, Ck,j — 0as j— oo; Zji() Yk,j = ZjiO (ﬂ) < 09

Ck,j

(C2) There exist by, b1, a € R such that [(Ag ;)| < bp as., EH(Ak,j)l_l” < bl’f and E[(Ak’j)l_z] < « for all k, j and
I=12...,d

(C3) For each k, j, Ay € RY is independent of {xj, - JXpjs 01,0 , 0} and (Ak,j)l,l =1,...,d, are i.i.d. and
symmetrically distributed around zero. Furthermore, {Ay 1, Ag, - - - , Ay j} are mutually independent.

Variants of (C1) and (C2) are typically seen in selecting stepsize sequences and perturbation levels (see [19] for instance)
to guarantee that the sequence of E[||x; ; — XZ||2|0k] converges to zero almost surely as j tends to infinity. The
independence condition in (C3) makes it easier to analyze the SP gradient estimator’s bias and variance. Because
(C1)-(C3) lie within the control of the user, they are referred to as “conditions” instead of assumptions. We make
two assumptions in the following to establish bounds on the variance and bias of the SP gradient estimator. In
Assumption 7, we use the same notation as in [30] to represent third partial derivatives of f with respect to elements of
X; f<3) (x,0) = 3> f(x,0)/x®3 is an arbitrary third partial derivative and f(S) (x,0) £ 3*f(x, 0)/ox"1 9x'29x'3, where

i1,iz,03
x! is the ith element of x.

. _ _— 2 .
ASSUMPTION 6. There exists o1 < oo such thatVar[elt,j - gk,j|xk,j’ O, Ay j] < o7 /sy j as. for allk and j.

AssuMPTION 7. For almost all xy ;, f(3) (x, 0) exists. Forany 0 € O, f(3) (x, 0) is continuous in x for all x in an open
neighborhood of x; ; that is not a function of k, j or @y ;. Moreover, for anyx € X and 8 € O, |]sz31)2 i, (%, 0)| < by for
any1 < iy, ip, i3 < d.

The bias of the SP gradient estimator can be reduced to zero by ensuring that ¢, ; — 0; however, its variance
increases as cy ; decreases, but can be reduced by increasing sy ; (see SM Section ??). Therefore, both {c ;} and {s ;}
must be controlled relative to {yj ;} to ensure that the resulting {x) } converges to x*. In Sections 5.2, we choose the
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parameter sequences to be in the form of ¢t ; = coj™7,7 > 0, and s ; = 5o jt,t > 0 for SP gradient estimation in ReSA.
We relax the integrality requirement for sy ; for expository ease in the remainder of the paper. The choices for 7 and ¢
for ReSA to achieve the optimal convergence rate are discussed under different sets of assumptions. For WaSA, both

parameter sequences are modified to achieve the same convergence rate.

5.2 Rate Analysis

In this subsection, we analyze the performance of both ReSA and WaSA when X is bounded and the SP gradient
estimator (8) is adopted for G. Similar to the analyses in Section 4, p (the exponent of the single-period MSE convergence
rate) plays an important role in both algorithms when specifying the parameters. But when the SP gradient estimator
is adopted, p is additionally constrained by the choices of ¢ ; and s ;. In the following, Definition 5.1 prescribes the
choices of the algorithm and SP gradient estimation parameters for both ReSA and WaSA.

Definition 5.1. For both ReSA and WaSA, choose 0 < t < 1/2 to control the simulation effort at each SA step and let
p=2(1+1)/3,y0 > py_l, so > 0,0 > 0,co > 0,and ¢op > 0. For ReSA, let s ; = s0j% and Ckj = coj_(lJ’t)/6 for all k
and j. For WaSA, let yo = 2/p,s1,j = sojf forall j > 1, and Skj = §O(N£_1 +j-1)" and Ck,j = E()(le_l +j- l)_(“'t)/6
forall k > 2 and j.

Observe that p as well as the exponent of j in ¢ ; are functions of t. When t = 0, we obtain p = 2/3, which matches
the MSE convergence rate of SPSA known in the literature [11]. When t > 0, ¢ ; is driven to zero at a faster rate to
reduce the bias in G more aggressively while keeping the variance of G in check by increasing s ;. For any t > 0,
p cannot exceed 1; t = 1/2 is the smallest rate of increase for sk,j to obtain p = 1, i.e., no incentive to spend larger
simulation effort than ¢ = 1/2. For a more detailed discussion on the choices of t and p, see SM Section ??. The following

lemma shows that the exponent of the single-period MSE convergence rate is indeed p in this case.

LEMMA 5.2 (SINGLE-PERIOD MSE CONVERGENCE RATE). Suppose Assumptions 1, 4, 6, 7 and (C1)—(C3) hold and the
algorithm parameters are chosen as in Definition 5.1. Consider {x;.} generated by ReSA. Then, the following holds fork > 1
and1 < j < My, E[|lxg; - x,";l|2|0k] < max{E[||xx_; — XZ||2|9k], 2PT, T(pyo — p)~1}j P as., where T is defined as
ac?

