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Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric
electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the MLmodel of
Field Aligned Currents of Kunduri et al. (2020, https://doi.org/10.1029/2020JA027908), the FAC‐derived
auroral conductance model of Robinson et al. (2020, https://doi.org/10.1029/2020JA028008), and the solar
irradiance conductance model of Moen and Brekke (1993, https://doi.org/10.1029/92gl02109). The ML‐AIM
inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic
indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule
Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a
geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential
patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times.
The cross polar cap potentials (ΦPC) fromML‐AIM, the Weimer (2005, https://doi.org/10.1029/2004ja010884)
model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to
the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing
better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric
responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical
models like Weimer (2005, https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static
ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM
performance by including a fully ML network of models of aurora precipitation and ionospheric conductance,
targeting its characterization of geomagnetically active times.

Plain Language Summary Auroral ionospheric electrodynamics, originating from the interaction of
solar wind with Earth’s magnetosphere‐ionosphere system, is vital in space weather forecasting, as it influences
satellite communication, satellite drag, navigation, and power distribution systems on Earth. Machine learning
(ML), a subset of artificial intelligence, has demonstrated considerable potential within the realm of space
weather research, yielding promising outcomes for forecasting operations. In this work, we have developed a
new ML‐based auroral ionospheric electrodynamics model (ML‐AIM) by extending an existing ML‐based
model for ionospheric currents. ML‐AIM uses 60‐min time history of solar and geomagnetic input conditions to
nowcast the ionospheric electrodynamics. The present model is capable of better representing the ionospheric
response to the time‐varying solar input conditions. This work laid a successful groundwork for integrating
various advanced ML models within a single framework to accurately model the space weather relevant
quantities.

1. Introduction

The global specification of the high latitude ionospheric electrodynamics plays a crucial role in analyzing space
weather impacts and mitigating the threats posed by space weather events on humans and technological systems.
The Field Aligned Currents (FACs) (Birkeland current system; Birkeland, 1901) flow along the Earth's magnetic
field lines and electrodynamically couple the magnetosphere and ionosphere. The FACs consist of two large
current systems, known as Region 1 (R1) and Region 2 (R2) currents. The R1 currents in the dawn (dusk) sector
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flow into (out of) the ionosphere at the latitude close to the poles in the auroral region, whereas the R2 currents in
the dawn (dusk) sector flow out of (into) the ionosphere at the equatorward part of the auroral oval (Iijima &
Potemra, 1976). As a response to the electrodynamic coupling between the magnetosphere and ionosphere, the
horizontal flow of ionospheric currents (Pedersen and Hall currents) can be noticed in the auroral region
(Richmond & Thayer, 2000). During disturbed space weather periods, the FACs, plasma convection, and the
horizontal currents over the auroral region are significantly altered. These enhanced horizontal currents are
associated with large geomagnetic field perturbations (Pirjola, 2005) on the ground, which can potentially damage
the power grids (Pulkkinen & Engels, 2005; Pulkkinen et al., 2013). Further, enhanced particle precipitation at
higher latitudes increases the conductivity of the ionosphere, modifying ionospheric electric field, plasma con-
vection, and Joule heating patterns in a complex way that alters the thermospheric temperature and density (Blanc
& Richmond, 1980). As a result, many satellites and space debris in the Low Earth Orbit can be subjected to
increased atmospheric drag. Therefore, understanding and accurately characterizing the high latitude ionosphere
are essential for space weather applications.

Significant progress has been made over the past several decades in predicting high‐latitude ionospheric elec-
trodynamics through data‐driven and physics‐based modeling techniques. By utilizing a large set of space/ground
observations, empirical models parameterize various ionospheric properties under different solar wind/IMF
conditions: for example, mean energy and total energy flux of precipitating particles (Fuller‐Rowell &
Evans, 1987; Hardy et al., 1987; Newell et al., 2009, 2014), electrostatic potentials, electric fields, Joule heating
rate and FACs (Heelis et al., 1982; Ruohoniemi & Greenwald, 1996; Thomas & Shepherd, 2018; Weimer, 2005),
Pedersen and Hall conductance (Moen & Brekke, 1993; Robinson et al., 1987), and auroral ionospheric currents
(Laundal et al., 2018). Physics‐based models also solve global ionospheric electrodynamics by considering the
ionosphere—thermosphere dynamics—for example, Thermosphere‐Ionosphere‐Mesosphere‐Electrodynamics
General Circulation Model (TIMEGCM, Roble & Emery, 1983), and Global Ionosphere Thermosphere Model
(GITM, Ridley et al., 2006), by coupling a global magnetosphere model with the ionosphere—thermosphere
model—for example, Global Geospace Environment Modeling‐Coupled Thermosphere Ionosphere Model
(OpenGGCM‐CTIM; Connor et al., 2014; Fuller‐Rowell et al., 1996; Raeder et al., 2001), using diverse types of
measurements ‐ for example, Assimilative Mapping of Ionosphere Electrodynamics model (Lu et al., 1996;
Richmond & Kamide, 1988) and by assimilating the model predictions with space/ground observations—for
example, Assimilative Mapping of Geospace Observations (AMGeO; Matsuo et al., 2019).

The physics‐based models are better at resolving magnetospheric processes that contribute to ionospheric elec-
trodynamics (Connor et al., 2016) compared to empirical formulation; however, these models require large
computational resources. The empirical models (e.g., Thomas & Shepherd, 2018; Weimer, 2005) are designed to
predict an average state of the ionospheric parameters for various solar wind conditions in a computationally
efficient manner. However, these statistical models are unable to predict the temporal evolution of ionospheric
electrodynamics under consistently varying SW/IMF conditions. For example, when Interplanetary Magnetic
Field (IMF) Bz turns from positive to negative, these models indicate an instantaneous transition from a quiet to
an active ionospheric state without considering a time for the ionosphere to adjust to the new driving conditions.
Rastaetter et al. (2016) carried out a comprehensive validation of empirical and theoretical models during six
selected geomagnetic events and concluded that the convection electric fields or Poynting flux and the timing of
the system responses are not captured in any of the existing empirical and the physics‐based models. Due to the
complex and dynamic coupling between the solar wind and the Magnetosphere‐Ionosphere‐Thermosphere (M‐I‐
T) system, predicting the auroral ionosphere electrodynamics is still a challenging task for the scientific com-
munity. More work should be done in developing new ionospheric electrodynamics models for accurately
parameterizing the high‐latitude sources and for predicting various ionosphere‐thermosphere quantities.

Recently, Machine Learning (ML) and artificial intelligence has shown promising results in M‐I‐T system
modeling (Blandin et al., 2022; Bristow et al., 2022; Gowtam et al., 2019; Hu et al., 2022; Kunduri et al., 2020;
Liu et al., 2020; McGranaghan et al., 2021; Pinto et al., 2022; Sai Gowtam & Tulasi Ram, 2017; Tulasi Ram
et al., 2018 and references therein). TheMLmodels require large data sets to learn the relationship between inputs
and outputs through systematic learning processes. Further, the training process requires moderate to large
computational resources. However, the use of ML models after training does not require large computational
power and can be easily run with personal computers. The main aim of this paper is to take advantage of such
advanced ML models to develop a new ML‐based Auroral Ionospheric electrodynamics Model (hereafter, ML‐
AIM). The ionospheric electrodynamics can be derived from ionospheric Ohm's law if we explicitly know the
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conductance and if we also know either FACs, electric fields, horizontal currents, background neutral winds or
magnetic field perturbations (using Biot‐Savart law). In this study, we apply recent results from an ML‐based
FAC model by Kunduri et al. (2020) and an empirical specification of auroral conductance by Robinson
et al. (2020) to get the potential pattern and other electrodynamic parameters in the ML‐AIM framework.

The organization of the paper is as follows. In Section 2, we describe the methodology and ML‐AIM framework
used to derive the ionospheric electrodynamics. Section 3 describes the data sets used in the study for validating
the ML‐AIM. Section 4 presents the case studies of the ML‐AIM response to the varying solar and geomagnetic
inputs. Section 5 discusses the ML‐AIM advantages and shortcomings. Section 6 provides a summary and the
scope of future work.

