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Stochastic Approximation for Multi-period Simulation Optimization with

Streaming Input Data

LINYUN HE, Georgia Institute of Technology, USA

UDAY V. SHANBHAG, The Pennsylvania State University, USA

EUNHYE SONG, Georgia Institute of Technology, USA

We consider a continuous-valued simulation optimization (SO) problem, where a simulator is built to optimize an expected performance

measure of a real-world system while parameters of the simulator are estimated from streaming data collected periodically from the

system. At each period, a new batch of data is combined with the cumulative data and the parameters are re-estimated with higher

precision. The system requires the decision variable to be selected in all periods. Therefore, it is sensible for the decision-maker to

update the decision variable at each period by solving a more precise SO problem with the updated parameter estimate to reduce

the performance loss with respect to the target system. We define this decision-making process as the multi-period SO problem

and introduce a multi-period stochastic approximation (SA) framework that generates a sequence of solutions. Two algorithms are

proposed: Re-start SA (ReSA) reinitializes the stepsize sequence in each period, whereas Warm-start SA (WaSA) carefully tunes

the stepsizes, taking both fewer and shorter gradient-descent steps in later periods as parameter estimates become increasingly

more precise. We show that under suitable strong convexity and regularity conditions, ReSA andWaSA achieve the best possible

convergence rate in expected sub-optimality either when an unbiased or a simultaneous perturbation gradient estimator is employed,

whileWaSA accrues significantly lower computational cost as the number of periods increases. In addition, we present the regularized

ReSA which obviates the need to know the strong convexity constant and achieves the same convergence rate at the expense of

additional computation.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network

reliability.

Additional Key Words and Phrases: multi-period simulation optimization, multi-period stochastic approximation, simulation optimiza-

tion under input model risk
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1 INTRODUCTION

In this paper, we consider a simulation optimization (SO) problem where a high-resolution stochastic simulator is built

to mimic a target system’s stochastic behavior with the goal of optimizing an expected performance measure. Such a

simulator is often referred to as a digital twin [22] and is continuously improved as additional data from the target
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2 He, Shanbhag, and Song

system are collected. Meanwhile, the decision-maker applies an SO algorithm to the simulator to find an implementable

decision for the target system. Such a decision-making framework, supported by a digital twin, has been discussed in

the literature in the context of supply chain [14, 37], manufacturing [26, 42], and more. We draw motivation from the

following application in emergency medical service (EMS), which is revisited in Section 7 for an empirical study.

• A regional emergency medical service (EMS) provider has ambulance dispatching stations and uses simulation

to support their operational decisions [38]. Their primary goal is to minimize the average response time, the time

between receiving an emergency call from a patient and picking up the patient. In addition to the dispatching

stations, the EMS provider also operates an additional “mobile station,” where the ambulances are parked

near potential sources of emergencies to minimize the average response time. The emergency call data (time,

location, emergency type, etc.) are collected continuously by the EMS provider from which the spatio-temporal

distribution of emergency calls is updated over time. Naturally, the location of the mobile dispatching station

can also be updated as the distribution is learned more precisely.

In our problem context, the logical discrepancy between the system and the simulator is deemed negligible. We

focus on the case where the parameters of the simulation input distribution function are estimated from streaming

data collected from the target system as in the EMS example. We assume that the data-generating process is stationary

regardless of the decision implemented in the system. Notice that in the EMS example, the implemented decision in the

target system (mobile station’s location) does not influence the input-generating process (distribution of emergency

calls) and only affects the output performance measure (average response time).

A generic SO problem that minimizes the expected performance measure can be written as

min
x∈X

E𝜔 [𝐹 (x, 𝜽 , 𝜔)], (Opt(𝜽 ))

where X ⊆ R𝑑 is the set of feasible solution, 𝐹 denotes the simulation output function, and 𝜽 represents the parameter

vector of the input models. We assume that 1) 𝐹 is completely characterized by x, 𝜽 , and a sequence of Uniform(0, 1)

random numbers represented by 𝜔 ; and 2) no analytical expression for 𝐹 and that 𝐹 can only be evaluated by running a

simulation. The objective function in x is defined as the expectation of 𝐹 (x, 𝜽 , 𝜔) with respect to 𝜔 (i.e. E𝜔 [𝐹 (x, 𝜽 , 𝜔)]).

If we denote the true parameter vector of the data-generating distribution in the system by 𝜽 ∗, then the true optimum

in the system, x∗, is optimal for Opt(𝜽 ∗). In general, an optimal solution of Opt(𝜽 ) for 𝜽 ≠ 𝜽 ∗ is suboptimal for Opt(𝜽 ∗).

Hence, when the unknown 𝜽 ∗ is replaced with an estimate computed from finite data, there is risk of making sub-optimal

decisions due to the finite-sample error in the estimate referred to as input model risk [27]. While most SO approaches

accounting for input model risk assume a single batch of input data is available, [39] first incorporates streaming

input data in SO; they propose a sequential ranking and selection (R&S) algorithm for a discrete SO problem where

the parameter estimates for the simulator are improved from the streaming input data. However, their work only

considers the case when the parameter estimator is in the form of a sample mean and a finite solution space. Our work

can incorporate a general M-estimator for 𝜽 ∗ and focuses on a continuous solution space. In particular, the solution

procedure considered here is stochastic approximation (SA) that takes a stochastic gradient descent step at each iteration,

where the stochastic gradient estimator is computed via simulations. Each iteration may require projecting the solution

back to the feasible region (e.g., Euclidean projection) whose computational cost depends on the complexity of X.

To clearly define the problem of interest, we coin the term, multi-period SO; Figure 1 provides a schematic of how

data collection and decision-making are synchronized in multi-period SO. At the beginning of the 𝑘th period, a new

batch of input data are combined with the accumulated data from the previous periods; we do not assume the batch size
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Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input Data 3

Fig. 1. The data collection and decision time line of multi-period SO problem; {𝑛𝑘 } and {𝑁𝑘 } respectively represent the sequence of

incoming data size and cumulative data size; an SO algorithm is applied to solve {Opt𝜽𝑘 } and returns {x𝑘 } at each period.

to be known a priori or can be controlled. We assume that the length of each period is much larger than the runtime of

a single simulation replication. From the combined data, the 𝑘th-period estimator, 𝜽𝑘 , of 𝜽
∗ is updated. As 𝑘 increases,

the sequence of 𝜽𝑘 becomes closer to 𝜽 ∗ under some regularity conditions. For small 𝑘 , on the other hand, 𝜽𝑘 may

be a poor estimate of 𝜽 ∗, thus the solution to Opt(𝜽𝑘 ) may perform poorly in the target system. One may attempt to

wait until 𝑘 is sufficiently large so that 𝜽𝑘 has small estimation error, then solve Opt(𝜽𝑘 ). However, the target system

requires a decision to be implemented in the meantime (e.g., the mobile station’s location must be determined in the

EMS example). Choosing an arbitrary solution to be implemented until 𝑘 is “large enough” may result in a significant

loss in the system performance. Moreover, because the data streaming process is outside of our control, it is difficult to

know a priori how many periods will have to pass until the desired precision is reached. Our goal is to find a sequence

of solutions {x𝑘 } such that the cumulative performance loss in the real-world system compared to x∗ is minimal.

Our strategy is to design a multi-period SA scheme that (approximately) solves Opt(𝜽𝑘 ) at the beginning of the 𝑘th

period and implements the updated decision in the system until the next period. The key research question here is

to determine how much computational effort to spend at each period so that the expected sub-optimality under 𝜽 ∗

diminishes at the fastest possible rate. Hypothetically, suppose we spend infinite computational effort at each 𝑘 to find

the exact solution to Opt(𝜽𝑘 ). Of course, this is unrealistic as each period is finite. Although we assume simulation runs

are much faster than the data streaming process, there is a natural limit on how many replications can be performed

within each period. Even if Opt(𝜽𝑘 ) can be solved to optimality for each 𝑘 , the resulting solution may be sub-optimal

under 𝜽 ∗, particularly for earlier periods when the estimate of 𝜽 ∗ may be coarse. Nonetheless, the hypothetical scheme

provides a useful benchmark for our proposed multi-period SA scheme; given {𝜽𝑘 }, observe that the performance of any

multi-period SO procedure is constrained by the rate at which the real-world 𝜽𝑘 converges to 𝜽 ∗. In fact, a benchmark

that achieves the same rate is one that returns the optimal solution of Opt(𝜽𝑘 ) at each 𝑘 in terms of the expected

sub-optimality for Opt(𝜽 ∗). This motivates the design of an SA framework that spends minimal computational effort in

solving Opt(𝜽𝑘 ) at each period 𝑘 while the resulting sequence of solutions provably attains the same convergence rate

in expected sub-optimality as that displayed by the sequence of the optimal solutions to Opt(𝜽𝑘 ).

Indeed, the idea of controlling the computational effort to match the precision of the approximated problem has been

explored before to design an efficient sample average approximation (SAA) scheme [23, 32]. In particular, [23] studies

the retrospective approximation (RA) that solves a sequence of sample-average problems constructed with increasing

sample sizes with progressively tighter precision requirements (i.e., decreasing error tolerance imposed on the distance

between the 𝑘th SAA problem’s optimal solution and the solution returned by the algorithm) warm-starting from

the previous period’s solution. While philosophically multi-period SA is constructed in the same vein as RA, there
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4 He, Shanbhag, and Song

are two major differences: 1) the approximation error of Opt(𝜽𝑘 ) is determined by not only the stochasticity in the

algorithm under our control, but also the streaming input data size beyond our control; 2) the analytical expression for

the simulation output function 𝐹 is unknown and thus, the sample-average version of Opt(𝜽 ) cannot be written down

analytically or solved directly.

In this paper, our focus is predominantly on problems where E𝜔 [𝐹 (x, 𝜽 , 𝜔)] is 𝜇-strongly convex over convex set

𝑋 for any 𝜽 ∈ Θ. While the convergence theory established in the paper does not immediately extend to nonconvex

settings, an empirical study on a nonconvex function suggests promise (See Section 7.4). Next, we provide a brief review

of the prior work in the context of such simulation optimization problems.

1.1 Literature review

There are several recent studies that consider SO under input model risk when a batch of input data is given. In [6, 27, 28],

variations of R&S procedures are proposed to provide a probabilistic guarantee that the optimum of Opt(𝜽 ), where

𝜽 is an estimator of 𝜽 ∗ computed from a single batch of data, is still optimal for Opt(𝜽 ∗). Such a guarantee typically

relies on the requirement that 𝜽 converges to 𝜽 ∗ as the data size tends to infinity. However, for smaller sample sizes,

the desired level of probabilistic guarantee may not be achieved by these approaches. Alternatively, [9, 12] propose

distributionally robust R&S procedures that solve Opt(𝜽 ) when the uncertainty set of 𝜽 contains a finite number of

candidate choices of 𝜽 .

In [7], the authors apply a Bayesian approach to model uncertainty about 𝜽 ∗ by imposing a prior distribution and

updating it to a posterior based on the batch input data. They adopt a modified objective function E[𝐹 (x, 𝜽 , 𝜔)], where

the expectation is taken with respect to the posterior distribution of 𝜽 as well as stochastic simulation error induced

by 𝜔 . In [24] and [36], Bayesian optimization (BO) algorithms are presented to address the same objective function as

in [7] defined on a continuous solution space.

All of the aforementioned approaches focus on the case when a single batch of input data is available. Some recent

research has considered the incorporation of additional data collection into the SO problem to balance the trade-off

between simulation replication and input data collection [35, 40, 41]. For continuous SO, warm-start BO algorithms

[25, 32] may be applied to solve a sequence of problems updated by the streaming data, although these algorithms are

created for more general dynamic problems. The closest SO problem to ours appears in [21], where they adopt Bayesian

input modeling and apply stochastic gradient descent to find the optimal solution for the problem where the objective

function is defined by averaging both stochastic uncertainty and Bayesian posterior uncertainty.

Similar problems have been studied under the name of misspecified optimization in the optimization literature in

which the parameters of the optimization problem are estimated from idiosyncratic data. Research on misspecified

optimization and game-theoretic problems appears to be rooted in [33], [3], and [4]. More recently, [1] examines

misspecified deterministic convex optimization problems while stochastic variants have been studied in [17] and [15].

These have motivated the studies on misspecified Nash equilibrium problems [18] and misspecified Markov Decision

Processes [16]. The problem closest to ours is considered in [17], where learning 𝜽 ∗ is cast as a stochastic convex

optimization problem while Opt(𝜽 ) is a stochastic convex optimization problem.

Gaps. There is a clear gap that exists in the literature designing an SA algorithm for an SO problem defined on a

continuous solution space under input model risk, particularly when streaming input data are available from the

system. Applying an out-of-the-box gradient descent scheme to solve the problem is faced with following challenges: (i)

Cumulative regret: Each period’s decision is implemented in the real-world system and therefore, the algorithm should
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Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input Data 5

be designed to return a sequence of solutions that result in small cumulative regret for the real-world problem, Opt(𝜽 ∗)

(See Eq. (4)). (ii) Computational cost: Naive approaches to reduce the regret may impose significant computational

burden in computing approximate solutions of Opt(𝜽𝑘 ). To design an efficient algorithm, information from the prior

periods need to be utilized; (iii) Knowledge of problem parameters. Prior schemes rely on the problem parameters (e.g.,

strong convexity parameter) in selecting algorithm parameters, which may not be known for a typical SO problem.