2

T £ y2d zc§(+2chg+4c -
0°0

+ Cf\,nb(z)a + yodchg,u_l. 9)
Theorem 5.3 analyzes the performance of ReSA when G is a SP gradient estimator. In contrast to Theorem 4.3, here
we differentiate the cumulative number of SA steps from the cumulative simulation effort as t > 0 is considered.

THEOREM 5.3 (RESA WITH SP GRADIENT ESTIMATOR). Suppose Assumptions 1-4, 6, 7 and (C1)—(C3) hold and the
algorithm parameters are chosen as in Definition 5.1. Define T as in (9). Consider {x;.} generated by ReSA. Then, for all k,
J =1, the following hold.

(i) There exists finite U > 0 and sequence {Q;{} such that Q,’< k_>—oo> max{2PT, T (uyo — p)~'} and for any k > 1,
B[f(xk 0°) = £(,07)] < Ly (VL3 /i +Qf ) NG

(ii) Given K > 0, the cumulative number of SA steps at the end of period K is bounded as Zlk(:l My < Zlk(:l le/p +K.

(iii) GivenK > 0, the cumulative simulati he end of period K is bounded as K_ 3% S K N
iii) GivenK > 0, the cumulative simulation effort at the end of period K is bounded as 3.;._, ijl Sk.j DI -

A

IN

t+1

Theorem 5.3 confirms that ReSA achieves the optimal convergence rate, O(N, 1), given the parameter choices in

Definition 5.1. Regardless of ¢, the cumulative simulation effort is of the same order. Thus, there is little room to save
Manuscript submitted to ACM
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simulation effort by adjusting ¢. On the other hand, choosing a larger ¢ reduces the cumulative number of SA steps. Thus,
when the projection step is costly, then t = 1/2 is preferred. Similar insights can be obtained from the performance

analysis for WaSA in Theorem 5.4 below.

THEOREM 5.4 (WASA WITH SP GRADIENT ESTIMATOR). Suppose Assumptions 1-4, 6, 7 and (C1)~(C3) hold and the
algorithm parameters are chosen as in Definition 5.1. Consider the sequences {xy} and {0} generated by WaSA. Suppose

T, 2 4 [10R%64 + 8C2, + 4C% db?a + Ll
27 0 X X% &3,

k—o0
(i) There exists finite U > 0 and sequence {Ql,c} such that Ql’c —— Ty and forany k > 1,

E[f(x 07) - f(x*,0%)] < Lx (LgU/y2 + Q,’c) N L
(ii) Given K > 2, there exists 0 < A < 1/p sufficiently close to 1/p such that the cumulative number of SA steps at the
; ; K 1/p
end of period K is bounded as ;.| My < N/ +2K — 1.
(iii) Given K > 2, there exists 0 < A < 1/p sufficiently close to 1/p such that the cumulative simulation effort at the end
of period K is bounded as

K M 21 1+ 1)5 30+1s0 - § 5 K - 1)
Z stkj<( )ONIS(/2+ 0 0N13/2— 0N23/2+( )0.
k=1 £4j=1 t+1 t+1 t+1 t+1
Comparing Theorems 5.3 and 5.4, observe that there is a stark difference in the computational cost between ReSA
and WaSA. Notice that the computational saving of the latter is more pronounced with the SP gradient estimator than
when an unbiased gradient estimator is available. The following corollary compares the computational complexity for

both algorithms to obtain an e-solution.

COROLLARY 5.5. Suppose Assumptions 1-4, 6, 7 and (C1)—(C3) hold and the algorithm parameters are chosen as in
Definition 5.1. Given n. = [k%], a > 0, and € > 0, ReSA requires O(e_l/P_l/(‘”l)) SA steps to obtain an e-solution,
whereas WaSA requires no greater than Ce,le_l/f’_l/(‘”l) - Ceize_’l_l/(“”) SA steps, where Cc,1 and Ce 2 are such that

Ce1 > Cep > 0.

6 REGULARIZED RESA SCHEME WITH UNKNOWN STRONG CONVEXITY PARAMETER

In this section, we address the case when the strong convexity parameter, 4, is unknown and extend the ReSA framework
to a regularized variant, referred to as regularized ReSA (r-ReSA); notably this scheme does not require utilizing the
value of y1 in specifying its algorithm parameters. The new scheme relies on the Tikhonov regularization framework [34],
which adds a strongly convex function to the original objective function of the problem to induce strong convexity. The
resulting regularized problem thus has a known strong convexity parameter. Tikhonov regularization schemes have a
long history in the field of optimization theory, assuming relevance when the objective function is merely convex [8].