2. Methodology

2.1. Deep Convolution Neural Network‐Based Field Aligned Current Model (CNN‐FAC)

The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides global
maps of the FACs from magnetic field perturbations measured by the Iridium constellation of 66+ commercial
satellites at >780‐km polar circular orbits (Anderson et al., 2000, 2002, 2014; Waters et al., 2020). The magnetic
field perturbations are processed by removing the background International Geomagnetic Reference Field and
long‐period residuals from the observations (Anderson et al., 2000) to determine FAC densities. Recently,
Kunduri et al. (2020) developed a deep learning‐based convolutional neural network model of FACs (hereinafter
referred to as CNN‐FAC) by utilizing nearly 7 years (2010–2016) of AMPERE FAC data. The CNN‐FAC input
parameters are 60‐min time histories of IMF components (Bx, By, and Bz), solar wind velocity (Vx), proton number
density (Np), geomagnetic indices (Sym‐H, Asym‐H, SuperMAG AL, and AU indices), F10.7 solar flux, and the
month number. The output parameters are the global pattern of Birkeland currents in the Northern Hemisphere at
a given time. Kunduri et al. (2020) compared the CNN‐FACmodel results with the bin‐averaged statistical pattern
under steady and time‐varying input conditions. The CNN‐FAC model successfully reproduced prominent
current systems, such as R1 and R2 FACs, the NBZ current system, and the cusp currents. Furthermore, Kunduri
et al. (2020) showed that the CNN‐FACmodel accurately captured the time evolution of Birkeland currents under
varying solar and geomagnetic conditions. Therefore, we adopted the CNN‐FAC model by Kunduri et al. (2020)
in our ML‐AIM framework to compute the FACs.

2.2. Ionospheric Conductance Model

Solar Irradiance and auroral precipitation are key factors that determine ionospheric conductance. Moen and
Brekke (1993) provided empirical equations of height‐integrated Pedersen and Hall conductance (ΣP and ΣH)
caused by solar irradiance:

ΣPSolar
= F0.4910.7 (0.34 cos χ + 0.93 cos1/2 χ) (1)

ΣHSolar
= F0.5310.7 (0.81 cos χ + 0.54 cos1/2 χ) (2)

where F10.7 is the solar radio flux at 10.7 cm and χ is the solar zenith angle. Robinson et al. (2020) introduced
new empirical equations of ionospheric conductance caused by auroral precipitation. They first derived the
height‐integrated ionospheric conductance from the Poker Flat Incoherent Scatter Radar (PFISR) observations for
20 geomagnetically disturbed days. Then, they compared the conductance data with the AMPERE FACs over
PFISR during the same disturbed days, and established a linear relationship between the height‐integrated
conductance and FACs for 8 magnetic local time (MLT) zones:

ΣPAurora
= ΣU

P0 + Σ
U
P1 j∥ (j∥ > 0) (3)

ΣPAurora
= ΣD

P0 + Σ
D
P1 j∥ (j∥ < 0) (4)

ΣHAurora
= ΣU

H0 + Σ
U
H1 j∥ (j∥ > 0) (5)

ΣHAurora
= ΣD

H0 + Σ
D
H1 j∥ (j∥ < 0) (6)
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where the superscripts U and D indicate upward and downward FAC regions, respectively. Each coefficient

—ΣU
P1, Σ

U
H1, Σ

D
P1, Σ

D
H1, Σ

U
P0, Σ

U
H0, Σ

D
P0, and Σ

D
H0—is different for each MLT sector and obtained from Table 1 of

Robinson et al. (2020). Robinson et al. (2021) utilized these new conductance equations in Robinson et al. (2020)
to derive ionospheric potentials, Hall/Pedersen currents, ground geomagnetic field perturbations, and auroral
indices (e.g., AU, AL, and AE). Their results showed good agreement with the SuperMAG geomagnetic indices.
Therefore, our ML‐AIM framework adopts the auroral conductance model of Robinson et al. (2020) along with
the solar irradiance conductance model of Moen and Brekke (1993) to derive the Pedersen and Hall conductances.
The conductance in ML‐AIM framework is given by,

ΣP = (Σ2PSolar
+ Σ2PAurora

)1/2 (7)

ΣH = (Σ2HSolar
+ Σ2HAurora

)1/2 (8)

The quadratic addition is employed due to the fact that the ionization rate below 200 km is directly proportional to
the square of the electron density (Robinson et al., 2020). Therefore, Equations 7 and 8 serve as approximations to
the altitude‐dependent cumulative ionization production rates resulting from auroral precipitation and solar
illumination.

2.3. High‐Latitude Ionospheric Electrodynamics Model

ML‐AIM defines a high‐latitude ionosphere as a 2D planar ionosphere and calculates ionospheric potential
assuming that FACs generated from the solar wind—magnetosphere interaction are closed in the ionosphere
(Raeder, 2003; Raeder et al., 1998, 2001). Under this assumption, high‐latitude electrodynamics can be expressed
by the current continuity equation and the ionospheric Ohm's law (Goodman, 1995; Wolf, 1983):

j∥ = −∇.j⊥ = −∇ . Σ
=
E (9)

E = −∇ϕ (10)

where j∥ is the FAC density, J⊥ is the horizontal current density, Σ
=
is the conductance tensor, E is the electric field,

and Φ is the electrostatic potential. It is important to mention the assumptions involved in the above formulation.
The ionospheric Ohm's law applies when there is a force balance between Lorentz forces and collisions with
neutrals. It also assumes that the neutral winds are almost absent in the corotating frame. Further, it is assumed
that the electric fields are curl free.

The conductivity tensor in the above equation is given by,

Σ
=
= ( Σθθ Σθλ

−Σθλ Σλλ

) (11)

Σθθ =
ΣP

sin2 I
, Σθλ =

ΣH

sin I
, Σλλ = ΣP (12)

where θ is the magnetic latitude (MLAT), λ is the magnetic longitude, and I is the inclination of the magnetic field
lines. We derived the high latitude potential patterns by solving Equations 9–12 with the FACs and ionospheric
conductance obtained from the models in Sections 2.1 and 2.2.

Figure 1 summarizes four important steps in the ML‐AIM framework. In step 1, the solar and geomagnetic inputs
with a 1‐min time resolution are prepared for the model run. In step 2, the FACs are computed using the CNN‐
FAC model of Kunduri et al. (2020). In step 3, the solar irradiance conductance maps are generated using the
empirical formulation of Moen and Brekke (1993), while the auroral conductance maps are computed using the
empirical relationship of Robinson et al. (2020) with the ML prediction of FACs. In step 4, the current continuity
Equation 9 is solved to get the ionospheric electrostatic potentials, electric field, horizontal currents, and Joule
heating rates. We used the ionospheric potential solver developed as part of the OpenGGCM‐CTIM model
(Raeder et al., 2001) for solving Equations 9–12.
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3. Data Sets

We used the Defense Meteorological Satellite Program (DMSP) ionospheric flow measurements and the cross
polar cap potential (CPCP; ΦPC) derived from the DMSP data for comparing the ML‐AIM results. We select the
F17 spacecraft since its dawn‐dusk orbit provides optimal coverage of typical two‐cell ionospheric convection
patterns and thus its data are well‐suited for the ΦPC calculation. We downloaded the DMSP F17 data from
the Madrigal Database at Cornell (http://landau.geo.cornell.edu/madrigal/) and estimated ΦPC by following the
method of Boudouridis et al. (2005). Considering the frozen‐in flux conditions in the topside ionosphere, the
electric field along the satellite trajectory is expressed as:

Ex = −Vy · Bz + Vz · By (13)

Here, +x is parallel to the spacecraft velocity vector, +z is upward away from Earth and +y completes a right‐
handed coordinate system. For dawn‐dusk orbits of DMSP F17, +y mainly points toward the Sun, making Ex

close to the dawn‐dusk electric field. Then, the electrostatic potential can be computed by integrating electric
fields along the satellite path l (Rich & Hairston, 1994),

ϕ(l) = +l2

l1

(Ex − Ecor) dl ≈ 3l2
l1

ExΔl (14)

where l1 and l2 are dawn and dusk‐side reference points on the satellite trajectory and are defined to have zero
electric potential. Here, it is assumed that all the electric fields measured by DMSP are static electric fields; there
is no inductive electric field from dB/dt. The initial point of integration, denoted as l1, is chosen at a subauroral
latitude. In this region, excluding corotation, both horizontal and vertical ion flows remain constant or close to
zero (usually around 50°–60° MLAT in the dawn sector). The end point, labeled as l2, is similarly chosen, and is
usually positioned at around 50°–60° MLAT in the dusk sector. Typically, ϕ(l) calculated from the l1 point along
the DMSP orbit gives a non‐zero value at l2, which is called potential offset (ϕoffset). We adjusted ϕ(l) to remove
this offset at l2—that is, to make zero potential at l2—using the linear correction method of Boudouridis
et al. (2005):

ϕcorrected (l) = ϕmeasured(l) − ϕof f set · (l − l1

l2 − l
) (15)

Figure 1. Block diagram of Machine Learning based Auroral Ionosphere Model (ML‐AIM).
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Finally, we obtain ΦPC by calculating the difference between the maximum and minimum values of ϕcorrected. The
DMSP ΦPC is an observation‐based parameter and can be considered as ground truth for model validation (e.g.,
Connor et al., 2014). However, ΦPC includes some errors and requires caution when comparing the model results.
First, the DMSP F17 orbit may miss real maximum/minimum potential regions in the northern ionosphere, and
thus ΦPC may be underestimated. Second, ionospheric potential patterns may change during 20–25 min of the
DMSP path over the northern polar ionosphere, and thus the DMSP ΦPC may include a large error, especially
during an active time.