1.2 Contributions

Motivated, in large part, by the gaps in the literature, this paper makes the following contributions.

(i)We define the multi-period SO problem with exogenous streaming input data and devise a multi-period SA framework

that solves Opt(𝜽𝑘 ) up to the level of error determined by the cumulative streaming data size at each period 𝑘 . We propose

two variants of multi-period SA: Re-start Stochastic Approximation (ReSA); and Warm-start Stochastic Approximation

(WaSA). While at each period both variants warm-start from the previous period’s solution, the former restarts the

stepsize sequence for SA in each period, whereas the latter carefully controls the stepsize sequence for all periods as a

function of the cumulative input data size.

(ii) Under a suitable strong convexity requirement on Opt(𝜽 ), we show that both ReSA and WaSA achieve the optimal

convergence rate in the expected sub-optimality given the streaming data size when combined with either an unbiased

gradient estimator or the simultaneous perturbation (SP) gradient estimator [30]. For the latter, we further investigate

the trade-off between increasing the simulation effort for gradient estimation vs. the number of gradient-descent steps

taken within each period. We show that when the projection operation is expensive, computational effort can be

significantly reduced by estimating the gradient with increasing precision, which may lead to taking fewer projection

steps in each period.

(iii) We show that WaSA can save significant computational cost over ReSA by taking fewer, smaller gradient-descent

steps in later periods. For instance, when the same number of data points stream in at each period and an unbiased

gradient estimator is available, the cumulative number of gradient-descent steps ReSA takes grows quadratically in the

number of periods, whereas that of WaSA grows linearly. The relative saving grows even more starkly when the SP

gradient estimator is adopted.

(iv) Finally, we present a regularized variant of ReSA which does not require knowledge of the strong convexity

parameter 𝜇 and proceed to show that under suitable choices of the regularization sequence, the resulting expected

sub-optimality error diminishes at the same rate as ReSA andWaSA at the expense of computational effort.

In our preliminary work [29], a prior version of the multi-period SA framework is presented. However, there are

several limitations of [29] that we aim to address in this paper: (i) an unbiased gradient estimator is assumed available,

which may not for a general SO problem; (ii) the derivation of the upper bound on the expected sub-optimality was

preliminary and one of the results was afflicted by an error; and (iii) the warm-start algorithm in [29] does not control

the stepsize sequences across periods and it has proved challenging to obtain a valid upper bound on the expected

sub-optimality for this algorithm once the error in (ii) is fixed; (iv) the regularized variant of ReSA is new.

The rest of the paper is organized as follows. In section 2, we formally state the multi-period SA problem and describe

our algorithms. Section 3 summarizes the main results of this paper. Section 4 and Section 5 discuss the detailed analysis

when an unbiased gradient estimator and the SP gradient estimator is employed, respectively. A regularized variant of

ReSA is presented and analyzed in Section 6. In Section 7, we evaluate the empirical performance of our algorithms

using synthetic and realistic SO problems including the EMS example described earlier. Concluding remarks are given

in Section 8. All proofs of the theoretical results are included in the Supplementary Material (SM).
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6 He, Shanbhag, and Song

Notation. For arbitrary sequence {𝑎𝑘 } and positive sequence {𝑏𝑘 }, we adopt the notation, 𝑎𝑘 = 𝑂 (𝑏𝑘 ), if there exists

constant 0 < M < ∞ and 𝑘0 ∈ Z such that |𝑎𝑘 | < M𝑏𝑘 for all 𝑘 ≥ 𝑘0. We use ‖ · ‖ to represent the Euclidean norm.

2 PROBLEM AND ALGORITHM DESCRIPTION

In this section, we formally define the multi-period SA problem (Section 2.1) and then propose two multi-period SA

algorithms to solve this problem (Section 2.2). Some background on SA is provided in SM Section ?? for completeness.

2.1 Problem statement

Suppose that there are 𝐼 data-generating processes in the system, each of which streams an independent and identically

distributed (i.i.d.) sequence of data. We assume that if two or more inputs are correlated, then they are collected together

as vectors. Otherwise, all 𝐼 inputs are independent of each other. The parametric family of each input distribution is

assumed to be known, however, its true parameter(s) must be estimated from the data. We aggregate the true parameters

of all 𝐼 inputs within the vector 𝜽 ∗ ∈ R𝐼
′
, where 𝐼 ′ ≥ 𝐼 ; see Section ?? of SM for further discussion.

Let n1
𝑘
, n2

𝑘
, . . . , n𝐼

𝑘
denote the number of observations obtained from 𝐼 real-world input distributions at the 𝑘th period

and 𝑛𝑘 =
∑𝐼
𝑖=1 n

𝑖
𝑘
, i.e., 𝑛𝑘 is the sum of incoming data size at the 𝑘th period from all 𝐼 input-generating processes.

We assume that n𝑖
𝑘
/𝑛𝑘 converges to constant 𝜌𝑖 with probability 1 as 𝑘 → ∞ for each 𝑖 = 1, 2, . . . , 𝐼 . Without loss of

generality, it can be assumed that 𝑛𝑘 > 0, because any period in which no data are collected can be merged with the

next period. The cumulative average number of observations by the 𝑘th period is denoted by 𝑁𝑘 , i.e. 𝑁𝑘 �
∑𝑘
ℓ=1 𝑛ℓ . Let

Z𝑘 be the collection of all input data observed from the system up to the 𝑘th period. Given Z𝑘 , 𝜽
∗ is approximated by

its estimator 𝜽𝑘 . Our scheme allows 𝜽𝑘 to be any parametric estimator that satisfies

𝜽𝑘
𝑎.𝑠.
−−−→ 𝜽 ∗ and E[‖𝜽𝑘 − 𝜽 ∗‖2] = O

(
𝑁−1
𝑘

)
, (1)

where a.s. denotes almost sure convergence. An example of such 𝜽𝑘 is an M-estimator defined as a solution to

min
𝜽 ∈Θ

L(𝜽 | Z𝑘 ), (2)

where Θ ⊆ R𝐼
′
for 𝐼 ′ ≥ 𝐼 is a feasible set for 𝜽 and L(· | Z𝑘 ) is a sample loss function given cumulative observations

Z𝑘 . For instance, if L(· | Z𝑘 ) is chosen to be the negative log-likelihood function of Z𝑘 , then the resulting 𝜽𝑘 is a

maximum likelihood estimator; see Section ?? of SM for the exact form of L in this case. For this choice of L, assuming

that (2) can be solved to optimality, 𝜽𝑘 satisfies (1) under some regularity conditions presented in Section ??.

We introduce the following notation for the conditional mean of the simulation output at fixed x given 𝜽 :

𝑓 (x, 𝜽 ) � E𝜔 [𝐹 (x, 𝜽 , 𝜔)] . (3)

Recall that E𝜔 indicates the expectation is taken with respect to 𝜔 . Note that (3) allows x to be either a deterministic

feasible solution or a random solution returned by an SO algorithm.

Recall that Opt(𝜽 ∗) is defined on the 𝑑-dimensional continuous feasible solution space, X, and its solution is denoted

by x∗. Let x∗
𝑘
represent the optimal solution to Opt(𝜽𝑘 ), i.e, x

∗
𝑘
= argminx∈X 𝑓 (x, 𝜽𝑘 ). Since 𝜽𝑘 is progressively getting

closer to 𝜽 ∗ as 𝑘 increases, we may expect x∗
𝑘
to get closer to x∗ under some suitable smoothness assumption on 𝑓 .

Consider a multi-period SA scheme that takes 𝑀𝑘 stochastic gradient-descent steps to solve Opt(𝜽𝑘 ) and returns x𝑘
as its (approximate) solution at each period 𝑘 . Here, the stochastic gradient estimator is computed from simulation

replications; we elaborate on the types of stochastic gradient estimators considered in our analyses in Sections 4.1
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Algorithm 1 (ReSA). Re-start multi-period SA

Given x0, 𝛾0, 𝑝 , {𝑁𝑘 }; Set 𝑘 := 1;

[1] Compute 𝜽𝑘 using 𝑁𝑘 samples; Set x𝑘,1 := x𝑘−1 and 𝑀𝑘 := max
{
1,
⌈
𝑁
1/𝑝
𝑘

⌉}
;

[2] x𝑘,𝑗+1 := ΠX

[
x𝑘,𝑗 − 𝛾𝑘,𝑗𝐺 (x𝑘,𝑗 , 𝜽𝑘 , 𝜔𝑘,𝑗 )

]
given 𝛾𝑘,𝑗 =

𝛾0
𝑗 for 𝑗 = 1, · · · , 𝑀𝑘 ;

[3] x𝑘 := x𝑘,𝑀𝑘+1; 𝑘 := 𝑘 + 1 and go to [1];

and 5.1. Since𝑀𝑘 is finite, x𝑘 is subject to stochastic error, i.e., x𝑘 ≠ x∗
𝑘
in general. The performance loss of implementing

x𝑘 in the system at the 𝑘th period can be measured by the optimality gap between x𝑘 and x∗ under the target system

problem, Opt(𝜽 ∗), as 𝜽 ∗ characterizes the system for which the sequence of decisions, {x𝑘 }, is implemented. To evaluate

the performance loss over 𝐾 periods, we consider the following expected cumulative sub-optimality (regret) of the

sequence of solutions, {x𝑘 }, for Opt(𝜽
∗): ∑𝐾

𝑘=1
E
[
𝑓 (x𝑘 , 𝜽

∗) − 𝑓 (x∗, 𝜽 ∗)
]
, (4)

where the expectation is taken with respect to the sampling error in 𝜽𝑘 caused by finiteness of𝑁𝑘 as well as the stochastic

variability in computing x𝑘 . We emphasize that the 𝑘th-period expected sub-optimality in (4) is not E[𝑓 (x𝑘 , 𝜽𝑘 ) −

𝑓 (x∗, 𝜽 ∗)]; this is because we implement x𝑘 in the target system whose true, but unknown parameter, is 𝜽 ∗ .

Asmentioned in Section 1, the cumulative expected sub-optimality of {x∗
𝑘
} provides a benchmark for anymulti-period

SA scheme. Hypothetically, suppose simulation is instantaneous so that for each Opt(𝜽𝑘 ), we can take infinitely many

gradient-descent steps to find x∗
𝑘
. Still, E[𝑓 (x∗

𝑘
, 𝜽 ∗) − 𝑓 (x∗, 𝜽 ∗)] ≥ 0 as 𝜽𝑘 ≠ 𝜽 ∗ in general due to the sampling error in

𝜽𝑘 . Therefore, even if the 𝑘th period’s SA scheme is stopped after 𝑀𝑘 < ∞ gradient-descent steps, as long as

E[𝑓 (x∗𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] ≈ E[𝑓 (x𝑘 , 𝜽

∗) − 𝑓 (x∗, 𝜽 ∗)] (5)

for each 𝑘 , the expected cumulative sub-optimality of {x𝑘 } would be similar to that of {x∗
𝑘
}. Thus, our goal lies in

developing a multi-period SA algorithm such that both expected sub-optimality terms in (5) have the same convergence

rate in 𝑁𝑘 by carefully selecting 𝑀𝑘 as a function of 𝑁𝑘 at each 𝑘 .

Remark: Instead of x𝑘 , one may consider adopting x̄𝑘 = argminx∈X E[𝑓 (x, 𝜽𝑘 )], where the expectation is with respect

to the (approximate) sampling distribution of 𝜽𝑘 . In Appendix ??, we show that under assumptions similar to those made

in Section 3, {x̄𝑘 } and {x𝑘 } have the same rates of convergence in expected sub-optimality and discuss computational

advantage of x𝑘 over x̄𝑘 .

2.2 Algorithm definition

We propose two variants of multi-period SA. The first is the re-start multi-period SA (ReSA) scheme presented in

Algorithm 1. ReSA initializes (restarts) the stepsize sequence for gradient descent at each period while adopting

the previous period’s solution as the initial solution. In the 𝑘th period, ReSA solves Opt(𝜽𝑘 ) by taking 𝑀𝑘 projected

gradient-descent steps starting from x𝑘−1. For the first period, we assume x0 is randomly selected in X in our analyses.

Let x𝑘,𝑗 , 𝑗 = 1, 2, . . . , 𝑀𝑘 denote the sequence of solutions returned by the algorithm in the 𝑘th period.