We define a sequence of regularized versions of f(x, #) in x whose kth element is defined as
fi(x.0) = f(x.0) + L [xl|? = B[F(x.0.)16] + £ x|, (10)

where {yy } is a user-specified positive sequence diminishing to zero. For any 0, fi (x, 0) in (10) is (p+pi )-strongly convex
in x; since y is unknown, we may adopt y as our strong convexity parameter at period k. We first briefly summarize
the classical convergence result for the Tikhonov regularization. Consider the sequence of regularized problems at
some fixed 6 given by {minye x f (%, 6)}. Because each fj is strongly convex in x, then X; = arg min, . y fi (x, 0) is the
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Algorithm 3 (r-ReSA). Regularized re-start multi-period SA

Given xo, {yox}, p- {Nk}, {px}; Setk :==1;
[1] Compute 6 using Nj samples; Set xy ; := Xj_; and M := max {1, [Nz/p”;

(2] Xk ju1 =T [xk ;= v j{G Xk j» ks 0 ;) + X j | given yy j = Y‘;—k forj=1,---, Mg;

[3] Xk = Xp p+15 k = k + 1 and go to [1];

k
unique minimizer at k. Moreover, it has been shown that X = X, if g — 0, where X is a least-norm minimizer of
Opt(0) (cf. [8]); in our problem, % is indeed the unique minimizer of Opt(6) due to strong convexity of f.
In the multi-period SA problem, new 6y is computed at each period k. Thus, r-ReSA tackles the regularized problem

min (f(x 60 + % ) (-Opti (64))

for some appropriate choice for g > 0. Akin to ReSA, r-ReSA solves r-Opty (0y) up to the precision determined by Ny
by employing M. SA steps with the known strong convexity parameter, . Algorithm 3 provides the details of r-ReSA.
We highlight that in Step [2], the gradient includes the extra term, yx; ;, arising from regularization. Contrasting with
ReSA, the stepsize sequence constant, y; ., depends on k in r-ReSA as y; is updated at each k.

Intuitively, it is sensible to drive pi — 0 as k increases so that r-Opty (6;) becomes progressively closer to Opt(6*).
Meanwhile, reducing y. makes the algorithm perceive r-Opty (6y) to be flatter than it actually is; recall that the true
strong convexity parameter for r-Opt (0 ) is (¢ + yx ), unbeknownst to the user. Hence, the decreasing sequence, {i },
together with a careful choice of {My}, ensures that the sequence of solutions, {x}, returned by r-ReSA at the end
of each period, attains the best-possible convergence rate of the expected sub-optimality for Opt(6*). Definition 6.1

formally states the choices for the algorithm parameters of r-ReSA.

Definition 6.1. For r-ReSA, let yy = NI; 1z, Depending on the choice for G, set the remaining parameters as follows:
(1) when G is unbiased, let p = 1, yo r = 1/ i
(2) when G is the SP gradient estimator, choose 0 < ¢ < 1/2and let sy ; = soj* for some sy > 0 and Ck,j = coj—(1rD)/6
for some co > 0 for all k and j. Let p = 2(1+¢)/3 and yo . = po,u,;1 for some py > p.

The following two theorems state respective convergence results for r-ReSA for the two different choices for G.

THEOREM 6.2 (r-RESA WITH UNBIASED ESTIMATOR). Suppose Assumptions 1-5 hold and the algorithm parameters are
chosen as in Part (1) of Definition 6.1. Then, the following hold for {x; } generated by r-ReSA.
(i) For any k = 1, E[f (xt, 0%) = f(x*,6%)] < O(N_").
Sy . ; o K _ vK 2
(ii) Given K > 0, the cumulative number of SA steps at the end of period K is 3| My = X N;..

THEOREM 6.3 (r-RESA WITH SP GRADIENT ESTIMATOR). Suppose Assumptions 1-4, 6, 7 and (C1)—(C3) hold and the
algorithm parameters are chosen as in Part (b) of Definition 6.1. Then, the following hold for {x;.} generated by r-ReSA.
(i) For any k > 1, E[f (xg, 0%) — f(x*,0%)] SO(Nk_l). /

S\ s . . . K _ vK 2/p
(ii) Given K > 0, the cumulative number of SA steps at the end of period K is bounded as 3., My = X0, N,'" +K.

t+1
(iii) Given K > 0, the cumulative simulation effort at the end of period K is bounded as 2115:1 Z?ikl Sk,j = 3t+_1$0 2115:1 Nz.

When g falls below pu for some k, r-ReSA chooses a larger stepsize constant than ReSA would have at the same

period, which may lead to a larger gradient descent step. This can be seen by contrasting yo in Definitions 4.1 and 5.1

with y x in Definition 6.1. When k is large, a smaller value of y may cause the aforementioned gradient-descent steps
Manuscript submitted to ACM
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within the kth period to overshoot the feasible region X rendering the iterates to be projected back to X. Furthermore,
we observe that the computational burden (and therefore the simulation effort) is significantly higher at each step since
My = O(N;/p) (as opposed to M;. = O(N;/p) for ReSA and WaSA). We defer creating a variant of WaSA under the

regularization scheme for future research.