We also used the ionospheric potentials and ΦPC obtained from the Weimer 2005 model (Weimer, 2005) and the
SuperDARN Assimilative Mapping procedure (e.g., Cousins & Shepherd, 2010; Cousins et al., 2013; Thomas &
Shepherd, 2018) to compare with the ML‐AIM results. TheWeimer (2005) results are generated by using the run‐
on‐request service of the Community Coordinated Modeling Center (CCMC; https://ccmc.gsfc.nasa.gov/). The
SuperDARN potentials are generated by optimally combining SuperDARN observations and a statistical con-
vection model of Thomas and Shepherd (2018). We calculate the ΦPC of Weimer (2005) and SuperDARN by
using the difference between maximum and minimum values of the global ionospheric electric potential maps.

4. Results

4.1. ML‐AIM Response to the Weak Geomagnetic Activity

To demonstrate the methodology explained in the previous sections, we have run ML‐AIM for a weak
geomagnetic activity period on 14May 2013. We highlighted the SW/IMF condition used to generate Figure 2. A
vertical dashed line and a shaded area in Figure 3 indicate the prediction time used in Figure 2 (i.e., 12:44UT) and
the corresponding input period for the prediction (i.e., 11:44–12:44 UT), respectively. Figure 2a shows the MLT
and MLAT map of the FACs at 12:44 UT generated by the CNN‐FAC model with 1 hr time history of solar wind
and geomagnetic indices (i.e., 11:44–12:44 UT) as input. The prediction time at 12:44 UT and the corresponding
input period for the prediction (11:44–12:44 UT) are displayed as a vertical dashed line and a shaded area in
Figure 3, respectively. The positive and negative values in Figure 2a indicate the upward and downward flow of
the FACs, respectively. The Birkeland currents are clearly observed with the downward (upward) FACs in the
dawn (dusk) sector at higher latitudes, that is, region 1 currents, and the upward (downward) FACs in the dusk
(dawn) sectors at lower latitudes, that is, region 2 currents. Figures 2b and 2c display the Pedersen and Hall
conductances calculated from Equations 1–6 with the FAC input from Figure 2a. Both Pedersen and Hall con-
ductances are enhanced at the regions of large FACs, as expected by the empirical conductance Equations 3–6.

ML‐AIM computes the electrostatic potential by solving Equations 9–12 with a boundary condition of zero
potential at 40° MLAT. Figure 2d shows MLAT and MLT distribution of the electrostatic potential calculated
from the FACs and ionospheric conductance in Figures 2a–2c. When IMF Bz turns from north to south, the
plasma in the polar cap undergoes a circulation, in which the opening and closing of Earth's magnetic flux leads to
an anti‐sunward motion of plasma across the high‐latitude regions and sunward return flow at low latitudes,
known as the “Dungey cycle” (Dungey, 1961). This creates a well‐known two‐cell convection pattern of the high
latitude potential. ML‐AIM reproduces this convection pattern with maximum potential in the dawn sector and
minimum potential in the dusk sector. We also plotted horizontal plasma flows, observed by DMSP F17 with the
magenta lines in Figure 2d. When the DMSP F17 crosses near the maximum or minimum potential region, flow
reversals are expected in the in situ observations. The DMSP velocity reversal point in the morning sector matches
well with the ML‐AIM maximum potential region, while in the afternoon sector, the velocity turning point is
slightly off from the minimum potential region. The ML‐AIM ΦPC of 63 kV is comparable to the DMSP ΦPC of
59 kV for this period (see the upper right corner of Figure 2d). Figures 2e and 2f show the Joule heating rate and
the Hall currents, respectively. As expected, the Joule heating rate and Hall currents enhance in the regions where
both FACs (Figure 2a) and conductances (Figures 2b and 2c) are strong.

Figure 3 compares ΦPC of various models and DMSP observations during the entire period of this event on 14
May 2013. Figures 3a–3c show IMF, solar wind velocity, and number density in the Geocentric Solar Magne-
tospheric coordinates, respectively. IMF Bz turned southward after 6:50 UT and it was steadily southward until
20:50 UT except for a short period of northward IMF during >17:40–19:05 UT. Figure 3d shows ΦPC calculated
every 2 min using ML‐AIM (blue), Weimer (2005) (green), and SuperDARN fitted Potentials (orange) as well as
ΦPC computed from the DMSP observations (magenta dots) during the satellite crossings over the northern
hemisphere (magenta bars). Overall, ΦPC patterns of ML‐AIM, Weimer (2005), and SuperDARN models are
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similar to each other, with the Weimer (2005) model providing the highest ΦPC almost always. All the modeled
ΦPC increases during southward IMF and decreases during northward IMF, showing a good agreement with the
DMSP ΦPC. However, it is interesting to note that ML‐AIMΦPC responds slowly to the sharp changes of IMF Bz
at 6:50 and 20:50 UT, while ΦPC of Weimer (2005) and SuperDARN potential models responds immediately.
Section 5 discusses this behavior in detail. Figures 2 and 3 suggest that the ML‐AIM framework successfully
reproduced the general morphological features of the auroral electrodynamics during a period of weak
geomagnetic activity.

Figure 2. Magnetic Local Time (MLT) and Magnetic Latitude (MLAT) maps of (a) Field Aligned Current densities,
(b) Pedersen conductance, (c) Hall conductance, (d) potential, (e) Joule heating rate, and (f) magnitude and directions (black
arrows) of Hall currents at 12:44 UT on 14 May 2013. The noon is located at the top of each plot. The dashed gray lines
indicate a grid of 3 hr MLT and 5° MLAT, respectively. Solar wind/Interplanetary Magnetic Field conditions are shown with
dashed vertical line in Figure 3.
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4.2. ML‐AIM Response to a Geomagnetic Storm During 7–8 September 2017

A geomagnetic storm on 7–8 September 2017 is selected for studying the ML‐AIM response to strong
geomagnetic disturbances. An X9.3 class solar flare and associated coronal mass ejection occurred on 6
September 2017 and triggered a global geomagnetic storm on the following days. Figure 4 shows IMF, solar wind
velocity, number density, and SYM‐H index from top to bottom with 1‐min time resolution during 7–8
September 2017. IMF Bz turned southward soon after 20:30 UT and stayed southward for >5.5 hr with a
minimum value of −31 nT at >23:30UT on 7 September 2017, when solar wind velocity and density also
increased. The SYM‐H index reached its minimum value of−146 nT around 01:08 UT on 8 September 2017, and
a storm recovery started after the northward turning of IMF Bz at >02:00 UT on 8 September 2017. However,
SYM‐H decreased again as IMF Bz turned southward at >11:40 UT on 8 September 2017 and the storm recovery
continued till 9 September 2017.

