
Prompt Distillation for Efficient LLM-based Recommendation
Lei Li

∗

Hong Kong Baptist University

Hong Kong, China

csleili@comp.hkbu.edu.hk

Yongfeng Zhang

Rutgers University

New Brunswick, USA

yongfeng.zhang@rutgers.edu

Li Chen

Hong Kong Baptist University

Hong Kong, China

lichen@comp.hkbu.edu.hk

ABSTRACT
Large language models (LLM) have manifested unparalleled model-

ing capability on various tasks, e.g., multi-step reasoning, but the

input to these models is mostly limited to plain text, which could

be very long and contain noisy information. Long text could take

long time to process, and thus may not be efficient enough for rec-

ommender systems that require immediate response. In LLM-based

recommendation models, user and item IDs are usually filled in a

template (i.e., discrete prompt) to allow the models to understand

a given task, but the models usually need extensive fine-tuning to

bridge the user/item IDs and the template words and to unleash

the power of LLM for recommendation. To address the problems,

we propose to distill the discrete prompt for a specific task to a set

of continuous prompt vectors so as to bridge IDs and words and

to reduce the inference time. We also design a training strategy

with an attempt to improve the efficiency of training these models.

Experimental results on three real-world datasets demonstrate the

effectiveness of our PrOmpt Distillation (POD) approach on both

sequential recommendation and top-N recommendation tasks. Al-

though the training efficiency can be significantly improved, the

improvement of inference efficiency is limited. This finding may in-

spire researchers in the community to further improve the inference

efficiency of LLM-based recommendation models.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Natural language generation.

KEYWORDS
Recommender Systems; Large LanguageModels; Generative Recom-

mendation; Sequential Recommendation; Top-N Recommendation;

Explainable Recommendation; Prompt Distillation

ACM Reference Format:
Lei Li, Yongfeng Zhang, and Li Chen. 2023. Prompt Distillation for Efficient

LLM-based Recommendation. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management (CIKM ’23), Octo-
ber 21–25, 2023, Birmingham, United Kingdom. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3583780.3615017

∗
Work was done during the visit at Rutgers University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3615017

1 INTRODUCTION
In recent years, recommender systems have been successfully de-

ployed on various online platforms, such as e-commerce, video-

streaming and social media. With recommendations, users can

easily find what they are interested in without going through a

vast amount of items. In the early days, recommendation models,

such as collaborative filtering [34] and matrix factorization [17],

are usually shallow and contain a limited number of parameters.

Later on, they gradually grow deep [5], since deep neural networks

generally have better representation ability than shallow models.

Meanwhile, the abundant user-generated data on those platforms

in turn give rise to the development of recommendation-related

tasks, including review summarization [23], explanation generation

[19], etc. More recently, recommendation models are entering a

new stage where a single model can perform multiple tasks [6, 9].

These models are based on large language models (LLM), e.g.,

T5 [31], which refer to models that were trained on a huge amount

of data and can adapt to a great number of downstream tasks.

LLM have shown astonishing abilities that small models do not

possess, e.g., doing arithmetic [3] that they were not trained for, so

they have gained much attention and been adopted in many fields,

such as natural language processing [3, 7], computer vision [32]

and recommender systems [9]. As language can express various

concepts, a recommendation task, similar to those in other fields,

is also formulated as a textual description, i.e., discrete prompt [9,

26], before being fed into an LLM to enable sequence-to-sequence

generation.

However, there are two problems with discrete prompt in rec-

ommendation scenarios. On one hand, user and item IDs, which

are important identifiers in recommender systems, serve a different

purpose from the words in the discrete prompt. Concretely, word

embeddings capture the contextual relation between words, while

ID embeddings encode users’ preferences towards items as well as

users’ and items’ similarity. As a result, LLM-based recommenda-

tion models usually need extensive fine-tuning to bridge the gap

between IDs and template words and to unleash the power of LLM

for recommendation. Besides, the key information to a recommen-

dation model is the IDs, so the discrete prompt could be a little

bit noisy when too many words are involved. On the other hand,

processing long prompt takes long time, which may cause nega-

tive user experience, especially for recommendation services that

require low-latency inference.