7 EMPIRICAL PERFORMANCE

In this section, we examine the empirical performances of the proposed algorithms on three examples; in Section 7.1, we
apply the algorithms on a set of synthetically constructed strongly convex SO problems that have analytical expressions
for the optimal solution of Opt(0) for any 6. To test the algorithms on more realistic simulation settings, we consider
a stochastic activity network (SAN) example in Section 7.2 while Section 7.3 revisits the EMS example introduced in
Section 1. Note that the SAN problem is strongly convex with known y, whereas the EMS example is a more general
SO problem for which convexity cannot be verified. The numerical results show that WaSA outperforms ReSA in
terms of computational effort, while achieving similar empirical expected sub-optimality. r-ReSA achieves the same
expected sub-optimality as of ReSA and WaSA, but requires more computational effort. From the EMS example, we
observe that both algorithms perform well even if some of the assumptions cannot be verified for this problem. We
also demonstrate robustness of the proposed algorithms when strong convexity fails by applying them to a nonconvex

problem in Section 7.4.

7.1 Stochastic quadratic programming

We apply ReSA and WaSA under the settings analyzed in Section 4 to a synthetic SO problem that has
1
f(x,0) = EXTVTdiag(u)Vx+xTv, (11)

where 6 = (u,v), X = {x € R¥: -5 < x; <51 <i<d}andV isand X d deterministic orthogonal matrix; increasing
levels of d from 5 to 100 are tested below. Note that diag(u) denotes a diagonal matrix whose diagonal entries are given
by u. The true parameter vector is denoted by 0* = (u*, v*), where u* is the d-dimensional vector whose entries are
all equal to 2.5 and v* is a deterministic vector whose entries are ii.d. Uniform(0, 10). Each entry of u* represents
the mean of an exponential distribution while v* is the mean vector of normally distributed input data with a known
covariance matrix. The maximum likelihood estimator (MLE) of (u*, v¥*) is computed from i.i.d. observations of Z, € R4
and Z, € RY. The entries of Z, € R? are i.i.d. Exp(rate= 0.4) and Z, ~ N(v*,400I;), where I; denotes the d x d identity
matrix. We set ©® = {(u,v) : 2 < u; <3,-100 < v; < 100,1 < i < d}, therefore, the MLE at the kth period is computed
as O = (Tlg(Zu(k), Zy(k))), where Zy (k) and Zy (k) are the corresponding averages of cumulative observations of
Zy and Zy, respectively. In the first period, we assume that 30 observations of Z,, and Zy are available. For k > 2, the
sample size of the new batch of data, ng, is generated randomly from discrete uniform(5, 15). Given @, this problem has
p = 2. To test the case with an unbiased gradient estimator, stochastic noise & ~ N (0, I;) is added to the exact gradient,
ie,G(x,0) = G(x, (u,v)) = VT diag(u)Vx + v + £.

We test ReSA and WaSA with yy = jo = 0.5 and A = 0.995, while the rest of the algorithm parameters are chosen as
in Definition 4.1. We compare the algorithms with r-ReSA and a newly defined scheme referred to as “wait-then-solve,”
which updates 6y less frequently and implements SA only when 6;. has been updated; during the remaining periods, the
scheme “waits” while the decision x stays unchanged. The wait-then-solve scheme is designed to show the increase in

regret when we do not adapt each period’s decision to {6} and only do so intermittently.
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Fig. 2. Comparison of ReSA, WaSA and r-ReSA on a 100-dimensional problem with 200 macro runs

Figure 2 compares the performances of ReSA, WaSA, r-ReSA and wait-then-solve applied to (11) with d = 100 from
200 macro runs. In each macro run, we generate x¢ uniformly from X. Figure 2a shows the trajectory of each period’s
estimated expected sub-optimality of the four algorithms taking the average of f(xg, 0*) — f(x*, 6*) obtained from
200 macro runs. Thus, the area under the curve represents the estimated cumulative regret for each algorithm. The
benchmark represents E[f (x;, 6*) — f(x", 6)]; for this problem, x;. can be computed exactly given . Notice that the
expected sub-optimality converges slightly faster for ReSA than WaSA in earlier periods; however, WaSA catches up
after k = 40. The estimated expected sub-optimality of ReSA coincides with the benchmark, but that of r-ReSA differs
from the benchmark. The distinction of r-ReSA from the benchmark arises because it solves r-Opty (6 ) rather than
Opty (6y). Although in this example, r-ReSA appears to achieve smaller expected sub-optimality, however, this is by
coincidence and is not a general trend; we discuss this more in detail in Section 7.2. The wait-then-solve scheme updates
0 at k =1, 21 and 41; its estimated expected sub-optimality is significantly larger than other algorithms’ when 6 is
not updated for a long time leading to larger cumulative regret. We have also tested a version of “wait-then-solve” that
expends the cumulative number of SA steps taken by ReSA since its last update and this scheme performs identically
to the version presented in Figure 2a. This demonstrates that there is little gain in expending more simulation effort in
reducing the expected sub-optimality without updating 6.

