

Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input Data

LINYUN HE, Georgia Institute of Technology, USA

UDAY V. SHANBHAG, The Pennsylvania State University, USA

EUNHYE SONG, Georgia Institute of Technology, USA

We consider a continuous-valued simulation optimization (SO) problem, where a simulator is built to optimize an expected performance measure of a real-world system while parameters of the simulator are estimated from streaming data collected periodically from the system. At each period, a new batch of data is combined with the cumulative data and the parameters are re-estimated with higher precision. The system requires the decision variable to be selected in all periods. Therefore, it is sensible for the decision-maker to update the decision variable at each period by solving a more precise SO problem with the updated parameter estimate to reduce the performance loss with respect to the target system. We define this decision-making process as the multi-period SO problem and introduce a multi-period stochastic approximation (SA) framework that generates a sequence of solutions. Two algorithms are proposed: Re-start SA (**ReSA**) reinitializes the stepsize sequence in each period, whereas Warm-start SA (**WaSA**) carefully tunes the stepsizes, taking both fewer and shorter gradient-descent steps in later periods as parameter estimates become increasingly more precise. We show that under suitable strong convexity and regularity conditions, **ReSA** and **WaSA** achieve the best possible convergence rate in expected sub-optimality either when an unbiased or a simultaneous perturbation gradient estimator is employed, while **WaSA** accrues significantly lower computational cost as the number of periods increases. In addition, we present the **regularized ReSA** which obviates the need to know the strong convexity constant and achieves the same convergence rate at the expense of additional computation.

CCS Concepts: • **Computer systems organization** → **Embedded systems**; *Redundancy*; **Robotics**; • **Networks** → Network reliability.

Additional Key Words and Phrases: multi-period simulation optimization, multi-period stochastic approximation, simulation optimization under input model risk

ACM Reference Format:

Linyun He, Uday V. Shanbhag, and Eunhye Song. 2018. Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input Data. *ACM Trans. Model. Comput. Simul.* 1, 1 (July 2018), 26 pages. <https://doi.org/10.1145/1122445.1122456>

1 INTRODUCTION

In this paper, we consider a simulation optimization (SO) problem where a high-resolution stochastic simulator is built to mimic a target system's stochastic behavior with the goal of optimizing an expected performance measure. Such a simulator is often referred to as a digital twin [22] and is continuously improved as additional data from the target

Authors' addresses: Linyun He, lhe85@gatech.edu, Georgia Institute of Technology, School of Industrial and Systems Engineering, 755 Ferst Dr. NW, Atlanta, Georgia, USA, 30332; Uday V. Shanbhag, udhaybag@psu.edu, The Pennsylvania State University, Department of Industrial and Manufacturing Engineering, 201 Old Main, University Park, Pennsylvania, USA, 16802; Eunhye Song, eunhye.song@isye.gatech.edu, Georgia Institute of Technology, School of Industrial and Systems Engineering, 755 Ferst Dr NW, Atlanta, Georgia, USA, 30332.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM

53 system are collected. Meanwhile, the decision-maker applies an SO algorithm to the simulator to find an implementable
 54 decision for the target system. Such a decision-making framework, supported by a digital twin, has been discussed in
 55 the literature in the context of supply chain [14, 37], manufacturing [26, 42], and more. We draw motivation from the
 56 following application in emergency medical service (EMS), which is revisited in Section 7 for an empirical study.
 57

58

- 59 • A regional emergency medical service (EMS) provider has ambulance dispatching stations and uses simulation
 60 to support their operational decisions [38]. Their primary goal is to minimize the average response time, the time
 61 between receiving an emergency call from a patient and picking up the patient. In addition to the dispatching
 62 stations, the EMS provider also operates an additional “mobile station,” where the ambulances are parked
 63 near potential sources of emergencies to minimize the average response time. The emergency call data (time,
 64 location, emergency type, etc.) are collected continuously by the EMS provider from which the spatio-temporal
 65 distribution of emergency calls is updated over time. Naturally, the location of the mobile dispatching station
 66 can also be updated as the distribution is learned more precisely.
 67

68

69 In our problem context, the logical discrepancy between the system and the simulator is deemed negligible. We
 70 focus on the case where the parameters of the simulation input distribution function are estimated from streaming
 71 data collected from the target system as in the EMS example. We assume that the data-generating process is stationary
 72 regardless of the decision implemented in the system. Notice that in the EMS example, the implemented decision in the
 73 target system (mobile station’s location) does not influence the input-generating process (distribution of emergency
 74 calls) and only affects the output performance measure (average response time).
 75

76 A generic SO problem that minimizes the expected performance measure can be written as
 77

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\omega} [F(\mathbf{x}, \theta, \omega)], \quad (\text{Opt}(\theta))$$

78 where $\mathcal{X} \subseteq \mathbb{R}^d$ is the set of feasible solution, F denotes the simulation output function, and θ represents the parameter
 79 vector of the input models. We assume that 1) F is completely characterized by \mathbf{x} , θ , and a sequence of Uniform(0, 1)
 80 random numbers represented by ω ; and 2) no analytical expression for F and that F can only be evaluated by running a
 81 simulation. The objective function in \mathbf{x} is defined as the expectation of $F(\mathbf{x}, \theta, \omega)$ with respect to ω (i.e. $\mathbb{E}_{\omega} [F(\mathbf{x}, \theta, \omega)]$).
 82 If we denote the true parameter vector of the data-generating distribution in the system by θ^* , then the true optimum
 83 in the system, \mathbf{x}^* , is optimal for $\text{Opt}(\theta^*)$. In general, an optimal solution of $\text{Opt}(\theta)$ for $\theta \neq \theta^*$ is suboptimal for $\text{Opt}(\theta^*)$.
 84 Hence, when the unknown θ^* is replaced with an estimate computed from finite data, there is risk of making sub-optimal
 85 decisions due to the finite-sample error in the estimate referred to as input model risk [27]. While most SO approaches
 86 accounting for input model risk assume a single batch of input data is available, [39] first incorporates streaming
 87 input data in SO; they propose a sequential ranking and selection (R&S) algorithm for a discrete SO problem where
 88 the parameter estimates for the simulator are improved from the streaming input data. However, their work only
 89 considers the case when the parameter estimator is in the form of a sample mean and a finite solution space. Our work
 90 can incorporate a general M-estimator for θ^* and focuses on a continuous solution space. In particular, the solution
 91 procedure considered here is stochastic approximation (SA) that takes a stochastic gradient descent step at each iteration,
 92 where the stochastic gradient estimator is computed via simulations. Each iteration may require projecting the solution
 93 back to the feasible region (e.g., Euclidean projection) whose computational cost depends on the complexity of \mathcal{X} .
 94

95 To clearly define the problem of interest, we coin the term, *multi-period* SO; Figure 1 provides a schematic of how
 96 data collection and decision-making are synchronized in multi-period SO. At the beginning of the k th period, a new
 97 batch of input data are combined with the accumulated data from the previous periods; we do not assume the batch size
 98

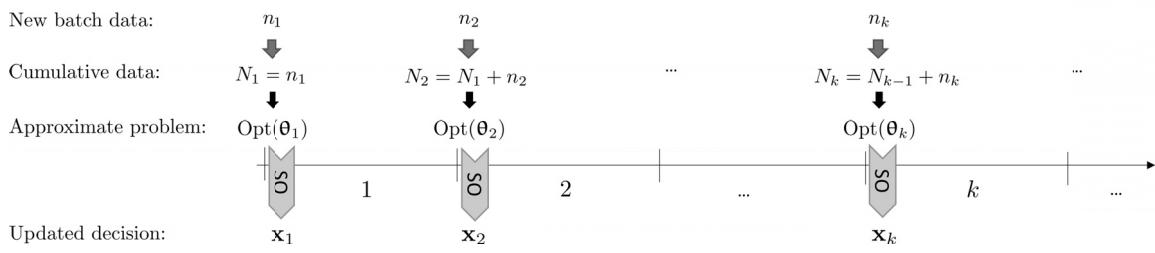


Fig. 1. The data collection and decision time line of multi-period SO problem; $\{n_k\}$ and $\{N_k\}$ respectively represent the sequence of incoming data size and cumulative data size; an SO algorithm is applied to solve $\{\text{Opt}(\theta_k)\}$ and returns $\{\mathbf{x}_k\}$ at each period.

118 to be known a priori or can be controlled. We assume that the length of each period is much larger than the runtime of
119 a single simulation replication. From the combined data, the k th-period estimator, θ_k , of θ^* is updated. As k increases,
120 the sequence of θ_k becomes closer to θ^* under some regularity conditions. For small k , on the other hand, θ_k may
121 be a poor estimate of θ^* , thus the solution to $\text{Opt}(\theta_k)$ may perform poorly in the target system. One may attempt to
122 wait until k is sufficiently large so that θ_k has small estimation error, then solve $\text{Opt}(\theta_k)$. However, the target system
123 requires a decision to be implemented in the meantime (e.g., the mobile station's location must be determined in the
124 EMS example). Choosing an arbitrary solution to be implemented until k is "large enough" may result in a significant
125 loss in the system performance. Moreover, because the data streaming process is outside of our control, it is difficult to
126 know a priori how many periods will have to pass until the desired precision is reached. Our goal is to find a sequence
127 of solutions $\{\mathbf{x}_k\}$ such that the cumulative performance loss in the real-world system compared to \mathbf{x}^* is minimal.

131 Our strategy is to design a multi-period SA scheme that (approximately) solves $\text{Opt}(\theta_k)$ at the beginning of the k th
132 period and implements the updated decision in the system until the next period. The key research question here is
133 to determine how much computational effort to spend at each period so that the expected sub-optimality under θ^*
134 diminishes at the fastest possible rate. Hypothetically, suppose we spend infinite computational effort at each k to find
135 the exact solution to $\text{Opt}(\theta_k)$. Of course, this is unrealistic as each period is finite. Although we assume simulation runs
136 are much faster than the data streaming process, there is a natural limit on how many replications can be performed
137 within each period. Even if $\text{Opt}(\theta_k)$ can be solved to optimality for each k , the resulting solution may be sub-optimal
138 under θ^* , particularly for earlier periods when the estimate of θ^* may be coarse. Nonetheless, the hypothetical scheme
139 provides a useful benchmark for our proposed multi-period SA scheme; given $\{\theta_k\}$, observe that the performance of any
140 multi-period SO procedure is constrained by the rate at which the real-world θ_k converges to θ^* . In fact, a benchmark
141 that achieves the same rate is one that returns the optimal solution of $\text{Opt}(\theta_k)$ at each k in terms of the expected
142 sub-optimality for $\text{Opt}(\theta^*)$. This motivates the design of an SA framework that spends minimal computational effort in
143 solving $\text{Opt}(\theta_k)$ at each period k while the resulting sequence of solutions provably attains the same convergence rate
144 in expected sub-optimality as that displayed by the sequence of the optimal solutions to $\text{Opt}(\theta_k)$.

145 Indeed, the idea of controlling the computational effort to match the precision of the approximated problem has been
146 explored before to design an efficient sample average approximation (SAA) scheme [23, 32]. In particular, [23] studies
147 the retrospective approximation (RA) that solves a sequence of sample-average problems constructed with increasing
148 sample sizes with progressively tighter precision requirements (i.e., decreasing error tolerance imposed on the distance
149 between the k th SAA problem's optimal solution and the solution returned by the algorithm) warm-starting from
150 the previous period's solution. While philosophically multi-period SA is constructed in the same vein as RA, there
151

157 are two major differences: 1) the approximation error of $\text{Opt}(\theta_k)$ is determined by not only the stochasticity in the
 158 algorithm under our control, but also the streaming input data size beyond our control; 2) the analytical expression for
 159 the simulation output function F is unknown and thus, the sample-average version of $\text{Opt}(\theta)$ cannot be written down
 160 analytically or solved directly.

161 In this paper, our focus is predominantly on problems where $\mathbb{E}_\omega[F(\mathbf{x}, \theta, \omega)]$ is μ -strongly convex over convex set
 162 X for any $\theta \in \Theta$. While the convergence theory established in the paper does not immediately extend to nonconvex
 163 settings, an empirical study on a nonconvex function suggests promise (See Section 7.4). Next, we provide a brief review
 164 of the prior work in the context of such simulation optimization problems.

1.1 Literature review

170 There are several recent studies that consider SO under input model risk when a batch of input data is given. In [6, 27, 28],
 171 variations of R&S procedures are proposed to provide a probabilistic guarantee that the optimum of $\text{Opt}(\widehat{\theta})$, where
 172 $\widehat{\theta}$ is an estimator of θ^* computed from a single batch of data, is still optimal for $\text{Opt}(\theta^*)$. Such a guarantee typically
 173 relies on the requirement that $\widehat{\theta}$ converges to θ^* as the data size tends to infinity. However, for smaller sample sizes,
 174 the desired level of probabilistic guarantee may not be achieved by these approaches. Alternatively, [9, 12] propose
 175 distributionally robust R&S procedures that solve $\text{Opt}(\theta)$ when the uncertainty set of θ contains a finite number of
 176 candidate choices of θ .

177 In [7], the authors apply a Bayesian approach to model uncertainty about θ^* by imposing a prior distribution and
 178 updating it to a posterior based on the batch input data. They adopt a modified objective function $\mathbb{E}[F(\mathbf{x}, \theta, \omega)]$, where
 179 the expectation is taken with respect to the posterior distribution of θ as well as stochastic simulation error induced
 180 by ω . In [24] and [36], Bayesian optimization (BO) algorithms are presented to address the same objective function as
 181 in [7] defined on a continuous solution space.

182 All of the aforementioned approaches focus on the case when a single batch of input data is available. Some recent
 183 research has considered the incorporation of additional data collection into the SO problem to balance the trade-off
 184 between simulation replication and input data collection [35, 40, 41]. For continuous SO, warm-start BO algorithms
 185 [25, 32] may be applied to solve a sequence of problems updated by the streaming data, although these algorithms are
 186 created for more general dynamic problems. The closest SO problem to ours appears in [21], where they adopt Bayesian
 187 input modeling and apply stochastic gradient descent to find the optimal solution for the problem where the objective
 188 function is defined by averaging both stochastic uncertainty and Bayesian posterior uncertainty.

189 Similar problems have been studied under the name of *misspecified optimization* in the optimization literature in
 190 which the parameters of the optimization problem are estimated from idiosyncratic data. Research on misspecified
 191 optimization and game-theoretic problems appears to be rooted in [33], [3], and [4]. More recently, [1] examines
 192 misspecified deterministic convex optimization problems while stochastic variants have been studied in [17] and [15].
 193 These have motivated the studies on misspecified Nash equilibrium problems [18] and misspecified Markov Decision
 194 Processes [16]. The problem closest to ours is considered in [17], where learning θ^* is cast as a stochastic convex
 195 optimization problem while $\text{Opt}(\theta)$ is a stochastic convex optimization problem.

196 **Gaps.** There is a clear gap that exists in the literature designing an SA algorithm for an SO problem defined on a
 197 continuous solution space under input model risk, particularly when streaming input data are available from the
 198 system. Applying an out-of-the-box gradient descent scheme to solve the problem is faced with following challenges: (i)
 199 *Cumulative regret*: Each period's decision is implemented in the real-world system and therefore, the algorithm should
 200

209 be designed to return a sequence of solutions that result in small cumulative regret for the real-world problem, $\text{Opt}(\theta^*)$
 210 (See Eq. (4)). (ii) *Computational cost*: Naive approaches to reduce the regret may impose significant computational
 211 burden in computing approximate solutions of $\text{Opt}(\theta_k)$. To design an efficient algorithm, information from the prior
 212 periods need to be utilized; (iii) *Knowledge of problem parameters*. Prior schemes rely on the problem parameters (e.g.,
 213 strong convexity parameter) in selecting algorithm parameters, which may not be known for a typical SO problem.
 214

216 1.2 Contributions

217 Motivated, in large part, by the gaps in the literature, this paper makes the following contributions.

218 (i) We define the multi-period SO problem with exogenous streaming input data and devise a multi-period SA framework
 219 that solves $\text{Opt}(\theta_k)$ up to the level of error determined by the cumulative streaming data size at each period k . We propose
 220 two variants of multi-period SA: Re-start Stochastic Approximation (**ReSA**); and Warm-start Stochastic Approximation
 221 (**WaSA**). While at each period both variants warm-start from the previous period's solution, the former restarts the
 222 stepsize sequence for SA in each period, whereas the latter carefully controls the stepsize sequence for all periods as a
 223 function of the cumulative input data size.