To cope with the problems, we propose a PrOmpt Distillation
(POD)1 approach, where we distill the knowledge in the discrete

prompt into continuous prompt vectors. More specifically, we use

both an array of continuous prompt vectors and a set of discrete

prompt templates when training each recommendation task. As

1
https://github.com/lileipisces/POD

1348

https://doi.org/10.1145/3583780.3615017
https://doi.org/10.1145/3583780.3615017
https://github.com/lileipisces/POD
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615017&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Lei Li, Yongfeng Zhang, & Li Chen

<P1> <P1> user_1234 item_5678

Generate an explanation for
user_1234 about item_5678<P1> <P1>

Can you help generate an
explanation for user_1234
about the product:
item_5678

Help user_1234 generate an
explanation for item_5678

...

<P1> <P1>

<P1> <P1>

Prompt Distillation

Training

Inference

Figure 1: An illustration of prompt distillation for the expla-
nation generation task.

the training process goes on, the randomly initialized continuous

prompt vectors can learn the expressions in the discrete prompt,

as shown in Fig. 1. Since continuous prompt vectors do not map

to any concrete words, they can be more flexible and expressive

than discrete prompt, and thus help LLM better learn different

recommendation tasks. After prompt distillation, we only keep

each task’s continuous prompt so as to reduce the inference time.

As there are several recommendation tasks, the training effi-

ciency is also a critical issue. Although mixing the samples of these

tasks in one batch is viable [9], it is less efficient. Specifically, differ-

ent tasks’ input/output can be of varying length, so it may consume

a lot of memory to pad them to the same length. As a result, the

batch size would be small, the number of iterations would grow, and

the training time would largely increase. To resolve the problem,

we propose a strategy called Task-alternated Training, where
we train the LLM with a batch of samples from the same task, fol-

lowed by that of another task, and so on. Since each task’s data are

generally of the same length, this training strategy would not waste

much memory on padding, thus improving the training efficiency.

Our key contributions are summarized below:

• As far as we know, our PrOmpt Distillation (POD) is the first

approach that can distill the knowledge of discrete prompt to

continuous prompt for LLM-based recommendation models.

It is model-agnostic, and can be applied to any other LLM.

• We propose a Task-alternated Training strategy to improve

the efficiency of training multiple recommendation tasks

on LLM. This strategy has the potential to be extended to

similar scenarios in other fields.

• Extensive experiments show that our approach POD can

outperform state-of-the-art baselines by a large margin on

two typical recommendation tasks, including sequential rec-

ommendation and top-N recommendation.

• As evidenced by our experiments, LLM’s training efficiency

can be easily improved, but improving its inference efficiency

is not that easy. Hence, the latter might become a new re-

search direction in recommender systems.

In the following, we first review research related to our work in

Sec. 2, and then detail our methodology in Sec. 3. The experimental

settings are described in Sec. 4, the analysis of results is provided

in Sec. 5, and the conclusion with outlooks is given in Sec. 6.

2 RELATED WORK
We go through relevant research from large language models (LLM),

prompt learning, LLM-based recommendation to prompt transfer.

Recently, LLM have drawn a lot of attention from both academia

and industry, owing to its effectiveness on a wide spectrum of tasks.

These models are usually trained on massive data, and can be classi-

fied into two main categories according to their training objectives,

including masked language modeling and auto-regressive language

modeling. For the former category, a certain number of tokens in

a textual sequence is randomly masked, and the models need to

predict them based on the non-masked tokens. A typical example is

BERT [7], which is more suitable for natural language understand-

ing tasks, e.g., question answering. For the latter, the models (e.g.,

T5 [31], LLaMA [37], GPT-3 [3]) are instructed to predict a token

based on its proceeding tokens in the sequence.

A common way to adapt LLM to downstream tasks is to fine-

tune them on task-specific datasets. However, with the prohibitively

increased model scale, fine-tuning could also be computationally

expensive. Therefore, there emerges a new paradigm named prompt

learning [26]. Instead of adapting the models to the tasks, the tasks

are adapted to the LLM in this paradigm. For instance, a sample

for sentiment classification can be filled in a pre-defined template

to form an input sequence, based on which an LLM can generate

a few tokens that can be further mapped to the prediction score.

This is termed discrete prompt learning, as the prompt template is

comprised of discrete tokens. There is also another typical prompt

learning approach called continuous/soft prompt learning, where

the prompt is a set of vectors that do not map to any words. With

the two types of prompt, LLM can easily perform different tasks,

such as domain adaptation [2] and table-to-text generation [24].