Figures 2b and 2c show the average number of Euclidean projections ReSA, WaSA, and r-ReSA takes in each
period. The shaded area around each line shows the two standard-error band on the average projections at each period
calculated from 200 macro runs. The number of projections ReSA employs is four times that of WaSA in periods
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Table 2. Estimated expected sub-optimality under different d at period k = 100 computed from 200 macro runs. For WaSA, A = 0.995
is used; standard errors are presented in parentheses.

E[f(xx, 0%) — f(x*,0%)] Cumulative number of simulations
d=5 d=10 d=50 | d=100 (x10%)
ReSA 0.4 (0.02) | 0.89 (0.03) | 4.20 (0.06) | 8.72 (0.09) 5.25 (0.01)
WaSA 0.47 (0.02) | 0.99(0.03) | 4.62 (0.07) | 9.58 (0.10) 0.27 (0.00)
r-ReSA 0.43 (0.02) | 0.88 (0.03) | 4.12 (0.06) | 8.58 (0.09) 3593.51 (16.86)
E[f(x, 0%) — f(x*,07)] | 0.44(0.02) | 0.89 (0.03) | 4.19 (0.06) | 8.70 (0.09)

2 < k < 20, while both decrease to zero in the later periods. Notice that the y-axis scales are significantly different in
Figures 2b and 2c indicating that r-ReSA takes orders of magnitude larger number of projections. In Section 6, we
discuss that this behavior may be anticipated for r-ReSA when yy. falls below the actual p. Indeed, in this example, y; at
all k is smaller than p. Figure 2d displays the logarithmic (base 10) average number of simulations of the three algorithms
required for gradient estimation. Clearly, WaSA saves more simulation effort than the other two algorithms. Although
in this example, X is a simple hyperbox, the projection operation may be costly when X is complex. Therefore, savings
in both the number of projections and simulations are critical when either operation is computationally expensive. In
such a case, WaSA has a significant advantage over both ReSA and r-ReSA. Although not requiring the value of y is a
clear advantage of r-ReSA, this example demonstrates that it comes at a significant computational cost.

Table 2 demonstrates robustness of our algorithms for varying problem dimensions. For d = 5, 10, 50, and 100, we
test all four algorithms under the same sequence of streaming data. All statistics are collected at period k = 100 and
averaged over 200 macro runs with their standard errors presented in parentheses. The last row of Table 2 shows the
estimated expected sub-optimality of x]*c, which serves as a benchmark. For all d, the expected sub-optimality of ReSA
is statistically indistinguishable from the benchmark, while WaSA performs slightly worse than the benchmark for
d = 50 and 100. Nevertheless, the difference in the expected sub-optimality between WaSA and ReSA is dominated by
the magnitude of E[f (x;, 0%) — f(x*, 0)]. We point out that the number of simulations expended by each algorithm
depends on {N } and choices of algorithm parameters, but not on d. Since ny, is sampled from the same discrete uniform
distribution for all d, we simply present the cumulative number of simulations employed by each algorithm by the
100th period averaged across all d in the last column of Table 2. The computational effort of the projections scales up
linearly, d. However, as the feasible region is a hyperbox in this example, the projection effort is negligible and thus is
not reported here. Notice that WaSA takes less than 5% of the projections required by ReSA. As observed in Figure 2d,
r-ReSA requires orders of magnitude more simulation effort.

Lastly, we examine sensitivity of WaSA’s performance to the choice of A. Table 3 confirms that there is little difference
in the expected sub-optimality for different choices of A, while the cumulative number of simulations can be significantly

reduced by choosing A close to 1.

7.2 Stochastic Activity Network

In this section, we consider a SAN problem, which originally appeared in [2] and is archived as a test problem at
SimOpt [20]. We refer the readers to [13] for the structure of the network, which contains 13 arcs and 9 vertices. Each arc
is associated with an activity whose operating time is exponentially distributed random variable. The total completion
time of the activity network is equivalent to the longest path from the source (node a) to the sink (node i). As discussed
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Table 3. Estimated expected sub-optimality WaSA achieves with varying A values at the 50th period computed from 30 macro runs;
standard errors presented in parentheses.

d=5 d=10 d =50 d =100 | Cumulative number of simulations (x10%)
1=05 0.34 (0.03) | 0.64 (0.05) | 3.51(0.13) | 7.09 (0.20) 3.19 (0.01)
1=0.75 0.34 (0.04) | 0.64 (0.05) | 3.52 (0.13) | 7.10 (0.21) 2.70 (0.01)
1=09 0.34 (0.04) | 0.64 (0.05) | 3.53 (0.13) | 7.08 (0.20) 1.67 (0.01)
1=0.95 0.35 (0.04) | 0.65 (0.05) | 3.58 (0.14) | 7.15 (0.20) 1.03 (0.00)
E[f(x;, 0%) — f(x*,0%)] | 0.34(0.04) | 0.64(0.05) | 3.51(0.13) | 7.08 (0.20)

in [2], one can derive an IPA gradient estimator for the completion time with respect to the parameters of the activity
times. We utilized the codes provided by [20] to compute the IPA gradient estimator in our experiments.