224 (ii) Under a suitable strong convexity requirement on $\text{Opt}(\theta)$, we show that both **ReSA** and **WaSA** achieve *the optimal*
 225 *convergence rate in the expected sub-optimality* given the streaming data size when combined with either an unbiased
 226 gradient estimator or the simultaneous perturbation (SP) gradient estimator [30]. For the latter, we further investigate
 227 the trade-off between increasing the simulation effort for gradient estimation vs. the number of gradient-descent steps
 228 taken within each period. We show that when the projection operation is expensive, computational effort can be
 229 significantly reduced by estimating the gradient with increasing precision, which may lead to taking fewer projection
 230 steps in each period.

231 (iii) We show that **WaSA** can save significant computational cost over **ReSA** by taking fewer, smaller gradient-descent
 232 steps in later periods. For instance, when the same number of data points stream in at each period and an unbiased
 233 gradient estimator is available, the cumulative number of gradient-descent steps **ReSA** takes grows quadratically in the
 234 number of periods, whereas that of **WaSA** grows linearly. The relative saving grows even more starkly when the SP
 235 gradient estimator is adopted.

236 (iv) Finally, we present a regularized variant of **ReSA** which does not require knowledge of the strong convexity
 237 parameter μ and proceed to show that under suitable choices of the regularization sequence, the resulting expected
 238 sub-optimality error diminishes at the same rate as **ReSA** and **WaSA** at the expense of computational effort.

239 In our preliminary work [29], a prior version of the multi-period SA framework is presented. However, there are
 240 several limitations of [29] that we aim to address in this paper: (i) an unbiased gradient estimator is assumed available,
 241 which may not for a general SO problem; (ii) the derivation of the upper bound on the expected sub-optimality was
 242 preliminary and one of the results was afflicted by an error; and (iii) the warm-start algorithm in [29] does not control
 243 the stepsize sequences across periods and it has proved challenging to obtain a valid upper bound on the expected
 244 sub-optimality for this algorithm once the error in (ii) is fixed; (iv) the regularized variant of **ReSA** is new.

245 The rest of the paper is organized as follows. In section 2, we formally state the multi-period SA problem and describe
 246 our algorithms. Section 3 summarizes the main results of this paper. Section 4 and Section 5 discuss the detailed analysis
 247 when an unbiased gradient estimator and the SP gradient estimator is employed, respectively. A regularized variant of
 248 **ReSA** is presented and analyzed in Section 6. In Section 7, we evaluate the empirical performance of our algorithms
 249 using synthetic and realistic SO problems including the EMS example described earlier. Concluding remarks are given
 250 in Section 8. All proofs of the theoretical results are included in the Supplementary Material (SM).

261
 262 **Notation.** For arbitrary sequence $\{a_k\}$ and positive sequence $\{b_k\}$, we adopt the notation, $a_k = O(b_k)$, if there exists
 263 constant $0 < M < \infty$ and $k_0 \in \mathbb{Z}$ such that $|a_k| < Mb_k$ for all $k \geq k_0$. We use $\|\cdot\|$ to represent the Euclidean norm.
 264

265 **2 PROBLEM AND ALGORITHM DESCRIPTION**

266 In this section, we formally define the multi-period SA problem (Section 2.1) and then propose two multi-period SA
 267 algorithms to solve this problem (Section 2.2). Some background on SA is provided in SM Section ?? for completeness.
 268

269 **2.1 Problem statement**

270 Suppose that there are I data-generating processes in the system, each of which streams an independent and identically
 271 distributed (i.i.d.) sequence of data. We assume that if two or more inputs are correlated, then they are collected together
 272 as vectors. Otherwise, all I inputs are independent of each other. The parametric family of each input distribution is
 273 assumed to be known, however, its true parameter(s) must be estimated from the data. We aggregate the true parameters
 274 of all I inputs within the vector $\theta^* \in \mathbb{R}^{I'}$, where $I' \geq I$; see Section ?? of SM for further discussion.
 275

276 Let $n_k^1, n_k^2, \dots, n_k^{I'}$ denote the number of observations obtained from I real-world input distributions at the k th period
 277 and $n_k = \sum_{i=1}^I n_k^i$, i.e., n_k is the sum of incoming data size at the k th period from all I input-generating processes.
 278 We assume that n_k^i/n_k converges to constant ρ_i with probability 1 as $k \rightarrow \infty$ for each $i = 1, 2, \dots, I$. Without loss of
 279 generality, it can be assumed that $n_k > 0$, because any period in which no data are collected can be merged with the
 280 next period. The cumulative average number of observations by the k th period is denoted by N_k , i.e. $N_k \triangleq \sum_{\ell=1}^k n_\ell$. Let
 281 \mathcal{Z}_k be the collection of all input data observed from the system up to the k th period. Given \mathcal{Z}_k , θ^* is approximated by
 282 its estimator θ_k . Our scheme allows θ_k to be any parametric estimator that satisfies
 283

$$\theta_k \xrightarrow{a.s.} \theta^* \quad \text{and} \quad \mathbb{E}[\|\theta_k - \theta^*\|^2] = O(N_k^{-1}), \quad (1)$$

284 where a.s. denotes almost sure convergence. An example of such θ_k is an M-estimator defined as a solution to
 285

$$\min_{\theta \in \Theta} \mathcal{L}(\theta \mid \mathcal{Z}_k), \quad (2)$$

286 where $\Theta \subseteq \mathbb{R}^{I'}$ for $I' \geq I$ is a feasible set for θ and $\mathcal{L}(\cdot \mid \mathcal{Z}_k)$ is a sample loss function given cumulative observations
 287 \mathcal{Z}_k . For instance, if $\mathcal{L}(\cdot \mid \mathcal{Z}_k)$ is chosen to be the negative log-likelihood function of \mathcal{Z}_k , then the resulting θ_k is a
 288 maximum likelihood estimator; see Section ?? of SM for the exact form of \mathcal{L} in this case. For this choice of \mathcal{L} , assuming
 289 that (2) can be solved to optimality, θ_k satisfies (1) under some regularity conditions presented in Section ??.

290 We introduce the following notation for the conditional mean of the simulation output at fixed \mathbf{x} given θ :

$$f(\mathbf{x}, \theta) \triangleq \mathbb{E}_\omega[F(\mathbf{x}, \theta, \omega)]. \quad (3)$$

291 Recall that \mathbb{E}_ω indicates the expectation is taken with respect to ω . Note that (3) allows \mathbf{x} to be either a deterministic
 292 feasible solution or a random solution returned by an SO algorithm.
 293

294 Recall that $\text{Opt}(\theta^*)$ is defined on the d -dimensional continuous feasible solution space, \mathcal{X} , and its solution is denoted
 295 by \mathbf{x}^* . Let \mathbf{x}_k^* represent the optimal solution to $\text{Opt}(\theta_k)$, i.e., $\mathbf{x}_k^* = \arg \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \theta_k)$. Since θ_k is progressively getting
 296 closer to θ^* as k increases, we may expect \mathbf{x}_k^* to get closer to \mathbf{x}^* under some suitable smoothness assumption on f .
 297

298 Consider a multi-period SA scheme that takes M_k stochastic gradient-descent steps to solve $\text{Opt}(\theta_k)$ and returns \mathbf{x}_k
 299 as its (approximate) solution at each period k . Here, the stochastic gradient estimator is computed from simulation
 300 replications; we elaborate on the types of stochastic gradient estimators considered in our analyses in Sections 4.1
 301

313 **Algorithm 1 (ReSA).** Re-start multi-period SA

314 Given $\mathbf{x}_0, \gamma_0, p, \{N_k\}$; Set $k := 1$;
315 [1] Compute θ_k using N_k samples; Set $\mathbf{x}_{k,1} := \mathbf{x}_{k-1}$ and $M_k := \max \left\{ 1, \left\lceil N_k^{1/p} \right\rceil \right\}$;
316 [2] $\mathbf{x}_{k,j+1} := \Pi_{\mathcal{X}} [\mathbf{x}_{k,j} - \gamma_{k,j} G(\mathbf{x}_{k,j}, \theta_k, \omega_{k,j})]$ given $\gamma_{k,j} = \frac{\gamma_0}{j}$ for $j = 1, \dots, M_k$;
317 [3] $\mathbf{x}_k := \mathbf{x}_{k,M_k+1}$; $k := k + 1$ and go to [1];
318

319
320

321 and 5.1. Since M_k is finite, \mathbf{x}_k is subject to stochastic error, i.e., $\mathbf{x}_k \neq \mathbf{x}_k^*$ in general. The performance loss of implementing
322 \mathbf{x}_k in the system at the k th period can be measured by the optimality gap between \mathbf{x}_k and \mathbf{x}^* under the target system
323 problem, $\text{Opt}(\theta^*)$, as θ^* characterizes the system for which the sequence of decisions, $\{\mathbf{x}_k\}$, is implemented. To evaluate
324 the performance loss over K periods, we consider the following expected cumulative sub-optimality (regret) of the
325 sequence of solutions, $\{\mathbf{x}_k\}$, for $\text{Opt}(\theta^*)$:
326

327
$$\sum_{k=1}^K \mathbb{E} [f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)], \quad (4)$$
328

329 where the expectation is taken with respect to the sampling error in θ_k caused by finiteness of N_k as well as the stochastic
330 variability in computing \mathbf{x}_k . We emphasize that the k th-period expected sub-optimality in (4) is not $\mathbb{E}[f(\mathbf{x}_k, \theta_k) -$
331 $f(\mathbf{x}^*, \theta^*)]$; this is because we implement \mathbf{x}_k in the target system whose true, but unknown parameter, is θ^* .
332

333 As mentioned in Section 1, the cumulative expected sub-optimality of $\{\mathbf{x}_k^*\}$ provides a benchmark for any multi-period
334 SA scheme. Hypothetically, suppose simulation is instantaneous so that for each $\text{Opt}(\theta_k)$, we can take infinitely many
335 gradient-descent steps to find \mathbf{x}_k^* . Still, $\mathbb{E}[f(\mathbf{x}_k^*, \theta^*) - f(\mathbf{x}^*, \theta^*)] \geq 0$ as $\theta_k \neq \theta^*$ in general due to the sampling error in
336 θ_k . Therefore, even if the k th period's SA scheme is stopped after $M_k < \infty$ gradient-descent steps, as long as
337

338
$$\mathbb{E}[f(\mathbf{x}_k^*, \theta^*) - f(\mathbf{x}^*, \theta^*)] \approx \mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)] \quad (5)$$
339

340 for each k , the expected cumulative sub-optimality of $\{\mathbf{x}_k\}$ would be similar to that of $\{\mathbf{x}_k^*\}$. Thus, our goal lies in
341 developing a multi-period SA algorithm such that both expected sub-optimality terms in (5) have the same convergence
342 rate in N_k by carefully selecting M_k as a function of N_k at each k .
343

344 **Remark:** Instead of \mathbf{x}_k , one may consider adopting $\bar{\mathbf{x}}_k = \arg \min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[f(\mathbf{x}, \theta_k)]$, where the expectation is with respect
345 to the (approximate) sampling distribution of θ_k . In Appendix ??, we show that under assumptions similar to those made
346 in Section 3, $\{\bar{\mathbf{x}}_k\}$ and $\{\mathbf{x}_k\}$ have the same rates of convergence in expected sub-optimality and discuss computational
347 advantage of \mathbf{x}_k over $\bar{\mathbf{x}}_k$.
348
349 **2.2 Algorithm definition**
350 We propose two variants of multi-period SA. The first is the *re-start multi-period SA (ReSA)* scheme presented in
351 Algorithm 1. **ReSA** initializes (restarts) the stepsize sequence for gradient descent at each period while adopting
352 the previous period's solution as the initial solution. In the k th period, **ReSA** solves $\text{Opt}(\theta_k)$ by taking M_k projected
353 gradient-descent steps starting from \mathbf{x}_{k-1} . For the first period, we assume \mathbf{x}_0 is randomly selected in \mathcal{X} in our analyses.
354 Let $\mathbf{x}_{k,j}, j = 1, 2, \dots, M_k$ denote the sequence of solutions returned by the algorithm in the k th period.
355

356 Note that $G(\mathbf{x}_{k,j}, \theta_k, \omega_{k,j})$ in Step [2] is a stochastic estimator of $\nabla_{\mathbf{x}} f(\mathbf{x}_{k,j}, \theta_k)$. Depending on the choice of G ,
357 $\omega_{k,j}$ may be a sequence of Uniform (0, 1) random numbers or a collection of such sequences if G requires multiple
358 replications to compute. In addition, $\Pi_{\mathcal{X}}(u)$ represents the Euclidean projection of vector $u \in \mathbb{R}^d$ onto \mathcal{X} while γ_0
359 denotes the constant of the stepsize sequence. Note that we use the parameter p to define the $\{M_k\}$ sequence, where p
360

Algorithm 2 (WaSA). Warm-start multi-period SA

365 Given $\mathbf{x}_0, \gamma_0, \tilde{\gamma}_0, p, \{N_k\}$; Choose $0 < \lambda < 1/p$; Set $k := 1$;
 366 [1] Run **ReSA** with γ_0 and \mathbf{x}_0 for $k = 1$ to obtain \mathbf{x}_1 ; Update $k := 2$;
 367 [2] Compute θ_k using N_k samples; $M_k := \lceil N_k^{1/p} - N_{k-1}^\lambda \rceil$; Set $\mathbf{x}_{k,1} := \mathbf{x}_{k-1}$;
 368 [3] $\mathbf{x}_{k,j+1} := \Pi_X [\mathbf{x}_{k,j} - \gamma_{k,j} G(\mathbf{x}_{k,j}, \theta_k, \omega_{k,j})]$ given $\gamma_{k,j} = \frac{\tilde{\gamma}_0}{N_{k-1}^\lambda + j - 1}$ for $j = 1, \dots, M_k$;
 369 [4] $\mathbf{x}_k := \mathbf{x}_{k,M_k+1}$; $k := k + 1$ and go to [2];
 370

373
 374 is chosen so that $\mathbb{E} [\|\mathbf{x}_{1,j} - \mathbf{x}_1^*\|^2 | \theta_1] = O(j^{-p})$, which can be achieved by choosing M_1 and $\{\gamma_{1,j}\}$ appropriately. The
 375 value of p depends on the gradient estimator. In the remainder of the paper, we refer to $O(j^{-p})$ as the *single-period MSE*
 376 *convergence rate* to differentiate it from the convergence rate of the expected sub-optimality, $\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)]$,
 377 which we simply refer to as the *convergence rate*. Notice that in Step [2], $\gamma_{k,1}$ is reset to γ_0 for each k . The algorithm
 378 parameters are left unspecified here because their choices depend on the properties of $\text{Opt}(\theta)$ and G ; these are clarified
 379 in Sections 4–5 with corresponding assumptions on $\text{Opt}(\theta)$ and G .
 380

382 **ReSA** is a generalization of the scheme adopted by [17], where a single projected gradient-descent step was taken at
 383 each period, i.e. $M_k = 1$ for every $k \geq 1$. **ReSA** sets M_k to be a function of N_k at each k . The choice of M_k in **ReSA**
 384 ensures that we spend just enough computational effort in the k th period for $\{\mathbf{x}_k\}$ to achieve the same convergence rate
 385 as $\{\mathbf{x}_k^*\}$, given the streaming data sequence. In fact, the choice of $\{M_k\}$ in **ReSA** guarantees that the convergence rate
 386 matches the rate at which $\theta_k \rightarrow \theta^*$ even when the initial solution to the k th problem, $\mathbf{x}_{k,1}$, is chosen randomly in X
 387 under appropriate assumptions made in Sections 3–5. Since $\theta_k \xrightarrow[k \rightarrow \infty]{a.s.} \theta^*$ and \mathbf{x}_{k-1}^* and \mathbf{x}_k^* become closer as k increases,
 388 one may expect that taking \mathbf{x}_{k-1} close to \mathbf{x}_{k-1}^* as the initial solution of the k th period would improve the computational
 389 efficiency of the algorithm by letting us take fewer and smaller SA (gradient-descent) steps while achieving the same
 390 convergence rate. Based on this intuition, we propose the *warm-start multi-period SA (WaSA)* scheme in Algorithm 2.
 391

392 The constant, λ , can be any value in $(0, 1/p)$; the closer λ is to $1/p$, the fewer gradient-descent steps **WaSA** takes in
 393 each period. The choices for the parameters are discussed in Sections 4–5 along with the assumptions on $\text{Opt}(\theta)$ and G .
 394

396 Observe from Step [1] of Algorithm 2 that **ReSA** and **WaSA** make identical progress for $k = 1$. For $k \geq 2$, **WaSA**
 397 displays two key distinctions from **ReSA**:

398 (a) By setting the j th stepsize at period k as $\gamma_{k,j} = \tilde{\gamma}_0 / (N_{k-1}^\lambda + j - 1)$, **WaSA** takes increasingly smaller steps within
 399 each period as k increases.
 400 (b) By choosing M_k smaller than its corresponding value in **ReSA**, **WaSA** takes increasingly fewer SA steps than
 401 **ReSA** as k increases.