Personalizing LLM for recommendation is important, as it can

help to better understand a user’s intent and address their personal-

ized needs. However, early attempts that adopt LLM for recommen-

dation tasks mostly focus on one single task, such as explainable

recommendation [22] and sequential recommendation [13]. More

recently, there has been growing interest in integrating several

recommendation tasks into one LLM. For example, a collection of

personalized prompts are designed in P5 [9] and OpenP5 [42] to

handle several recommendation tasks simultaneously or to handle

multiple modalities of data as in VIP5 [10]. In these models, all the

tasks are formulated as a sequence-to-sequence generation prob-

lem. Another example is M6-Rec [6] where users and items are

represented by their metadata (e.g., location and product name),

but different tasks in this model employ task-specific loss functions.

Our approach can also perform multiple recommendation tasks,

but we focus on distilling the knowledge in discrete prompt to

continuous prompt, which is not explored by previous work.

Besides prompt learning, another line of relevant research is

prompt transfer. In SPoT [39], a prompt is first learned from source

tasks and then utilized to initialize a target task’s prompt. AT-

TEMPT [1] further employs an attention network to interpolate the

1349

Prompt Distillation for Efficient LLM-based Recommendation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

explanation for user<P1> <P1> Gene an

Bidirectional Encoder

12 34 about item _ 56 78rate _

<W1> <W1> <W2><W1> <W1> <W1> <W1> <W2> <W2> <W1> <W3> <W3> <W3> <W3><W1> <W2>

Autoregressive Decoder

<s> The price is reasonable

The price is reasonable </s>

Prompt Embedding Word EmbeddingWhole-word Embedding

Figure 2: Overview of our proposed prompt distillation approach for recommendation tasks. The backbone model follows an
encoder-decoder architecture. The continuous prompt vectors are task-specific, and each task utilizes a set of discrete prompt
templates. The whole-word embeddings are used to connect each ID’s tokens.

prompts of source tasks for better learning a target task’s prompt.

PANDA [46] first measures prompt transferability, and then trans-

fers the knowledge from a source prompt to a target prompt. This is

achieved by knowledge distillation [4, 12], where the predictions of

a large teacher model are used to learn a small but effective student

model. Similarly, MPT [41] distills the shared knowledge between

multiple source tasks to a single prompt so that it can be leveraged

by a target task. Although related, our work differs from them in

that we perform intra-task prompt distillation, while they do cross-

task prompt transfer. UP5 [14] distills an LLM’s bias information

into the encoder and decoder prompts so as to reduce the bias and

improve the fairness of LLM-based recommendation models. This

work is quite relevant to ours regarding knowledge distillation, but

its research focus is on bias and fairness issue, while we care about

effectiveness and efficiency.

3 METHODOLOGY
As LLM can handle a variety of tasks, we first give an overview

of three typical recommendation tasks that we will test with our

approach, including sequential recommendation, top-N recommen-

dation and explainable recommendation. Note that, other recom-

mendation tasks can also be easily incorporated. Then, we briefly

introduce discrete prompt in recommendation scenarios. After that,

we go through the details of our PrOmpt Distillation (POD) ap-

proach, followed by our proposed Task-alternated Training strategy.

At last, we show how to generate recommendations and explana-

tions with beam search algorithm.

3.1 Tasks Formulation
Before introducing the tasks, we provide some basic notations

that will be used throughout the paper. Specifically, we use U

to denote the user set in a dataset, and I the item set. A particular

user inU is denoted as u, and a specific item in I is represented

by i . For the task of sequential recommendation, each user u is

associated with his/her chronologically ordered interaction history

Iu = {iu
1
, iu
2
, ..., iu

|Iu |}. Based on the user and the item sequence, the

LLM needs to predict which item the user is going to interact with

next, i.e., iu
|Iu |+1 ∈ I/I

u
, where Iu is the item set that user u have

interacted with. The top-N recommendation task is to recommend

the user u an item list that consists of N items which the user never

interacted with before, i.e., items from I/Iu . For training this task,

we can randomly sample an item i from Iu and pair it with random

negative items drawn from I/Iu to form a candidate item list.

As to explanation task, given a pair of user u and item i , the LLM
needs to generate an explanation Eu ,i that justifies why the item

is recommended to the user (e.g., “the price is reasonable”). Notice

that, for all the tasks, there is no side information or additional

content provided besides the above mentioned data.

3.2 Discrete Prompt for Recommendation
In recommender systems, user and item IDs are essential, because

they are the key to distinguishing one user/item from the others.