We consider the setting where the mean parameters of the first six activity times are our decision variables, i.e.,
X = (x1,%2,...,%6) ", where the cost of each x; is 1/x;. The means of the remaining seven activity times are to be
estimated from streaming data via maximum likelihood estimation, i.e., 6 € R”. We denote the simulated total completion
time of the network given x and 8 by T(x, 0, w). The following objective function balances the expected total completion
time and the cost:

f(x0) = BIT(x 0,0)10+ >, — (12)

where X = {x € R®|0.5 < x; < 3, fori = 1,...,6}. Notice that given 0, smaller x; makes E[T(x, 8, ®)|6] smaller but
increases the cost function, Z?zl 1/x;. The expectation E[T(x, 0)] is convex in x [13] while the cost function, Z?:] 1/xi,
is strongly convex with with parameter y = 22—7

In the following, we test ReSA, WaSA, and r-ReSA with yo = j = 13.5 and A = 0.95. All entries of 8* € R7 are
equal to one and ng = 3 for all 1 < k < 100. Within each macro run, the initial guess xo is uniformly generated from X.
The optimal function value E[ f(x*, 0*)] is estimated by implementing SA on Opt(6*) with 1000 steps.

Figure 3a shows the estimated expected sub-optimality over 50 macro runs; ReSA and WaSA perform similarly
for all 1 < k < 100. Here, the wait-then-solve scheme updates 6, and optimizes at k = 1, 26, 51 and 76, which shows
larger cumulative regret as seen in Section 7.1 as well. In earlier periods, r-ReSA outperforms the others in average
sub-optimality, however, the difference becomes less apparent in later periods. Again, we emphasize that r-ReSA is
targeting the regularized problem r-Opty (0% ). Since this is a minimization problem, the regularization term, %XHZ
tends to force x to have smaller entries, which appears to benefit the average sub-optimality for the particular objective
function in (12). Figure 3b reveals that in this problem WaSA has fewer than 5 projections at the first 20 periods
and almost zero for the rest; while ReSA has a larger number of projections than r-ReSA while the latter catches
up in the later periods. This may be misleading at first glance since the number of SA steps that r-ReSA takes is a
roughly square of the number used in ReSA at each period. Since we have relatively large yo = 13.5 and the ReSA
stepsize is yo/j for j = 1,2,-- - at each period, the first few gradient descent steps tend to land x; ; outside the feasible
region, X, thus requiring a subsequent projection. On the other hand, r-ReSA takes y, x/j as the stepsize. Recall that
Yok = y;l = \/Fk is small at the beginning and thus leads to fewer projections; when k increases, yq ;. = y/Ni grows
accordingly, resulting in more projections. For a similar reason, WaSA takes fewer projections as its stepsize, defined as
Yo/ (N]j_ 1 +J — 1), cannot grow significantly with Ni_; in the denominator. The shaded area around each line shows
the two standard-error band on the average projections at each period calculated from 50 macro runs.

To examine the sensitivity of r-ReSA to the structure of the objective function, we slightly modify the cost function
in (12) to obtain the new objective function: f(x,0) = E[T(x, 0, 0)|0] + Z?:l % whose strong convexity parameter is
Manuscript submitted to ACM
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Fig. 3. Performance of the algorithms applied to the SAN problem averaged over 50 macro runs
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Fig. 4. Performance of the algorithms applied to the modified SAN problem (larger p) averaged
over 50 macro runs

p= %, five times that of (12). We choose yo = o = 2.7 accordingly. Under the same sequence of streaming data as in
Figure 3, the four algorithms’ performances using the new objective function are compared in Figure 4. In Figure 4a,
the average sub-optimality of WaSA and ReSA are smaller compared to Figure 3a, which matches our theoretical
results. On the other hand, r-ReSA is significantly outperformed by ReSA and WaSA in earlier periods. With the
scaled-up cost function, the new objective function is more sensitive to smaller entries of x while the regularization
term in r-Opty (0 ) indeed works against r-ReSA in this case. In sharp distinction with Figure 3b, the average number
of projections in r-ReSA is far greater than that of ReSA in Figure 4b as the stepsize yo/j is significantly smaller
than yo 5 /j = \/N_k /j for larger k with the new p. WaSA is excluded from Figure 4b as it performs significantly fewer

projections than the other two algorithms.

7.3 Emergency Medical Service Mobile Station Location Problem

In this section, we examine the performance of ReSA and WaSA on a realistic simulation optimization application
featuring a regional EMS mobile station location problem, a simplified version of a case study conducted in Centre
County, PA [38]. The purpose of this example is to demonstrate the robustness of our algorithms even when the
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mathematical properties of f(x, @) are unknown so that the assumptions cannot be verified. The versions of ReSA and
WaSA with the SP gradient estimator examined in Section 5 are applied to this problem.