Note that 𝐺 (x𝑘,𝑗 , 𝜽𝑘 , 𝜔𝑘,𝑗 ) in Step [2] is a stochastic estimator of ∇x 𝑓 (x𝑘,𝑗 , 𝜽𝑘 ). Depending on the choice of 𝐺 ,

𝜔𝑘,𝑗 may be a sequence of Uniform (0, 1) random numbers or a collection of such sequences if 𝐺 requires multiple

replications to compute. In addition, ΠX (𝑢) represents the Euclidean projection of vector 𝑢 ∈ R𝑑 onto X while 𝛾0

denotes the constant of the stepsize sequence. Note that we use the parameter 𝑝 to define the {𝑀𝑘 } sequence, where 𝑝
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8 He, Shanbhag, and Song

Algorithm 2 (WaSA). Warm-start multi-period SA

Given x0, 𝛾0, 𝛾0, 𝑝 , {𝑁𝑘 }; Choose 0 < 𝜆 < 1/𝑝; Set 𝑘 := 1;
[1] Run ReSA with 𝛾0 and x0 for 𝑘 = 1 to obtain x1; Update 𝑘 := 2;

[2] Compute 𝜽𝑘 using 𝑁𝑘 samples; 𝑀𝑘 :=
⌈
𝑁
1/𝑝
𝑘

− 𝑁𝜆
𝑘−1

⌉
; Set x𝑘,1 := x𝑘−1;

[3] x𝑘,𝑗+1 := Π𝑋
[
x𝑘,𝑗 − 𝛾𝑘,𝑗𝐺 (x𝑘,𝑗 , 𝜽𝑘 , 𝜔𝑘,𝑗 )

]
given 𝛾𝑘,𝑗 =

𝛾0
𝑁 𝜆
𝑘−1+𝑗−1

for 𝑗 = 1, · · · , 𝑀𝑘 ;

[4] x𝑘 := x𝑘,𝑀𝑘+1; 𝑘 := 𝑘 + 1 and go to [2];

is chosen so that E
[
‖x1, 𝑗 − x∗1‖

2
��𝜽1] = O( 𝑗−𝑝 ), which can be achieved by choosing 𝑀1 and {𝛾1, 𝑗 } appropriately. The

value of 𝑝 depends on the gradient estimator. In the remainder of the paper, we refer to O( 𝑗−𝑝 ) as the single-period MSE

convergence rate to differentiate it from the convergence rate of the expected sub-optimality, E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)],

which we simply refer to as the convergence rate. Notice that in Step [2], 𝛾𝑘,1 is reset to 𝛾0 for each 𝑘 . The algorithm

parameters are left unspecified here because their choices depend on the properties of Opt(𝜽 ) and𝐺 ; these are clarified

in Sections 4–5 with corresponding assumptions on Opt(𝜽 ) and 𝐺 .

ReSA is a generalization of the scheme adopted by [17], where a single projected gradient-descent step was taken at

each period, i.e. 𝑀𝑘 = 1 for every 𝑘 ≥ 1. ReSA sets 𝑀𝑘 to be a function of 𝑁𝑘 at each 𝑘 . The choice of 𝑀𝑘 in ReSA

ensures that we spend just enough computational effort in the 𝑘th period for {x𝑘 } to achieve the same convergence rate

as {x∗
𝑘
}, given the streaming data sequence. In fact, the choice of {𝑀𝑘 } in ReSA guarantees that the convergence rate

matches the rate at which 𝜽𝑘 → 𝜽 ∗ even when the initial solution to the 𝑘th problem, x𝑘,1, is chosen randomly in X

under appropriate assumptions made in Sections 3–5. Since 𝜽𝑘
𝑎.𝑠.

−−−−−→
𝑘→∞

𝜽 ∗ and x∗
𝑘−1

and x∗
𝑘
become closer as 𝑘 increases,

one may expect that taking x𝑘−1 close to x
∗
𝑘−1

as the initial solution of the 𝑘th period would improve the computational

efficiency of the algorithm by letting us take fewer and smaller SA (gradient-descent) steps while achieving the same

convergence rate. Based on this intuition, we propose the warm-start multi-period SA (WaSA) scheme in Algorithm 2.

The constant, 𝜆, can be any value in (0, 1/𝑝); the closer 𝜆 is to 1/𝑝 , the fewer gradient-descent steps WaSA takes in

each period. The choices for the parameters are discussed in Sections 4–5 along with the assumptions on Opt(𝜽 ) and 𝐺 .

Observe from Step [1] of Algorithm 2 that ReSA andWaSA make identical progress for 𝑘 = 1. For 𝑘 ≥ 2,WaSA

displays two key distinctions from ReSA:

(a) By setting the 𝑗 th stepsize at period 𝑘 as 𝛾𝑘,𝑗 = 𝛾0/(𝑁
𝜆
𝑘−1

+ 𝑗 − 1),WaSA takes increasingly smaller steps within

each period as 𝑘 increases.

(b) By choosing 𝑀𝑘 smaller than its corresponding value in ReSA, WaSA takes increasingly fewer SA steps than

ReSA as 𝑘 increases.

Hence, as 𝑘 increases and more input data are accumulated, WaSA takes smaller and also fewer gradient-descent steps

recognizing that it is in the vicinity of x∗.

To summarize, both ReSA and WaSA warm-start from the previous period’s implemented solution. The difference

lies in the choices for {𝛾𝑘,𝑗 } as well as {𝑀𝑘 }. While both algorithms are designed so that E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)]

achieves the same convergence rate as E[𝑓 (x∗
𝑘
, 𝜽 ∗)− 𝑓 (x∗, 𝜽 ∗)], employingWaSAmay lead to significant computational

savings by taking fewer and more carefully specified gradient-descent steps.

3 OVERVIEW OF MAIN RESULTS

In this section, we summarize the main theoretical properties of ReSA and WaSA. To facilitate the discussion, we first

provide a set of conditions on Opt(𝜽 ).
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Assumption 1. The feasible solution set, X ⊆ R𝑑 , is closed, convex, and nonempty and Θ ⊆ R𝐼
′
is nonempty and

compact. For each 𝜽 ∈ Θ, 𝑓 (·, 𝜽 ) is 𝜇-strongly convex and continuously differentiable on an open set containing X.

Assumption 2. There exist 𝐿X > 0 and 𝐿Θ > 0 such that ‖∇x 𝑓 (x, 𝜽 ) − ∇x 𝑓 (y, 𝜽 )‖ ≤ 𝐿X‖x − y‖ for all x, y ∈ X and

for all 𝜽 ∈ Θ and ‖∇x 𝑓 (x, 𝜽1) − ∇x 𝑓 (x, 𝜽2)‖ ≤ 𝐿Θ‖𝜽1 − 𝜽2‖ for all 𝜽1, 𝜽2 ∈ Θ and for all x ∈ X.

Assumption 3. The optimal solution of Opt(𝜽 ∗), denoted by x∗, is an interior point of X.

Note that our algorithms do not not require 𝐿X and 𝐿Θ to be known; they only need to exist. On the other hand, we

assume the strong convexity parameter, 𝜇, is known in Sections 4–5. Smooth function ℎ with domain X ⊆ R𝑑 is said to

be 𝜇-strongly convex, if for any x, x′ ∈ X, (∇ℎ(x) − ∇ℎ(x′))
 (x − x′) ≥ 𝜇‖x − x′‖2 for some 𝜇 > 0. Depending on

the problem context, this may or may not be a restrictive assumption. For instance, Section 7.2 features a stochastic

activity network problem for which the objective function includes a deterministic cost function with a known strong

convexity parameter. On the other hand, in the EMS example in Section 7.3 we cannot analytically confirm that the

problem is strongly convex nor can we derive the value of 𝜇 even if the problem is strongly convex. In Section 6, we

investigate a regularized version of ReSA (r-ReSA) scheme that does not require known 𝜇; we further elaborate on

this scheme at the end of this section.

We consider two types of stochastic gradient estimator𝐺 : a generic unbiased gradient estimator and the simultaneous

perturbation (SP) gradient estimator. The latter is biased in general [30]; to balance its bias and variance, we introduce

an additional algorithm parameter 𝑠𝑘,𝑗 when the SP gradient estimator is adopted to control the number of simulation

replications made to compute 𝐺 at the 𝑗th SA step within the 𝑘th period.

For both ReSA and WaSA, the upper bound on the expected sub-optimality at the 𝑘th period is determined by how

close x𝑘 and 𝜽𝑘 are to x∗ and 𝜽 ∗, respectively. The following lemma connects these two pieces together to provide

an upper bound on E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] for any generic multi-period SO framework that returns the sequence of

solutions, {x𝑘 }, at each period.

Lemma 3.1. Suppose Assumptions 1–3 hold. Consider the sequences {x𝑘 } and {𝜽𝑘 } generated by any multi-period SO

framework. Then, the following holds for any 𝑘 ≥ 1:

E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] ≤ 𝐿XE[‖x𝑘 − x∗𝑘 ‖

2] +
𝐿X𝐿2Θ
𝜇2
E[‖𝜽𝑘 − 𝜽 ∗‖2] . (6)

Notice that when x𝑘 = x∗
𝑘
, the first term of the upper bound in (6) vanishes. Hence, the expected sub-optimality of

{x∗
𝑘
} converges at the same rate as E[‖𝜽𝑘 − 𝜽 ∗‖2]. Lemma 3.1 provides guidance on how accurately Opt(𝜽𝑘 ) needs to

be solved at each 𝑘 to achieve the best possible convergence rate. Both ReSA and WaSA can control E[‖x𝑘 − x∗
𝑘
‖2] by

choosing 𝑀𝑘 and 𝛾𝑘,𝑗 appropriately. Since E[‖𝜽𝑘 − 𝜽 ∗‖2] = O(𝑁−1
𝑘

), the best convergence rate can be obtained when

E[‖x𝑘 − x∗
𝑘
‖2] = O(𝑁−1

𝑘
); there is no reason to put additional effort to make E[‖x𝑘 − x∗

𝑘
‖2] decay at a faster rate. Note

that we focus on the convergence rate rather than minimizing the upper bound in (6) since 𝐿X and 𝐿Θ are unknown.

Table 1 summarizes the convergence rates of ReSA andWaSA; for both types of gradient estimators, both algorithms

achieve the best-possible rate of O(𝑁−1
𝐾 ). Table 1 also presents how the cumulative number of SA steps,

∑𝐾
𝑘=1 𝑀𝑘 , spent

by ReSA andWaSA grows at each period 𝐾 for 𝐾 ≥ 1 to achieve this convergence rate. Recall from Algorithms 1–2,

the choice of 𝑀𝑘 depends on the exponent of the single-period MSE convergence rate, O( 𝑗−𝑝 ). The smaller 𝑝 is, the

more SA steps are required at each period to achieve the best convergence rate. When 𝐺 is an unbiased gradient

estimator, we have 𝑝 = 1. When the SP gradient estimator is adopted, choosing 𝑠𝑘,𝑗 to be a constant leads to 𝑝 = 2/3.

Increasing 𝑠𝑘,𝑗 as a polynomial in 𝑗 , 𝑝 can be pushed to 1. The last two columns of Table 1 show the growth rate of the
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10 He, Shanbhag, and Song

Table 1. The convergence rates of expected sub-optimality, cumulative number of SA steps, and cumulative simulation effort of ReSA

and WaSA at the end of the 𝐾th period under different sets of assumptions. The rates marked with ∗ can be achieved when 𝜆 is

pushed to its upper bound.

Gradient estimator
Convergence rate Cumulative number of SA steps Cumulative simulation effort
ReSA WaSA ReSA WaSA ReSA WaSA

Unbiased
(𝑝 = 1) O(𝑁−1

𝐾 ) O(𝑁−1
𝐾 ) O

(∑𝐾
𝑘=1 𝑁𝑘

)
O(𝑁𝐾 )

∗ O
(∑𝐾

𝑘=1 𝑁𝑘

)
O(𝑁𝐾 )

∗

SP
(2/3 ≤ 𝑝 ≤ 1) O(𝑁−1

𝐾 ) O(𝑁−1
𝐾 ) O

(∑𝐾
𝑘=1 𝑁

1/𝑝
𝑘

)
O

(
𝑁
1/𝑝
𝐾

)∗
O

(∑𝐾
𝑘=1 𝑁

3/2
𝑘

)
O

(
𝑁
3/2
𝐾

)∗

cumulative simulation effort ReSA andWaSA respectively spend on estimating the gradients up to period 𝐾 . Notice

that the growth rate of the cumulative simulation effort does not depend on 𝑝 for the SP gradient estimator, whereas

the cumulative number of SA steps does. Given that Opt(𝜽 ) is a constrained optimization problem, each SA step may

require a Euclidean projection to ensure feasibility, which can be computationally expensive when X is a complex set.

In this case, it is sensible to push 𝑝 closer to 1 so that fewer projections are required.

Recall that in WaSA, parameter 𝜆 determines the computational cost; the closer 𝜆 is to 1/𝑝 , the more computational

saving is achieved. When 𝜆 = 0,WaSA essentially reduces to ReSA. We note that Table 1 provides the upper bounds

(marked with ‘∗’) on the smallest-possible cumulative SA steps and simulation effort thatWaSA can achieve when 𝜆

is pushed to 1/𝑝 , which clearly demonstrates significant computational benefits of WaSA over ReSA. Notice from

Table 1 that WaSA achieves the same convergence rate in terms of expected sub-optimality regardless of the choice of

𝜆, which favors 𝜆 close to 1/𝑝.

When 𝜇 is unknown, inspired by the classical theory of Tikhonov regularization [34], we propose regularized-ReSA

(r-ReSA) in Section 6. We convert Opt(𝜽𝑘 ) into a regularized problem with known convexity parameter 𝜇𝑘 and solve it

instead of Opt(𝜽𝑘 ) to obtain x𝑘 . We show that by choosing {𝜇𝑘 } and the algorithm parameters carefully, the resulting

expected sub-optimality diminishes at the rate of O(𝑁−1
𝑘

). However, r-ReSA requires a larger number of SA steps (and

simulation effort), which is the price we pay for not knowing 𝜇. See Section 6 for details.

4 MULTI-PERIOD SA FRAMEWORKWITH UNBIASED GRADIENT ESTIMATOR

In this section, we analyze the theoretical properties of ReSA and WaSA when unbiased estimator 𝐺 of ∇x 𝑓 (x, 𝜽 )

is available. While the analysis in this section is applicable to general unbiased gradient estimator 𝐺 , we discuss an

example of a simulation-based unbiased gradient estimator in Section 4.1. In Section 4.2, we analyze the expected

sub-optimality and computational costs of ReSA andWaSA.