Figure 4e shows ΦPC of the northern hemisphere predicted by ML‐AIM (blue), Weimer (2005) (green), and
SuperDARN (orange) potential maps. Magenta dots and bars indicate the DMSP ΦPC and the DMSP observation
intervals used for the ΦPC calculations. The vertical dashed gray lines indicate three incidents used for deeper
analysis in Figure 5. As SYM‐H started decreasing after 20:30 and 11:00 UT, all three models showed ΦPC

enhancement, similar to the DMSP observations. However, ML‐AIM ΦPC responded more smoothly to the rapid
IMF Bz fluctuations than the other two empirical models. For example, the Weimer (2005) and SuperDARN
models showed rapid ΦPC reduction soon after the short excursions to northward IMF near 20:30 UT on 7
September 2017, 06:00–07:00 UT on 8 September 2017, and near 15:00UT on 8 September 2017, while ML‐AIM
did not show such rapid ΦPC variations. Throughout this storm, the SuperDARN potential model tends to give the
lowest ΦPC predictions, theWeimer (2005) model is the highest, and the ML‐AIMmodel ΦPC values are between

Figure 3. (a) IMF By and Bz, (b) solar wind velocity Vx in the Geocentric Solar Magnetospheric coordinates, and (c) number
density obtained from the NASAOMNI data during 14May 2013. The bottom panel shows the cross polar cap potential drop
(ΦPC) of the northern hemisphere predicted by the ML‐AIM (blue), Weimer (2005) (green), and SuperDARN potential
models (orange). Magenta circles indicate the ΦPC calculated from each polar crossing of Defense Meteorological Satellite
Program (DMSP) F17. Time taken for each polar crossing of DMSP is indicated using the horizontal magenta bars. A vertical
dashed line and a shaded area indicate the prediction time used in Figure 2 (i.e., 12:44UT) and the corresponding input period
for the prediction (i.e., 11:44–12:44 UT), respectively.
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the two. The low ΦPC values of the SuperDARN model are understandable because its base model is from
Thomas and Shepherd (2018) which utilized the SuperDARN data during the uniquely quiet solar cycle 24.
Therefore, the SuperDARN potential model has limitations to predict the potential pattern for the solar electric
field greater than 3 mV/m (Orr et al., 2023).

To compare model predictions of global ionospheric potentials, we selected three incidents (vertical dashed lines
in Figure 4) at 22:02 UT on 7 September 2017 during prolonged southward IMF Bz, 23:42 UT on 7 September
2017 during the period of maximum southward IMF Bz, and 15:04 UT on 8 September 2017 during a period of
sudden change of IMF Bz orientation. DMSP F 17 also crossed the northern hemisphere during the three in-
cidents, providing the data set for model‐data comparison. The SW/IMF and geomagnetic conditions used to
compute potentials are highlighted with vertical dashed lines and shaded areas (60‐min time history) in Figure 4.

Figure 5 shows the ionospheric potential patterns of the northern hemisphere predicted by ML‐AIM (left),
Weimer (2005) (middle), and SuperDARN (right) for the three incidents at 22:02 UT on 7 September 2017 during
prolonged southward IMF Bz, 23:42 UT (top) on 7 September 2017 during the period of maximum southward
IMF Bz (middle), and 15:04 UT on 8 September 2017 during a period of sudden change of IMF Bz orientation
(bottom). Noon is located at the top of each plot. The dashed lines represent 3‐hr MLT grids and 5°‐MLAT grids.
ΦPC of each plot is displayed at the bottom. The magenta lines indicate the plasma convection velocities observed
by the DMSP F17 when it crossed the northern polar region. The DMSP ΦPC is calculated during each polar
crossing and displayed with magenta in the upper right corners of Figures 5a, 5d, and 5g. The green dots in
Figures 5c, 5f, and 5i represent the locations of SuperDARN radar measurements used for deriving the iono-
spheric potential maps.

Figure 4. (a) IMF (b) solar wind velocity in Geocentric Solar Magnetospheric coordinates, (c) number density and (d) SYM‐
H, obtained from NASA OMNI data during 7–8 September 2017. The bottom panel (e) shows ΦPC in the northern
hemisphere as predicted by our ML‐AIM (blue), Weimer (2005) model (green), and SuperDARN (orange). Magenta circles
indicate the ΦPC calculated from each polar crossing of DefenseMeteorological Satellite Program F17 during 7–8 September
2017. The vertical dashed lines and shaded arears represent three case studies during (left to right) prolonged negative IMF
Bz, minimum IMF Bz and sudden change in the IMF orientation from negative to positive, respectively (See text for more
information).
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Figure 5a shows the two‐cell convection pattern with maximum potential in the dawn sector and minimum
potential in the dusk sector. The ΦPC from DMSP and ML‐AIM are comparable during this steady IMF Bz
condition. Similar potential patterns are predicted by theWeimer (2005) (Figure 5b) and SuperDARN (Figure 5c)
models. However, Weimer (2005) shows a higher ΦPC than ML‐AIM and SuperDARN. Note that SuperDARN
radar observations are almost absent at this time and thus its potential pattern is strongly dependent on the sta-
tistical model of Thomas and Shepherd (2018). Figures 5d–5f show the potential maps at 23:42 UT during the
period of maximum southward IMF Bz. The ML‐AIM (Figure 5d) predicted strong enhancements of ionospheric
potential and equatorward expansion of the two‐cell potential structures, compared to the potential pattern in

Figure 5. Magnetic local time (MLT) and Magnetic Latitude maps of ionospheric potentials obtained from the ML‐AIM (left), Weimer (2005) (middle), and
SuperDARN (right) at 22:02 UT on 7 September 2017 (top), 23:42 UT on 7 September 2017 (middle), and 15:04 UT on 8 September 2017 (bottom). The noon is located
at the top of each plot. The dashed lines indicate 3‐hr MLT and 5°‐MLAT grids. ΦPC of each plot is indicated in the bottom of each plot. The plasma convection
velocities and ΦPC obtained from Defense Meteorological Satellite Program 17 are displayed in magenta. The green circles in SuperDARNmaps represent the locations
of radar measurements used for deriving the potential pattern.
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Figure 5a. TheWeimer model (Figure 5e) also showed a similar potential response. The ML‐AIMΦPC is 171 kV,
whereas the DMSP ΦPC is 123 kV. However, the Weimer ΦPC is significantly higher than the DMPS ΦPC, while
the SuperDARN ΦPC is much lower. The horizontal velocities in the cases presented in Figure 5 have large
discrepancies with the minimum (maximum) potentials and the velocity reversal. All models presented in this
study do not show the expected velocity reversal during the geomagnetic storm of 7–8 September 2017 when
compared with the DMSP horizontal plasma flow measurements. The locations of velocity reversal from DMSP
observations and the location of minimum (maximum) potentials are off about 5° MLAT, which requires detailed
investigation in future studies. Figures 5g–5i, show the potential maps at 15:04 UT on 8 September 2017 when
IMF Bz fluctuates and ΦPC rapidly drops for a short period of time (see Figure 4e). The ML‐AIM showed an
enhanced potential pattern compared to the one in Figure 5a. Subsequently, its ΦPC significantly increases, similar
to the DMSP ΦPC. On the other hand, the Weimer (2005) and SuperDARN ΦPC severely underestimated ΦPC

compared to the ML‐AIM and DMSP ΦPC values. This study shows that ML‐AIM reproduces overall storm‐time
responses of ionospheric electric potentials.

Identifying the most effective parameter for validating a global model like ML‐AIM is challenging. The CPCP
(ΦPC) is one of the parameters used for quantifying auroral electrodynamics model's performance (e.g., Connor
et al., 2014; Orr et al., 2023). Following these works, we adopt a similar approach for the ML‐AIM validation. We
considered DMSP‐derived ΦPC values as ground truth for model comparison, but with caution because of the
observational limitation. As previously mentioned, DMSP takes roughly 20–25 min to cross the polar cap, and the
global ionospheric potential pattern continuously vary during this period. Therefore, the derived DMSP ΦPCmay
include a large error, especially during active times. Additionally, the DMSP F17 orbit may miss real maximum/
minimum potential regions in the northern ionosphere, leading to an underestimation of ΦPC. Nevertheless, the
ΦPC from DMSP can provide close approximations of observed ionospheric convections and be comparable to
the ΦPC from a global model. Therefore, we considered DMSP observations as a ground truth for the quantitative
assessment of ML‐AIM's ionospheric convection.

We evaluated the model performance by utilizing the 2017 data from DMSP F17. A total of 3204 DMSP F17
polar crossings were identified and the corresponding ΦPC were computed using the methodology explained in
Section 3. The choice of the year 2017 is deliberate as it falls outside the training set for the CNN‐FAC model.
Additionally, the geomagnetic active days utilized for the Robinson et al. (2020) conductance model database
does not include data from 2017. Hence, this year is deemed most suitable for model assessment.

Figure 6 shows the comparison between ΦPC from DMSP polar crossings of the year 2017 and ΦPC from ML‐
AIM (blue), Weimer (2005) (green), and SuperDARN (orange). The corresponding linear fits are also shown with
the same color. The RootMean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient
are also mentioned with the same color code. The RMSEs are 24, 28, and 27 keV for ML‐AIM, Weimer (2005)
and SuperDARN, respectively. The MAE are 18, 22, and 19 keV for ML‐AIM,Weimer (2005) and SuperDARN.
The correlation coefficients between modeled and measured ΦPC are 0.45, 0.39, and 0.37 for the ML‐AIM,
Weimer (2005) and SuperDARN, respectively. Note that all the models presented here are still underestimating
ΦPC when compared to the DMSP observations. This is understandable considering the caveat of statistical
models that average out the dynamic events as well as the observational constraints for the DMSP ΦPC mea-
surements. From Figure 6, one can clearly notice that theML‐AIM showed better performance in terms of RMSE,
MAE, and correlation coefficient values when compared to the Weimer (2005) and SuperDARN‐based models.