The objective of the problem is to determine the location, x, of a single mobile dispatching station in the county that
minimizes the average response time (ART) as described in Section 1. We simplify the solution space to a 2-dimensional
box, X = [0, 4]?, in lieu of the Centre County map. In this version, the hospital is located at (3.75, 3.75). In addition to
the mobile station, there are two permanent dispatching stations located at (2.25, 3.25) and (3.25, 1.75), respectively.
There are two types of emergency calls and the corresponding types of ambulances. The first type is Advanced Life
Support (ALS), which requires more advanced equipment to support patients in critical conditions. The second type is
Basic Life Support (BLS). An ALS ambulance may serve both ALS and BLS patients, however, a BLS ambulance may only
serve BLS patients. Each station has one ambulance of each type. Once a call is received, an ambulance is dispatched
from the nearest station with availability to the patient’s location and perform the first aid upon arrival. For BLS calls,
we first check if a BLS ambulance is available at the nearest station. If not, an ALS ambulance is dispatched, if available.
Otherwise, the system checks the next nearest station’s availability. When there is no available ambulance in any of
the three stations, the patient joins an ALS or BLS (virtual) service queue. Depending on the severity of the case, the
patient may or may not be transferred to the emergency room (ER). When the ambulance is freed, it is dispatched to a
patient’s location if the service queue is nonempty, or return to its original station location.

A discrete-event simulator is implemented to estimate the ART given a mobile station’s location, where a single
replication spans five weeks. We assume the following input distributions are known: (i) 30% of the patients are ALS-type;
(ii) the-first aid time and transfer time at the ER are exponentially distributed with means 10 and 5 minutes, respectively;
and (iii) the travel time between two locations is distributed as Erlang with 6 phases and its mean is 2.7 minutes times
their Manhattan distance. We assume that the arrival process of the emergency calls is a spatio-temporal Poisson point
process, where the hourly arrival rates on the weekdays and weekends are known as 1.9 and 4.5, respectively, however,
the spatial distribution of the emergency calls is unknown and therefore needs to be learned. Furthermore, the map
is divided into a 8 x 8 grid and within each box on the grid, an incoming call’s location is assumed to be uniformly
distributed. Hence, the estimation of the arrival process boils down to finding the splitting probability vector 8* € R%,
which determines the box each incoming emergency call belongs to. The “true” relative frequency of emergency calls
from all 64 boxes are given in Figure 5a; normalizing the frequencies gives 0*.

At the beginning of each period, the emergency call data are generated from the Poisson point process described
above; we treat them as streaming data collected from the system to demonstrate our multi-period SA framework. In
the kth period, the maximum likelihood estimator, 6y, of 8™ is calculated from the cumulative observations, which is
simply an empirical probability estimate computed from observed frequencies. The streaming data size in each period
ranges from 100 to 150 with the initial sample size n; = 500. We assume that the location of the mobile station can be
updated at each period.

Unlike the SAN example in Section 7.2, it is not guaranteed that the objective function is strongly convex for the
EMS example. To observe the function, we discretized the map into a 100 X 100 grid and evaluated the ART under
the true probability distributions assuming the mobile station is located at each vertex of the grid via Monte Carlo
simulation. The Monte Carlo simulation budget was chosen such that the best and the second-best vertices can be
distinguished with 95% confidence. Figure 5b shows the estimated f(x, 0*) surface, which appears to be (at least locally
near the global optimum) strongly convex.

For both ReSA and WaSA, we chose ¢ = 0 and the rest of the algorithm parameters were chosen as in Definition 5.1.

We set sp = Sp = 200 to reduce the variance of the gradient estimator, however, together with the large streaming data size
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Fig. 5. Problem characteristics of the EMS example.

Table 4. Monte Carlo estimates of E[ f (xx, %) ] and cumulative number of SA steps. Standard errors are presented in parentheses.

Period ReSA WaSA
E[f(xx, 0%)] | Cumulative number of SA steps | E[f(xg, 6%)] | Cumulative number of SA steps
k=25 | 4.0517(0.0017) 226.47(1.23) 4.2105(0.0243) 44.23(0.26)
k=50 | 4.0477(0.0008) 1061.27(4.71) 4.0507(0.0007) 173.07(0.94)
k=75 | 4.0489(0.0008) 2737.90(11.63) 4.0470(0.0009) 435.13(2.09)
k = 100 | 4.0470(0.0008) 5443.17(21.14) 4.0473(0.0007) 873.97(3.76)

Ny, this makes M. large. To reduce the computational burden, we adopt scaling factor S when determining M. For ReSA,
we choose M. = [(Nj/S)"/P] with other parameters unchanged. For WaSA, we choose My = [ (N [SHYP — (N1 /SN
and adjust the stepsizes and window sizes as yj ; = 27! ((Nk_l/S)’1 +j- 1)71 and ¢ ; = ((Nk_l/S)’1 +j- 1)10/4
Note that S does not affect the convergence rate, but affects the constant in the upper bound for the expected sub-
optimality in Theorems 5.3 and 5.4. For t = 0, the feasible range for 1is 0 < A < 1.5; we employed A = 1.45 in our
experiments below. Recall that Definition 5.1 requires yo > pp~" and o = 2u~! but y is unknown in this setting. Thus,
we set yo = Jo = 10 as a conservative choice.