4.1 Infinitesimal perturbation analysis gradient estimator

The infinitesimal perturbation analysis (IPA) gradient estimator is a well-studied unbiased gradient estimator [10]. Recall

that in our notation, the simulation output, 𝐹 (x, 𝜽 , 𝜔), is a function of x and 𝜽 as well as a sequence of U(0, 1) random

numbers𝜔 that drives the stochasticity in simulation. For simplicity, consider the casewhere each simulation run requires

a single random number, i.e., 𝜔 ∼ 𝑈 (0, 1). Given x and 𝜽 , we can write 𝑓 (x, 𝜽 ) � E𝜔 [𝐹 (x, 𝜽 , 𝜔)] =
∫ 1
0 𝐹 (x, 𝜽 , 𝜔)𝑑𝜔. If

the exchange of derivative with respect to x and the integral is allowed (see [10] for the conditions under which the

exchange operation is allowed), then we have

∇xE𝜔 [𝐹 (x, 𝜽 , 𝜔)] =
∫ 1

0
∇x𝐹 (x, 𝜽 , 𝜔)𝑑𝜔. (7)
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Therefore, we have an unbiased gradient estimator of ∇x 𝑓 (x, 𝜽 ), 𝐺 = ∇x𝐹 (x, 𝜽 , 𝜔) . A caveat here is that ∇x𝐹 (x, 𝜽 , 𝜔)

must be computable given 𝜔 . If 𝐹 (x, 𝜽 , 𝜔) can be written as a function of some other intermediate random variable

generated by transforming 𝜔 , then the chain rule can be applied to find ∇x𝐹 (x, 𝜽 , 𝜔). This may be difficult, however, if

the simulation logic is complex. In such a case, the SP gradient estimator discussed in Section 5.1 can be applied. In

Section 7.2, we present a numerical example in which the IPA gradient estimator can be computed. Since 𝐺 may be

obtained from a single simulation replication, the number of SA steps taken at each period equals the simulation effort

at each period. Thus, we do not differentiate between these two measures of computational effort in Section 4.2.

4.2 Rate analysis

We start by making the following additional assumptions on Opt(𝜽 ) as well as 𝐺 .

Assumption 4. The feasible solution set, X ∈ R𝑑 , is convex, compact, and has a nonempty interior. Further, there exists

𝐶X > 0 such that ‖∇x 𝑓 (x, 𝜽 )‖ ≤ 𝐶X for all x ∈ X and 𝜽 ∈ Θ.

Assumption 5. For all x ∈ X and 𝜽 ∈ Θ, E𝜔 [𝐺 (x, 𝜽 , 𝜔) − ∇x 𝑓 (x, 𝜽 )] = 0. Moreover, there exists 0 < 𝜈 < ∞ such that

E𝜔 [‖𝐺 (x, 𝜽 , 𝜔) − ∇x 𝑓 (x, 𝜽 )‖2] ≤ 𝜈2 for all x ∈ X and 𝜽 ∈ Θ.

Under Assumptions 4 and 5, E𝜔
[
‖𝐺 (x, 𝜽 , 𝜔)‖2

]
≤ 2E𝜔

[
‖𝐺 (x, 𝜽 , 𝜔) − ∇x 𝑓 (x, 𝜽 )‖2

]
+ 2‖∇x 𝑓 (x, 𝜽 )‖2 ≤ 2(𝜈2 +𝐶2

X
)

for all x ∈ X and 𝜽 ∈ Θ. In the remainder of the paper, we adopt 𝐶2 � 2(𝜈2 +𝐶2
X
). We explicitly specify the values of

the parameters to be adopted in ReSA and WaSA when Assumptions 1–5 are satisfied as follows.

Definition 4.1. For both ReSA and WaSA let 𝑝 = 1 and 𝛾0 = 1/𝜇. ForWaSA, let 𝛾0 = 1/𝜇 and choose 0 < 𝜆 < 1.

Recall that 𝑝 in both algorithms should be chosen to match the exponent of the MSE convergence rate of x1, i.e.,

E
[
‖x1, 𝑗 − x∗1‖

2
��𝜽1] ≤ O( 𝑗−𝑝 ). The following lemma shows that under Assumptions 1–5, 𝑝 is indeed 1 when the

algorithm parameters are chosen as in Definition 4.1.

Lemma 4.2 (Single-period MSE convergence rate). Suppose Assumptions 1, 2, 4, and 5 hold and the algorithm

parameters are chosen as in Definition 4.1. Consider {x𝑘 } generated by ReSA. Then, for 𝑘 ≥ 1 and 1 ≤ 𝑗 ≤ 𝑀𝑘 ,

E[‖x𝑘,𝑗 − x∗
𝑘
‖2 |𝜽𝑘 ] ≤ max

{
E[‖x𝑘−1 − x∗

𝑘
‖2 |𝜽𝑘 ],

2𝐶2

𝜇2

}
𝑗−1 a.s. Moreover, when 𝑗 ≥ 3, E[‖x𝑘,𝑗 − x∗

𝑘
‖2 |𝜽𝑘 ] ≤

𝐶2

𝜇2
𝑗−1 a.s.

Notice that E[‖x𝑘−1 − x∗
𝑘
‖2 |𝜽𝑘 ] appears in the bound on E[‖x𝑘,𝑗 − x∗

𝑘
‖2 |𝜽𝑘 ] only for 1 ≤ 𝑗 ≤ 2. For 𝑗 ≥ 3, we have

a tighter bound that does not depend on E[‖x𝑘−1 − x∗
𝑘
‖2 |𝜽𝑘 ]. In other words, even if x𝑘,1 is chosen to be an arbitrary

solution in X, the same bound holds. This reveals that the standard SA analysis conducted in Lemma 4.2 provides little

leverage on a better initial solution to obtain a tighter upper bound on the convergence rate. From Lemma 4.2, we show

the following theorem stating that the convergence rate and the complexity of the cumulative number of SA steps of

ReSA are as stated in Table 1.

Theorem 4.3 (ReSA with unbiased 𝐺). Suppose Assumptions 1–5 hold and the algorithm parameters are chosen as

in Definition 4.1. Then, the following hold for {x𝑘 } generated by ReSA.

(i) There exists finite𝑈 > 0 such that for 𝑘 ≥ 1, E [𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] ≤ 𝐿X

𝜇2
(𝐿2Θ𝑈 +𝐶2)𝑁−1

𝑘
.

(ii) Given 𝐾 > 0, the cumulative number of SA steps at the end of the 𝐾th period is
∑𝐾
𝑘=1 𝑁𝑘 .

Theorem 4.3 implies that ReSA indeed achieves the optimal convergence rate of O(𝑁−1
𝑘

). Although this is reassuring,

the number of SA steps,𝑀𝑘 , taken at each iteration is tied to 𝑁𝑘 and keeps increasing as more streaming data accumulate.
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12 He, Shanbhag, and Song

In WaSA, not only do we choose x𝑘,1 = x𝑘−1, but also select 𝛾𝑘,𝑗 to be a decreasing function in 𝑘 for each 𝑗 , i.e.

correspondingly smaller steps are taken as 𝑘 grows. The core idea is the following: since each period starts with an

increasingly better initial solution (in terms of proximity to x∗), we may take fewer and smaller SA steps at each period.

However, exactly how to control 𝛾𝑘,𝑗 so that the benefit of selecting x𝑘,1 = x𝑘−1 is reflected in the upper bound on the

convergence rate of E[‖x𝑘 − x∗
𝑘
‖2] is not a trivial question. The following theorem shows that with our choice of 𝛾𝑘,𝑗 ,

WaSA indeed achieves the optimal convergence rate, O(𝑁−1
𝑘

), with much reduced computational cost than ReSA. In

particular, as 𝜆 tends to 1, the cumulative number of SA steps after 𝑘 periods tends to O(𝑁𝑘 ).

Theorem 4.4 (WaSA with unbiased 𝐺). Suppose Assumptions 1–5 hold and the algorithm parameters are chosen as

in Definition 4.1. Then, the following hold for {x𝑘 } generated byWaSA.

(i) There exist finite 𝑈 > 0 and sequence {𝑄 ′
𝑘
} such that for 𝑘 ≥ 1, 𝑄 ′

𝑘

𝑘→∞
−−−−−→ 𝐶2/𝜇2 and

E
[
𝑓 (x𝑘 , 𝜽

∗) − 𝑓 (x∗, 𝜽 ∗)
]
≤ 𝐿X

(
𝑈𝐿2Θ/𝜇

2 +𝑄 ′
𝑘

)
𝑁−1
𝑘 .

(ii) Given 𝐾 ≥ 2, there exists 0 < 𝜆 < 1 sufficiently close to 1 such that the cumulative number of SA steps at the end of

the 𝐾th period is bounded as
∑𝐾
𝑘=1 𝑀𝑘 ≤ 𝑁𝐾 + 𝐾 − 1.

Observe that the upper bound on the expected sub-optimality of WaSA converges to that of ReSA as 𝑘 increases,

because 𝑄 ′
𝑘
→ 𝐶2/𝜇2. Hence, as more streaming data accumulate,WaSA returns a solution essentially as accurate as

that from ReSA at much reduced computational cost. Nevertheless, both algorithms require increasing computational

effort as 𝑘 increases, albeit 𝑀𝑘 increases significantly slower forWaSA when 𝜆 is close to 1. The closer 𝜆 is to 1, the

longer it takes 𝑄 ′
𝑘
to converge to 𝐶2/𝜇2, implying that the upper bound on the expected sub-optimality may be inflated

for earlier periods. However, 𝜆 cannot be equal to 1, which makes the {𝑄 ′
𝑘
} sequence diverge. On the other hand, if 𝜆 is

close to zero, WaSA essentially reduces to ReSA. In practice, it often suffices to obtain a solution close to x∗. We refer

to random x𝜖 ∈ X satisfying

E
[
𝑓 (x𝜖 , 𝜽

∗) − 𝑓 (x∗, 𝜽 ∗)
]
≤ 𝜖

as an 𝜖-solution. The next corollary establishes the computational complexity for both algorithms to obtain an 𝜖-solution

assuming 𝑛𝑘 = �𝑘𝑎� for 𝑎 ≥ 0.

Corollary 4.5 (Sample complexity comparison). Suppose Assumptions 1–5 hold and the algorithm parameters are

chosen as in Definition 4.1. Given 𝑛𝑘 = �𝑘𝑎�, 𝑎 ≥ 0, and 𝜖 > 0, ReSA requires O(𝜖−(𝑎+2)/(𝑎+1) ) SA steps to obtain an

𝜖-solution, whereasWaSA requires no more than 𝐶𝜖,1𝜖
−(𝑎+2)/(𝑎+1) −𝐶𝜖,2𝜖

−𝜆−1/(𝑎+1) SA steps, where 𝐶𝜖,1 and 𝐶𝜖,2 are

such that 𝐶𝜖,1 > 𝐶𝜖,2 > 0.

Practically, employing these upper bounds to determine when to stop either algorithm is difficult as constants in the

expected sub-optimality bounds are unknown. Nevertheless, it is sensible to stop the multi-period scheme when 𝑁𝑘 is

large enough (e.g. 1/𝑁𝑘 ≤ 𝜖) as the expected sub-optimality bound is controlled to be O(𝑁−1
𝑘

) in both algorithms.

5 MULTI-PERIOD SA FRAMEWORKWITH BIASED GRADIENT ESTIMATOR

In this section, we consider a more general SO setting; when unbiased 𝐺 is not available. In Section 5.1, we introduce

the SP gradient estimator for the choice of𝐺 and analyze the expected sub-optimality and computational costs of ReSA

andWaSA in Section 5.2.
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5.1 Simultaneous perturbation gradient estimator

Let 𝜀 (x, 𝜽 , 𝜔) represent the simulation error such that 𝐹 (x, 𝜽 , 𝜔) = 𝑓 (x, 𝜽 ) + 𝜀 (x, 𝜽 , 𝜔). Clearly, E𝜔 [𝜀 (x, 𝜽 , 𝜔)] = 0 as

𝑓 (x, 𝜽 ) = E𝜔 [𝐹 (x, 𝜽 , 𝜔)]. The SP estimator of ∇x 𝑓 (x𝑘,𝑗 , 𝜽𝑘 ) requires running simulation replications at two points

x ± 𝑐𝑘,𝑗𝚫𝑘,𝑗 given window size 𝑐𝑘,𝑗 > 0 and perturbation vector 𝚫𝑘,𝑗 ∈ R
𝑑 sampled from a distribution independently

from simulation replications. We consider increasing the number of replications spent to compute the SP gradient

estimator as a function of 𝑗 so that the estimator becomes increasingly more precise as iterations continue. Namely, 𝑠𝑘,𝑗
i.i.d. replications are run at each of x ± 𝑐𝑘,𝑗𝚫𝑘,𝑗 , where 𝑠𝑘,𝑗 is a non-decreasing sequence on in 𝑗 . The SP estimator of

∇x 𝑓 (x𝑘,𝑗 , 𝜽𝑘 ) is computed as

𝐺 (x𝑘,𝑗 , 𝜽𝑘 ,𝝎𝑘,𝑗 ) =

[
𝐹+
𝑘,𝑗

− 𝐹−
𝑘,𝑗

2𝑐𝑘,𝑗 (𝚫𝑘,𝑗 )1
, · · · ,

𝐹+
𝑘,𝑗

− 𝐹−
𝑘,𝑗

2𝑐𝑘,𝑗 (𝚫𝑘,𝑗 )𝑑

]

, (8)

where𝝎𝑘,𝑗 =
{
𝜔+
𝑘,𝑗,1

, 𝜔−
𝑘,𝑗,1

, 𝜔+
𝑘,𝑗,2

, 𝜔−
𝑘,𝑗,2

, . . . , 𝜔+
𝑘,𝑗,𝑠𝑘,𝑗

, 𝜔−
𝑘,𝑗,𝑠𝑘,𝑗

}
is the collection of randomnumber sequences used to cal-

culate𝐺 , 𝐹±
𝑘,𝑗
� 𝑠−1

𝑘,𝑗

∑𝑠𝑘,𝑗
ℎ=1 𝐹 (x𝑘,𝑗 ±𝑐𝑘,𝑗𝚫𝑘,𝑗 , 𝜽𝑘 , 𝜔

±
𝑘,𝑗,ℎ

), and (𝚫𝑘,𝑗 )𝑙 denotes the 𝑙th element of 𝚫𝑘,𝑗 . Furthermore, we de-

fine 𝑓 ±
𝑘,𝑗
� 𝑓 (x𝑘,𝑗±𝑐𝑘,𝑗𝚫𝑘,𝑗 , 𝜽𝑘 ) and 𝜀±

𝑘,𝑗
� 𝐹±

𝑘,𝑗
− 𝑓 ±

𝑘,𝑗
. Let b𝑘,𝑗 (x𝑘,𝑗 , 𝜽𝑘 ) � E

[
𝐺 (x𝑘,𝑗 , 𝜽𝑘 ,𝝎𝑘,𝑗 ) − ∇x 𝑓 (x𝑘,𝑗 , 𝜽𝑘 )

�� x𝑘,𝑗 , 𝜽𝑘 ]
represent the conditional bias of 𝐺 (x𝑘,𝑗 , 𝜽𝑘 ,𝝎𝑘,𝑗 ) given x𝑘,𝑗 and 𝜽𝑘 .