Similarly, Figure 7 shows the means (colored circles) and standard deviations (error bars) of ΦPC values from
DMSP observations (black), ML‐AIM (blue), Weimer (2005) (green), and SuperDARN (orange) as a function of
the Kp‐index. The total number of DMSP polar crossings for a given Kp‐index level is indicated with gray bars in
the background. The mean ΦPC values from ML‐AIM closely match the mean ΦPC of DMSP observations for
most of the Kp‐index values. The mean ΦPC predicted by Weimer (2005) is slightly above the mean values of
DMSP observations, whereas the SuperDARN ΦPC is below the mean values of DMSP observations. Another
interesting observation from Figure 7 is that the upper limit of the standard deviation bars of Weimer (2005) is
above the upper limit of the standard deviation of DMSP observations for most Kp indices, indicating the overall
overestimation of Weimer (2005). On the other hand, the lower limit of the standard deviation of SuperDARN
tends to go below the standard deviation of DMSP observations for Kp> 3, indicating the underestimation of ΦPC

for moderately and strongly active times. In the case of ML‐AIM, both upper and lower limits are within the
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Figure 6. Comparison between Cross Polar Cap Potentials (CPCP; ΦPC) from Defense Meteorological Satellite Program
polar crossings of the year 2017 and predicted values from ML‐AIM (blue), Weimer (2005) (green), and SuperDARN
(orange). The corresponding linear fits are also shown with the same color. The Root Mean Squared Error, Mean Absolute
Error, and Correlation Coefficient are also mentioned with the same color code.

Figure 7. Means (colored circles) and standard deviations (error bars) of Cross Polar Cap Potential (ΦPC) values from
Defense Meteorological Satellite Program observations (black), ML‐AIM (blue), Weimer (2005) (green), SuperDARN
(orange) as a function of the Kp‐index. The number of data points for a given Kp‐index level are indicated with gray bars.
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standard deviation of DMSP ΦPC observations for all Kp values, except Kp > 6 where the standard deviation
becomes non‐meaningful due to the lack of cases.

The quantitative assessment presented in Figures 6 and 7 reveals that all models, including ML‐AIM, under-
estimated ΦPC compared to DMSP observations. However, Figure 6 suggests that ML‐AIM showed better
performance in terms of RMSE, MAE, and correlation coefficient values when compared to Weimer (2005) and
SuperDARN. Notably, the mean ΦPC values from ML‐AIM (Figure 7) closely aligned with DMSP observations
across different Kp‐index levels, suggesting a better prediction compared to other models.

5. Discussion

The characterization of the auroral electrodynamics is crucial for specifying the magnetospheric forcing in the
GCMs. In this study, we demonstrated that the auroral electrodynamics can be derived by using the pre‐trained
ML‐models. First, we generated the FACs (using CNN‐FAC) and then FAC‐driven conductances in the
framework with the 60‐min time history of SW/IMF and geomagnetic indices as the primary inputs. Later, we
computed the convection potential, and all other ionospheric electrodynamics parameters over the auroral region
by solving a current continuity equation. The spatial resolution of the ML‐AIM is 1° MLAT × 1 hr MLT and the
temporal resolution can be down to 2 min by sliding the 60‐min input window by 2 min. The ML‐AIM presented
in this study has shown a promising performance under weak and strong geomagnetic activity. During the periods
when IMF Bz turns its sign abruptly (e.g., 20:30 UT on 7 September 2017 and 15:04 UT on 8 September 2017),
the ML‐AIM showed a slowly increasing ΦPC while both Weimer (2005) and SuperDARN models showed rapid
enhancement. The latter models are designed to provide the most probable ionospheric convection pattern when
the given solar wind and IMF conditions stay constant. They are not designed to capture the gradual ionospheric
response to the time‐varying solar wind/IMF conditions. Due to this caveat, these models predict the immediate
response of the ionosphere potential pattern to the sudden SW/IMF changes without allowing time for the
ionosphere to re‐adjust. It is unlikely that an entire ionospheric potential pattern gets modified within a couple of
minutes after the SW/IMF change, causing an immediate ΦPC enhancement (e.g., Figures 5h and 5i during a short
excursion to a northward IMF). On the other hand, our ML‐AIM model considers slow adjustment of the
ionosphere to some extent by predicting ionospheric electrodynamics based on the 60‐min time history of solar
wind/IMF and geomagnetic indices. Therefore, we can faithfully conclude that our model provides more realistic
potential patterns than the statistical empirical models.

From the validation studies (Figure 6), it is evident that all models, including ML‐AIM, underestimated the ΦPC

when compared to the DMSP observation from 2017 (Figure 6). The Weimer (2005) is a statistical model, which
is designed to provide the average state of the ionospheric convection under steady solar wind/IMF conditions
using limited observations of DE‐2 spacecraft between August 1981 and March 1983. The SuperDARN po-
tentials often face the data coverage problem. When the SuperDARN observations are very limited, the output
will converge to the statistical convection model of Thomas and Shepherd (2018). Further, high frequency radars
systematically underestimate ionospheric potentials because the ionospheric refractive index is lower than the
assumed unity.

The base models used for ML‐AIM have some limitations that are worth mentioning here. As noted by Kunduri
et al. (2020), the CNN‐FAC model performs well under the low‐to‐moderate geomagnetic conditions. The
comparison between bin‐averaged statistical model and the CNN‐FAC revealed that the CNN‐FAC exhibits
diminished predictive accuracy during high geomagnetic activity. The underestimation of CNN‐FAC during
moderate to strong geomagnetic conditions result in the underestimation of the ML‐AIM potentials. Figure 6
illustrates this behavior, showing underestimated ML‐AIM ΦPC values when compared to DMSP observations.
Since ML‐AIM outputs are largely influenced by CNN‐FAC, the model performance is expected to diminish
during strong geomagnetic conditions. The ML‐AIM expected to perform better under the low‐to‐moderate
geomagnetic conditions. The CNN‐FAC model was trained from the AMPERE FAC data during 2010–2016
(Kunduri et al., 2020). Only a few geomagnetic storms exist in this period and thus the CNN‐FAC model is
likely biased toward the quiet times, limiting the ML‐AIM performance during strong geomagnetic times.
Recently, AMPERE expanded its database with data from the new iridium‐next satellite constellation, and with
this updated data set, FAC estimation in ML‐AIM can be further improved. Another source of error for the ML‐
AIM output is the conductance estimation from Robinson et al. (2020). It is worth mentioning here that the
Pedersen conductivity in the upward FAC is comparable to that in the downward FAC (Figure 2b). The
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comparable conductance between upward and downward FAC regions is due to the stronger downward FACs
and/or the MLT sectors. ML‐AIM adopts the conductance model of Robinson et al. (2020). Their paper derived
various FAC‐vs‐conductance relations at eight different MLT sectors by utilizing simultaneous observations of
AMPERE FACs and PFISR conductances for 20 geomagnetically active days. Their statistical analysis reveals
that Pedersen conductance is generally stronger in the upward FAC region. However, Pedersen conductance in
the downward FAC region can be as large as or even higher than the one in upward FAC region if downward
FACs are comparable to or stronger than upward FACs in a certain MLT sector. This FAC‐conductance relation
of Robinson et al. (2020) should be used with caution because their relations are established for >65° MLAT (the
PFISR MLAT), using only 20 days of observation. Additionally, the conductance maps are influenced by the
performance of the CNN‐FAC model, thus limiting the overall model performance of ML‐AIM during strong
geomagnetic conditions. Furthermore, ML‐AIM neglects neutral wind contribution when solving the ionospheric
electrodynamics with Ohm's law. Neutral winds typically increase during a geomagnetic storm and can introduce
larger errors in the ML‐AIM results. Lastly, the AMPERE database used in the CNN‐FACmodel has its own bias
and conversion limitations (Anderson et al., 2014) that are impossible to avoid unless new techniques are
introduced for the FAC derivation. Considering these limitations of base models, ML‐AIM outputs should be
used with caution during strong geomagnetic activity (for e.g. Kp > 6).