404 Hence, as k increases and more input data are accumulated, **WaSA** takes smaller and also fewer gradient-descent steps
 405 recognizing that it is in the vicinity of \mathbf{x}^* .

406 To summarize, both **ReSA** and **WaSA** warm-start from the previous period's implemented solution. The difference
 407 lies in the choices for $\{\gamma_{k,j}\}$ as well as $\{M_k\}$. While both algorithms are designed so that $\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)]$
 408 achieves the same convergence rate as $\mathbb{E}[f(\mathbf{x}_k^*, \theta^*) - f(\mathbf{x}^*, \theta^*)]$, employing **WaSA** may lead to significant computational
 409 savings by taking fewer and more carefully specified gradient-descent steps.
 410

412 3 OVERVIEW OF MAIN RESULTS

414 In this section, we summarize the main theoretical properties of **ReSA** and **WaSA**. To facilitate the discussion, we first
 415 provide a set of conditions on $\text{Opt}(\theta)$.
 416

417 **ASSUMPTION 1.** *The feasible solution set, $\mathcal{X} \subseteq \mathbb{R}^d$, is closed, convex, and nonempty and $\Theta \subseteq \mathbb{R}^{I'}$ is nonempty and
418 compact. For each $\theta \in \Theta$, $f(\cdot, \theta)$ is μ -strongly convex and continuously differentiable on an open set containing \mathcal{X} .*

420 **ASSUMPTION 2.** *There exist $L_{\mathcal{X}} > 0$ and $L_{\Theta} > 0$ such that $\|\nabla_{\mathbf{x}} f(\mathbf{x}, \theta) - \nabla_{\mathbf{x}} f(\mathbf{y}, \theta)\| \leq L_{\mathcal{X}} \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and
421 for all $\theta \in \Theta$ and $\|\nabla_{\mathbf{x}} f(\mathbf{x}, \theta_1) - \nabla_{\mathbf{x}} f(\mathbf{x}, \theta_2)\| \leq L_{\Theta} \|\theta_1 - \theta_2\|$ for all $\theta_1, \theta_2 \in \Theta$ and for all $\mathbf{x} \in \mathcal{X}$.*

422 **ASSUMPTION 3.** *The optimal solution of $\text{Opt}(\theta^*)$, denoted by \mathbf{x}^* , is an interior point of \mathcal{X} .*

423 Note that our algorithms do not require $L_{\mathcal{X}}$ and L_{Θ} to be known; they only need to exist. On the other hand, we
424 assume the strong convexity parameter, μ , is known in Sections 4–5. Smooth function h with domain $\mathcal{X} \subseteq \mathbb{R}^d$ is said to
425 be μ -strongly convex, if for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, $(\nabla h(\mathbf{x}) - \nabla h(\mathbf{x}'))^\top (\mathbf{x} - \mathbf{x}') \geq \mu \|\mathbf{x} - \mathbf{x}'\|^2$ for some $\mu > 0$. Depending on
426 the problem context, this may or may not be a restrictive assumption. For instance, Section 7.2 features a stochastic
427 activity network problem for which the objective function includes a deterministic cost function with a known strong
428 convexity parameter. On the other hand, in the EMS example in Section 7.3 we cannot analytically confirm that the
429 problem is strongly convex nor can we derive the value of μ even if the problem is strongly convex. In Section 6, we
430 investigate a regularized version of **ReSA** (**r-ReSA**) scheme that does not require known μ ; we further elaborate on
431 this scheme at the end of this section.

432 We consider two types of stochastic gradient estimator G : a generic unbiased gradient estimator and the simultaneous
433 perturbation (SP) gradient estimator. The latter is biased in general [30]; to balance its bias and variance, we introduce
434 an additional algorithm parameter $s_{k,j}$ when the SP gradient estimator is adopted to control the number of simulation
435 replications made to compute G at the j th SA step within the k th period.

436 For both **ReSA** and **WaSA**, the upper bound on the expected sub-optimality at the k th period is determined by how
437 close \mathbf{x}_k and θ_k are to \mathbf{x}^* and θ^* , respectively. The following lemma connects these two pieces together to provide
438 an upper bound on $\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)]$ for any generic multi-period SO framework that returns the sequence of
439 solutions, $\{\mathbf{x}_k\}$, at each period.

440 **LEMMA 3.1.** *Suppose Assumptions 1–3 hold. Consider the sequences $\{\mathbf{x}_k\}$ and $\{\theta_k\}$ generated by any multi-period SO
441 framework. Then, the following holds for any $k \geq 1$:*

$$442 \mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)] \leq L_{\mathcal{X}} \mathbb{E}[\|\mathbf{x}_k - \mathbf{x}_k^*\|^2] + \frac{L_{\mathcal{X}} L_{\Theta}^2}{\mu^2} \mathbb{E}[\|\theta_k - \theta^*\|^2]. \quad (6)$$

443 Notice that when $\mathbf{x}_k = \mathbf{x}_k^*$, the first term of the upper bound in (6) vanishes. Hence, the expected sub-optimality of
444 $\{\mathbf{x}_k^*\}$ converges at the same rate as $\mathbb{E}[\|\theta_k - \theta^*\|^2]$. Lemma 3.1 provides guidance on how accurately $\text{Opt}(\theta_k)$ needs to
445 be solved at each k to achieve the best possible convergence rate. Both **ReSA** and **WaSA** can control $\mathbb{E}[\|\mathbf{x}_k - \mathbf{x}_k^*\|^2]$ by
446 choosing M_k and $\gamma_{k,j}$ appropriately. Since $\mathbb{E}[\|\theta_k - \theta^*\|^2] = O(N_k^{-1})$, the best convergence rate can be obtained when
447 $\mathbb{E}[\|\mathbf{x}_k - \mathbf{x}_k^*\|^2] = O(N_k^{-1})$; there is no reason to put additional effort to make $\mathbb{E}[\|\mathbf{x}_k - \mathbf{x}_k^*\|^2]$ decay at a faster rate. Note
448 that we focus on the convergence rate rather than minimizing the upper bound in (6) since $L_{\mathcal{X}}$ and L_{Θ} are unknown.

449 Table 1 summarizes the convergence rates of **ReSA** and **WaSA**; for both types of gradient estimators, both algorithms
450 achieve the best-possible rate of $O(N_K^{-1})$. Table 1 also presents how the cumulative number of SA steps, $\sum_{k=1}^K M_k$, spent
451 by **ReSA** and **WaSA** grows at each period K for $K \geq 1$ to achieve this convergence rate. Recall from Algorithms 1–2,
452 the choice of M_k depends on the exponent of the single-period MSE convergence rate, $O(j^{-p})$. The smaller p is, the
453 more SA steps are required at each period to achieve the best convergence rate. When G is an unbiased gradient
454 estimator, we have $p = 1$. When the SP gradient estimator is adopted, choosing $s_{k,j}$ to be a constant leads to $p = 2/3$.
455 Increasing $s_{k,j}$ as a polynomial in j , p can be pushed to 1. The last two columns of Table 1 show the growth rate of the
456

469
470
471
Table 1. The convergence rates of expected sub-optimality, cumulative number of SA steps, and cumulative simulation effort of **ReSA**
472 and **WaSA** at the end of the K th period under different sets of assumptions. The rates marked with * can be achieved when λ is
473 pushed to its upper bound.

Gradient estimator	Convergence rate		Cumulative number of SA steps		Cumulative simulation effort	
	ReSA	WaSA	ReSA	WaSA	ReSA	WaSA
Unbiased ($p = 1$)	$O(N_K^{-1})$	$O(N_K^{-1})$	$O\left(\sum_{k=1}^K N_k\right)$	$O(N_K)^*$	$O\left(\sum_{k=1}^K N_k\right)$	$O(N_K)^*$
SP ($2/3 \leq p \leq 1$)	$O(N_K^{-1})$	$O(N_K^{-1})$	$O\left(\sum_{k=1}^K N_k^{1/p}\right)$	$O\left(N_K^{1/p}\right)^*$	$O\left(\sum_{k=1}^K N_k^{3/2}\right)$	$O\left(N_K^{3/2}\right)^*$

479
480 cumulative simulation effort **ReSA** and **WaSA** respectively spend on estimating the gradients up to period K . Notice
481 that the growth rate of the cumulative simulation effort does not depend on p for the SP gradient estimator, whereas
482 the cumulative number of SA steps does. Given that $\text{Opt}(\theta)$ is a constrained optimization problem, each SA step may
483 require a Euclidean projection to ensure feasibility, which can be computationally expensive when \mathcal{X} is a complex set.
484 In this case, it is sensible to push p closer to 1 so that fewer projections are required.

485
486 Recall that in **WaSA**, parameter λ determines the computational cost; the closer λ is to $1/p$, the more computational
487 saving is achieved. When $\lambda = 0$, **WaSA** essentially reduces to **ReSA**. We note that Table 1 provides the upper bounds
488 (marked with ‘*’) on the smallest-possible cumulative SA steps and simulation effort that **WaSA** can achieve when λ
489 is pushed to $1/p$, which clearly demonstrates significant computational benefits of **WaSA** over **ReSA**. Notice from
490 Table 1 that **WaSA** achieves the same convergence rate in terms of expected sub-optimality regardless of the choice of
491 λ , which favors λ close to $1/p$.

492
493 When μ is unknown, inspired by the classical theory of Tikhonov regularization [34], we propose regularized-**ReSA**
494 (**r-ReSA**) in Section 6. We convert $\text{Opt}(\theta_k)$ into a regularized problem with known convexity parameter μ_k and solve it
495 instead of $\text{Opt}(\theta_k)$ to obtain \mathbf{x}_k . We show that by choosing $\{\mu_k\}$ and the algorithm parameters carefully, the resulting
496 expected sub-optimality diminishes at the rate of $O(N_k^{-1})$. However, **r-ReSA** requires a larger number of SA steps (and
497 simulation effort), which is the price we pay for not knowing μ . See Section 6 for details.

500 501 4 MULTI-PERIOD SA FRAMEWORK WITH UNBIASED GRADIENT ESTIMATOR

502
503 In this section, we analyze the theoretical properties of **ReSA** and **WaSA** when unbiased estimator G of $\nabla_{\mathbf{x}} f(\mathbf{x}, \theta)$
504 is available. While the analysis in this section is applicable to general unbiased gradient estimator G , we discuss an
505 example of a simulation-based unbiased gradient estimator in Section 4.1. In Section 4.2, we analyze the expected
506 sub-optimality and computational costs of **ReSA** and **WaSA**.

507 508 4.1 Infinitesimal perturbation analysis gradient estimator

509
510 The infinitesimal perturbation analysis (IPA) gradient estimator is a well-studied unbiased gradient estimator [10]. Recall
511 that in our notation, the simulation output, $F(\mathbf{x}, \theta, \omega)$, is a function of \mathbf{x} and θ as well as a sequence of $U(0, 1)$ random
512 numbers ω that drives the stochasticity in simulation. For simplicity, consider the case where each simulation run requires
513 a single random number, i.e., $\omega \sim U(0, 1)$. Given \mathbf{x} and θ , we can write $f(\mathbf{x}, \theta) \triangleq \mathbb{E}_{\omega}[F(\mathbf{x}, \theta, \omega)] = \int_0^1 F(\mathbf{x}, \theta, \omega) d\omega$. If
514 the exchange of derivative with respect to \mathbf{x} and the integral is allowed (see [10] for the conditions under which the
515 exchange operation is allowed), then we have

$$516 \quad 517 \quad 518 \quad 519 \quad 520 \quad \nabla_{\mathbf{x}} \mathbb{E}_{\omega}[F(\mathbf{x}, \theta, \omega)] = \int_0^1 \nabla_{\mathbf{x}} F(\mathbf{x}, \theta, \omega) d\omega. \quad (7)$$

521 Therefore, we have an unbiased gradient estimator of $\nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\theta})$, $G = \nabla_{\mathbf{x}} F(\mathbf{x}, \boldsymbol{\theta}, \omega)$. A caveat here is that $\nabla_{\mathbf{x}} F(\mathbf{x}, \boldsymbol{\theta}, \omega)$
 522 must be computable given ω . If $F(\mathbf{x}, \boldsymbol{\theta}, \omega)$ can be written as a function of some other intermediate random variable
 523 generated by transforming ω , then the chain rule can be applied to find $\nabla_{\mathbf{x}} F(\mathbf{x}, \boldsymbol{\theta}, \omega)$. This may be difficult, however, if
 524 the simulation logic is complex. In such a case, the SP gradient estimator discussed in Section 5.1 can be applied. In
 525 Section 7.2, we present a numerical example in which the IPA gradient estimator can be computed. Since G may be
 526 obtained from a single simulation replication, the number of SA steps taken at each period equals the simulation effort
 527 at each period. Thus, we do not differentiate between these two measures of computational effort in Section 4.2.
 528

529 **4.2 Rate analysis**

530 We start by making the following additional assumptions on $\text{Opt}(\boldsymbol{\theta})$ as well as G .
 531

532 **ASSUMPTION 4.** *The feasible solution set, $\mathcal{X} \in \mathbb{R}^d$, is convex, compact, and has a nonempty interior. Further, there exists
 533 $C_{\mathcal{X}} > 0$ such that $\|\nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\theta})\| \leq C_{\mathcal{X}}$ for all $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \Theta$.*

534 **ASSUMPTION 5.** *For all $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \Theta$, $\mathbb{E}_{\omega}[G(\mathbf{x}, \boldsymbol{\theta}, \omega) - \nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\theta})] = 0$. Moreover, there exists $0 < v < \infty$ such that
 535 $\mathbb{E}_{\omega}[\|G(\mathbf{x}, \boldsymbol{\theta}, \omega) - \nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\theta})\|^2] \leq v^2$ for all $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \Theta$.*

536 Under Assumptions 4 and 5, $\mathbb{E}_{\omega}[\|G(\mathbf{x}, \boldsymbol{\theta}, \omega)\|^2] \leq 2\mathbb{E}_{\omega}[\|G(\mathbf{x}, \boldsymbol{\theta}, \omega) - \nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\theta})\|^2] + 2\|\nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\theta})\|^2 \leq 2(v^2 + C_{\mathcal{X}}^2)$
 537 for all $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \Theta$. In the remainder of the paper, we adopt $C^2 \triangleq 2(v^2 + C_{\mathcal{X}}^2)$. We explicitly specify the values of
 538 the parameters to be adopted in **ReSA** and **WaSA** when Assumptions 1–5 are satisfied as follows.
 539

540 **Definition 4.1.** For both **ReSA** and **WaSA** let $p = 1$ and $\gamma_0 = 1/\mu$. For **WaSA**, let $\tilde{\gamma}_0 = 1/\mu$ and choose $0 < \lambda < 1$.
 541

542 Recall that p in both algorithms should be chosen to match the exponent of the MSE convergence rate of \mathbf{x}_1 , i.e.,
 543 $\mathbb{E}[\|\mathbf{x}_{1,j} - \mathbf{x}_1^*\|^2 | \boldsymbol{\theta}_1] \leq O(j^{-p})$. The following lemma shows that under Assumptions 1–5, p is indeed 1 when the
 544 algorithm parameters are chosen as in Definition 4.1.
 545

546 **LEMMA 4.2 (SINGLE-PERIOD MSE CONVERGENCE RATE).** *Suppose Assumptions 1, 2, 4, and 5 hold and the algorithm
 547 parameters are chosen as in Definition 4.1. Consider $\{\mathbf{x}_k\}$ generated by **ReSA**. Then, for $k \geq 1$ and $1 \leq j \leq M_k$,
 548 $\mathbb{E}[\|\mathbf{x}_{k,j} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k] \leq \max\left\{\mathbb{E}[\|\mathbf{x}_{k-1} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k], \frac{2C^2}{\mu^2}\right\} j^{-1} \text{ a.s. Moreover, when } j \geq 3, \mathbb{E}[\|\mathbf{x}_{k,j} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k] \leq \frac{C^2}{\mu^2} j^{-1} \text{ a.s.}$*