Spall [30] presents a set of regularity conditions (see Appendix ??) under which (8) is strongly consistent as 𝑗 → ∞ for

what we call a single-period problem. In the following, we provide a slightly different set of conditions and assumptions

to facilitate the analyses in Sections 5.2.

(C1) 𝛾𝑘,𝑗 , 𝑐𝑘,𝑗 > 0, ∀𝑘 , 𝑗 ; 𝛾𝑘,𝑗 → 0, 𝑐𝑘,𝑗 → 0 as 𝑗 → ∞;
∑∞

𝑗=0 𝛾𝑘,𝑗 = ∞,
∑∞

𝑗=0

(
𝛾𝑘,𝑗
𝑐𝑘,𝑗

)2
< ∞;

(C2) There exist 𝑏0, 𝑏1, 𝛼 ∈ R such that | (𝚫𝑘,𝑗 )𝑙 | ≤ 𝑏0 a.s., E[| (𝚫𝑘,𝑗 )
−1
𝑙

|] ≤ 𝑏1, and E[(𝚫𝑘,𝑗 )
−2
𝑙

] ≤ 𝛼 for all 𝑘, 𝑗 and

𝑙 = 1, 2, . . . , 𝑑 .

(C3) For each 𝑘, 𝑗 , 𝚫𝑘,𝑗 ∈ R𝑑 is independent of {x𝑘,1, · · · , x𝑘,𝑗 ; 𝜽1, · · · , 𝜽𝑘 } and (𝚫𝑘,𝑗 )𝑙 , 𝑙 = 1, . . . , 𝑑 , are i.i.d. and

symmetrically distributed around zero. Furthermore, {𝚫𝑘,1,𝚫𝑘,2, · · · ,𝚫𝑘,𝑗 } are mutually independent.

Variants of (C1) and (C2) are typically seen in selecting stepsize sequences and perturbation levels (see [19] for instance)

to guarantee that the sequence of E[‖x𝑘,𝑗 − x∗
𝑘
‖2 |𝜽𝑘 ] converges to zero almost surely as 𝑗 tends to infinity. The

independence condition in (C3) makes it easier to analyze the SP gradient estimator’s bias and variance. Because

(C1)–(C3) lie within the control of the user, they are referred to as “conditions” instead of assumptions. We make

two assumptions in the following to establish bounds on the variance and bias of the SP gradient estimator. In

Assumption 7, we use the same notation as in [30] to represent third partial derivatives of 𝑓 with respect to elements of

x; 𝑓 (3) (x, 𝜽 ) = 𝜕3 𝑓 (x, 𝜽 )/𝜕x⊗3 is an arbitrary third partial derivative and 𝑓
(3)
𝑖1,𝑖2,𝑖3

(x, 𝜽 ) � 𝜕3 𝑓 (x, 𝜽 )/𝜕x𝑖1 𝜕x𝑖2 𝜕x𝑖3 , where

x𝑖 is the 𝑖th element of x.

Assumption 6. There exists 𝜎1 < ∞ such that Var[𝜀+
𝑘,𝑗

− 𝜀−
𝑘,𝑗

|x𝑘,𝑗 , 𝜽𝑘 ,𝚫𝑘,𝑗 ] ≤ 𝜎21/𝑠𝑘,𝑗 a.s. for all 𝑘 and 𝑗 .

Assumption 7. For almost all x𝑘,𝑗 , 𝑓
(3) (x, 𝜽 ) exists. For any 𝜽 ∈ Θ, 𝑓 (3) (x, 𝜽 ) is continuous in x for all x in an open

neighborhood of x𝑘,𝑗 that is not a function of 𝑘 , 𝑗 or 𝝎𝑘,𝑗 . Moreover, for any x ∈ X and 𝜽 ∈ Θ, |𝑓
(3)
𝑖1,𝑖2,𝑖3

(x, 𝜽 ) | ≤ 𝑏2 for

any 1 ≤ 𝑖1, 𝑖2, 𝑖3 ≤ 𝑑 .

The bias of the SP gradient estimator can be reduced to zero by ensuring that 𝑐𝑘,𝑗 → 0; however, its variance

increases as 𝑐𝑘,𝑗 decreases, but can be reduced by increasing 𝑠𝑘,𝑗 (see SM Section ??). Therefore, both {𝑐𝑘,𝑗 } and {𝑠𝑘,𝑗 }

must be controlled relative to {𝛾𝑘,𝑗 } to ensure that the resulting {x𝑘 } converges to x∗. In Sections 5.2, we choose the
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14 He, Shanbhag, and Song

parameter sequences to be in the form of 𝑐𝑘,𝑗 = 𝑐0 𝑗
−𝜂 , 𝜂 > 0, and 𝑠𝑘,𝑗 = 𝑠0 𝑗

𝑡 , 𝑡 ≥ 0 for SP gradient estimation in ReSA.

We relax the integrality requirement for 𝑠𝑘,𝑗 for expository ease in the remainder of the paper. The choices for 𝜂 and 𝑡

for ReSA to achieve the optimal convergence rate are discussed under different sets of assumptions. ForWaSA, both

parameter sequences are modified to achieve the same convergence rate.

5.2 Rate Analysis

In this subsection, we analyze the performance of both ReSA and WaSA when X is bounded and the SP gradient

estimator (8) is adopted for𝐺 . Similar to the analyses in Section 4, 𝑝 (the exponent of the single-period MSE convergence

rate) plays an important role in both algorithms when specifying the parameters. But when the SP gradient estimator

is adopted, 𝑝 is additionally constrained by the choices of 𝑐𝑘,𝑗 and 𝑠𝑘,𝑗 . In the following, Definition 5.1 prescribes the

choices of the algorithm and SP gradient estimation parameters for both ReSA andWaSA.

Definition 5.1. For both ReSA andWaSA, choose 0 ≤ 𝑡 ≤ 1/2 to control the simulation effort at each SA step and let

𝑝 = 2(1 + 𝑡)/3, 𝛾0 > 𝑝𝜇−1, 𝑠0 > 0, 𝑠0 > 0, 𝑐0 > 0, and 𝑐0 > 0. For ReSA, let 𝑠𝑘,𝑗 = 𝑠0 𝑗
𝑡 and 𝑐𝑘,𝑗 = 𝑐0 𝑗

−(1+𝑡 )/6 for all 𝑘

and 𝑗 . For WaSA, let 𝛾0 = 2/𝜇, 𝑠1, 𝑗 = 𝑠0 𝑗
𝑡 for all 𝑗 ≥ 1, and 𝑠𝑘,𝑗 = 𝑠0 (𝑁

𝜆
𝑘−1

+ 𝑗 − 1)𝑡 and 𝑐𝑘,𝑗 = 𝑐0 (𝑁
𝜆
𝑘−1

+ 𝑗 − 1)−(1+𝑡 )/6

for all 𝑘 ≥ 2 and 𝑗 .

Observe that 𝑝 as well as the exponent of 𝑗 in 𝑐𝑘,𝑗 are functions of 𝑡 . When 𝑡 = 0, we obtain 𝑝 = 2/3, which matches

the MSE convergence rate of SPSA known in the literature [11]. When 𝑡 > 0, 𝑐𝑘,𝑗 is driven to zero at a faster rate to

reduce the bias in 𝐺 more aggressively while keeping the variance of 𝐺 in check by increasing 𝑠𝑘,𝑗 . For any 𝑡 ≥ 0,

𝑝 cannot exceed 1; 𝑡 = 1/2 is the smallest rate of increase for 𝑠𝑘,𝑗 to obtain 𝑝 = 1, i.e., no incentive to spend larger

simulation effort than 𝑡 = 1/2. For a more detailed discussion on the choices of 𝑡 and 𝑝 , see SM Section ??. The following

lemma shows that the exponent of the single-period MSE convergence rate is indeed 𝑝 in this case.

Lemma 5.2 (Single-period MSE convergence rate). Suppose Assumptions 1, 4, 6, 7 and (C1)–(C3) hold and the

algorithm parameters are chosen as in Definition 5.1. Consider {x𝑘 } generated by ReSA. Then, the following holds for 𝑘 ≥ 1

and 1 ≤ 𝑗 ≤ 𝑀𝑘 , E[‖x𝑘,𝑗 − x∗
𝑘
‖2 |𝜽𝑘 ] ≤ max{E[‖x𝑘−1 − x∗

𝑘
‖2 |𝜽𝑘 ], 2

𝑝𝑇,𝑇 (𝜇𝛾0 − 𝑝)−1} 𝑗−𝑝 a.s., where 𝑇 is defined as

𝑇 � 𝛾20𝑑

(
2𝐶2

X + 2𝑅2𝑐40 +
𝛼𝜎21
4𝑐20𝑠0

+𝐶2
X𝑛𝑏20𝛼

)
+ 𝛾0𝑑𝑅

2𝑐40𝜇
−1 . (9)

Theorem 5.3 analyzes the performance of ReSA when 𝐺 is a SP gradient estimator. In contrast to Theorem 4.3, here

we differentiate the cumulative number of SA steps from the cumulative simulation effort as 𝑡 > 0 is considered.

Theorem 5.3 (ReSA with SP gradient estimator). Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the

algorithm parameters are chosen as in Definition 5.1. Define 𝑇 as in (9). Consider {x𝑘 } generated by ReSA. Then, for all 𝑘 ,

𝑗 ≥ 1, the following hold.

(i) There exists finite 𝑈 > 0 and sequence {𝑄 ′
𝑘
} such that 𝑄 ′

𝑘

𝑘→∞
−−−−−→ max{2𝑝𝑇,𝑇 (𝜇𝛾0 − 𝑝)−1} and for any 𝑘 ≥ 1,

E
[
𝑓 (x𝑘 , 𝜽

∗) − 𝑓 (x∗, 𝜽 ∗)
]
≤ 𝐿X

(
𝑈𝐿2Θ/𝜇

2 +𝑄 ′
𝑘

)
𝑁−1
𝑘 .

(ii) Given 𝐾 > 0, the cumulative number of SA steps at the end of period 𝐾 is bounded as
∑𝐾
𝑘=1 𝑀𝑘 ≤

∑𝐾
𝑘=1 𝑁

1/𝑝
𝑘

+ 𝐾 .

(iii) Given𝐾 > 0, the cumulative simulation effort at the end of period𝐾 is bounded as
∑𝐾
𝑘=1

∑𝑀𝑘
𝑗=1 𝑠𝑘,𝑗 ≤

3𝑡+1𝑠0
𝑡+1

∑𝐾
𝑘=1 𝑁

3/2
𝑘

.

Theorem 5.3 confirms that ReSA achieves the optimal convergence rate, O(𝑁−1
𝑘

), given the parameter choices in

Definition 5.1. Regardless of 𝑡 , the cumulative simulation effort is of the same order. Thus, there is little room to save
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simulation effort by adjusting 𝑡 . On the other hand, choosing a larger 𝑡 reduces the cumulative number of SA steps. Thus,

when the projection step is costly, then 𝑡 = 1/2 is preferred. Similar insights can be obtained from the performance

analysis for WaSA in Theorem 5.4 below.

Theorem 5.4 (WaSA with SP gradient estimator). Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the

algorithm parameters are chosen as in Definition 5.1. Consider the sequences {x𝑘 } and {𝜽𝑘 } generated by WaSA. Suppose

𝑇2 � 𝑑
𝜇2

(
10𝑅2𝑐40 + 8𝐶2

X
+ 4𝐶2

X
𝑑𝑏20𝛼 +

𝛼𝜎2
1

𝑐20𝑠0

)
.