However, IDs can be different from words. To adapt IDs to LLM,

most previous work [6, 13] adopt ID-associated text segments (such

as user name and item title) as an alternative, such that they can

be easily filled in a pre-defined template (e.g., “explain why the

movie Guardians of the Galaxy Vol. 3 is recommended to Cheryl”).

This type of textual input is formally termed discrete prompt [26]
because it is comprised of a sequence of discrete tokens.

However, experimental results from recent studies [13, 15] sug-

gest that LLM’s recommendation performance could be largely

impaired when ID information is unavailable, because ID makes it

possible to exactly identify and distinguish different items and con-

veys important information such as the collaborative relationship

between items [15]. To address the problem, our solution is to keep

the IDs and represent them as textual strings where the original

ID numbers are still retained. For example, the user with ID 1234

can be represented as “user_1234”, where the prefix “user_” is used

to distinguish user IDs from item IDs (i.e., the latter starts with

“item_”). As the composing units in this string are already in the

LLM’s tokenizer, it can be easily tokenized into a token sequence

(i.e., “user”, “_”, “12” and “34”). After the IDs are broken into several

pieces, the model might not be able to recognize which tokens

belong to a particular ID. To connect an ID’s tokens, we employ an

additional set of whole-word embeddings [9]. As Fig. 2 illustrated,
each ID’s token sequence shares one whole-word embedding vec-

tor, while all the other non-ID tokens share the same whole-word

embedding vector. Such a way can make each ID a whole unit, and

IDs distinguishable to words.

1350

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Lei Li, Yongfeng Zhang, & Li Chen

<P1> <P1> user_1234 The price is reasonable </s>item_5678

<P2> <P2> user_1234 item_9365

<P3> <P3> user_1234 item_6789

item_3412

item_2384

……

……

2373

2373

Sequentially ordered items

Candidate items (target item included)

Explanation Generation

Sequential Recommendation

Top-N Recommendation

Tasks Input (raw) Output

Figure 3: Varying length of different tasks’ input/output. The discrete prompt templates and word tokenization are both omit-
ted for better illustration.

3.3 Prompt Distillation
Although it looks promising, discrete prompt may fail to give an

effective instruction to LLM, e.g., “summarize the content in the

table” [24]. This could become a serious issue in recommender

systems especially when the input data format of two different

tasks is quite similar. For example, the input of both sequential

recommendation and top-N recommendation is a user and a bunch

of items (as discussed in Sec. 3.1). If the model misunderstands the

discrete prompt, it may treat one task as another and fail to provide

accurate recommendations. Moreover, when the prompt template

is long, it may overshadow the key information (i.e., IDs) and also

take long time for training and inference. To address the problems,

we propose a PrOmpt Distillation (POD) approach, whose formal

definition is given below.

Definition 1 (Prompt Distillation). We call an approach
prompt distillation if it can shorten a long prompt without sacri-
ficing an LLM’s performance on the testing tasks. The distilled short
prompt can either be free text or vectors.

In this work, we distill discrete prompt templates into multiple

continuous prompt vectors. Concretely, we append a set of vectors

at the beginning of an input sample that already filled in a discrete

prompt template, and allow the vectors to be shared by the samples

of the same recommendation task. Fig. 2 shows an example of the

explanation generation task. For other tasks, another set of vectors

will be utilized. As the training progresses, the continuous prompt

vectors can learn the expressions in the discrete prompt through

the loss function. Since they do not map to any real words, they

can be more expressive and flexible than discrete prompt. After the

distillation stage is completed, we only keep the continuous prompt

in order to improve the inference efficiency.

Technically, we adopt the encoder-decoder architecture for a

fair comparison with a recent work with discrete prompt [9], but

our approach can be easily extended to decoder-only models. Fig. 3

shows the example input and output of the three recommendation

tasks (the prompt template and word tokenization are both omitted

for better illustration). We denote an input-output sequence pair for

either of the tasks as X = [x1, ..., x |X |] and Y = [y1, ...,y |Y |]. After
passing the input sequence X through the embedding layer, we can

obtain its tokens’ representations [x1, ..., x |X |], which will be ap-

pended at the end of the K continuous prompt vectors [p1, ..., pK].
This concatenated representation [p1, ..., pK , x1, ..., x |X |] will then
be added to the whole-word representation [w1, ...,wK+ |X |], which

gives us S = [s1, ..., s |S |]. After passing S through the LLM’s en-

coder, it will produce a sequence of hidden vectorsH = [h1, ..., h |S |],
based on which the LLM’s decoder can perform auto-regressive

generation. Specifically, at each time step t , the decoder outputs a
probability distribution p(y |Y<t ,H) over the vocabularyV , where