549 Notice that $\mathbb{E}[\|\mathbf{x}_{k-1} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k]$ appears in the bound on $\mathbb{E}[\|\mathbf{x}_{k,j} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k]$ only for $1 \leq j \leq 2$. For $j \geq 3$, we have
 550 a tighter bound that does not depend on $\mathbb{E}[\|\mathbf{x}_{k-1} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k]$. In other words, even if $\mathbf{x}_{k,1}$ is chosen to be an arbitrary
 551 solution in \mathcal{X} , the same bound holds. This reveals that the standard SA analysis conducted in Lemma 4.2 provides little
 552 leverage on a better initial solution to obtain a tighter upper bound on the convergence rate. From Lemma 4.2, we show
 553 the following theorem stating that the convergence rate and the complexity of the cumulative number of SA steps of
 554 **ReSA** are as stated in Table 1.
 555

556 **THEOREM 4.3 (ReSA WITH UNBIASED G).** *Suppose Assumptions 1–5 hold and the algorithm parameters are chosen as
 557 in Definition 4.1. Then, the following hold for $\{\mathbf{x}_k\}$ generated by **ReSA**.*

558 (i) *There exists finite $U > 0$ such that for $k \geq 1$, $\mathbb{E}[f(\mathbf{x}_k, \boldsymbol{\theta}^*) - f(\mathbf{x}^*, \boldsymbol{\theta}^*)] \leq \frac{L_{\mathcal{X}}}{\mu^2} (L_{\Theta}^2 U + C^2) N_k^{-1}$.*
 559 (ii) *Given $K > 0$, the cumulative number of SA steps at the end of the K th period is $\sum_{k=1}^K N_k$.*

560 Theorem 4.3 implies that **ReSA** indeed achieves the optimal convergence rate of $O(N_k^{-1})$. Although this is reassuring,
 561 the number of SA steps, M_k , taken at each iteration is tied to N_k and keeps increasing as more streaming data accumulate.
 562

573 In **WaSA**, not only do we choose $\mathbf{x}_{k,1} = \mathbf{x}_{k-1}$, but also select $\gamma_{k,j}$ to be a decreasing function in k for each j , i.e.
 574 correspondingly smaller steps are taken as k grows. The core idea is the following: since each period starts with an
 575 increasingly better initial solution (in terms of proximity to \mathbf{x}^*), we may take fewer and smaller SA steps at each period.
 576 However, exactly how to control $\gamma_{k,j}$ so that the benefit of selecting $\mathbf{x}_{k,1} = \mathbf{x}_{k-1}$ is reflected in the upper bound on the
 577 convergence rate of $\mathbb{E}[\|\mathbf{x}_k - \mathbf{x}_k^*\|^2]$ is not a trivial question. The following theorem shows that with our choice of $\gamma_{k,j}$,
 578 **WaSA** indeed achieves the optimal convergence rate, $\mathcal{O}(N_k^{-1})$, with much reduced computational cost than **ReSA**. In
 579 particular, as λ tends to 1, the cumulative number of SA steps after k periods tends to $\mathcal{O}(N_k)$.
 580

582 **THEOREM 4.4 (WaSA WITH UNBIASED G)**. *Suppose Assumptions 1–5 hold and the algorithm parameters are chosen as
 583 in Definition 4.1. Then, the following hold for $\{\mathbf{x}_k\}$ generated by **WaSA**.*

585 (i) *There exist finite $U > 0$ and sequence $\{Q'_k\}$ such that for $k \geq 1$, $Q'_k \xrightarrow{k \rightarrow \infty} C^2/\mu^2$ and*

$$587 \mathbb{E} [f(\mathbf{x}_k, \boldsymbol{\theta}^*) - f(\mathbf{x}^*, \boldsymbol{\theta}^*)] \leq L_{\mathcal{X}} \left(UL_{\Theta}^2 / \mu^2 + Q'_k \right) N_k^{-1}.$$

589 (ii) *Given $K \geq 2$, there exists $0 < \lambda < 1$ sufficiently close to 1 such that the cumulative number of SA steps at the end of
 590 the K th period is bounded as $\sum_{k=1}^K M_k \leq N_K + K - 1$.*

593 Observe that the upper bound on the expected sub-optimality of **WaSA** converges to that of **ReSA** as k increases,
 594 because $Q'_k \rightarrow C^2/\mu^2$. Hence, as more streaming data accumulate, **WaSA** returns a solution essentially as accurate as
 595 that from **ReSA** at much reduced computational cost. Nevertheless, both algorithms require increasing computational
 596 effort as k increases, albeit M_k increases significantly slower for **WaSA** when λ is close to 1. The closer λ is to 1, the
 597 longer it takes Q'_k to converge to C^2/μ^2 , implying that the upper bound on the expected sub-optimality may be inflated
 598 for earlier periods. However, λ cannot be equal to 1, which makes the $\{Q'_k\}$ sequence diverge. On the other hand, if λ is
 599 close to zero, **WaSA** essentially reduces to **ReSA**. In practice, it often suffices to obtain a solution close to \mathbf{x}^* . We refer
 600 to random $\mathbf{x}_\epsilon \in \mathcal{X}$ satisfying

$$603 \mathbb{E} [f(\mathbf{x}_\epsilon, \boldsymbol{\theta}^*) - f(\mathbf{x}^*, \boldsymbol{\theta}^*)] \leq \epsilon$$

604 as an ϵ -solution. The next corollary establishes the computational complexity for both algorithms to obtain an ϵ -solution
 605 assuming $n_k = \lceil k^a \rceil$ for $a \geq 0$.

608 **COROLLARY 4.5 (SAMPLE COMPLEXITY COMPARISON)**. *Suppose Assumptions 1–5 hold and the algorithm parameters are
 609 chosen as in Definition 4.1. Given $n_k = \lceil k^a \rceil$, $a \geq 0$, and $\epsilon > 0$, **ReSA** requires $\mathcal{O}(\epsilon^{-(a+2)/(a+1)})$ SA steps to obtain an
 610 ϵ -solution, whereas **WaSA** requires no more than $C_{\epsilon,1}\epsilon^{-(a+2)/(a+1)} - C_{\epsilon,2}\epsilon^{-\lambda-1/(a+1)}$ SA steps, where $C_{\epsilon,1}$ and $C_{\epsilon,2}$ are
 611 such that $C_{\epsilon,1} > C_{\epsilon,2} > 0$.*

613 Practically, employing these upper bounds to determine when to stop either algorithm is difficult as constants in the
 614 expected sub-optimality bounds are unknown. Nevertheless, it is sensible to stop the multi-period scheme when N_k is
 615 large enough (e.g. $1/N_k \leq \epsilon$) as the expected sub-optimality bound is controlled to be $\mathcal{O}(N_k^{-1})$ in both algorithms.
 616

618 5 MULTI-PERIOD SA FRAMEWORK WITH BIASED GRADIENT ESTIMATOR

620 In this section, we consider a more general SO setting; when unbiased G is not available. In Section 5.1, we introduce
 621 the SP gradient estimator for the choice of G and analyze the expected sub-optimality and computational costs of **ReSA**
 622 and **WaSA** in Section 5.2.

625 5.1 Simultaneous perturbation gradient estimator

626 Let $\varepsilon(\mathbf{x}, \boldsymbol{\theta}, \omega)$ represent the simulation error such that $F(\mathbf{x}, \boldsymbol{\theta}, \omega) = f(\mathbf{x}, \boldsymbol{\theta}) + \varepsilon(\mathbf{x}, \boldsymbol{\theta}, \omega)$. Clearly, $\mathbb{E}_\omega[\varepsilon(\mathbf{x}, \boldsymbol{\theta}, \omega)] = 0$ as
 627 $f(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}_\omega[F(\mathbf{x}, \boldsymbol{\theta}, \omega)]$. The SP estimator of $\nabla_{\mathbf{x}} f(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k)$ requires running simulation replications at two points
 628 $\mathbf{x} \pm c_{k,j} \Delta_{k,j}$ given window size $c_{k,j} > 0$ and perturbation vector $\Delta_{k,j} \in \mathbb{R}^d$ sampled from a distribution independently
 629 from simulation replications. We consider increasing the number of replications spent to compute the SP gradient
 630 estimator as a function of j so that the estimator becomes increasingly more precise as iterations continue. Namely, $s_{k,j}$
 631 i.i.d. replications are run at each of $\mathbf{x} \pm c_{k,j} \Delta_{k,j}$, where $s_{k,j}$ is a non-decreasing sequence on in j . The SP estimator of
 632 $\nabla_{\mathbf{x}} f(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k)$ is computed as
 633

$$634 G(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k, \omega_{k,j}) = \left[\frac{\bar{F}_{k,j}^+ - \bar{F}_{k,j}^-}{2c_{k,j}(\Delta_{k,j})_1}, \dots, \frac{\bar{F}_{k,j}^+ - \bar{F}_{k,j}^-}{2c_{k,j}(\Delta_{k,j})_d} \right]^\top, \quad (8)$$

635 where $\omega_{k,j} = \{\omega_{k,j,1}^+, \omega_{k,j,1}^-, \omega_{k,j,2}^+, \omega_{k,j,2}^-, \dots, \omega_{k,j,s_{k,j}}^+, \omega_{k,j,s_{k,j}}^-\}$ is the collection of random number sequences used to cal-
 636 culate G , $\bar{F}_{k,j}^\pm \triangleq s_{k,j}^{-1} \sum_{h=1}^{s_{k,j}} F(\mathbf{x}_{k,j} \pm c_{k,j} \Delta_{k,j}, \boldsymbol{\theta}_k, \omega_{k,j,h}^\pm)$, and $(\Delta_{k,j})_l$ denotes the l th element of $\Delta_{k,j}$. Furthermore, we de-
 637 fine $f_{k,j}^\pm \triangleq f(\mathbf{x}_{k,j} \pm c_{k,j} \Delta_{k,j}, \boldsymbol{\theta}_k)$ and $\bar{\varepsilon}_{k,j}^\pm \triangleq \bar{F}_{k,j}^\pm - f_{k,j}^\pm$. Let $\mathbf{b}_{k,j}(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k) \triangleq \mathbb{E}[G(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k, \omega_{k,j}) - \nabla_{\mathbf{x}} f(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k) | \mathbf{x}_{k,j}, \boldsymbol{\theta}_k]$
 638 represent the conditional bias of $G(\mathbf{x}_{k,j}, \boldsymbol{\theta}_k, \omega_{k,j})$ given $\mathbf{x}_{k,j}$ and $\boldsymbol{\theta}_k$.

639 Spall [30] presents a set of regularity conditions (see Appendix ??) under which (8) is strongly consistent as $j \rightarrow \infty$ for
 640 what we call a single-period problem. In the following, we provide a slightly different set of conditions and assumptions
 641 to facilitate the analyses in Sections 5.2.

642 **(C1)** $\gamma_{k,j}, c_{k,j} > 0, \forall k, j; \gamma_{k,j} \rightarrow 0, c_{k,j} \rightarrow 0$ as $j \rightarrow \infty$; $\sum_{j=0}^{\infty} \gamma_{k,j} = \infty$, $\sum_{j=0}^{\infty} \left(\frac{\gamma_{k,j}}{c_{k,j}} \right)^2 < \infty$;
 643 **(C2)** There exist $b_0, b_1, \alpha \in \mathbb{R}$ such that $|(\Delta_{k,j})_l| \leq b_0$ a.s., $\mathbb{E}[|(\Delta_{k,j})_l^{-1}|] \leq b_1$, and $\mathbb{E}[|(\Delta_{k,j})_l^{-2}|] \leq \alpha$ for all k, j and
 644 $l = 1, 2, \dots, d$.
 645 **(C3)** For each k, j , $\Delta_{k,j} \in \mathbb{R}^d$ is independent of $\{\mathbf{x}_{k,1}, \dots, \mathbf{x}_{k,j}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_k\}$ and $(\Delta_{k,j})_l, l = 1, \dots, d$, are i.i.d. and
 646 symmetrically distributed around zero. Furthermore, $\{\Delta_{k,1}, \Delta_{k,2}, \dots, \Delta_{k,j}\}$ are mutually independent.

647 Variants of **(C1)** and **(C2)** are typically seen in selecting stepsize sequences and perturbation levels (see [19] for instance)
 648 to guarantee that the sequence of $\mathbb{E}[\|\mathbf{x}_{k,j} - \mathbf{x}_k^*\|^2 | \boldsymbol{\theta}_k]$ converges to zero almost surely as j tends to infinity. The
 649 independence condition in **(C3)** makes it easier to analyze the SP gradient estimator's bias and variance. Because
 650 **(C1)–(C3)** lie within the control of the user, they are referred to as "conditions" instead of assumptions. We make
 651 two assumptions in the following to establish bounds on the variance and bias of the SP gradient estimator. In
 652 Assumption 7, we use the same notation as in [30] to represent third partial derivatives of f with respect to elements of
 653 \mathbf{x} ; $f^{(3)}(\mathbf{x}, \boldsymbol{\theta}) = \partial^3 f(\mathbf{x}, \boldsymbol{\theta}) / \partial \mathbf{x}^{\otimes 3}$ is an arbitrary third partial derivative and $f_{i_1, i_2, i_3}^{(3)}(\mathbf{x}, \boldsymbol{\theta}) \triangleq \partial^3 f(\mathbf{x}, \boldsymbol{\theta}) / \partial \mathbf{x}^{i_1} \partial \mathbf{x}^{i_2} \partial \mathbf{x}^{i_3}$, where
 654 \mathbf{x}^i is the i th element of \mathbf{x} .

655 **ASSUMPTION 6.** *There exists $\sigma_1 < \infty$ such that $\text{Var}[\bar{\varepsilon}_{k,j}^+ - \bar{\varepsilon}_{k,j}^- | \mathbf{x}_{k,j}, \boldsymbol{\theta}_k, \Delta_{k,j}] \leq \sigma_1^2 / s_{k,j}$ a.s. for all k and j .*

656 **ASSUMPTION 7.** *For almost all $\mathbf{x}_{k,j}$, $f^{(3)}(\mathbf{x}, \boldsymbol{\theta})$ exists. For any $\boldsymbol{\theta} \in \Theta$, $f^{(3)}(\mathbf{x}, \boldsymbol{\theta})$ is continuous in \mathbf{x} for all \mathbf{x} in an open
 657 neighborhood of $\mathbf{x}_{k,j}$ that is not a function of k, j or $\omega_{k,j}$. Moreover, for any $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \Theta$, $|f_{i_1, i_2, i_3}^{(3)}(\mathbf{x}, \boldsymbol{\theta})| \leq b_2$ for
 658 any $1 \leq i_1, i_2, i_3 \leq d$.*

659 The bias of the SP gradient estimator can be reduced to zero by ensuring that $c_{k,j} \rightarrow 0$; however, its variance
 660 increases as $c_{k,j}$ decreases, but can be reduced by increasing $s_{k,j}$ (see SM Section ??). Therefore, both $\{c_{k,j}\}$ and $\{s_{k,j}\}$
 661 must be controlled relative to $\{\gamma_{k,j}\}$ to ensure that the resulting $\{\mathbf{x}_k\}$ converges to \mathbf{x}^* . In Sections 5.2, we choose the
 662

parameter sequences to be in the form of $c_{k,j} = c_0 j^{-\eta}$, $\eta > 0$, and $s_{k,j} = s_0 j^t$, $t \geq 0$ for SP gradient estimation in **ReSA**. We relax the integrality requirement for $s_{k,j}$ for expository ease in the remainder of the paper. The choices for η and t for **ReSA** to achieve the optimal convergence rate are discussed under different sets of assumptions. For **WaSA**, both parameter sequences are modified to achieve the same convergence rate.

5.2 Rate Analysis

In this subsection, we analyze the performance of both **ReSA** and **WaSA** when X is bounded and the SP gradient estimator (8) is adopted for G . Similar to the analyses in Section 4, p (the exponent of the single-period MSE convergence rate) plays an important role in both algorithms when specifying the parameters. But when the SP gradient estimator is adopted, p is additionally constrained by the choices of $c_{k,j}$ and $s_{k,j}$. In the following, Definition 5.1 prescribes the choices of the algorithm and SP gradient estimation parameters for both **ReSA** and **WaSA**.