(i) There exists finite𝑈 > 0 and sequence {𝑄 ′
𝑘
} such that 𝑄 ′

𝑘

𝑘→∞
−−−−−→ 𝑇2 and for any 𝑘 ≥ 1,

E
[
𝑓 (x𝑘 , 𝜽

∗) − 𝑓 (x∗, 𝜽 ∗)
]
≤ 𝐿X

(
𝐿2Θ𝑈 /𝜇2 +𝑄 ′

𝑘

)
𝑁𝑘

−1 .

(ii) Given 𝐾 ≥ 2, there exists 0 < 𝜆 < 1/𝑝 sufficiently close to 1/𝑝 such that the cumulative number of SA steps at the

end of period 𝐾 is bounded as
∑𝐾
𝑘=1 𝑀𝑘 ≤ 𝑁

1/𝑝
𝐾 + 2𝐾 − 1.

(iii) Given 𝐾 ≥ 2, there exists 0 < 𝜆 < 1/𝑝 sufficiently close to 1/𝑝 such that the cumulative simulation effort at the end

of period 𝐾 is bounded as∑𝐾

𝑘=1

∑𝑀𝑘

𝑗=1
𝑠𝑘,𝑗 ≤

(2𝑡+1 + 1)𝑠0
𝑡 + 1

𝑁
3/2
𝐾 +

3𝑡+1𝑠0 − 𝑠0
𝑡 + 1

𝑁
3/2
1 −

𝑠0
𝑡 + 1

𝑁
3/2
2 +

(𝐾 − 1)𝑠0
𝑡 + 1

.

Comparing Theorems 5.3 and 5.4, observe that there is a stark difference in the computational cost between ReSA

and WaSA. Notice that the computational saving of the latter is more pronounced with the SP gradient estimator than

when an unbiased gradient estimator is available. The following corollary compares the computational complexity for

both algorithms to obtain an 𝜖-solution.

Corollary 5.5. Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the algorithm parameters are chosen as in

Definition 5.1. Given 𝑛𝑘 = �𝑘𝑎�, 𝑎 ≥ 0, and 𝜖 > 0, ReSA requires 𝑂 (𝜖−1/𝑝−1/(𝑎+1) ) SA steps to obtain an 𝜖-solution,

whereas WaSA requires no greater than 𝐶𝜖,1𝜖
−1/𝑝−1/(𝑎+1) −𝐶𝜖,2𝜖

−𝜆−1/(𝑎+1) SA steps, where 𝐶𝜖,1 and 𝐶𝜖,2 are such that

𝐶𝜖,1 > 𝐶𝜖,2 > 0.

6 REGULARIZED RESA SCHEMEWITH UNKNOWN STRONG CONVEXITY PARAMETER

In this section, we address the case when the strong convexity parameter, 𝜇, is unknown and extend theReSA framework

to a regularized variant, referred to as regularized ReSA (r-ReSA); notably this scheme does not require utilizing the

value of 𝜇 in specifying its algorithm parameters. The new scheme relies on the Tikhonov regularization framework [34],

which adds a strongly convex function to the original objective function of the problem to induce strong convexity. The

resulting regularized problem thus has a known strong convexity parameter. Tikhonov regularization schemes have a

long history in the field of optimization theory, assuming relevance when the objective function is merely convex [8].

We define a sequence of regularized versions of 𝑓 (x, 𝜽 ) in x whose 𝑘th element is defined as

𝑓𝑘 (x, 𝜽 ) � 𝑓 (x, 𝜽 ) +
𝜇𝑘
2
‖x‖2 = E[𝐹 (x, 𝜽 , 𝜔) |𝜽 ] +

𝜇𝑘
2
‖x‖2, (10)

where {𝜇𝑘 } is a user-specified positive sequence diminishing to zero. For any 𝜽 , 𝑓𝑘 (x, 𝜽 ) in (10) is (𝜇+𝜇𝑘 )-strongly convex

in x; since 𝜇 is unknown, we may adopt 𝜇𝑘 as our strong convexity parameter at period 𝑘 . We first briefly summarize

the classical convergence result for the Tikhonov regularization. Consider the sequence of regularized problems at

some fixed 𝜽 given by {minx∈X 𝑓𝑘 (x, 𝜽 )}. Because each 𝑓𝑘 is strongly convex in x, then x̂𝑘 � argminx∈X 𝑓𝑘 (x, 𝜽 ) is the
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Algorithm 3 (r-ReSA). Regularized re-start multi-period SA

Given x0, {𝛾0,𝑘 }, 𝑝 , {𝑁𝑘 }, {𝜇𝑘 }; Set 𝑘 := 1;

[1] Compute 𝜽𝑘 using 𝑁𝑘 samples; Set x𝑘,1 := x𝑘−1 and 𝑀𝑘 := max
{
1,
⌈
𝑁
2/𝑝
𝑘

⌉}
;

[2] x𝑘,𝑗+1 := ΠX

[
x𝑘,𝑗 − 𝛾𝑘,𝑗 {𝐺 (x𝑘,𝑗 , 𝜽𝑘 , 𝜔𝑘,𝑗 ) + 𝜇𝑘x𝑘,𝑗 }

]
given 𝛾𝑘,𝑗 =

𝛾0,𝑘
𝑗 for 𝑗 = 1, · · · , 𝑀𝑘 ;

[3] x𝑘 := x𝑘,𝑀𝑘+1; 𝑘 := 𝑘 + 1 and go to [1];

unique minimizer at 𝑘 . Moreover, it has been shown that x̂𝑘
𝑘→∞
−−−−−→ x̂, if 𝜇𝑘 → 0, where x̂ is a least-norm minimizer of

Opt(𝜽 ) (cf. [8]); in our problem, x̂ is indeed the unique minimizer of Opt(𝜽 ) due to strong convexity of 𝑓 .

In the multi-period SA problem, new 𝜽𝑘 is computed at each period 𝑘 . Thus, r-ReSA tackles the regularized problem

min
x∈X

(
𝑓 (x, 𝜽𝑘 ) +

𝜇𝑘
2 ‖x‖2

)
(r-Opt𝑘 (𝜽𝑘 ))

for some appropriate choice for 𝜇𝑘 > 0. Akin to ReSA, r-ReSA solves r-Opt𝑘 (𝜽𝑘 ) up to the precision determined by 𝑁𝑘

by employing𝑀𝑘 SA steps with the known strong convexity parameter, 𝜇𝑘 . Algorithm 3 provides the details of r-ReSA.

We highlight that in Step [2], the gradient includes the extra term, 𝜇𝑘x𝑘,𝑗 , arising from regularization. Contrasting with

ReSA, the stepsize sequence constant, 𝛾0,𝑘 , depends on 𝑘 in r-ReSA as 𝜇𝑘 is updated at each 𝑘 .

Intuitively, it is sensible to drive 𝜇𝑘 → 0 as 𝑘 increases so that r-Opt𝑘 (𝜽𝑘 ) becomes progressively closer to Opt(𝜽 ∗).

Meanwhile, reducing 𝜇𝑘 makes the algorithm perceive r-Opt𝑘 (𝜽𝑘 ) to be flatter than it actually is; recall that the true

strong convexity parameter for r-Opt𝑘 (𝜽𝑘 ) is (𝜇 + 𝜇𝑘 ), unbeknownst to the user. Hence, the decreasing sequence, {𝜇𝑘 },

together with a careful choice of {𝑀𝑘 }, ensures that the sequence of solutions, {x𝑘 }, returned by r-ReSA at the end

of each period, attains the best-possible convergence rate of the expected sub-optimality for Opt(𝜽 ∗). Definition 6.1

formally states the choices for the algorithm parameters of r-ReSA.

Definition 6.1. For r-ReSA, let 𝜇𝑘 = 𝑁
−1/2
𝑘

. Depending on the choice for 𝐺 , set the remaining parameters as follows:

(1) when 𝐺 is unbiased, let 𝑝 = 1, 𝛾0,𝑘 = 1/𝜇𝑘 .

(2) when𝐺 is the SP gradient estimator, choose 0 ≤ 𝑡 ≤ 1/2 and let 𝑠𝑘,𝑗 = 𝑠0 𝑗
𝑡 for some 𝑠0 > 0 and 𝑐𝑘,𝑗 = 𝑐0 𝑗

−(1+𝑡 )/6

for some 𝑐0 > 0 for all 𝑘 and 𝑗 . Let 𝑝 = 2(1 + 𝑡)/3 and 𝛾0,𝑘 = 𝑝0𝜇
−1
𝑘

for some 𝑝0 > 𝑝 .

The following two theorems state respective convergence results for r-ReSA for the two different choices for 𝐺 .

Theorem 6.2 (r-ReSA with unbiased estimator). Suppose Assumptions 1–5 hold and the algorithm parameters are

chosen as in Part (1) of Definition 6.1. Then, the following hold for {x𝑘 } generated by r-ReSA.

(i) For any 𝑘 ≥ 1, E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] ≤ O(𝑁−1

𝑘
) .

(ii) Given 𝐾 > 0, the cumulative number of SA steps at the end of period 𝐾 is
∑𝐾
𝑘=1 𝑀𝑘 =

∑𝐾
𝑘=1 𝑁

2
𝑘
.

Theorem 6.3 (r-ReSA with SP gradient estimator). Suppose Assumptions 1–4, 6, 7 and (C1)–(C3) hold and the

algorithm parameters are chosen as in Part (b) of Definition 6.1. Then, the following hold for {x𝑘 } generated by r-ReSA.

(i) For any 𝑘 ≥ 1, E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] ≤ O(𝑁−1

𝑘
) .

(ii) Given 𝐾 > 0, the cumulative number of SA steps at the end of period 𝐾 is bounded as
∑𝐾
𝑘=1 𝑀𝑘 =

∑𝐾
𝑘=1 𝑁

2/𝑝
𝑘

+ 𝐾 .

(iii) Given 𝐾 > 0, the cumulative simulation effort at the end of period 𝐾 is bounded as
∑𝐾
𝑘=1

∑𝑀𝑘
𝑗=1 𝑠𝑘,𝑗 =

3𝑡+1𝑠0
𝑡+1

∑𝐾
𝑘=1 𝑁

3
𝑘
.

When 𝜇𝑘 falls below 𝜇 for some 𝑘 , r-ReSA chooses a larger stepsize constant than ReSA would have at the same

period, which may lead to a larger gradient descent step. This can be seen by contrasting 𝛾0 in Definitions 4.1 and 5.1

with 𝛾0,𝑘 in Definition 6.1. When 𝑘 is large, a smaller value of 𝜇𝑘 may cause the aforementioned gradient-descent steps
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within the 𝑘th period to overshoot the feasible region X rendering the iterates to be projected back to X. Furthermore,

we observe that the computational burden (and therefore the simulation effort) is significantly higher at each step since

𝑀𝑘 = O(𝑁
2/𝑝
𝑘

) (as opposed to 𝑀𝑘 = O(𝑁
1/𝑝
𝑘

) for ReSA andWaSA). We defer creating a variant of WaSA under the

regularization scheme for future research.

7 EMPIRICAL PERFORMANCE

In this section, we examine the empirical performances of the proposed algorithms on three examples; in Section 7.1, we

apply the algorithms on a set of synthetically constructed strongly convex SO problems that have analytical expressions

for the optimal solution of Opt(𝜽 ) for any 𝜽 . To test the algorithms on more realistic simulation settings, we consider

a stochastic activity network (SAN) example in Section 7.2 while Section 7.3 revisits the EMS example introduced in

Section 1. Note that the SAN problem is strongly convex with known 𝜇, whereas the EMS example is a more general

SO problem for which convexity cannot be verified. The numerical results show that WaSA outperforms ReSA in

terms of computational effort, while achieving similar empirical expected sub-optimality. r-ReSA achieves the same

expected sub-optimality as of ReSA andWaSA, but requires more computational effort. From the EMS example, we

observe that both algorithms perform well even if some of the assumptions cannot be verified for this problem. We

also demonstrate robustness of the proposed algorithms when strong convexity fails by applying them to a nonconvex

problem in Section 7.4.

7.1 Stochastic quadratic programming

We apply ReSA and WaSA under the settings analyzed in Section 4 to a synthetic SO problem that has

𝑓 (x, 𝜽 ) =
1

2
x
𝑉
diag(u)𝑉x + x
v, (11)

where 𝜽 = (u, v), X = {x ∈ R𝑑 : −5 ≤ x𝑖 ≤ 5, 1 ≤ 𝑖 ≤ 𝑑} and 𝑉 is an 𝑑 × 𝑑 deterministic orthogonal matrix; increasing

levels of 𝑑 from 5 to 100 are tested below. Note that diag(u) denotes a diagonal matrix whose diagonal entries are given

by u. The true parameter vector is denoted by 𝜽 ∗ = (u∗, v∗), where u∗ is the 𝑑-dimensional vector whose entries are

all equal to 2.5 and v∗ is a deterministic vector whose entries are i.i.d. Uniform(0, 10). Each entry of u∗ represents

the mean of an exponential distribution while v∗ is the mean vector of normally distributed input data with a known

covariance matrix. The maximum likelihood estimator (MLE) of (u∗, v∗) is computed from i.i.d. observations of 𝑍u ∈ R𝑑

and 𝑍v ∈ R𝑑 . The entries of 𝑍u ∈ R𝑑 are i.i.d. Exp(rate= 0.4) and 𝑍v ∼ N(v∗, 400𝐼𝑑 ), where 𝐼𝑑 denotes the 𝑑 ×𝑑 identity

matrix. We set Θ = {(u, v) : 2 ≤ u𝑖 ≤ 3,−100 ≤ v𝑖 ≤ 100, 1 ≤ 𝑖 ≤ 𝑑}, therefore, the MLE at the 𝑘th period is computed

as 𝜽𝑘 = (ΠΘ (𝑍u (𝑘), 𝑍v (𝑘))), where 𝑍u (𝑘) and 𝑍v (𝑘) are the corresponding averages of cumulative observations of

𝑍u and 𝑍v, respectively. In the first period, we assume that 30 observations of 𝑍u and 𝑍v are available. For 𝑘 ≥ 2, the

sample size of the new batch of data, 𝑛𝑘 , is generated randomly from discrete uniform(5, 15). Given Θ, this problem has

𝜇 = 2. To test the case with an unbiased gradient estimator, stochastic noise 𝝃 ∼ N(0, 𝐼𝑑 ) is added to the exact gradient,

i.e., 𝐺 (x, 𝜽 ) = 𝐺 (x, (u, v)) = 𝑉
diag(u)𝑉x + v + 𝝃 .