Y<t denotes the tokens generated before time step t . Since all the
tasks in this work are formulated as natural language generation

problem, we adopt the commonly used Negative Log-Likelihood

(NLL) loss function to optimize the model parameters Θ:

LΘ =
1

|D|

∑
(X ,Y)∈D

1

|Y |

|Y |∑
t=1
− logp(yt |Y<t ,X) (1)

whereD is the training set that consists of all the input-output pairs

(X ,Y). |D| and |Y | denote the amount of training samples and the

number of tokens in the output sequence, respectively. p(yt |Y<t ,X)
represents the probability of generating token yt , given the input

sequence and the already generated tokens.

3.4 Task-alternated Training
Unlike the pre-training stage in natural language processing where

all the training samples in each batch are of the same length, the

input and output in recommendation tasks could be of varying

length. For example, the explanation task’s input only consists of

two IDs (i.e., user and item), while that of sequential recommen-

dation could be hundred-scale owing to the user’s historical item

sequence (see Fig. 3). Meanwhile, the former’s output is an expla-

nation sentence with tens of words, but that of the latter is merely

an item ID. The varying length of different tasks’ input and output

makes it less efficient to train an LLM with mixed samples from

different tasks [9], because padding them to the same length would

consume a lot of memory, make the batch size quite small, and thus

lead to more iterations and longer training time. Our solution is to

alternately update the model parameters with a batch of samples

from one task, followed by that from another task, and so on. In

general, each task has the same data format, so this strategy can

save a lot of memory for improving the training efficiency. We dub

it Task-alternated Training and provide the training procedure as

well as the implementation details in Algorithm 1.

3.5 Generation with Beam Search
Since all the tasks are formulated as a sequence-to-sequence gener-

ation problem, we can instruct the well trained model to generate

1351

Prompt Distillation for Efficient LLM-based Recommendation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Algorithm 1 Task-alternated Training

Input: Explanation set E = {(u, i, Eu ,i)}, user setU, prompt tem-

plate sets for explanation Pe , sequential recommendation Ps
and top-N recommendation Pt , number of negative items n

Output: Model parameters Θ
1: repeat
2: Uniformly draw a batch B from E // explanation

3: for (u, i, Eu ,i) in B do
4: Draw a template prompt(·) from Pe
5: x ← prompt(u, i),y ← Eu ,i
6: end for
7: X ← [x1, ..., x |B |],Y ← [y1, ...,y |B |]
8: Update Θ with LΘ in Eq. (1) by feeding (X ,Y)
9: Uniformly draw a batch B fromU // sequential

10: for u in B do
11: Draw a template prompt(·) from Ps , a segment Ĩu from

Iu
|Iu |−2 // last two items for validation and testing

12: x ← prompt(u,�Iu
|Iu |−1),y ←

˜iu
|Iu |

13: end for
14: Execute line 7 and 8

15: Uniformly draw a batch B fromU // top-N

16: for u in B do
17: Draw a template prompt(·) from Pt , an item i from Iu

|Iu |−2,

n negative items In from I/Iu

18: Add i to In and shuffle

19: x ← prompt(u,In),y ← i
20: end for
21: Execute line 7 and 8

22: until Convergence

output sequences as recommendations (in the form of ID tokens)

or explanations. Among the many decoding algorithms, we choose

beam search because of its effectiveness in finding good sequences.

Suppose we set the number of beams to b, at each time step there

would be b candidate sequences. In the next step, any word in

the vocabulary V can be appended to the end of the candidate

sequences, which makes b ×V combinations, from which we can

select b sequences that have the maximum log-likelihood. The

LLM can keep doing this until the candidate sequences reach a

pre-defined maximum length. For sequential recommendation and

top-N recommendation, the b candidate sequences form the recom-

mendation list. As to explanation, we pick the one with the largest

log-likelihood from the candidates.

4 EXPERIMENTAL SETUP
In this section, we give the details of our experimental setup, in-

cluding data selection, baseline methods, evaluation protocols and

implementation.