Apart from these intrinsic limitations, the CNN‐FAC model is developed for the northern hemisphere (Kunduri
et al., 2020), limiting the ML‐AIM ability to predict the ionospheric electrodynamics in the southern hemisphere.
However, Hatch et al. (2022) reported that on average, the northern and southern hemisphere are quite sym-
metrical if the sign of IMF By and the dipole tilt angle are adjusted for the south. Exploration of different
methodologies for adjusting the model results to southern hemisphere will be explored in future studies.

In conclusion, ML‐AIM reproduces physically accurate ionospheric electrodynamics patterns for the two selected
events of southward IMF turning and a geomagnetic storm. ML‐AIM also provides better statistical performance
in determining the cross polar cap potentials than theWeimer (2005) and SuperDARNmodels compared to CPCP
values derived from DMSP cross‐track measurements. Therefore, the current ML‐AIM version successfully lays
the groundwork for an ML‐based space weather prediction model that integrates various ML‐models in the
magnetosphere‐ionosphere‐thermosphere system under a single framework for accurately predicting the space
weather‐relevant quantities.

6. Summary and Future Work

This study introduces a ML based Auroral Ionosphere electrodynamics Model (ML‐AIM) that solves a current
continuity equation with the CNN FAC model of Kunduri et al. (2020) and the statistical conductance models of
Moen and Brekke (1993) and Robinson et al. (2020). The ML‐AIM inputs are 60‐min time histories of three IMF
components (Bx, By, and Bz), solar wind velocity (Vx), proton number density (Np), geomagnetic indices (Sym‐H,
Asym‐H, SuperMAG AL, and AU indices), F10.7 solar flux, and the month number. By sliding the 60‐min input
window by 1 min, ML‐AIM produces electrostatic potential, electric field, Joule heating rate, and horizontal
ionospheric currents every minute. We conducted two event studies of a weak geomagnetic event on 14May 2013
and a geomagnetic storm on 7–8 September 2017. ML‐AIM reproduced the well‐known two‐cell convection
pattern for southward IMF and its expansion to lower latitudes for stronger southward IMF. It’s overall ΦPC

responses to the time‐varying solar wind/IMF conditions are reasonable and comparable to the DMSP obser-
vations and the ones of Weimer (2005) and SuperDARN models. We validated the ΦPC values predicted by ML‐
AIM with the DMSP F17 data from 2017. We found that ML‐AIM model showed better performance in terms of
RMSE, MAE, and correlation coefficient values compared to both the Weimer (2005) and SuperDARN‐based
models.

However, there is a notable difference in the ΦPC predictions between models during rapid IMF changes (e.g.,
sudden southward IMF turnings at >06:40 UT on 14 May 2013 and >11:30 UT on 8 September 2017; brief IMF
Bz fluctuations at >20:30 UT on 7 September 2017, 06:00–07:00 UT on 8 September 2017, and >15:00 UT on 8
September 2017). The Weimer (2005) and SuperDARNmodels abruptly changed the entire ionospheric potential
maps without time to re‐adjust the ionosphere for the new upstream conditions and thus immediately increase
ΦPC. This is understandable since the empirical models are designed to predict a static ionosphere for steady solar
wind/IMF conditions. On the other hand, ML‐AIM showed slower responses of electric potentials and ΦPC to the
rough IMF changes. This is because ML‐AIM uses 60 min time histories of SW/IMF and geomagnetic conditions
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as input and thus predicts ionospheric responses to the time‐varying upstream conditions. Thus, ML‐AIM is
unique and better suited for forecasting high‐latitude electrodynamics than the other empirical models, especially
during a dynamic space weather event. ML‐AIM can also provide more realistic ionospheric electric potentials as
input for a general circulation model like GITM, Thermosphere Ionosphere Electrodynamics General Circulation
Model, and Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension,
improving our understanding of the global ionosphere–thermosphere dynamics.

In the future, we will improve the ML‐AIM by adding more advanced ML‐based M‐I‐T models. First, we will
update the CNN‐FAC model with AMPERE‐next (2017‐present) data sets, which can significantly improve the
FAC estimation in ML‐AIM. This can potentially address the underestimation of FAC during moderate to large
geomagnetic activity in ML‐AIM framework. Second, we will update the ionospheric conductance model using
the ML‐based particle precipitation models. As discussed, the auroral conductance estimation in the present ML‐
AIM needs significant improvements. The auroral conductance can be derived using the total energy flux and
mean energy of precipitating electrons by Robinson et al. (1987) formula. The conductance can also be estimated
from an energy spectrum of auroral precipitation using the methods described in Fang et al. (2008, 2013).
Currently, we are also developing the ML‐based particle precipitation model with the DMSP and NASA OMNI
data sets for predicting the electron/ion differential energy spectra in the 30 eV–30 keV energy band based on the
time history of the solar wind conditions and geomagnetic indices without making assumptions about the specific
shape of the spectra. This model can significantly improve the conductance estimation compared to the previous
methods (Robinson et al., 1987, 2020). We will explore these techniques for improving the auroral conductance in
ML‐AIM framework. Third, we will calculate the ground magnetic field using the horizontal ionospheric currents
with 1‐min time resolution and the ground magnetic field perturbations. The magnetic field perturbations will be
compared with the SuperMAG observations for a better understanding of the ML‐AIM response under varying
SW/IMF conditions. Further, we will calculate the potential regions of high GIC risks using the magnetic field
perturbation maps generated by the ML‐AIM.

Data Availability Statement

The SuperDARN fitted potentials are openly available from the Center for Space Science and Engineering
Research, Virginia Tech (SuperDARN, 2024). The Weimer (2005) model Run‐on‐request results are published
by CCMC (2024). DMSP ion drift data are available from Cornell open madrigal (Cornell Open Madrigal, 2024).
The IMF, solar wind, and geomagnetic indices data are available from the NASA Space Physics Data Facility
OMNIWeb data server (OMNIWeb, 2024). The CNN‐FAC model is available in Kunduri (2020). The ML‐AIM
outputs have been posted on Zenodo (Sai Gowtam et al., 2024).

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015). TensorFlow: Large‐scale machine learning on heterogeneous
systems [Software]. Retrieved from https://www.tensorflow.org/

Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., & Dyrud, L. P. (2014). Development of large‐scale Birkeland
currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophysical Research Letters, 41(9),
3017–3025. https://doi.org/10.1002/2014GL059941

Anderson, B. J., Takahashi, K., Kamei, T., Waters, C. L., & Toth, B. A. (2002). Birkeland current system key parameters derived from Iridium
observations: Method and initial validation results. Journal of Geophysical Research, 107(A6), SMP11‐1–SMP11‐13. https://doi.org/10.1029/
2001JA000080

Anderson, B. J., Takahashi, K., & Toth, B. A. (2000). Sensing global Birkeland currents with Iridium® engineering magnetometer data.
Geophysical Research Letters, 27(24), 4045–4048. https://doi.org/10.1029/2000gl000094

Birkeland, K. (1901). Résultats des rescherches magnéthiques faites par l’expédition Norvégienne de 1899–1900 (pp. 565–586). Archives des
Sciences Physiques et Naturelles.

Blanc, M., & Richmond, A. D. (1980). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85(A4), 1669–1688. https://doi.
org/10.1029/ja085ia04p01669

Blandin, M., Connor, H. K., Öztürk, D. S., Keesee, A. M., Pinto, V., Mahmud, M. S., et al. (2022). Multi‐variate LSTM prediction of Alaska
magnetometer chain utilizing a coupled model approach. Frontiers in Astronomy and Space Sciences, 9, 846291. https://doi.org/10.3389/fspas.
2022.846291

Boudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Lummerzheim, D. (2005). Enhanced solar wind geoeffectiveness after a sudden
increase in dynamic pressure during southward IMF orientation. Journal of Geophysical Research, 110(A5), A05214. https://doi.org/10.1029/
2004JA010704

Bristow, W. A., Topliff, C. A., & Cohen, M. B. (2022). Development of a high‐latitude convection model by application of machine learning to
SuperDARN observations. Space Weather, 20(1), e2021SW002920. https://doi.org/10.1029/2021SW002920

CCMC. (2024). Community coordinated modeling center [Dataset]. NASA Goddard Space Flight Center. Retrieved from https://ccmc.gsfc.nasa.
gov/ungrouped/IT/Iono_main.php