Definition 5.1. For both **ReSA** and **WaSA**, choose $0 \leq t \leq 1/2$ to control the simulation effort at each SA step and let $p = 2(1+t)/3$, $\gamma_0 > p\mu^{-1}$, $s_0 > 0$, $\tilde{s}_0 > 0$, $c_0 > 0$, and $\tilde{c}_0 > 0$. For **ReSA**, let $s_{k,j} = s_0 j^t$ and $c_{k,j} = c_0 j^{-(1+t)/6}$ for all k and j . For **WaSA**, let $\tilde{\gamma}_0 = 2/\mu$, $s_{1,j} = s_0 j^t$ for all $j \geq 1$, and $s_{k,j} = \tilde{s}_0 (N_{k-1}^\lambda + j - 1)^t$ and $c_{k,j} = \tilde{c}_0 (N_{k-1}^\lambda + j - 1)^{-(1+t)/6}$ for all $k \geq 2$ and j .

Observe that p as well as the exponent of j in $c_{k,j}$ are functions of t . When $t = 0$, we obtain $p = 2/3$, which matches the MSE convergence rate of SPSA known in the literature [11]. When $t > 0$, $c_{k,j}$ is driven to zero at a faster rate to reduce the bias in G more aggressively while keeping the variance of G in check by increasing $s_{k,j}$. For any $t \geq 0$, p cannot exceed 1; $t = 1/2$ is the smallest rate of increase for $s_{k,j}$ to obtain $p = 1$, i.e., no incentive to spend larger simulation effort than $t = 1/2$. For a more detailed discussion on the choices of t and p , see SM Section ??.

The following lemma shows that the exponent of the single-period MSE convergence rate is indeed p in this case.

LEMMA 5.2 (SINGLE-PERIOD MSE CONVERGENCE RATE). *Suppose Assumptions 1, 4, 6, 7 and (C1)–(C3) hold and the algorithm parameters are chosen as in Definition 5.1. Consider $\{\mathbf{x}_k\}$ generated by **ReSA**. Then, the following holds for $k \geq 1$ and $1 \leq j \leq M_k$, $\mathbb{E}[\|\mathbf{x}_{k,j} - \mathbf{x}_k^*\|^2 | \theta_k] \leq \max\{\mathbb{E}[\|\mathbf{x}_{k-1} - \mathbf{x}_k^*\|^2 | \theta_k], 2^p T, T(\mu\gamma_0 - p)^{-1}\} j^{-p}$ a.s., where T is defined as*

$$T \triangleq \gamma_0^2 d \left(2C_X^2 + 2R^2 c_0^4 + \frac{\alpha\sigma_1^2}{4c_0^2 s_0} + C_X^2 n b_0^2 \alpha \right) + \gamma_0 d R^2 c_0^4 \mu^{-1}. \quad (9)$$

Theorem 5.3 analyzes the performance of **ReSA** when G is a SP gradient estimator. In contrast to Theorem 4.3, here we differentiate the cumulative number of SA steps from the cumulative simulation effort as $t > 0$ is considered.

THEOREM 5.3 (ReSA WITH SP GRADIENT ESTIMATOR). *Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the algorithm parameters are chosen as in Definition 5.1. Define T as in (9). Consider $\{\mathbf{x}_k\}$ generated by **ReSA**. Then, for all k , $j \geq 1$, the following hold.*

(i) *There exists finite $U > 0$ and sequence $\{Q'_k\}$ such that $Q'_k \xrightarrow{k \rightarrow \infty} \max\{2^p T, T(\mu\gamma_0 - p)^{-1}\}$ and for any $k \geq 1$,*

$$\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)] \leq L_X \left(U L_\Theta^2 / \mu^2 + Q'_k \right) N_k^{-1}.$$

(ii) *Given $K > 0$, the cumulative number of SA steps at the end of period K is bounded as $\sum_{k=1}^K M_k \leq \sum_{k=1}^K N_k^{1/p} + K$.*

(iii) *Given $K > 0$, the cumulative simulation effort at the end of period K is bounded as $\sum_{k=1}^K \sum_{j=1}^{M_k} s_{k,j} \leq \frac{3^{t+1} s_0}{t+1} \sum_{k=1}^K N_k^{3/2}$.*

Theorem 5.3 confirms that **ReSA** achieves the optimal convergence rate, $\mathcal{O}(N_k^{-1})$, given the parameter choices in Definition 5.1. Regardless of t , the cumulative simulation effort is of the same order. Thus, there is little room to save

simulation effort by adjusting t . On the other hand, choosing a larger t reduces the cumulative number of SA steps. Thus, when the projection step is costly, then $t = 1/2$ is preferred. Similar insights can be obtained from the performance analysis for **WaSA** in Theorem 5.4 below.

THEOREM 5.4 (WaSA WITH SP GRADIENT ESTIMATOR). *Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the algorithm parameters are chosen as in Definition 5.1. Consider the sequences $\{\mathbf{x}_k\}$ and $\{\theta_k\}$ generated by **WaSA**. Suppose*

$$T_2 \triangleq \frac{d}{\mu^2} \left(10R^2 \tilde{c}_0^4 + 8C_X^2 + 4C_X^2 db_0^2 \alpha + \frac{\alpha \sigma_1^2}{\tilde{c}_0^2 \tilde{s}_0} \right).$$

(i) *There exists finite $U > 0$ and sequence $\{Q'_k\}$ such that $Q'_k \xrightarrow{k \rightarrow \infty} T_2$ and for any $k \geq 1$,*

$$\mathbb{E} [f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)] \leq L_X \left(L_\Theta^2 U / \mu^2 + Q'_k \right) N_k^{-1}.$$

(ii) *Given $K \geq 2$, there exists $0 < \lambda < 1/p$ sufficiently close to $1/p$ such that the cumulative number of SA steps at the end of period K is bounded as $\sum_{k=1}^K M_k \leq N_K^{1/p} + 2K - 1$.*

(iii) *Given $K \geq 2$, there exists $0 < \lambda < 1/p$ sufficiently close to $1/p$ such that the cumulative simulation effort at the end of period K is bounded as*

$$\sum_{k=1}^K \sum_{j=1}^{M_k} s_{k,j} \leq \frac{(2^{t+1} + 1) \tilde{s}_0}{t+1} N_K^{3/2} + \frac{3^{t+1} s_0 - \tilde{s}_0}{t+1} N_1^{3/2} - \frac{\tilde{s}_0}{t+1} N_2^{3/2} + \frac{(K-1) \tilde{s}_0}{t+1}.$$

Comparing Theorems 5.3 and 5.4, observe that there is a stark difference in the computational cost between **ReSA** and **WaSA**. Notice that the computational saving of the latter is more pronounced with the SP gradient estimator than when an unbiased gradient estimator is available. The following corollary compares the computational complexity for both algorithms to obtain an ϵ -solution.

COROLLARY 5.5. *Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the algorithm parameters are chosen as in Definition 5.1. Given $n_k = \lceil k^a \rceil$, $a \geq 0$, and $\epsilon > 0$, **ReSA** requires $O(\epsilon^{-1/p-1/(a+1)})$ SA steps to obtain an ϵ -solution, whereas **WaSA** requires no greater than $C_{\epsilon,1} \epsilon^{-1/p-1/(a+1)} - C_{\epsilon,2} \epsilon^{-\lambda-1/(a+1)}$ SA steps, where $C_{\epsilon,1}$ and $C_{\epsilon,2}$ are such that $C_{\epsilon,1} > C_{\epsilon,2} > 0$.*

6 REGULARIZED RESA SCHEME WITH UNKNOWN STRONG CONVEXITY PARAMETER

In this section, we address the case when the strong convexity parameter, μ , is unknown and extend the **ReSA** framework to a regularized variant, referred to as regularized **ReSA** (**r-ReSA**); notably this scheme does not require utilizing the value of μ in specifying its algorithm parameters. The new scheme relies on the Tikhonov regularization framework [34], which adds a strongly convex function to the original objective function of the problem to induce strong convexity. The resulting regularized problem thus has a known strong convexity parameter. Tikhonov regularization schemes have a long history in the field of optimization theory, assuming relevance when the objective function is merely convex [8]. We define a sequence of regularized versions of $f(\mathbf{x}, \theta)$ in \mathbf{x} whose k th element is defined as

$$f_k(\mathbf{x}, \theta) \triangleq f(\mathbf{x}, \theta) + \frac{\mu_k}{2} \|\mathbf{x}\|^2 = \mathbb{E}[F(\mathbf{x}, \theta, \omega) | \theta] + \frac{\mu_k}{2} \|\mathbf{x}\|^2, \quad (10)$$

where $\{\mu_k\}$ is a user-specified positive sequence diminishing to zero. For any θ , $f_k(\mathbf{x}, \theta)$ in (10) is $(\mu + \mu_k)$ -strongly convex in \mathbf{x} ; since μ is unknown, we may adopt μ_k as our strong convexity parameter at period k . We first briefly summarize the classical convergence result for the Tikhonov regularization. Consider the sequence of regularized problems at some fixed θ given by $\{\min_{\mathbf{x} \in \mathcal{X}} f_k(\mathbf{x}, \theta)\}$. Because each f_k is strongly convex in \mathbf{x} , then $\hat{\mathbf{x}}_k \triangleq \arg \min_{\mathbf{x} \in \mathcal{X}} f_k(\mathbf{x}, \theta)$ is the

Algorithm 3 (r-ReSA). Regularized re-start multi-period SA

Given $\mathbf{x}_0, \{\gamma_{0,k}\}, p, \{N_k\}, \{\mu_k\}$; Set $k := 1$;
 [1] Compute θ_k using N_k samples; Set $\mathbf{x}_{k,1} := \mathbf{x}_{k-1}$ and $M_k := \max \left\{ 1, \lceil N_k^{2/p} \rceil \right\}$;
 [2] $\mathbf{x}_{k,j+1} := \Pi_{\mathcal{X}} [\mathbf{x}_{k,j} - \gamma_{k,j} \{G(\mathbf{x}_{k,j}, \theta_k, \omega_{k,j}) + \mu_k \mathbf{x}_{k,j}\}]$ given $\gamma_{k,j} = \frac{\gamma_{0,k}}{j}$ for $j = 1, \dots, M_k$;
 [3] $\mathbf{x}_k := \mathbf{x}_{k,M_k+1}$; $k := k + 1$ and go to [1];

unique minimizer at k . Moreover, it has been shown that $\hat{\mathbf{x}}_k \xrightarrow{k \rightarrow \infty} \hat{\mathbf{x}}$, if $\mu_k \rightarrow 0$, where $\hat{\mathbf{x}}$ is a least-norm minimizer of $\text{Opt}(\theta)$ (cf. [8]); in our problem, $\hat{\mathbf{x}}$ is indeed the unique minimizer of $\text{Opt}(\theta)$ due to strong convexity of f .

In the multi-period SA problem, new θ_k is computed at each period k . Thus, **r-ReSA** tackles the regularized problem

$$\min_{\mathbf{x} \in \mathcal{X}} \left(f(\mathbf{x}, \theta_k) + \frac{\mu_k}{2} \|\mathbf{x}\|^2 \right) \quad (\text{r-Opt}_k(\theta_k))$$

for some appropriate choice for $\mu_k > 0$. Akin to **ReSA**, **r-ReSA** solves $\text{r-Opt}_k(\theta_k)$ up to the precision determined by N_k by employing M_k SA steps with the known strong convexity parameter, μ_k . Algorithm 3 provides the details of **r-ReSA**. We highlight that in Step [2], the gradient includes the extra term, $\mu_k \mathbf{x}_{k,j}$, arising from regularization. Contrasting with **ReSA**, the stepsize sequence constant, $\gamma_{0,k}$, depends on k in **r-ReSA** as μ_k is updated at each k .

Intuitively, it is sensible to drive $\mu_k \rightarrow 0$ as k increases so that $\text{r-Opt}_k(\theta_k)$ becomes progressively closer to $\text{Opt}(\theta^*)$. Meanwhile, reducing μ_k makes the algorithm perceive $\text{r-Opt}_k(\theta_k)$ to be flatter than it actually is; recall that the true strong convexity parameter for $\text{r-Opt}_k(\theta_k)$ is $(\mu + \mu_k)$, unbeknownst to the user. Hence, the decreasing sequence, $\{\mu_k\}$, together with a careful choice of $\{M_k\}$, ensures that the sequence of solutions, $\{\mathbf{x}_k\}$, returned by **r-ReSA** at the end of each period, attains the best-possible convergence rate of the expected sub-optimality for $\text{Opt}(\theta^*)$. Definition 6.1 formally states the choices for the algorithm parameters of **r-ReSA**.

Definition 6.1. For **r-ReSA**, let $\mu_k = N_k^{-1/2}$. Depending on the choice for G , set the remaining parameters as follows:

- (1) when G is unbiased, let $p = 1$, $\gamma_{0,k} = 1/\mu_k$.
- (2) when G is the SP gradient estimator, choose $0 \leq t \leq 1/2$ and let $s_{k,j} = s_0 j^t$ for some $s_0 > 0$ and $c_{k,j} = c_0 j^{-(1+t)/6}$ for some $c_0 > 0$ for all k and j . Let $p = 2(1+t)/3$ and $\gamma_{0,k} = p_0 \mu_k^{-1}$ for some $p_0 > p$.

The following two theorems state respective convergence results for **r-ReSA** for the two different choices for G .

THEOREM 6.2 (r-ReSA WITH UNBIASED ESTIMATOR). Suppose Assumptions 1–5 hold and the algorithm parameters are chosen as in Part (1) of Definition 6.1. Then, the following hold for $\{\mathbf{x}_k\}$ generated by **r-ReSA**.

- (i) For any $k \geq 1$, $\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)] \leq O(N_k^{-1})$.
- (ii) Given $K > 0$, the cumulative number of SA steps at the end of period K is $\sum_{k=1}^K M_k = \sum_{k=1}^K N_k^2$.

THEOREM 6.3 (r-ReSA WITH SP GRADIENT ESTIMATOR). Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the algorithm parameters are chosen as in Part (b) of Definition 6.1. Then, the following hold for $\{\mathbf{x}_k\}$ generated by **r-ReSA**.

- (i) For any $k \geq 1$, $\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)] \leq O(N_k^{-1})$.
- (ii) Given $K > 0$, the cumulative number of SA steps at the end of period K is bounded as $\sum_{k=1}^K M_k = \sum_{k=1}^K N_k^{2/p} + K$.
- (iii) Given $K > 0$, the cumulative simulation effort at the end of period K is bounded as $\sum_{k=1}^K \sum_{j=1}^{M_k} s_{k,j} = \frac{3^{t+1} s_0}{t+1} \sum_{k=1}^K N_k^3$.

When μ_k falls below μ for some k , **r-ReSA** chooses a larger stepsize constant than **ReSA** would have at the same period, which may lead to a larger gradient descent step. This can be seen by contrasting γ_0 in Definitions 4.1 and 5.1 with $\gamma_{0,k}$ in Definition 6.1. When k is large, a smaller value of μ_k may cause the aforementioned gradient-descent steps

within the k th period to overshoot the feasible region \mathcal{X} rendering the iterates to be projected back to \mathcal{X} . Furthermore, we observe that the computational burden (and therefore the simulation effort) is significantly higher at each step since $M_k = O(N_k^{2/p})$ (as opposed to $M_k = O(N_k^{1/p})$ for **ReSA** and **WaSA**). We defer creating a variant of **WaSA** under the regularization scheme for future research.

7 EMPIRICAL PERFORMANCE

In this section, we examine the empirical performances of the proposed algorithms on three examples; in Section 7.1, we apply the algorithms on a set of synthetically constructed strongly convex SO problems that have analytical expressions for the optimal solution of $\text{Opt}(\theta)$ for any θ . To test the algorithms on more realistic simulation settings, we consider a stochastic activity network (SAN) example in Section 7.2 while Section 7.3 revisits the EMS example introduced in Section 1. Note that the SAN problem is strongly convex with known μ , whereas the EMS example is a more general SO problem for which convexity cannot be verified. The numerical results show that **WaSA** outperforms **ReSA** in terms of computational effort, while achieving similar empirical expected sub-optimality. **r-ReSA** achieves the same expected sub-optimality as of **ReSA** and **WaSA**, but requires more computational effort. From the EMS example, we observe that both algorithms perform well even if some of the assumptions cannot be verified for this problem. We also demonstrate robustness of the proposed algorithms when strong convexity fails by applying them to a nonconvex problem in Section 7.4.