We test ReSA and WaSA with 𝛾0 = 𝛾0 = 0.5 and 𝜆 = 0.995, while the rest of the algorithm parameters are chosen as

in Definition 4.1. We compare the algorithms with r-ReSA and a newly defined scheme referred to as “wait-then-solve,”

which updates 𝜽𝑘 less frequently and implements SA only when 𝜽𝑘 has been updated; during the remaining periods, the

scheme “waits” while the decision x𝑘 stays unchanged. The wait-then-solve scheme is designed to show the increase in

regret when we do not adapt each period’s decision to {𝜽𝑘 } and only do so intermittently.
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Fig. 2. Comparison of ReSA, WaSA and r-ReSA on a 100-dimensional problem with 200 macro runs

Figure 2 compares the performances of ReSA,WaSA, r-ReSA and wait-then-solve applied to (11) with 𝑑 = 100 from

200 macro runs. In each macro run, we generate x0 uniformly from X. Figure 2a shows the trajectory of each period’s

estimated expected sub-optimality of the four algorithms taking the average of 𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗) obtained from

200 macro runs. Thus, the area under the curve represents the estimated cumulative regret for each algorithm. The

benchmark represents E[𝑓 (x∗
𝑘
, 𝜽 ∗) − 𝑓 (x∗, 𝜽 ∗)]; for this problem, x∗

𝑘
can be computed exactly given 𝜽𝑘 . Notice that the

expected sub-optimality converges slightly faster for ReSA than WaSA in earlier periods; however,WaSA catches up

after 𝑘 = 40. The estimated expected sub-optimality of ReSA coincides with the benchmark, but that of r-ReSA differs

from the benchmark. The distinction of r-ReSA from the benchmark arises because it solves r-Opt𝑘 (𝜽𝑘 ) rather than

Opt𝑘 (𝜽𝑘 ). Although in this example, r-ReSA appears to achieve smaller expected sub-optimality, however, this is by

coincidence and is not a general trend; we discuss this more in detail in Section 7.2. The wait-then-solve scheme updates

𝜽𝑘 at 𝑘 = 1, 21 and 41; its estimated expected sub-optimality is significantly larger than other algorithms’ when 𝜽𝑘 is

not updated for a long time leading to larger cumulative regret. We have also tested a version of “wait-then-solve” that

expends the cumulative number of SA steps taken by ReSA since its last update and this scheme performs identically

to the version presented in Figure 2a. This demonstrates that there is little gain in expending more simulation effort in

reducing the expected sub-optimality without updating 𝜽𝑘 .

Figures 2b and 2c show the average number of Euclidean projections ReSA, WaSA, and r-ReSA takes in each

period. The shaded area around each line shows the two standard-error band on the average projections at each period

calculated from 200 macro runs. The number of projections ReSA employs is four times that of WaSA in periods
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Table 2. Estimated expected sub-optimality under different 𝑑 at period 𝑘 = 100 computed from 200 macro runs. For WaSA, 𝜆 = 0.995
is used; standard errors are presented in parentheses.

E[𝑓 (x𝑘 , 𝜽
∗) − 𝑓 (x∗, 𝜽 ∗)] Cumulative number of simulations

(×104)𝑑 = 5 𝑑 = 10 𝑑 = 50 𝑑 = 100
ReSA 0.44 (0.02) 0.89 (0.03) 4.20 (0.06) 8.72 (0.09) 5.25 (0.01)
WaSA 0.47 (0.02) 0.99 (0.03) 4.62 (0.07) 9.58 (0.10) 0.27 (0.00)
r-ReSA 0.43 (0.02) 0.88 (0.03) 4.12 (0.06) 8.58 (0.09) 3593.51 (16.86)

E[𝑓 (x∗
𝑘
, 𝜽 ∗) − 𝑓 (x∗, 𝜽 ∗)] 0.44 (0.02) 0.89 (0.03) 4.19 (0.06) 8.70 (0.09)

2 ≤ 𝑘 ≤ 20, while both decrease to zero in the later periods. Notice that the 𝑦-axis scales are significantly different in

Figures 2b and 2c indicating that r-ReSA takes orders of magnitude larger number of projections. In Section 6, we

discuss that this behavior may be anticipated for r-ReSA when 𝜇𝑘 falls below the actual 𝜇. Indeed, in this example, 𝜇𝑘 at

all 𝑘 is smaller than 𝜇. Figure 2d displays the logarithmic (base 10) average number of simulations of the three algorithms

required for gradient estimation. Clearly, WaSA saves more simulation effort than the other two algorithms. Although

in this example, X is a simple hyperbox, the projection operation may be costly when X is complex. Therefore, savings

in both the number of projections and simulations are critical when either operation is computationally expensive. In

such a case, WaSA has a significant advantage over both ReSA and r-ReSA. Although not requiring the value of 𝜇 is a

clear advantage of r-ReSA, this example demonstrates that it comes at a significant computational cost.

Table 2 demonstrates robustness of our algorithms for varying problem dimensions. For 𝑑 = 5, 10, 50, and 100, we

test all four algorithms under the same sequence of streaming data. All statistics are collected at period 𝑘 = 100 and

averaged over 200 macro runs with their standard errors presented in parentheses. The last row of Table 2 shows the

estimated expected sub-optimality of x∗
𝑘
, which serves as a benchmark. For all 𝑑 , the expected sub-optimality of ReSA

is statistically indistinguishable from the benchmark, whileWaSA performs slightly worse than the benchmark for

𝑑 = 50 and 100. Nevertheless, the difference in the expected sub-optimality between WaSA and ReSA is dominated by

the magnitude of E[𝑓 (x∗
𝑘
, 𝜽 ∗) − 𝑓 (x∗, 𝜽 ∗)]. We point out that the number of simulations expended by each algorithm

depends on {𝑁𝑘 } and choices of algorithm parameters, but not on 𝑑 . Since 𝑛𝑘 is sampled from the same discrete uniform

distribution for all 𝑑 , we simply present the cumulative number of simulations employed by each algorithm by the

100th period averaged across all 𝑑 in the last column of Table 2. The computational effort of the projections scales up

linearly, 𝑑 . However, as the feasible region is a hyperbox in this example, the projection effort is negligible and thus is

not reported here. Notice that WaSA takes less than 5% of the projections required by ReSA. As observed in Figure 2d,

r-ReSA requires orders of magnitude more simulation effort.

Lastly, we examine sensitivity of WaSA’s performance to the choice of 𝜆. Table 3 confirms that there is little difference

in the expected sub-optimality for different choices of 𝜆,while the cumulative number of simulations can be significantly

reduced by choosing 𝜆 close to 1.

7.2 Stochastic Activity Network

In this section, we consider a SAN problem, which originally appeared in [2] and is archived as a test problem at

SimOpt [20]. We refer the readers to [13] for the structure of the network, which contains 13 arcs and 9 vertices. Each arc

is associated with an activity whose operating time is exponentially distributed random variable. The total completion

time of the activity network is equivalent to the longest path from the source (node a) to the sink (node i). As discussed
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Table 3. Estimated expected sub-optimality WaSA achieves with varying 𝜆 values at the 50th period computed from 30 macro runs;

standard errors presented in parentheses.

𝑑 = 5 𝑑 = 10 𝑑 = 50 𝑑 = 100 Cumulative number of simulations (×104)
𝜆 = 0.5 0.34 (0.03) 0.64 (0.05) 3.51 (0.13) 7.09 (0.20) 3.19 (0.01)
𝜆 = 0.75 0.34 (0.04) 0.64 (0.05) 3.52 (0.13) 7.10 (0.21) 2.70 (0.01)
𝜆 = 0.9 0.34 (0.04) 0.64 (0.05) 3.53 (0.13) 7.08 (0.20) 1.67 (0.01)
𝜆 = 0.95 0.35 (0.04) 0.65 (0.05) 3.58 (0.14) 7.15 (0.20) 1.03 (0.00)

E[𝑓 (x∗
𝑘
, 𝜽 ∗) − 𝑓 (x∗, 𝜽 ∗)] 0.34 (0.04) 0.64 (0.05) 3.51 (0.13) 7.08 (0.20)

in [2], one can derive an IPA gradient estimator for the completion time with respect to the parameters of the activity

times. We utilized the codes provided by [20] to compute the IPA gradient estimator in our experiments.

We consider the setting where the mean parameters of the first six activity times are our decision variables, i.e.,

x = (𝑥1, 𝑥2, . . . , 𝑥6)

, where the cost of each 𝑥𝑖 is 1/𝑥𝑖 . The means of the remaining seven activity times are to be

estimated from streaming data via maximum likelihood estimation, i.e., 𝜽 ∈ R7.We denote the simulated total completion

time of the network given x and 𝜽 by𝑇 (x, 𝜽 , 𝜔). The following objective function balances the expected total completion

time and the cost:

𝑓 (x, 𝜽 ) = E[𝑇 (x, 𝜽 , 𝜔) |𝜽 ] +
∑6

𝑖=1

1

𝑥𝑖
, (12)

where X = {x ∈ R6 |0.5 ≤ 𝑥𝑖 ≤ 3, for 𝑖 = 1, . . . , 6}. Notice that given 𝜽 , smaller 𝑥𝑖 makes E[𝑇 (x, 𝜽 , 𝜔) |𝜽 ] smaller but

increases the cost function,
∑6
𝑖=1 1/𝑥𝑖 . The expectation E[𝑇 (x, 𝜽 )] is convex in x [13] while the cost function,

∑6
𝑖=1 1/𝑥𝑖 ,

is strongly convex with with parameter 𝜇 = 2
27 .

In the following, we test ReSA, WaSA, and r-ReSA with 𝛾0 = 𝛾0 = 13.5 and 𝜆 = 0.95. All entries of 𝜽 ∗ ∈ R7 are

equal to one and 𝑛𝑘 = 3 for all 1 ≤ 𝑘 ≤ 100. Within each macro run, the initial guess x0 is uniformly generated from X.

The optimal function value E[𝑓 (x∗, 𝜽 ∗)] is estimated by implementing SA on Opt(𝜽 ∗) with 1000 steps.

Figure 3a shows the estimated expected sub-optimality over 50 macro runs; ReSA and WaSA perform similarly

for all 1 ≤ 𝑘 ≤ 100. Here, the wait-then-solve scheme updates 𝜽𝑘 and optimizes at 𝑘 = 1, 26, 51 and 76, which shows

larger cumulative regret as seen in Section 7.1 as well. In earlier periods, r-ReSA outperforms the others in average

sub-optimality, however, the difference becomes less apparent in later periods. Again, we emphasize that r-ReSA is

targeting the regularized problem r-Opt𝑘 (𝜽𝑘 ). Since this is a minimization problem, the regularization term,
𝜇𝑘 ‖x‖

2

2 ,

tends to force x to have smaller entries, which appears to benefit the average sub-optimality for the particular objective

function in (12). Figure 3b reveals that in this problem WaSA has fewer than 5 projections at the first 20 periods

and almost zero for the rest; while ReSA has a larger number of projections than r-ReSA while the latter catches

up in the later periods. This may be misleading at first glance since the number of SA steps that r-ReSA takes is a

roughly square of the number used in ReSA at each period. Since we have relatively large 𝛾0 = 13.5 and the ReSA

stepsize is 𝛾0/ 𝑗 for 𝑗 = 1, 2, · · · at each period, the first few gradient descent steps tend to land x𝑘,𝑗 outside the feasible

region, X, thus requiring a subsequent projection. On the other hand, r-ReSA takes 𝛾0,𝑘/ 𝑗 as the stepsize. Recall that

𝛾0,𝑘 = 𝜇−1
𝑘

=
√
𝑁𝑘 is small at the beginning and thus leads to fewer projections; when 𝑘 increases, 𝛾0,𝑘 =

√
𝑁𝑘 grows

accordingly, resulting in more projections. For a similar reason,WaSA takes fewer projections as its stepsize, defined as

𝛾0/(𝑁
𝜆
𝑘−1

+ 𝑗 − 1), cannot grow significantly with 𝑁𝑘−1 in the denominator. The shaded area around each line shows

the two standard-error band on the average projections at each period calculated from 50 macro runs.