Acknowledgments

The work of VSG is supported by National
Science Foundation Grant GIC EPSCoR
367841/66758. The authors acknowledge
use of NASA/GSFC’s Space Physics Data
Facility’s OMNIWeb service, and OMNI
data (https://omniweb.gsfc.nasa.gov/form/
omni_min.html). HKC gratefully
acknowledges support of the NASA GSFC
internal funding programs (HIF, ISFM,
and IRAD). DMSP ion drift data are
openly available at http://landau.geo.
cornell.edu/madrigal/index.html/. BSRK
acknowledges support from the National
Science Foundation under Grant AGS‐
1839509 and NASA for support under
Grants 80NSSC22K1635 and
80NSSC23K1321. The authors
acknowledge the use of SuperDARN data
(http://vt.superdarn.org/). SuperDARN is a
collection of radars funded by national
scientific funding agencies of Australia,
Canada, China, France, Italy, Japan,
Norway, South Africa, United Kingdom,
and the United States of America. The
Weimer (2005) model results have been
provided by the Community Coordinated
Modeling Center at Goddard Space Flight
Center through their publicly available
simulation services (https://ccmc.gsfc.
nasa.gov). Authors also acknowledge the
open‐source SuperDARN Python software
(pyDARN) (https://zenodo.org/record/
3727270#.YypfTXbMJD8). Most of the
analysis and visualization were completed
with the help of free, open‐source Python
software tools such as matplotlib
(Hunter, 2007), IPython (Pérez &
Granger, 2007), Pandas
(McKinney, 2010), TensorFlow (Abadi
et al., 2015) and others (Millman &
Aivazis, 2011).

SpaceWeather 10.1029/2023SW003683

GOWTAM ET AL. 15 of 17

 1
5

4
2

7
3

9
0

, 2
0

2
4

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
3

S
W

0
0

3
6

8
3

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

7
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



Connor, H. K., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M. V., & Fuller‐Rowell, T. J. (2016). The ionosphere‐thermosphere response
to a geomagnetic storm using physics‐based magnetospheric energy input: OpenGGCM‐CTIM results. Journal of Space Weather and Space

Climate, 6, A25. https://doi.org/10.1051/swsc/2016019
Connor, H. K., Zesta, E., Ober, D. M., & Raeder, J. (2014). The relation between transpolar potential and reconnection rates during sudden
enhancement of solar wind dynamic pressure: OpenGGCM‐CTIM results. Journal of Geophysical Research: Space Physics, 119(5),
3411–3429. https://doi.org/10.1002/2013JA019728

Cornell Open Madrigal. (2024). Cornell open madrigal [Dataset]. Retrieved from http://landau.geo.cornell.edu/madrigal/index.html/
Cousins, E. D. P., Matsuo, T., & Richmond, A. D. (2013). SuperDARN assimilative mapping. Journal of Geophysical Research: Space Physics,

118(12), 7954–7962. https://doi.org/10.1002/2013JA019321
Cousins, E. D. P., & Shepherd, S. G. (2010). A dynamical model of high‐latitude convection derived from SuperDARN plasma drift measure-
ments. Journal of Geophysical Research, 115(A12), A12329. https://doi.org/10.1029/2010JA016017

Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48. https://doi.org/10.1103/
PhysRevLett.6.47

Fang, X., Lummerzheim, D., & Jackman, C. H. (2013). Proton impact ionization and a fast calculation method. Journal of Geophysical Research:

Space Physics, 118(8), 5369–5378. https://doi.org/10.1002/jgra.50484
Fang, X., Randall, C. E., Lummerzheim, D., Solomon, S. C., Mills, M. J., Marsh, D. R., et al. (2008). Electron impact ionization: A new
parameterization for 100 eV to 1 MeV electrons. Journal of Geophysical Research, 113(A9), A09311. https://doi.org/10.1029/2008JA013384

Fuller‐Rowell, T. J., & Evans, D. S. (1987). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite
data. Journal of Geophysical Research, 92(A7), 7606–7618. https://doi.org/10.1029/JA092iA07p07606

Fuller‐Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., & Millward, G. H. (1996). A coupled thermosphere‐ionosphere model
(CTIM). In R. W. Schunk (Ed.), STEP: Handbook of ionospheric models (pp. 217–238). Utah State University.

Goodman, M. L. (1995). A three‐dimensional, iterative mapping procedure for the implementation of an ionosphere‐magnetosphere anisotropic
Ohm’s law boundary condition in global magnetohydrodynamic simulations. Annales Geophysicae, 13(8), 843. https://doi.org/10.1007/
s005850050223

Gowtam, V. S., Tulasi Ram, S., Reinisch, B., & Prajapati, A. (2019). A new artificial neural network‐based global three‐dimensional ionospheric
model (ANNIM‐3D) using long‐term ionospheric observations. Preliminary Results, 124(6), 4639–4657. https://doi.org/10.1029/
2019JA026540

Hardy, D. A., Gussenhoven, M. S., Raistrick, R., &McNeil, W. J. (1987). Statistical and functional representations of the pattern of auroral energy
flux, number flux, and conductivity. Journal of Geophysical Research, 92(A11), 12275–12294. https://doi.org/10.1029/JA092iA11p12275

Hatch, S. M., Laundal, K. M., & Reistad, J. P. (2022). Testing the mirror symmetry of Birkeland and ionospheric currents with respect to magnetic
latitude, dipole tilt angle, and IMF By. Frontiers in Astronomy and Space Sciences, 9, 958977. https://doi.org/10.3389/fspas.2022.958977

Heelis, R. A., Lowell, J. K., & Spiro, R.W. (1982). Amodel of the high‐latitude ionospheric convection pattern. Journal of Geophysical Research,
87(A8), 6339–6345. https://doi.org/10.1029/JA087iA08p06339

Hu, A., Shneider, C., Tiwari, A., & Camporeale, E. (2022). Probabilistic prediction of Dst storms one‐day‐ahead using full‐disk SoHO images.
Space Weather, 20(8), e2022SW003064. https://doi.org/10.1029/2022SW003064

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.
2007.55

Iijima, T., & Potemra, T. A. (1976). The amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. Journal of
Geophysical Research, 81(13), 2165–2174. https://doi.org/10.1029/ja081i013p02165

Kunduri, B. (2020). Convolutional neural network‐field aligned currents (CNN‐FAC) model [Dataset]. https://zenodo.org/records/3872345#.
Yyplp3bMJD8

Kunduri, B. S. R., Maimaiti, M., Baker, J. B. H., Ruohoniemi, J. M., Anderson, B. J., & Vines, S. K. (2020). A deep learning based approach for
modeling the dynamics of AMPERE Birkeland currents. Journal of Geophysical Research: Space Physics, 125(8), e2020JA027908. https://
doi.org/10.1029/2020JA027908

Laundal, K. M., Finlay, C. C., Olsen, N., & Reistad, J. P. (2018). Solar wind and seasonal influence on ionospheric currents from Swarm and
CHAMP measurements. Journal of Geophysical Research: Space Physics, 123(5), 4402–4429. https://doi.org/10.1029/2018JA025387

Liu, E., Hu, H., Liu, J., & Qiao, L. (2020). Deep learning models for estimation of the SuperDARN cross polar cap potential. Earth and Space

Science, 7(8), e2020EA001219. https://doi.org/10.1029/2020EA001219
Lu, G., Emery, B. A., Rodger, A. S., Lester, M., Taylor, J. R., Evans, D. S., et al. (1996). High‐latitude ionospheric electrodynamics as determined
by the assimilative mapping of ionospheric electrodynamics procedure for the conjunctive SUNDIAL/ATLAS 1/GEM period of March 28–29,
1992. Journal of Geophysical Research, 101(A12), 26697–26718. https://doi.org/10.1029/96JA00513

Matsuo, T., Kilcommons, L. M., Ruohoniemi, J. M., & Anderson, B. J. (2019). Assimilative mapping of geospace observations (AMGeO): Data
science tools for collaborative geospace systems science. In AGU fall meeting abstracts (Vol. 2019, p. SM33A‐01).