7.1 Stochastic quadratic programming

We apply **ReSA** and **WaSA** under the settings analyzed in Section 4 to a synthetic SO problem that has

$$f(\mathbf{x}, \theta) = \frac{1}{2} \mathbf{x}^\top V^\top \text{diag}(\mathbf{u}) V \mathbf{x} + \mathbf{x}^\top \mathbf{v}, \quad (11)$$

where $\theta = (\mathbf{u}, \mathbf{v})$, $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^d : -5 \leq x_i \leq 5, 1 \leq i \leq d\}$ and V is an $d \times d$ deterministic orthogonal matrix; increasing levels of d from 5 to 100 are tested below. Note that $\text{diag}(\mathbf{u})$ denotes a diagonal matrix whose diagonal entries are given by \mathbf{u} . The true parameter vector is denoted by $\theta^* = (\mathbf{u}^*, \mathbf{v}^*)$, where \mathbf{u}^* is the d -dimensional vector whose entries are all equal to 2.5 and \mathbf{v}^* is a deterministic vector whose entries are i.i.d. $\text{Uniform}(0, 10)$. Each entry of \mathbf{u}^* represents the mean of an exponential distribution while \mathbf{v}^* is the mean vector of normally distributed input data with a known covariance matrix. The maximum likelihood estimator (MLE) of $(\mathbf{u}^*, \mathbf{v}^*)$ is computed from i.i.d. observations of $Z_{\mathbf{u}} \in \mathbb{R}^d$ and $Z_{\mathbf{v}} \in \mathbb{R}^d$. The entries of $Z_{\mathbf{u}} \in \mathbb{R}^d$ are i.i.d. $\text{Exp}(\text{rate}=0.4)$ and $Z_{\mathbf{v}} \sim \mathcal{N}(\mathbf{v}^*, 400I_d)$, where I_d denotes the $d \times d$ identity matrix. We set $\Theta = \{(\mathbf{u}, \mathbf{v}) : 2 \leq \mathbf{u}_i \leq 3, -100 \leq \mathbf{v}_i \leq 100, 1 \leq i \leq d\}$, therefore, the MLE at the k th period is computed as $\theta_k = (\Pi_\Theta(\bar{Z}_{\mathbf{u}}(k), \bar{Z}_{\mathbf{v}}(k)))$, where $\bar{Z}_{\mathbf{u}}(k)$ and $\bar{Z}_{\mathbf{v}}(k)$ are the corresponding averages of cumulative observations of $Z_{\mathbf{u}}$ and $Z_{\mathbf{v}}$, respectively. In the first period, we assume that 30 observations of $Z_{\mathbf{u}}$ and $Z_{\mathbf{v}}$ are available. For $k \geq 2$, the sample size of the new batch of data, n_k , is generated randomly from discrete uniform(5, 15). Given Θ , this problem has $\mu = 2$. To test the case with an unbiased gradient estimator, stochastic noise $\xi \sim \mathcal{N}(0, I_d)$ is added to the exact gradient, i.e., $G(\mathbf{x}, \theta) = G(\mathbf{x}, (\mathbf{u}, \mathbf{v})) = V^\top \text{diag}(\mathbf{u}) V \mathbf{x} + \mathbf{v} + \xi$.

We test **ReSA** and **WaSA** with $\gamma_0 = \tilde{\gamma}_0 = 0.5$ and $\lambda = 0.995$, while the rest of the algorithm parameters are chosen as in Definition 4.1. We compare the algorithms with **r-ReSA** and a newly defined scheme referred to as “wait-then-solve,” which updates θ_k less frequently and implements SA only when θ_k has been updated; during the remaining periods, the scheme “waits” while the decision \mathbf{x}_k stays unchanged. The wait-then-solve scheme is designed to show the increase in regret when we do not adapt each period’s decision to $\{\theta_k\}$ and only do so intermittently.

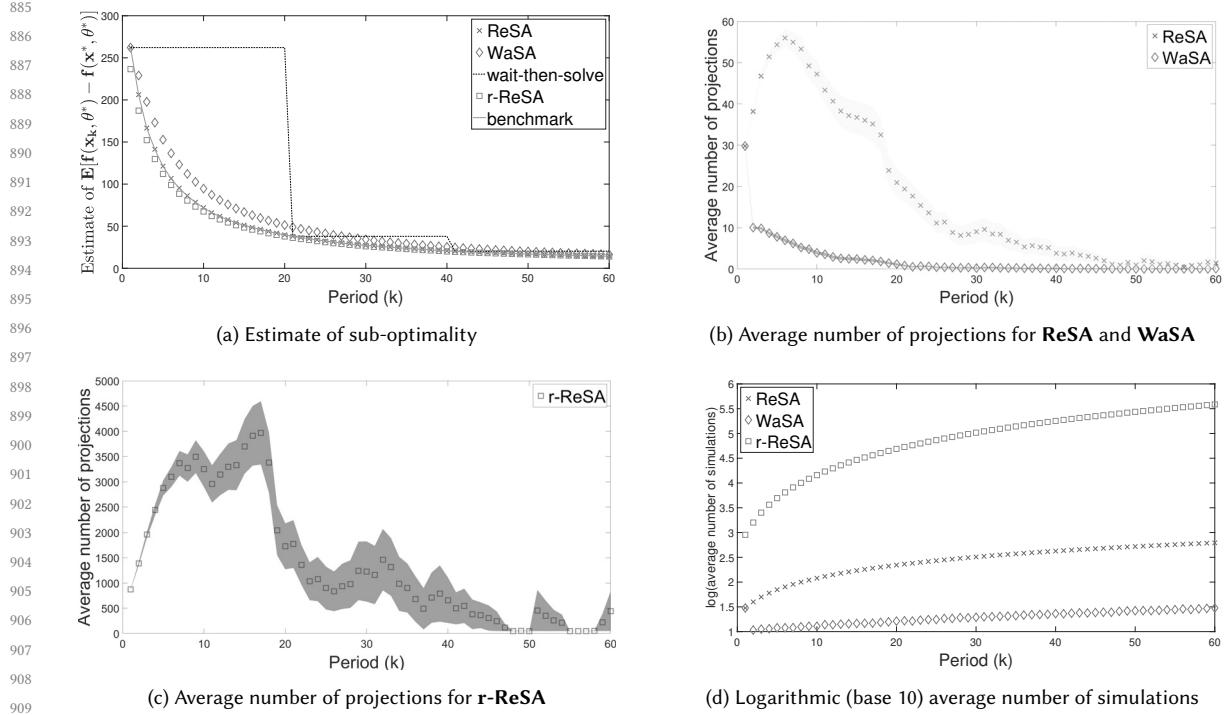


Fig. 2. Comparison of **ReSA**, **WaSA** and **r-ReSA** on a 100-dimensional problem with 200 macro runs

Figure 2 compares the performances of **ReSA**, **WaSA**, **r-ReSA** and wait-then-solve applied to (11) with $d = 100$ from 200 macro runs. In each macro run, we generate \mathbf{x}_0 uniformly from \mathcal{X} . Figure 2a shows the trajectory of each period's estimated expected sub-optimality of the four algorithms taking the average of $f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)$ obtained from 200 macro runs. Thus, the area under the curve represents the estimated cumulative regret for each algorithm. The benchmark represents $\mathbb{E}[f(\mathbf{x}_k^*, \theta^*) - f(\mathbf{x}^*, \theta^*)]$; for this problem, \mathbf{x}_k^* can be computed exactly given θ_k . Notice that the expected sub-optimality converges slightly faster for **ReSA** than **WaSA** in earlier periods; however, **WaSA** catches up after $k = 40$. The estimated expected sub-optimality of **ReSA** coincides with the benchmark, but that of **r-ReSA** differs from the benchmark. The distinction of **r-ReSA** from the benchmark arises because it solves $\text{r-Opt}_k(\theta_k)$ rather than $\text{Opt}_k(\theta_k)$. Although in this example, **r-ReSA** appears to achieve smaller expected sub-optimality, however, this is by coincidence and is not a general trend; we discuss this more in detail in Section 7.2. The wait-then-solve scheme updates θ_k at $k = 1, 21$ and 41 ; its estimated expected sub-optimality is significantly larger than other algorithms' when θ_k is not updated for a long time leading to larger cumulative regret. We have also tested a version of "wait-then-solve" that expends the cumulative number of SA steps taken by **ReSA** since its last update and this scheme performs identically to the version presented in Figure 2a. This demonstrates that there is little gain in expending more simulation effort in reducing the expected sub-optimality without updating θ_k .

Figures 2b and 2c show the average number of Euclidean projections **ReSA**, **WaSA**, and **r-ReSA** takes in each period. The shaded area around each line shows the two standard-error band on the average projections at each period calculated from 200 macro runs. The number of projections **ReSA** employs is four times that of **WaSA** in periods

937 Table 2. Estimated expected sub-optimality under different d at period $k = 100$ computed from 200 macro runs. For **WaSA**, $\lambda = 0.995$
 938 is used; standard errors are presented in parentheses.

	$\mathbb{E}[f(\mathbf{x}_k, \theta^*) - f(\mathbf{x}^*, \theta^*)]$				Cumulative number of simulations ($\times 10^4$)
	$d = 5$	$d = 10$	$d = 50$	$d = 100$	
ReSA	0.44 (0.02)	0.89 (0.03)	4.20 (0.06)	8.72 (0.09)	5.25 (0.01)
WaSA	0.47 (0.02)	0.99 (0.03)	4.62 (0.07)	9.58 (0.10)	0.27 (0.00)
r-ReSA	0.43 (0.02)	0.88 (0.03)	4.12 (0.06)	8.58 (0.09)	3593.51 (16.86)
$\mathbb{E}[f(\mathbf{x}_k^*, \theta^*) - f(\mathbf{x}^*, \theta^*)]$	0.44 (0.02)	0.89 (0.03)	4.19 (0.06)	8.70 (0.09)	

946
 947
 948
 949 $2 \leq k \leq 20$, while both decrease to zero in the later periods. Notice that the y -axis scales are significantly different in
 950 Figures 2b and 2c indicating that **r-ReSA** takes orders of magnitude larger number of projections. In Section 6, we
 951 discuss that this behavior may be anticipated for **r-ReSA** when μ_k falls below the actual μ . Indeed, in this example, μ_k at
 952 all k is smaller than μ . Figure 2d displays the logarithmic (base 10) average number of simulations of the three algorithms
 953 required for gradient estimation. Clearly, **WaSA** saves more simulation effort than the other two algorithms. Although
 954 in this example, \mathcal{X} is a simple hyperbox, the projection operation may be costly when \mathcal{X} is complex. Therefore, savings
 955 in both the number of projections and simulations are critical when either operation is computationally expensive. In
 956 such a case, **WaSA** has a significant advantage over both **ReSA** and **r-ReSA**. Although not requiring the value of μ is a
 957 clear advantage of **r-ReSA**, this example demonstrates that it comes at a significant computational cost.

958 Table 2 demonstrates robustness of our algorithms for varying problem dimensions. For $d = 5, 10, 50$, and 100 , we
 959 test all four algorithms under the same sequence of streaming data. All statistics are collected at period $k = 100$ and
 960 averaged over 200 macro runs with their standard errors presented in parentheses. The last row of Table 2 shows the
 961 estimated expected sub-optimality of \mathbf{x}_k^* , which serves as a benchmark. For all d , the expected sub-optimality of **ReSA**
 962 is statistically indistinguishable from the benchmark, while **WaSA** performs slightly worse than the benchmark for
 963 $d = 50$ and 100 . Nevertheless, the difference in the expected sub-optimality between **WaSA** and **ReSA** is dominated by
 964 the magnitude of $\mathbb{E}[f(\mathbf{x}_k^*, \theta^*) - f(\mathbf{x}^*, \theta^*)]$. We point out that the number of simulations expended by each algorithm
 965 depends on $\{N_k\}$ and choices of algorithm parameters, but not on d . Since n_k is sampled from the same discrete uniform
 966 distribution for all d , we simply present the cumulative number of simulations employed by each algorithm by the
 967 100th period averaged across all d in the last column of Table 2. The computational effort of the projections scales up
 968 linearly, d . However, as the feasible region is a hyperbox in this example, the projection effort is negligible and thus is
 969 not reported here. Notice that **WaSA** takes less than 5% of the projections required by **ReSA**. As observed in Figure 2d,
 970 **r-ReSA** requires orders of magnitude more simulation effort.

971 Lastly, we examine sensitivity of **WaSA**'s performance to the choice of λ . Table 3 confirms that there is little difference
 972 in the expected sub-optimality for different choices of λ , while the cumulative number of simulations can be significantly
 973 reduced by choosing λ close to 1.

981 7.2 Stochastic Activity Network

982 In this section, we consider a SAN problem, which originally appeared in [2] and is archived as a test problem at
 983 SimOpt [20]. We refer the readers to [13] for the structure of the network, which contains 13 arcs and 9 vertices. Each arc
 984 is associated with an activity whose operating time is exponentially distributed random variable. The total completion
 985 time of the activity network is equivalent to the longest path from the source (node a) to the sink (node i). As discussed
 986

989 Table 3. Estimated expected sub-optimality **WaSA** achieves with varying λ values at the 50th period computed from 30 macro runs;
 990 standard errors presented in parentheses.

	$d = 5$	$d = 10$	$d = 50$	$d = 100$	Cumulative number of simulations ($\times 10^4$)
$\lambda = 0.5$	0.34 (0.03)	0.64 (0.05)	3.51 (0.13)	7.09 (0.20)	3.19 (0.01)
$\lambda = 0.75$	0.34 (0.04)	0.64 (0.05)	3.52 (0.13)	7.10 (0.21)	2.70 (0.01)
$\lambda = 0.9$	0.34 (0.04)	0.64 (0.05)	3.53 (0.13)	7.08 (0.20)	1.67 (0.01)
$\lambda = 0.95$	0.35 (0.04)	0.65 (0.05)	3.58 (0.14)	7.15 (0.20)	1.03 (0.00)
$\mathbb{E}[f(\mathbf{x}_k^*, \boldsymbol{\theta}^*) - f(\mathbf{x}^*, \boldsymbol{\theta}^*)]$	0.34 (0.04)	0.64 (0.05)	3.51 (0.13)	7.08 (0.20)	

1000 in [2], one can derive an IPA gradient estimator for the completion time with respect to the parameters of the activity
 1001 times. We utilized the codes provided by [20] to compute the IPA gradient estimator in our experiments.

1002 We consider the setting where the mean parameters of the first six activity times are our decision variables, i.e.,
 1003 $\mathbf{x} = (x_1, x_2, \dots, x_6)^\top$, where the cost of each x_i is $1/x_i$. The means of the remaining seven activity times are to be
 1004 estimated from streaming data via maximum likelihood estimation, i.e., $\boldsymbol{\theta} \in \mathbb{R}^7$. We denote the simulated total completion
 1005 time of the network given \mathbf{x} and $\boldsymbol{\theta}$ by $T(\mathbf{x}, \boldsymbol{\theta}, \omega)$. The following objective function balances the expected total completion
 1006 time and the cost:
 1007

$$f(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}[T(\mathbf{x}, \boldsymbol{\theta}, \omega) | \boldsymbol{\theta}] + \sum_{i=1}^6 \frac{1}{x_i}, \quad (12)$$

1008 where $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^6 | 0.5 \leq x_i \leq 3, \text{ for } i = 1, \dots, 6\}$. Notice that given $\boldsymbol{\theta}$, smaller x_i makes $\mathbb{E}[T(\mathbf{x}, \boldsymbol{\theta}, \omega) | \boldsymbol{\theta}]$ smaller but
 1009 increases the cost function, $\sum_{i=1}^6 1/x_i$. The expectation $\mathbb{E}[T(\mathbf{x}, \boldsymbol{\theta})]$ is convex in \mathbf{x} [13] while the cost function, $\sum_{i=1}^6 1/x_i$,
 1010 is strongly convex with parameter $\mu = \frac{2}{27}$.

1011 In the following, we test **ReSA**, **WaSA**, and **r-ReSA** with $\gamma_0 = \tilde{\gamma}_0 = 13.5$ and $\lambda = 0.95$. All entries of $\boldsymbol{\theta}^* \in \mathbb{R}^7$ are
 1012 equal to one and $n_k = 3$ for all $1 \leq k \leq 100$. Within each macro run, the initial guess \mathbf{x}_0 is uniformly generated from \mathcal{X} .
 1013 The optimal function value $\mathbb{E}[f(\mathbf{x}^*, \boldsymbol{\theta}^*)]$ is estimated by implementing SA on $\text{Opt}(\boldsymbol{\theta}^*)$ with 1000 steps.