4.1 Datasets
We conduct experiments on three widely used datasets, which

are all collected from an e-commerce platform Amazon
2
. There

2
https://www.amazon.com/

Table 1: Statistics of the datasets.

Dataset Sports Beauty Toys

#Users 35,598 22,363 19,412

#Items 18,357 12,101 11,924

#Reviews 296,337 198,502 167,597

#Sparsity (%) 0.0453 0.0734 0.0724

are in total 29 different product categories in Amazon datasets
3
,

and we adopt Sports & Outdoors, Beauty, and Toys & Games for

experimentation. Each record in the three datasets is comprised of

a user ID, an item ID, a rating, a textual review and a timestamp.

The statistics of the datasets are given in Table 1.

To obtain natural language explanations for the explanation

generation task, we follow the procedure in [19, 20] to extract

from user reviews some sentences that contain item features (e.g.,

“price”) with the Sentires
4
[44, 45] toolkit. For this task, we divide

each dataset into training, validation and testing sets with the ratio

of 8:1:1, and also hold at least one record for each user and item in

the training set. For the sequential recommendation task, we first

sort a user’s interacted items chronologically in accordance with

their timestamps to obtain an item sequence. Then, the last item

in the interaction sequence is used for evaluation, the penultimate

item for validation, and the rest for training. To prevent from data

leakage, we also adopt this data partition strategy for the top-N

recommendation task.

4.2 Baselines
To verify our approach’s effectiveness on different recommendation

tasks, we compare it with the following three groups of representa-

tive baselines.

4.2.1 Sequential Recommendation. Given a user and his/her inter-

acted item sequence, recommendation models should predict the

next item that the user is likely to interact with.

• CASER: ConvolutionAl Sequence Embedding Recommen-

dation model [36]. This method considers a user’s recently

interacted items as a virtual image, so that convoluational

neural network can be utilized to capture the sequential

pattern.

• HGN: Hierarchical Gating Network [29]. It consists of two

gating modules (i.e., feature-level and instance-level) for

modeling users’ long-term and short-term interests, respec-

tively.

• GRU4Rec [11]. It is a session-based recommendation ap-

proach where GRU is employed to process item sessions. In

this work, we treat a user’s whole item sequence as a session.

• BERT4Rec [35]. This is a bidirectional Transformer model

trained with the BERT-style cloze task. Specifically, some

items in a user’s historical item sequence are randomly

masked, and then the model needs to predict them with

the other context items in the sequence.

3
https://jmcauley.ucsd.edu/data/amazon/

4
https://github.com/evison/Sentires

1352

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Lei Li, Yongfeng Zhang, & Li Chen

• FDSA: Feature-level Deeper Self-Attention network [43].

Item features are incorporated into the model as feature

sequences, which are then merged with item sequences for

making the recommendation.

• SASRec: Self-Attention based Sequential Recommendation

model [16]. With self-attention, the model attempts to com-

bine the merits of Markov Chains in dealing with short-term

semantics and Recurrent Neural Networks in handling long-

term semantics.

• S3-Rec: Self-Supervised learning for Sequential Recommen-

dation [47]. With the help of mutual information maximiza-

tion principle, four self-supervised learning objectives are

devised to learn the correlation between items in the sequen-

tial data.

• P5: Pretrain, Personalized Prompt, and Predict Paradigm

[9]. It is an LLM-based recommendation model with dis-

crete prompt. Sequential recommendation is formulated as a

sequence-to-sequence generation problem in this model. We

feed the model a template like “Here is the purchase history

list of user_{user_id}: {purchase_history}. Try to recommend

next item to the user” to enable next-item prediction.

4.2.2 Top-N Recommendation. Based on a user’s item history, the

recommendation models need to suggest a list of N items that the

user never interacted with but might match his/her interests.

• MF: Matrix Factorization [17]. It is a classic collaborative

filtering method, whose prediction is made by the inner

product between user and item latent factors. To better learn

users’ preferences, Bayesian Personalized Ranking (BPR)

[33] is adopted as the loss function.

• MLP: Multi-Layer Perceptron [5]. User and item embeddings

are passed through a stack of non-linear layers for making a

prediction. BPR is also equipped in this model.

• P5 [9]. Again, with a discrete prompt like “We want to make

recommendation for user_{user_id}. Select the best item from

these candidates: {candidate_items}”, this model can perform

top-N recommendation in the way of natural language gen-

eration.