McGranaghan, R. M., Ziegler, J., Bloch, T., Hatch, S., Camporeale, E., Lynch, K., et al. (2021). Toward a next generation particle precipitation
model: Mesoscale prediction through machine learning (a case study and framework for progress). Space Weather, 19(6), e2020SW002684.
https://doi.org/10.1029/2020SW002684

McKinney, W. (2010). Data structures for statistical computing in python. In S. van der Walt, & J. Millman (Eds.), Proceedings of the 9th Python

in science conference (pp. 51–56). Conference SciPy.
Millman, K. J., & Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9–12. https://doi.org/10.
1109/MCSE.2011.36

Moen, J., & Brekke, A. (1993). The solar flux influence on quiet time conductances in the auroral ionosphere. Geophysical Research Letters,
20(10), 971–974. https://doi.org/10.1029/92GL02109

Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Mitchell, L. J. E. J., & Mitchell, E. J. (2014). OVATION Prime‐2013: Extension of auroral
precipitation model to higher disturbance levels. Space Weather, 12(6), 368–379. https://doi.org/10.1002/2014SW001056

Newell, P. T., Sotirelis, T., & Wing, S. (2009). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of
Geophysical Research, 114(A9), A09207. https://doi.org/10.1029/2009JA014326

OMNIWeb. (2024). High resolution OMNI (HRO) data set consisting of interspersed 1‐min averaged ACE, wind, IMP 8 and geotail magnetic
field and plasma data [Dataset]. Retrieved from https://omniweb.gsfc.nasa.gov/html/hro_interface.html

Orr, L., Grocott, A., Walach, M.‐T., Chisham, G., Freeman, M. P., Lam, M. M., & Shore, R. M. (2023). A quantitative comparison of high latitude
electric field models during a large geomagnetic storm. Space Weather, 21(1), e2022SW003301. https://doi.org/10.1029/2022SW003301

Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9(3), 21–29.
https://doi.org/10.1109/MCSE.2007.53

SpaceWeather 10.1029/2023SW003683

GOWTAM ET AL. 16 of 17

 1
5

4
2

7
3

9
0

, 2
0

2
4

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
3

S
W

0
0

3
6

8
3

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

7
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



Pinto, V. A., Keesee, A. M., Coughlan, M., Mukundan, R., Johnson, J. W., Ngwira, C. M., & Connor, H. K. (2022). Revisiting the ground
magnetic field perturbations challenge: Amachine learning perspective. Frontiers in Astronomy and Space Sciences, 9, 869740. https://doi.org/
10.3389/fspas.2022.869740

Pirjola, R. (2005). Effects of space weather on high‐latitude ground systems. Advances in Space Research, 36(12), 2231–2240. https://doi.org/10.
1016/j.asr.2003.04.074

Pulkkinen, A., & Engels, M. (2005). The role of 3‐D geomagnetic induction in the determination of the ionospheric currents from the ground
geomagnetic data. Annales Geophysicae, 23(3), 909–917. https://doi.org/10.5194/angeo‐23‐909‐2005

Pulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. (2013). Community‐wide validation of geospace model
ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11(6), 369–385. https://doi.org/10.
1002/swe.20056

Raeder, J. (2003). Global magnetohydrodynamics‐A tutorial. Space Plasma Simulations, 212–246.
Raeder, J., Berchem, J., & Ashour‐Abdalla, M. (1998). The geospace environment modeling grand challenge: Results from a global geospace
circulation model. Journal of Geophysical Research, 103(A7), 14787–14797. https://doi.org/10.1029/98JA00014

Raeder, J., McPherron, R., Frank, L., Kokubun, S., Lu, G., Mukai, T., et al. (2001). Global simulation of the geospace environment modeling
substorm challenge event. Journal of Geophysical Research, 106(A1), 381–395. https://doi.org/10.1029/2000ja000605

Rastätter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu, M., et al. (2016). GEM‐CEDAR challenge: Poynting
flux at DMSP and modeled Joule heat. Space Weather, 14(2), 113–135. https://doi.org/10.1002/2015SW001238

Rich, F., & Hairston, M. (1994). Large‐scale convection patterns observed by DMSP. Journal of Geophysical Research, 99(A3), 3827–3844.
https://doi.org/10.1029/93JA03296

Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Tech-
nique. Journal of Geophysical Research, 93(A6), 5741–5759. https://doi.org/10.1029/ja093ia06p05741

Richmond, A. D., & Thayer, J. P. (2000). Ionospheric electrodynamics: A tutorial (pp. 131–146). American Geophysical Union (AGU). https://
doi.org/10.1029/GM118p0131

Ridley, A. J., Deng, Y., & Tóth, G. (2006). The global ionosphere‐thermosphere model. Journal of Atmospheric and Solar‐Terrestrial Physics,
68(8), 839–864. https://doi.org/10.1016/j.jastp.2006.01.008

Robinson, R. M., Kaeppler, S. R., Zanetti, L., Anderson, B. J., Vines, S. K., Korth, H., & Fitzmaurice, A. (2020). Statistical relations between
auroral electrical conductances and field‐aligned currents at high latitudes. Journal of Geophysical Research: Space Physics, 125(7),
e2020JA028008. https://doi.org/10.1029/2020ja02800

Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. (1987). On calculating ionospheric conductances from the flux and energy of
precipitating electrons. Journal of Geophysical Research, 92(A3), 2565–2569. https://doi.org/10.1029/ja092ia03p02565

Robinson, R. M., Zanetti, L., Anderson, B., Vines, S., & Gjerloev, J. (2021). Determination of auroral electrodynamic parameters from AMPERE
field‐aligned current measurements. Space Weather, 19(4), e2020SW002677. https://doi.org/10.1029/2020SW002677

Roble, R. G., & Emery, B. A. (1983). On the global mean temperature of the thermosphere. Planetary and Space Science, 31(6), 597–614. https://
doi.org/10.1016/0032‐0633(83)90002‐8

Ruohoniemi, J. M., & Greenwald, R. A. (1996). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations.
Journal of Geophysical Research, 101(A10), 21743–21763. https://doi.org/10.1029/96ja01584

Sai Gowtam, V., Connor, H., Kunduri, B. S. R., Raeder, J., Laundal, K. M., Tulasi Ram, S., et al. (2024). Calculating the high‐latitude ionospheric
electrodynamics using a machine learning‐based field‐aligned current model [Dataset]. https://zenodo.org/records/10688966

Sai Gowtam, V., & Tulasi Ram, S. (2017). An artificial neural network based ionospheric model to predict NmF2 and hmF2 using long‐term data
set of FORMOSAT‐3/COSMIC radio occultation observations: Preliminary results. Journal of Geophysical Research: Space Physics, 122(11),
11743–11755. https://doi.org/10.1002/2017JA024795

SuperDARN. (2024). Super dual auroral radar network [Dataset]. Retrieved from http://vt.superdarn.org/
Thomas, E. G., & Shepherd, S. G. (2018). Statistical patterns of ionospheric convection derived from mid‐latitude, high‐latitude, and polar
SuperDARN HF radar observations. Journal of Geophysical Research: Space Physics, 123(4), 3196–3216. https://doi.org/10.1002/
2018JA025280

Tulasi Ram, S., Sai Gowtam, V., Mitra, A., & Reinisch, B. (2018). The improved two‐dimensional artificial neural network‐based ionospheric
model (ANNIM). Journal of Geophysical Research: Space Physics, 123(7), 5807–5820. https://doi.org/10.1029/2018JA025559

Waters, C. L., Anderson, B. J., Green, D. L., Korth, H., Barnes, R. J., & Vanhamäki, H. (2020). Science data products for AMPERE. InM. Dunlop,
& H. Lühr (Eds.), Ionospheric multi‐spacecraft analysis tools, ISSI scientific report series (Vol. 17). Springer. https://doi.org/10.1007/978‐3‐
030‐26732‐2_7

Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating joule heating rates. Journal of Geophysical

Research, 110(A5), A05306. https://doi.org/10.1029/2004JA010884
Wolf, R. A. (1983). The quasi‐static (Slow‐Flow) region of the magnetosphere. In R. L. Carovillano, & J. M. Forbes (Eds.), Solar‐terrestrial

physics (pp. 303–368). D. Reidel. https://doi.org/10.1007/978‐94‐009‐7194‐3_14

SpaceWeather 10.1029/2023SW003683

GOWTAM ET AL. 17 of 17

 1
5

4
2

7
3

9
0

, 2
0

2
4

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
3

S
W

0
0

3
6

8
3

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

1
/0

7
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se


	description
	Calculating the High‐Latitude Ionospheric Electrodynamics Using a Machine Learning‐Based Field‐Aligned Current Model
	1. Introduction
	2. Methodology
	2.1. Deep Convolution Neural Network‐Based Field Aligned Current Model (CNN‐FAC)
	2.2. Ionospheric Conductance Model
	2.3. High‐Latitude Ionospheric Electrodynamics Model

	3. Data Sets
	4. Results
	4.1. ML‐AIM Response to the Weak Geomagnetic Activity
	4.2. ML‐AIM Response to a Geomagnetic Storm During 7–8 September 2017

	5. Discussion
	6. Summary and Future Work
	Data Availability Statement