1014 Figure 3a shows the estimated expected sub-optimality over 50 macro runs; **ReSA** and **WaSA** perform similarly
 1015 for all $1 \leq k \leq 100$. Here, the wait-then-solve scheme updates $\boldsymbol{\theta}_k$ and optimizes at $k = 1, 26, 51$ and 76 , which shows
 1016 larger cumulative regret as seen in Section 7.1 as well. In earlier periods, **r-ReSA** outperforms the others in average
 1017 sub-optimality, however, the difference becomes less apparent in later periods. Again, we emphasize that **r-ReSA** is
 1018 targeting the regularized problem $\text{r-Opt}_k(\boldsymbol{\theta}_k)$. Since this is a minimization problem, the regularization term, $\frac{\mu_k \|\mathbf{x}\|^2}{2}$,
 1019 tends to force \mathbf{x} to have smaller entries, which appears to benefit the average sub-optimality for the particular objective
 1020 function in (12). Figure 3b reveals that in this problem **WaSA** has fewer than 5 projections at the first 20 periods
 1021 and almost zero for the rest; while **ReSA** has a larger number of projections than **r-ReSA** while the latter catches
 1022 up in the later periods. This may be misleading at first glance since the number of SA steps that **r-ReSA** takes is a
 1023 roughly square of the number used in **ReSA** at each period. Since we have relatively large $\gamma_0 = 13.5$ and the **ReSA**
 1024 stepsize is γ_0/j for $j = 1, 2, \dots$ at each period, the first few gradient descent steps tend to land $\mathbf{x}_{k,j}$ outside the feasible
 1025 region, \mathcal{X} , thus requiring a subsequent projection. On the other hand, **r-ReSA** takes $\gamma_{0,k}/j$ as the stepsize. Recall that
 1026 $\gamma_{0,k} = \mu_k^{-1} = \sqrt{N_k}$ is small at the beginning and thus leads to fewer projections; when k increases, $\gamma_{0,k} = \sqrt{N_k}$ grows
 1027 accordingly, resulting in more projections. For a similar reason, **WaSA** takes fewer projections as its stepsize, defined as
 1028 $\gamma_0/(N_{k-1}^\lambda + j - 1)$, cannot grow significantly with N_{k-1} in the denominator. The shaded area around each line shows
 1029 the two standard-error band on the average projections at each period calculated from 50 macro runs.

1030 To examine the sensitivity of **r-ReSA** to the structure of the objective function, we slightly modify the cost function
 1031 in (12) to obtain the new objective function: $f(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}[T(\mathbf{x}, \boldsymbol{\theta}, \omega) | \boldsymbol{\theta}] + \sum_{i=1}^6 \frac{5}{x_i}$, whose strong convexity parameter is
 1032

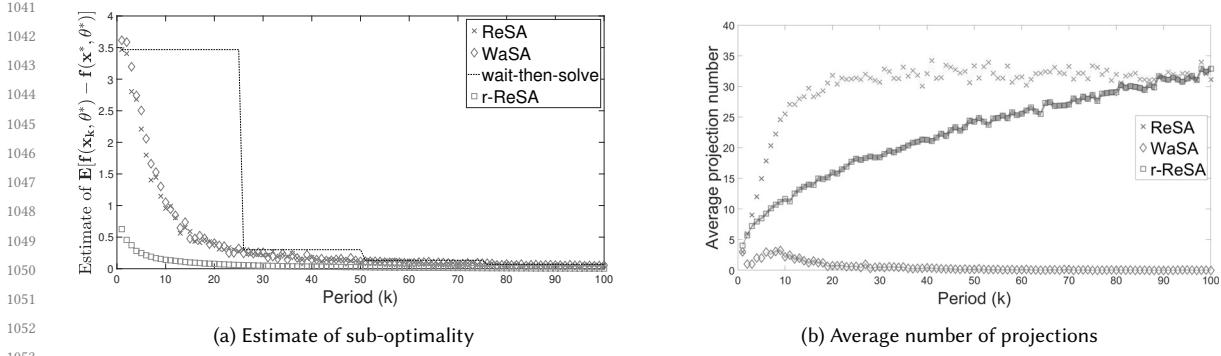
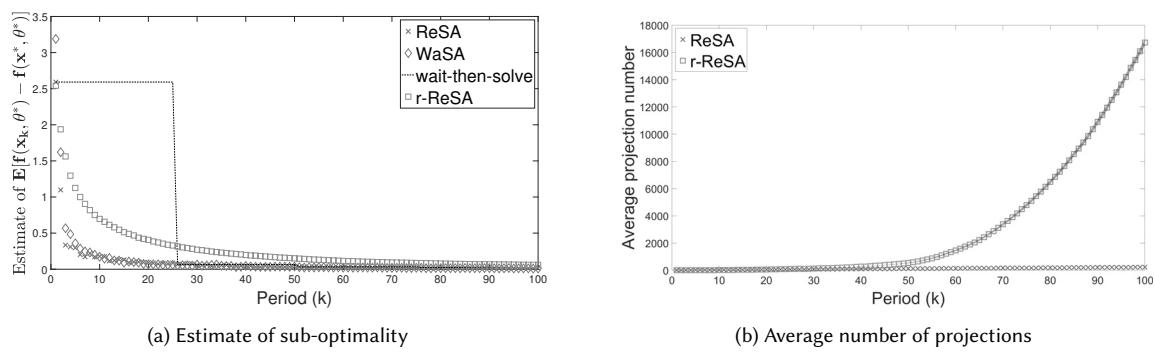


Fig. 3. Performance of the algorithms applied to the SAN problem averaged over 50 macro runs

Fig. 4. Performance of the algorithms applied to the modified SAN problem (larger μ) averaged over 50 macro runs

$\mu = \frac{10}{27}$, five times that of (12). We choose $\gamma_0 = \tilde{\gamma}_0 = 2.7$ accordingly. Under the same sequence of streaming data as in Figure 3, the four algorithms' performances using the new objective function are compared in Figure 4. In Figure 4a, the average sub-optimality of **WaSA** and **ReSA** are smaller compared to Figure 3a, which matches our theoretical results. On the other hand, **r-ReSA** is significantly outperformed by **ReSA** and **WaSA** in earlier periods. With the scaled-up cost function, the new objective function is more sensitive to smaller entries of \mathbf{x} while the regularization term in $\text{r-Opt}_k(\theta_k)$ indeed works against **r-ReSA** in this case. In sharp distinction with Figure 3b, the average number of projections in **r-ReSA** is far greater than that of **ReSA** in Figure 4b as the stepsize γ_0/j is significantly smaller than $\gamma_{0,k}/j = \sqrt{N_k}/j$ for larger k with the new μ . **WaSA** is excluded from Figure 4b as it performs significantly fewer projections than the other two algorithms.

7.3 Emergency Medical Service Mobile Station Location Problem

In this section, we examine the performance of **ReSA** and **WaSA** on a realistic simulation optimization application featuring a regional EMS mobile station location problem, a simplified version of a case study conducted in Centre County, PA [38]. The purpose of this example is to demonstrate the robustness of our algorithms even when the

1093 mathematical properties of $f(\mathbf{x}, \boldsymbol{\theta})$ are unknown so that the assumptions cannot be verified. The versions of **ReSA** and
 1094 **WaSA** with the SP gradient estimator examined in Section 5 are applied to this problem.
 1095

1096 The objective of the problem is to determine the location, \mathbf{x} , of a single mobile dispatching station in the county that
 1097 minimizes the average response time (ART) as described in Section 1. We simplify the solution space to a 2-dimensional
 1098 box, $\mathcal{X} = [0, 4]^2$, in lieu of the Centre County map. In this version, the hospital is located at (3.75, 3.75). In addition to
 1099 the mobile station, there are two permanent dispatching stations located at (2.25, 3.25) and (3.25, 1.75), respectively.
 1100 There are two types of emergency calls and the corresponding types of ambulances. The first type is Advanced Life
 1101 Support (ALS), which requires more advanced equipment to support patients in critical conditions. The second type is
 1102 Basic Life Support (BLS). An ALS ambulance may serve both ALS and BLS patients, however, a BLS ambulance may only
 1103 serve BLS patients. Each station has one ambulance of each type. Once a call is received, an ambulance is dispatched
 1104 from the nearest station with availability to the patient's location and perform the first aid upon arrival. For BLS calls,
 1105 we first check if a BLS ambulance is available at the nearest station. If not, an ALS ambulance is dispatched, if available.
 1106 Otherwise, the system checks the next nearest station's availability. When there is no available ambulance in any of
 1107 the three stations, the patient joins an ALS or BLS (virtual) service queue. Depending on the severity of the case, the
 1108 patient may or may not be transferred to the emergency room (ER). When the ambulance is freed, it is dispatched to a
 1109 patient's location if the service queue is nonempty, or return to its original station location.
 1110

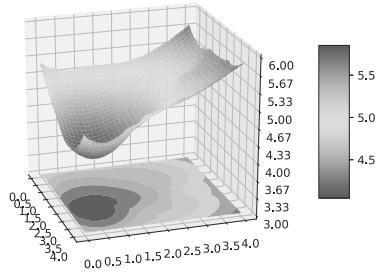
1111 A discrete-event simulator is implemented to estimate the ART given a mobile station's location, where a single
 1112 replication spans five weeks. We assume the following input distributions are known: (i) 30% of the patients are ALS-type;
 1113 (ii) the first aid time and transfer time at the ER are exponentially distributed with means 10 and 5 minutes, respectively;
 1114 and (iii) the travel time between two locations is distributed as Erlang with 6 phases and its mean is 2.7 minutes times
 1115 their Manhattan distance. We assume that the arrival process of the emergency calls is a spatio-temporal Poisson point
 1116 process, where the hourly arrival rates on the weekdays and weekends are known as 1.9 and 4.5, respectively, however,
 1117 the spatial distribution of the emergency calls is unknown and therefore needs to be learned. Furthermore, the map
 1118 is divided into a 8×8 grid and within each box on the grid, an incoming call's location is assumed to be uniformly
 1119 distributed. Hence, the estimation of the arrival process boils down to finding the splitting probability vector $\boldsymbol{\theta}^* \in \mathbb{R}^{64}$,
 1120 which determines the box each incoming emergency call belongs to. The "true" relative frequency of emergency calls
 1121 from all 64 boxes are given in Figure 5a; normalizing the frequencies gives $\boldsymbol{\theta}^*$.
 1122

1123 At the beginning of each period, the emergency call data are generated from the Poisson point process described
 1124 above; we treat them as streaming data collected from the system to demonstrate our multi-period SA framework. In
 1125 the k th period, the maximum likelihood estimator, $\boldsymbol{\theta}_k$, of $\boldsymbol{\theta}^*$ is calculated from the cumulative observations, which is
 1126 simply an empirical probability estimate computed from observed frequencies. The streaming data size in each period
 1127 ranges from 100 to 150 with the initial sample size $n_1 = 500$. We assume that the location of the mobile station can be
 1128 updated at each period.
 1129

1130 Unlike the SAN example in Section 7.2, it is not guaranteed that the objective function is strongly convex for the
 1131 EMS example. To observe the function, we discretized the map into a 100×100 grid and evaluated the ART under
 1132 the true probability distributions assuming the mobile station is located at each vertex of the grid via Monte Carlo
 1133 simulation. The Monte Carlo simulation budget was chosen such that the best and the second-best vertices can be
 1134 distinguished with 95% confidence. Figure 5b shows the estimated $f(\mathbf{x}, \boldsymbol{\theta}^*)$ surface, which appears to be (at least locally
 1135 near the global optimum) strongly convex.
 1136

1137 For both **ReSA** and **WaSA**, we chose $t = 0$ and the rest of the algorithm parameters were chosen as in Definition 5.1.
 1138 We set $s_0 = \tilde{s}_0 = 200$ to reduce the variance of the gradient estimator, however, together with the large streaming data size
 1139 Manuscript submitted to ACM
 1140
 1141

1145	<table border="1"><tr><td>1</td><td>2</td><td>4</td><td>2</td><td>3</td><td>2</td><td>1</td><td>0</td></tr><tr><td>2</td><td>3</td><td>5</td><td>2</td><td>5</td><td>4</td><td>2</td><td>1</td></tr><tr><td>5</td><td>3</td><td>3</td><td>4</td><td>7</td><td>6</td><td>2</td><td>2</td></tr><tr><td>6</td><td>4</td><td>2</td><td>3</td><td>4</td><td>3</td><td>5</td><td>3</td></tr><tr><td>2</td><td>2</td><td>1</td><td>2</td><td>3</td><td>4</td><td>8</td><td>4</td></tr><tr><td>2</td><td>1</td><td>1</td><td>2</td><td>8</td><td>6</td><td>5</td><td>6</td></tr><tr><td>1</td><td>1</td><td>1</td><td>3</td><td>15</td><td>9</td><td>12</td><td>10</td></tr><tr><td>4</td><td>1</td><td>2</td><td>6</td><td>10</td><td>17</td><td>13</td><td>9</td></tr></table>	1	2	4	2	3	2	1	0	2	3	5	2	5	4	2	1	5	3	3	4	7	6	2	2	6	4	2	3	4	3	5	3	2	2	1	2	3	4	8	4	2	1	1	2	8	6	5	6	1	1	1	3	15	9	12	10	4	1	2	6	10	17	13	9	1146
1	2	4	2	3	2	1	0																																																											
2	3	5	2	5	4	2	1																																																											
5	3	3	4	7	6	2	2																																																											
6	4	2	3	4	3	5	3																																																											
2	2	1	2	3	4	8	4																																																											
2	1	1	2	8	6	5	6																																																											
1	1	1	3	15	9	12	10																																																											
4	1	2	6	10	17	13	9																																																											



(a) Relative frequency of emergency calls

(b) Mont Carlo estimates of the ART given the mobile station's location from 500 replications

Fig. 5. Problem characteristics of the EMS example.

Table 4. Monte Carlo estimates of $\mathbb{E}[f(\mathbf{x}_k, \theta^*)]$ and cumulative number of SA steps. Standard errors are presented in parentheses.

Period	ReSA		WaSA	
	$\mathbb{E}[f(\mathbf{x}_k, \theta^*)]$	Cumulative number of SA steps	$\mathbb{E}[f(\mathbf{x}_k, \theta^*)]$	Cumulative number of SA steps
$k = 25$	4.0517(0.0017)	226.47(1.23)	4.2105(0.0243)	44.23(0.26)
$k = 50$	4.0477(0.0008)	1061.27(4.71)	4.0507(0.0007)	173.07(0.94)
$k = 75$	4.0489(0.0008)	2737.90(11.63)	4.0470(0.0009)	435.13(2.09)
$k = 100$	4.0470(0.0008)	5443.17(21.14)	4.0473(0.0007)	873.97(3.76)

N_k , this makes M_k large. To reduce the computational burden, we adopt scaling factor S when determining M_k . For **ReSA**, we choose $M_k = \lceil (N_k/S)^{1/p} \rceil$ with other parameters unchanged. For **WaSA**, we choose $M_k = \lceil (N_k/S)^{1/p} - (N_{k-1}/S)^\lambda \rceil$ and adjust the stepsizes and window sizes as $\gamma_{k,j} = 2\mu^{-1} \left((N_{k-1}/S)^\lambda + j - 1 \right)^{-1}$ and $c_{k,j} = \left((N_{k-1}/S)^\lambda + j - 1 \right)^{-p/4}$. Note that S does not affect the convergence rate, but affects the constant in the upper bound for the expected sub-optimality in Theorems 5.3 and 5.4. For $t = 0$, the feasible range for λ is $0 < \lambda < 1.5$; we employed $\lambda = 1.45$ in our experiments below. Recall that Definition 5.1 requires $\gamma_0 > p\mu^{-1}$ and $\tilde{\gamma}_0 = 2\mu^{-1}$ but μ is unknown in this setting. Thus, we set $\gamma_0 = \tilde{\gamma}_0 = 10$ as a conservative choice.

Table 4 presents the estimated $\mathbb{E}[f(\mathbf{x}_k, \theta^*)]$ as well as the cumulative number of SA steps after $k = 25, 50, 75$, and 100 iterations for both algorithms. Note that $\mathbb{E}[f(\mathbf{x}^*, \theta^*)]$ is estimated to be 4.04 from the Monte Carlo simulation shown in Figure 5b. We observe that although at the beginning **ReSA** outperforms **WaSA** in solution quality, **WaSA** catches up in the end. Considering the computational savings, **WaSA** is significantly superior, consistent with our analysis in Section 5. Unlike in Section 7.1, a single replication of the discrete-event simulator for the EMS problem is far more time-consuming; thus, the computational benefit of **WaSA** is even more pronounced here.