To examine the sensitivity of r-ReSA to the structure of the objective function, we slightly modify the cost function

in (12) to obtain the new objective function: 𝑓 (x, 𝜽 ) = E[𝑇 (x, 𝜽 , 𝜔) |𝜽 ] +
∑6
𝑖=1

5
𝑥𝑖

, whose strong convexity parameter is
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(a) Estimate of sub-optimality (b) Average number of projections

Fig. 3. Performance of the algorithms applied to the SAN problem averaged over 50 macro runs
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Fig. 4. Performance of the algorithms applied to the modified SAN problem (larger 𝜇) averaged
over 50 macro runs

𝜇 = 10
27 , five times that of (12). We choose 𝛾0 = 𝛾0 = 2.7 accordingly. Under the same sequence of streaming data as in

Figure 3, the four algorithms’ performances using the new objective function are compared in Figure 4. In Figure 4a,

the average sub-optimality of WaSA and ReSA are smaller compared to Figure 3a, which matches our theoretical

results. On the other hand, r-ReSA is significantly outperformed by ReSA and WaSA in earlier periods. With the

scaled-up cost function, the new objective function is more sensitive to smaller entries of x while the regularization

term in r-Opt𝑘 (𝜽𝑘 ) indeed works against r-ReSA in this case. In sharp distinction with Figure 3b, the average number

of projections in r-ReSA is far greater than that of ReSA in Figure 4b as the stepsize 𝛾0/ 𝑗 is significantly smaller

than 𝛾0,𝑘/ 𝑗 =
√
𝑁𝑘/ 𝑗 for larger 𝑘 with the new 𝜇.WaSA is excluded from Figure 4b as it performs significantly fewer

projections than the other two algorithms.

7.3 Emergency Medical Service Mobile Station Location Problem

In this section, we examine the performance of ReSA andWaSA on a realistic simulation optimization application

featuring a regional EMS mobile station location problem, a simplified version of a case study conducted in Centre

County, PA [38]. The purpose of this example is to demonstrate the robustness of our algorithms even when the

Manuscript submitted to ACM



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 He, Shanbhag, and Song

mathematical properties of 𝑓 (x, 𝜽 ) are unknown so that the assumptions cannot be verified. The versions of ReSA and

WaSA with the SP gradient estimator examined in Section 5 are applied to this problem.

The objective of the problem is to determine the location, x, of a single mobile dispatching station in the county that

minimizes the average response time (ART) as described in Section 1. We simplify the solution space to a 2-dimensional

box, X = [0, 4]2, in lieu of the Centre County map. In this version, the hospital is located at (3.75, 3.75). In addition to

the mobile station, there are two permanent dispatching stations located at (2.25, 3.25) and (3.25, 1.75), respectively.

There are two types of emergency calls and the corresponding types of ambulances. The first type is Advanced Life

Support (ALS), which requires more advanced equipment to support patients in critical conditions. The second type is

Basic Life Support (BLS). An ALS ambulance may serve both ALS and BLS patients, however, a BLS ambulance may only

serve BLS patients. Each station has one ambulance of each type. Once a call is received, an ambulance is dispatched

from the nearest station with availability to the patient’s location and perform the first aid upon arrival. For BLS calls,

we first check if a BLS ambulance is available at the nearest station. If not, an ALS ambulance is dispatched, if available.

Otherwise, the system checks the next nearest station’s availability. When there is no available ambulance in any of

the three stations, the patient joins an ALS or BLS (virtual) service queue. Depending on the severity of the case, the

patient may or may not be transferred to the emergency room (ER). When the ambulance is freed, it is dispatched to a

patient’s location if the service queue is nonempty, or return to its original station location.

A discrete-event simulator is implemented to estimate the ART given a mobile station’s location, where a single

replication spans five weeks. We assume the following input distributions are known: (i) 30% of the patients are ALS-type;

(ii) the-first aid time and transfer time at the ER are exponentially distributed with means 10 and 5 minutes, respectively;

and (iii) the travel time between two locations is distributed as Erlang with 6 phases and its mean is 2.7 minutes times

their Manhattan distance. We assume that the arrival process of the emergency calls is a spatio-temporal Poisson point

process, where the hourly arrival rates on the weekdays and weekends are known as 1.9 and 4.5, respectively, however,

the spatial distribution of the emergency calls is unknown and therefore needs to be learned. Furthermore, the map

is divided into a 8 × 8 grid and within each box on the grid, an incoming call’s location is assumed to be uniformly

distributed. Hence, the estimation of the arrival process boils down to finding the splitting probability vector 𝜽 ∗ ∈ R64,

which determines the box each incoming emergency call belongs to. The “true” relative frequency of emergency calls

from all 64 boxes are given in Figure 5a; normalizing the frequencies gives 𝜽 ∗.

At the beginning of each period, the emergency call data are generated from the Poisson point process described

above; we treat them as streaming data collected from the system to demonstrate our multi-period SA framework. In

the 𝑘th period, the maximum likelihood estimator, 𝜽𝑘 , of 𝜽
∗ is calculated from the cumulative observations, which is

simply an empirical probability estimate computed from observed frequencies. The streaming data size in each period

ranges from 100 to 150 with the initial sample size 𝑛1 = 500. We assume that the location of the mobile station can be

updated at each period.

Unlike the SAN example in Section 7.2, it is not guaranteed that the objective function is strongly convex for the

EMS example. To observe the function, we discretized the map into a 100 × 100 grid and evaluated the ART under

the true probability distributions assuming the mobile station is located at each vertex of the grid via Monte Carlo

simulation. The Monte Carlo simulation budget was chosen such that the best and the second-best vertices can be

distinguished with 95% confidence. Figure 5b shows the estimated 𝑓 (x, 𝜽 ∗) surface, which appears to be (at least locally

near the global optimum) strongly convex.

For both ReSA and WaSA, we chose 𝑡 = 0 and the rest of the algorithm parameters were chosen as in Definition 5.1.

We set 𝑠0 = 𝑠0 = 200 to reduce the variance of the gradient estimator, however, together with the large streaming data size
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(a) Relative frequency of emergency calls
(b) Mont Carlo estimates of the ART given the mobile

station’s location from 500 replications

Fig. 5. Problem characteristics of the EMS example.

Table 4. Monte Carlo estimates of E[𝑓 (x𝑘 , 𝜽
∗) ] and cumulative number of SA steps. Standard errors are presented in parentheses.

Period
ReSA WaSA

E[𝑓 (x𝑘 , 𝜽
∗)] Cumulative number of SA steps E[𝑓 (x𝑘 , 𝜽

∗)] Cumulative number of SA steps
𝑘 = 25 4.0517(0.0017) 226.47(1.23) 4.2105(0.0243) 44.23(0.26)
𝑘 = 50 4.0477(0.0008) 1061.27(4.71) 4.0507(0.0007) 173.07(0.94)
𝑘 = 75 4.0489(0.0008) 2737.90(11.63) 4.0470(0.0009) 435.13(2.09)
𝑘 = 100 4.0470(0.0008) 5443.17(21.14) 4.0473(0.0007) 873.97(3.76)

𝑁𝑘 , this makes𝑀𝑘 large. To reduce the computational burden, we adopt scaling factor 𝑆 when determining𝑀𝑘 . ForReSA,

we choose𝑀𝑘 = �(𝑁𝑘/𝑆)
1/𝑝 � with other parameters unchanged. ForWaSA, we choose𝑀𝑘 = �(𝑁𝑘/𝑆)

1/𝑝 − (𝑁𝑘−1/𝑆)
𝜆�

and adjust the stepsizes and window sizes as 𝛾𝑘,𝑗 = 2𝜇−1
(
(𝑁𝑘−1/𝑆)

𝜆 + 𝑗 − 1
)−1

and 𝑐𝑘,𝑗 =
(
(𝑁𝑘−1/𝑆)

𝜆 + 𝑗 − 1
)−𝑝/4

.

Note that 𝑆 does not affect the convergence rate, but affects the constant in the upper bound for the expected sub-

optimality in Theorems 5.3 and 5.4. For 𝑡 = 0, the feasible range for 𝜆 is 0 < 𝜆 < 1.5; we employed 𝜆 = 1.45 in our

experiments below. Recall that Definition 5.1 requires 𝛾0 > 𝑝𝜇−1 and 𝛾0 = 2𝜇−1 but 𝜇 is unknown in this setting. Thus,

we set 𝛾0 = 𝛾0 = 10 as a conservative choice.

Table 4 presents the estimated E[𝑓 (x𝑘 , 𝜽
∗)] as well as the cumulative number of SA steps after 𝑘 = 25, 50, 75, and

100 iterations for both algorithms. Note that E[𝑓 (x∗, 𝜽 ∗)] is estimated to be 4.04 from the Monte Carlo simulation

shown in Figure 5b. We observe that although at the beginning ReSA outperformsWaSA in solution quality,WaSA

catches up in the end. Considering the computational savings, WaSA is significantly superior, consistent with our

analysis in Section 5. Unlike in Section 7.1, a single replication of the discrete-event simulator for the EMS problem is

far more time-consuming; thus, the computational benefit of WaSA is even more pronounced here.

7.4 A nonconvex function: six-hump camel function

In this section, we consider an instance of a nonconvex function, the six-hump Camel function [31]:

𝑓 (x, 𝜽 ) =
1

3
𝑥61 − 2.1𝑥41 + 𝜃1𝑥

2
1 + 𝑥1𝑥2 + 𝜃2𝑥

4
2 + 𝜃3𝑥

2
2 (13)

defined on X = {x = (𝑥1, 𝑥2) |𝑥1 ∈ [−3, 3], 𝑥2 ∈ [−2, 2]}. Following [5], we set 𝜽 ∗ = (4, 4,−4)
. We assume 𝜽𝑘 is

estimated via MLE computed from i.i.d. observations of N(𝜽 ∗, diag((202, 252, 302))). Within X, 𝑓 (•, 𝜽 ∗) is locally

strongly convex at its two global minimizers, (0.0898,−0.7126) and (−0.0898, 0.7126), and its four local minimizers,
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Fig. 6. Scatter plot of x800 obtained from 100 macro runs of ReSA,WaSA and r-ReSA on the

Six-Hump Camel function when 𝜎 = 2.

(−1.7035, 0.7960), (1.7035,−0.7960), (1.6071, 0.5686) and (−1.6071,−0.5686). In addition, 𝑓 (•, 𝜽 ∗) has seven saddle

points; see Figure 6. Given x, we assume that the unbiased gradient estimator, 𝐺 (x, 𝜽 , 𝝃 ) = ∇x 𝑓 (x, 𝜽 ) + 𝝃 , is available,

where each entry of 𝝃 follows N(0, 𝜎2 (2 + 𝑓 (x, 𝜽 ))2); notice the dependence of the variance on 𝑓 (x, 𝜽 ).

We tested ReSA, WaSA, and r-ReSA with 𝛾0 = 𝛾0 = 1
4 and 𝜆 = 0.995. The incoming data size of each period,

represented by 𝑛𝑘 , is geometrically distributed with success probability 1
4 . In each macro run, x0 is sampled uniformly

in X. Figure 6a, 6b and 6c show the scatter plots of the solutions returned from 100 macro runs of the three algorithms

after 800 periods when 𝜎 = 2. All local and global minimizers are marked with circles (two global minimizers are in the

middle) while the saddle points are marked as diamonds. The percentage near each minimizer shows the proportion of

number of solutions that lie in the corresponding convex valley. Observe that except for one macro run for WaSA, all

macro runs converge to the vicinity of global and local optima as prescribed by the theory. While 90% of the macro-runs

generated by r-ReSA converge to the global optimum, a non-negligible fraction of macro runs end up in local minima for

ReSA andWaSA. As seen in the SAN example with the objective function (12), r-ReSA benefits from the regularization

term as the global optima have smaller norms than local optima.

8 CONCLUDING REMARKS AND FUTUREWORK

In this paper, we consider a multi-period SO problem where simulation model parameters are estimated with increasing

precision as more input data accumulate over the decision periods. Focusing on SO problems defined on the continuous

feasible solution space, we propose two multi-period SA schemes: ReSA andWaSA. The key distinction between the

two algorithms lies in the choice of the stepsize sequence and the number of SA steps employed in each period; ReSA

restarts the stepsize sequence at every period while WaSA calibrates the stepsize sequences across all periods as a

function of the streaming data size leading to a significantly fewer number of SA steps for later periods compared

to ReSA. Under a suitable strong convexity requirement on 𝑓 , both ReSA and WaSA achieve the best-possible

convergence rate in the expected sub-optimality when either an unbiased gradient estimator or the SP gradient

estimator is employed. Additionally, the bounds on computational effort derived for WaSA grow far slower as opposed

to their ReSA counterparts. This benefit becomes more pronounced when the SP gradient estimator is employed. In

addition, we present a regularized r-ReSA variant that does not necessitate knowing the strong convexity parameter.

We show that under suitable choices of the regularization sequence and the number of SA steps, the resulting expected

sub-optimality error diminishes at the best-possible rate. Experiment results support these analyses; in particular, on
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the EMS example, WaSA consumed less than a sixth of the simulation effort taken by ReSA while producing solutions

of similar estimated sub-optimality.

This work represents a first step towards investigating a broad range of multi-period SO problems under more general

settings. An important question lies in extending these techniques to contend with non-parametric input modeling.

In addition, we intend to consider settings where the input-generating processes are afflicted by non-stationarity.

Extending theWaSA scheme to the regularized problem will be explored as well. Finally, we intend to examine how we

may contend with relaxing assumptions in the problem class such as convexity and smoothness.
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