Table 4 presents the estimated E[ f(xg, 0*)] as well as the cumulative number of SA steps after k = 25, 50, 75, and
100 iterations for both algorithms. Note that E[ f(x*, 8*)] is estimated to be 4.04 from the Monte Carlo simulation
shown in Figure 5b. We observe that although at the beginning ReSA outperforms WaSA in solution quality, WaSA
catches up in the end. Considering the computational savings, WaSA is significantly superior, consistent with our
analysis in Section 5. Unlike in Section 7.1, a single replication of the discrete-event simulator for the EMS problem is

far more time-consuming; thus, the computational benefit of WaSA is even more pronounced here.

7.4 A nonconvex function: six-hump camel function

In this section, we consider an instance of a nonconvex function, the six-hump Camel function [31]:
1
f(x,0)= gxf - 2.1xi1 + Gle +x1x2 + szg + 93x§ (13)

defined on X = {x = (x1,x2)|x1 € [-3,3],x2 € [-2,2]}. Following [5], we set 8* = (4,4,—4)T. We assume 0y, is
estimated via MLE computed from i.i.d. observations of N(8*,diag((20%, 252, 30%))). Within X, f(e, 8*) is locally
strongly convex at its two global minimizers, (0.0898, —0.7126) and (—0.0898,0.7126), and its four local minimizers,
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Fig. 6. Scatter plot of x399 obtained from 100 macro runs of ReSA, WaSA and r-ReSA on the
Six-Hump Camel function when o = 2.

(—1.7035,0.7960), (1.7035,-0.7960), (1.6071,0.5686) and (—1.6071, —0.5686). In addition, f (e, 6*) has seven saddle
points; see Figure 6. Given x, we assume that the unbiased gradient estimator, G(x, 0, £) = Vxf(x, 0) + £, is available,
where each entry of £ follows N (0, 0%(2 + f(x, 6))?); notice the dependence of the variance on f(x, 0).

We tested ReSA, WaSA, and r-ReSA with yp = jo = % and A = 0.995. The incoming data size of each period,
represented by ng, is geometrically distributed with success probability %. In each macro run, xg is sampled uniformly
in X. Figure 6a, 6b and 6¢ show the scatter plots of the solutions returned from 100 macro runs of the three algorithms
after 800 periods when o = 2. All local and global minimizers are marked with circles (two global minimizers are in the
middle) while the saddle points are marked as diamonds. The percentage near each minimizer shows the proportion of
number of solutions that lie in the corresponding convex valley. Observe that except for one macro run for WaSA, all
macro runs converge to the vicinity of global and local optima as prescribed by the theory. While 90% of the macro-runs
generated by r-ReSA converge to the global optimum, a non-negligible fraction of macro runs end up in local minima for
ReSA and WaSA. As seen in the SAN example with the objective function (12), r-ReSA benefits from the regularization

term as the global optima have smaller norms than local optima.

8 CONCLUDING REMARKS AND FUTURE WORK

In this paper, we consider a multi-period SO problem where simulation model parameters are estimated with increasing
precision as more input data accumulate over the decision periods. Focusing on SO problems defined on the continuous
feasible solution space, we propose two multi-period SA schemes: ReSA and WaSA. The key distinction between the
two algorithms lies in the choice of the stepsize sequence and the number of SA steps employed in each period; ReSA
restarts the stepsize sequence at every period while WaSA calibrates the stepsize sequences across all periods as a
function of the streaming data size leading to a significantly fewer number of SA steps for later periods compared
to ReSA. Under a suitable strong convexity requirement on f, both ReSA and WaSA achieve the best-possible
convergence rate in the expected sub-optimality when either an unbiased gradient estimator or the SP gradient
estimator is employed. Additionally, the bounds on computational effort derived for WaSA grow far slower as opposed
to their ReSA counterparts. This benefit becomes more pronounced when the SP gradient estimator is employed. In
addition, we present a regularized r-ReSA variant that does not necessitate knowing the strong convexity parameter.
We show that under suitable choices of the regularization sequence and the number of SA steps, the resulting expected
sub-optimality error diminishes at the best-possible rate. Experiment results support these analyses; in particular, on
Manuscript submitted to ACM
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the EMS example, WaSA consumed less than a sixth of the simulation effort taken by ReSA while producing solutions
of similar estimated sub-optimality.

This work represents a first step towards investigating a broad range of multi-period SO problems under more general
settings. An important question lies in extending these techniques to contend with non-parametric input modeling.
In addition, we intend to consider settings where the input-generating processes are afflicted by non-stationarity.
Extending the WaSA scheme to the regularized problem will be explored as well. Finally, we intend to examine how we

may contend with relaxing assumptions in the problem class such as convexity and smoothness.
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