7.4 A nonconvex function: six-hump camel function

In this section, we consider an instance of a nonconvex function, the six-hump Camel function [31]:

$$f(\mathbf{x}, \theta) = \frac{1}{3}x_1^6 - 2.1x_1^4 + \theta_1x_1^2 + x_1x_2 + \theta_2x_2^4 + \theta_3x_2^2 \quad (13)$$

defined on $\mathcal{X} = \{\mathbf{x} = (x_1, x_2) | x_1 \in [-3, 3], x_2 \in [-2, 2]\}$. Following [5], we set $\theta^* = (4, 4, -4)^\top$. We assume θ_k is estimated via MLE computed from i.i.d. observations of $\mathcal{N}(\theta^*, \text{diag}((20^2, 25^2, 30^2)))$. Within \mathcal{X} , $f(\bullet, \theta^*)$ is locally strongly convex at its two global minimizers, $(0.0898, -0.7126)$ and $(-0.0898, 0.7126)$, and its four local minimizers,

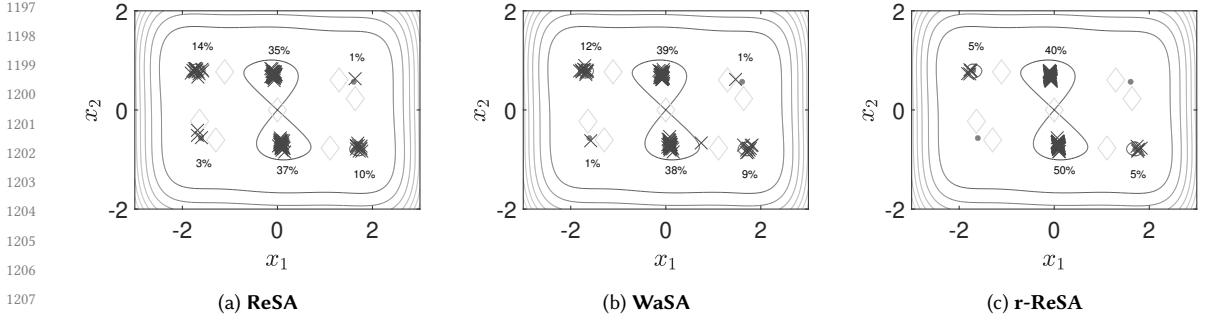


Fig. 6. Scatter plot of \mathbf{x}_{800} obtained from 100 macro runs of **ReSA**, **WaSA** and **r-ReSA** on the Six-Hump Camel function when $\sigma = 2$.

($-1.7035, 0.7960$), $(1.7035, -0.7960)$, $(1.6071, 0.5686)$ and $(-1.6071, -0.5686)$. In addition, $f(\bullet, \theta^*)$ has seven saddle points; see Figure 6. Given \mathbf{x} , we assume that the unbiased gradient estimator, $G(\mathbf{x}, \theta, \xi) = \nabla_{\mathbf{x}} f(\mathbf{x}, \theta) + \xi$, is available, where each entry of ξ follows $\mathcal{N}(0, \sigma^2(2 + f(\mathbf{x}, \theta))^2)$; notice the dependence of the variance on $f(\mathbf{x}, \theta)$.

We tested **ReSA**, **WaSA**, and **r-ReSA** with $\gamma_0 = \tilde{\gamma}_0 = \frac{1}{4}$ and $\lambda = 0.995$. The incoming data size of each period, represented by n_k , is geometrically distributed with success probability $\frac{1}{4}$. In each macro run, \mathbf{x}_0 is sampled uniformly in \mathcal{X} . Figure 6a, 6b and 6c show the scatter plots of the solutions returned from 100 macro runs of the three algorithms after 800 periods when $\sigma = 2$. All local and global minimizers are marked with circles (two global minimizers are in the middle) while the saddle points are marked as diamonds. The percentage near each minimizer shows the proportion of number of solutions that lie in the corresponding convex valley. Observe that except for one macro run for **WaSA**, all macro runs converge to the vicinity of global and local optima as prescribed by the theory. While 90% of the macro-runs generated by **r-ReSA** converge to the global optimum, a non-negligible fraction of macro runs end up in local minima for **ReSA** and **WaSA**. As seen in the SAN example with the objective function (12), **r-ReSA** benefits from the regularization term as the global optima have smaller norms than local optima.

8 CONCLUDING REMARKS AND FUTURE WORK

In this paper, we consider a multi-period SO problem where simulation model parameters are estimated with increasing precision as more input data accumulate over the decision periods. Focusing on SO problems defined on the continuous feasible solution space, we propose two multi-period SA schemes: **ReSA** and **WaSA**. The key distinction between the two algorithms lies in the choice of the stepsize sequence and the number of SA steps employed in each period; **ReSA** restarts the stepsize sequence at every period while **WaSA** calibrates the stepsize sequences across all periods as a function of the streaming data size leading to a significantly fewer number of SA steps for later periods compared to **ReSA**. Under a suitable strong convexity requirement on f , both **ReSA** and **WaSA** achieve the best-possible convergence rate in the expected sub-optimality when either an unbiased gradient estimator or the SP gradient estimator is employed. Additionally, the bounds on computational effort derived for **WaSA** grow far slower as opposed to their **ReSA** counterparts. This benefit becomes more pronounced when the SP gradient estimator is employed. In addition, we present a regularized **r-ReSA** variant that does not necessitate knowing the strong convexity parameter. We show that under suitable choices of the regularization sequence and the number of SA steps, the resulting expected sub-optimality error diminishes at the best-possible rate. Experiment results support these analyses; in particular, on

1249 the EMS example, **WaSA** consumed less than a sixth of the simulation effort taken by **ReSA** while producing solutions
 1250 of similar estimated sub-optimality.
 1251

1252 This work represents a first step towards investigating a broad range of multi-period SO problems under more general
 1253 settings. An important question lies in extending these techniques to contend with non-parametric input modeling.
 1254 In addition, we intend to consider settings where the input-generating processes are afflicted by non-stationarity.
 1255 Extending the **WaSA** scheme to the regularized problem will be explored as well. Finally, we intend to examine how we
 1256 may contend with relaxing assumptions in the problem class such as convexity and smoothness.
 1257

1258 **ACKNOWLEDGMENTS**

1261 He and Song are supported by National Science Foundation grants DMS-1854659 and CAREER CMMI-2045400. Shanbhag
 1262 gratefully acknowledges support from ONR Grant N00014-22- 1-2589 and DOE Grant DE-SC0023303.
 1263

1264 **REFERENCES**

- 1265 [1] Hesam Ahmadi and Uday V Shanbhag. 2020. On the resolution of misspecified convex optimization and monotone variational inequality problems. *Computational Optimization and Applications* 77, 1 (2020), 125–161.
- 1266 [2] Athanassios N Avramidis and James R Wilson. 1996. Integrated variance reduction strategies for simulation. *Operations Research* 44, 2 (1996), 327–346.
- 1267 [3] Gian Italo Bischi, Ahmad K Naimzada, and Lucia Sbragia. 2007. Oligopoly games with local monopolistic approximation. *Journal of economic behavior & organization* 62, 3 (2007), 371–388.
- 1268 [4] Gian Italo Bischi, Lucia Sbragia, and Ferenc Szidarovszky. 2008. Learning the demand function in a repeated Cournot oligopoly game. *Int. J. Systems Science* 39, 4 (2008), 403–419.
- 1269 [5] Franklin H Branin. 1972. Widely convergent method for finding multiple solutions of simultaneous nonlinear equations. *IBM Journal of Research and Development* 16, 5 (1972), 504–522.
- 1270 [6] Canan G. Corlu and Bahar Biller. 2013. A subset selection procedure under input parameter uncertainty. In *Proceedings of the 2013 Winter Simulation Conference*. IEEE Press, Piscataway, NJ, 463–473.
- 1271 [7] Canan G. Corlu and Bahar Biller. 2015. Subset Selection for Simulations Accounting for Input Uncertainty. In *Proceedings of the 2015 Winter Simulation Conference* (Huntington Beach, CA). IEEE Press, Piscataway, NJ, 437–446.
- 1272 [8] Francisco Facchinei and Jong-Shi. Pang. 2003. *Finite Dimensional Variational Inequalities and Complementarity Problems: Vols I and II*. Springer-Verlag, NY, Inc.
- 1273 [9] Weiwei Fan, L. Jeff Hong, and Xiaowei Zhang. 2020. Distributionally Robust Selection of the Best. *Management Science* 66, 1 (2020), 190–208.
- 1274 [10] Michael C. Fu. 2006. Chapter 19 Gradient Estimation. In *Simulation*, Shane G. Henderson and Barry L. Nelson (Eds.). Handbooks in Operations Research and Management Science, Vol. 13. Elsevier, 575–616.
- 1275 [11] Michael C Fu. 2015. *Handbook of simulation optimization*. Vol. 216. Springer.
- 1276 [12] Siyang Gao, Hui Xiao, Enlu Zhou, and Weiwei Chen. 2017. Robust ranking and selection with optimal computing budget allocation. *Automatica* 81 (2017), 30–36.
- 1277 [13] Shane G. Henderson. 2013. Stochastic Activity Network (SAN) Duration. https://github.com/simopt-admin/simopt/blob/master/MATLAB/Problems/SAN/SAN_Duration.pdf.
- 1278 [14] Dmitry Ivanov and Alexandre Dolgui. 2020. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control* (2020), 1–14.
- 1279 [15] Hao Jiang and Uday V. Shanbhag. 2013. On the solution of stochastic optimization problems in imperfect information regimes. In *Proceedings of the 2013 Winter Simulations Conference*. IEEE Press, Piscataway, NJ, 821–832.
- 1280 [16] Hao Jiang and Uday V. Shanbhag. 2015. Data-driven schemes for resolving misspecified MDPs: asymptotics and error analysis. In *Proceedings of the 2015 Winter Simulation Conference*. IEEE Press, Piscataway, NJ, 3801–3812.
- 1281 [17] Hao Jiang and Uday V. Shanbhag. 2016. On the Solution of Stochastic Optimization and Variational Problems in Imperfect Information Regimes. *SIAM Journal on Optimization* 26, 4 (2016), 2394–2429.
- 1282 [18] Hao Jiang, Uday V. Shanbhag, and Sean P. Meyn. 2018. Distributed Computation of Equilibria in Misspecified Convex Stochastic Nash Games. *IEEE Trans. Autom. Control* 63, 2 (2018), 360–371.
- 1283 [19] Jack Kiefer and Jacob Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. *The Annals of Mathematical Statistics* 23, 3 (1952), 462–466.
- 1284 [20] SimOpt Library. 2019. Simulation Optimization (SimOpt) Library. <http://github.com/simopt-admin/simopt/wiki>.

1301 [21] Tianyi Liu, Yifan Lin, and Enlu Zhou. 2021. A Bayesian Approach to Online Simulation Optimization with Streaming Input Data. In *Proceedings of*
 1302 *the 2021 Winter Simulation Conference*. 1–12.

1303 [22] Matthew Mikell and Jen Clark. 2018. *Cheat sheet: What is Digital Twin?* Technical Report. IBM.

1304 [23] Raghuram Pasupathy. 2010. On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation
 1305 Optimization. *Operations Research* 58, 4, 1 (2010), 889–901.

1306 [24] Michael Pearce and Juergen Branke. 2017. Efficient expected improvement estimation for continuous multiple ranking and selection. In *Proceedings*
 1307 *of the 2017 Winter Simulation Conference*. IEEE, Piscataway, NJ, 2161–2172.

1308 [25] Matthias Poloczek, Jialei Wang, and Peter I. Frazier. 2016. Warm Starting Bayesian Optimization. In *Proceedings of the 2016 Winter Simulation
 Conference*. IEEE Press, Piscataway, NJ, 770–781.

1309 [26] Guodong Shao, Sanjay Jain, Christoph Laroque, Loo Hay Lee, Peter Lendermann, and Oliver Rose. 2019. Digital Twin for Smart Manufacturing: The
 1310 Simulation Aspect. In *Proceedings of the 2019 Winter Simulation Conference*. IEEE Press, Piscataway, NJ, 2085–2098.

1311 [27] Eunhye Song and Barry L. Nelson. 2019. Input–Output Uncertainty Comparisons for Discrete Optimization via Simulation. *Operations Research* 67,
 1312 2 (2019), 562–576.

1313 [28] Eunhye Song, Barry L. Nelson, and L. Jeff Hong. 2015. Input Uncertainty and Indifference-zone Ranking & Selection. In *Proceedings of the 2015
 1314 Winter Simulation Conference*. IEEE Press, Piscataway, NJ, 414–424.

1315 [29] Eunhye Song and Uday V. Shanbhag. 2019. Stochastic Approximation for simulation Optimization under Input Uncertainty with Streaming Data. In
 1316 *Proceedings of the 2019 Winter Simulation Conference*. IEEE Press, Piscataway, NJ, 3597–3608.

1317 [30] James C Spall. 1992. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. *IEEE transactions on
 1318 automatic control* 37, 3 (1992), 332–341.

1319 [31] S. Surjanovic and D. Bingham. 2013. Virtual Library of Simulation Experiments: Test Functions and Datasets. Retrieved November 7, 2022, from
 1320 <http://www.sfu.ca/~ssurjano>.

1321 [32] Kevin Swersky, Jasper Snoek, and Ryan P Adams. 2013. Multi-Task Bayesian Optimization. In *Advances in Neural Information Processing Systems*,
 1322 C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.), Vol. 26. Curran Associates, Inc.

1323 [33] Ferenc Szidarovszky. 2004. Global stability analysis of a special learning process in dynamic oligopolies. *Journal of Economic Research* 9, 2 (2004),
 1324 175–190.

1325 [34] Andrei Nikolaevich Tikhonov, Vasilii Akovlevich Arsenin, and Vladimir Kotliar. 1976. *Méthodes de résolution de problèmes mal posés*. Éditions Mir,
 1326 Moscow. 202 pages. Traduit du russe par Vladimir Kotliar.

1327 [35] Juan Ungerda, Michael Pearce, and Juergen Branke. 2022. Bayesian Optimisation vs. Input Uncertainty Reduction. *ACM Trans. Model. Comput.
 1328 Simul.* (jan 2022). Just Accepted.

1329 [36] Haowei Wang, Jun Yuan, and Szu-Hui Ng. 2018. Informational Approach to Global Optimization with Input Uncertainty for Homoscedastic
 1330 Stochastic Simulation. In *Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)*.
 1331 1396–1400.

1332 [37] Keqi Wang, Wei Xie, Wencen Wu, Bo Wang, Jinxiang Pei, Mike Baker, and Qi Zhou. 2020. Simulation-Based Digital Twin Development for
 1333 Blockchain Enabled End-to-End Industrial Hemp Supply Chain Risk Management. In *Proceedings of the 2020 Winter Simulation Conference*. IEEE
 1334 Press, Piscataway, NJ.

1335 [38] Yidian Wang, Eunhye Song, and Huanan Zhang. 2019. *A Simulation Study on Emergency Medical Service Operations at the Centre LifeLink*. Technical
 1336 Report. The Pennsylvania State University. <https://bit.ly/2WVEbFO>.

1337 [39] Di Wu, Yuhao Wang, and Enlu Zhou. 2022. Data-Driven Ranking and Selection Under Input Uncertainty. *Operations Research* (2022).

1338 [40] Di Wu and Enlu Zhou. 2017. Ranking and selection under input uncertainty: A budget allocation formulation. In *Proceedings of the 2017 Winter
 1339 Simulation Conference*. IEEE Press, Piscataway, NJ, 2245–2256.

1340 [41] Jingxu Xu, Peter W. Glynn, and Zeyu Zheng. 2020. Joint Resource Allocation for Input Data Collection and Simulation. In *Proceedings of the 2020
 1341 Winter Simulation Conference*. IEEE Press, Piscataway, NJ.

1342 [42] Jie Xu, Edward Huang, Liam Hsieh, Loo Hay Lee, Qing-Shan Jia, and Chun-Hung Chen. 2016. Simulation optimization in the era of Industrial 4.0
 1343 and the Industrial Internet. *Journal of Simulation* 10, 4 (2016), 310–320.

1344

1345

1346

1347

1348

1349

1350

1351