4.2.3 Explanation Generation. A pair of user and item is given to

each model for them to produce a textual sentence that can explain

why the recommender system recommends this item to the user.

• Att2Seq: Attribute-to-Sequence [8]. It is a review generation

method where the encoder (an MLP) converts the user and

item IDs into a hidden state, from which the decoder (an

LSTM) then decodes a word sequence. In this case, we regard

the ground-truth explanation as the review.

• NRT: Neural Ratings and Tips generation [23]. This is a tip

generation framework. Similarly, it employs MLP to encode

the user and item IDs, but the decoder is a GRU. In our

experiment, we treat the explanation as the tip.

• PETER: PErsonalized Transformer for Explainable Recom-

mendation [21]. It is a Transformer-based model whose at-

tention masking matrix is slightly revised so as to enable the

interaction between user and item IDs.

For this task, we omit the comparison with P5, because it utilizes

additional data, i.e., item titles and ratings, which would be unfair

to the other models.

4.3 Evaluation Metrics
To evaluate recommendation accuracy, we employ the commonly

used Hit Ratio (HR) and Normalized Discounted Cumulative Gain

(NDCG) for both sequential recommendation and top-N recommen-

dation. While HR measures the ratio of ground-truth items really

appearing in the recommendation list, NDCG gives credit to those

matched items that are ranked higher in the list. We report HR@1,

HR@5 and HR@10, and NDCG@5 and NDCG@10. As to the evalu-

ation of generated explanations, we adopt two well-known metrics:

BLEU [30] and ROUGE [25]. The former is precision-oriented, while

the latter is recall-oriented, but both metrics measure the overlap-

ping degree of n-grams within the generated sentences and the

ground-truth. We report BLEU-4, and F1 of ROUGE-1, ROUGE-2

and ROUGE-L. For all these metrics, a larger value means a better

performance.

4.4 Implementation Details
For a fair comparison, both the baseline P5 [9] and our approach

POD adopt T5-small [31] as the backbone. In this LLM, the encoder

and decoder both have 6 layers, each of which is an 8-headed at-

tention layer. T5 utilizes SentencePiece [18] to tokenize a sentence

into a sequence of sub-words (see Sec. 3.2). There are in total 32,100

tokens in T5’s vocabulary V , and their embedding dimensional-

ity is 512. As described in Algorithm 1, we randomly sample a

segment from a user’s item sequence for training the sequential

recommendation task; the number of negative items n for top-N rec-

ommendation is set to 99 for both training and evaluation. We train

our POD on the training set with the AdamW optimizer [28], and

report the results on the testing set. After hyper-parameters tuning

on the validation set, we set the number of continuous prompt

vectors K for each task to 3, the batch size for training all the three

tasks to 64, and the learning rate to 0.001 for Sports dataset and

0.0005 for both Beauty and Toys datasets. We borrow the discrete

prompt templates for different tasks from [9], since constructing

them is not our key focus. At the training stage, we save a check-

point if the model’s total validation loss on the three tasks is the

lowest as of the current epoch. If this does not happen for 5 times,

we terminate the training process and load the best checkpoint for

evaluation. At the inference stage, we set the number of beams b
to 20 for sequential recommendation and top-N recommendation.

As to explanation generation, we apply group beam search and set

b to 21 and the number of beam groups to 3. The inference batch

size is set to 32 for all tasks.

5 RESULTS AND ANALYSIS
This section presents the experimental results on the three recom-

mendation tasks, the efficiency comparison for both training and

inference stages, and hyper-parameter analysis.

5.1 Sequential Recommendation
Table 2 shows the recommendation accuracy comparison between

different sequential recommendation methods. From the table, we

1353

Prompt Distillation for Efficient LLM-based Recommendation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 2: Performance comparison on sequential recommendation.

Methods

Sports Beauty Toys

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Caser 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141

HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277

GRU4Rec 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084

BERT4Rec 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099

FDSA 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189

SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374

S
3
-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376

P5 0.0272 0.0169 0.0361 0.0198 0.0503 0.0370 0.0659 0.0421 0.0648 0.0567 0.0709 0.0587

POD 0.0496 0.0396 0.0576 0.0419 0.0537 0.0395 0.0688 0.0443 0.0691 0.0599 0.0742 0.0610

Improvement (%) 82.35 134.32 49.61 105.39 6.76 6.76 4.40 5.23 6.64 5.64 4.65 3.92

Table 3: Performance comparison on top-N recommendation.

Methods

Sports Beauty Toys

HR@1 HR@5 NDCG@5 HR@10 NDCG@10 HR@1 HR@5 NDCG@5 HR@10 NDCG@10 HR@1 HR@5 NDCG@5 HR@10 NDCG@10

MF 0.0314 0.1404 0.0848 0.2563 0.1220 0.0311 0.1426 0.0857 0.2573 0.1224 0.0233 0.1066 0.0641 0.2003 0.0940

MLP 0.0351 0.1520 0.0927 0.2671 0.1296 0.0317 0.1392 0.0848 0.2542 0.1215 0.0252 0.1142 0.0688 0.2077 0.0988

P5 0.0567 0.1514 0.1049 0.2196 0.1269 0.0571 0.1566 0.1078 0.2317 0.1318 0.0451 0.1322 0.0889 0.2023 0.1114

POD 0.0895 0.2086 0.1506 0.2873 0.1756 0.0829 0.1926 0.1391 0.2670 0.1629 0.0567 0.1433 0.1009 0.2082 0.1215

Improvement (%) 57.85 37.24 43.57 7.56 35.49 45.18 22.99 29.04 3.77 23.60 25.72 8.40 13.50 0.24 9.07

Table 4: Performance comparison on explanation generation (%).

Methods

Sports Beauty Toys

BLUE-4 ROUGE-1 ROUGE-2 ROUGE-L BLUE-4 ROUGE-1 ROUGE-2 ROUGE-L BLUE-4 ROUGE-1 ROUGE-2 ROUGE-L

Att2Seq 0.5305 12.2800 1.2107 9.1312 0.7889 12.6590 1.6820 9.7481 1.6238 13.2245 2.9942 10.7398

NRT 0.4793 11.0723 1.1304 7.6674 0.8295 12.7815 1.8543 9.9477 1.9084 13.5231 3.6708 11.1867

PETER 0.7112 12.8944 1.3283 9.8635 1.1541 14.8497 2.1413 11.4143 1.9861 14.2716 3.6718 11.7010
POD 1.0013 14.0168 2.0436 11.1236 1.0630 15.2517 1.5737 11.3283 2.3053 12.2889 3.8512 10.3923

Improvement (%) 40.79 8.70 53.85 12.78 -7.89 2.71 -26.51 -0.75 16.07 -13.89 4.89 -11.18

Table 5: Efficiency comparison between two training strate-
gies on Sports dataset. In this table, “h” and “m” denote
“hours” and “minutes”, respectively.

Training Strategies Time Epochs Time/Epoch

Sample-mixed 15h59m 13 1h14m

Task-alternated 6h55m 22 19m

Improvement (%) 56.73 - 74.32

can see that our method POD beats all the baselines by a large

margin, especially P5 which shares the similar architecture with

ours. The only difference between our approach and P5 is that it

relies heavily on the manually constructed prompt templates for

making predictions. However, the word tokens and ID tokens need

extensive fine-tuning to be learned into the same embedding space.

Instead, our approach distills the discrete prompt into continuous

prompt, which is no longer restricted to fixed words and thus could

be more compatible with IDs, leading to improved recommendation

performance. Among the other baselines, we also notice that S
3
-Rec

and SASRec are both very competitive, which could be attributed to

the advantage of self-attention mechanism in modeling sequential

data. However, they are not as effective as our POD and the baseline

P5, since they are not LLM and cannot leverage the sequential

pattern in the large textual corpora for pre-training.

5.2 Top-N Recommendation
In Table 3, we compare our method with representative baselines

for top-N recommendation. MF and MLP are both classic recom-

mendation models, and their performance is not bad. In general,

MF is slightly worse than MLP, probably because the simple inner

product may not be able to fully exploit the complex pattern in

user-item interactions. This may explain why recent works adopt

neural networks that can perform non-linear transformations on

recommendation data. However, MLP is still not comparable to

LLM-based recommendation models (i.e., P5 and POD). In particu-

lar, the latter’s top-1 recommendation accuracy is way much better

than the other baselines, because they can directly generate rec-

ommendations. This demonstrates the advantage of LLM-based

recommendation models in accurately modeling users’ preferences

towards items. Most importantly, our method POD consistently

performs better than all the baselines, as the continuous prompt is

more compatible with LLM since neural networks are essentially

continuous [27].

1354

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Lei Li, Yongfeng Zhang, & Li Chen

Table 6: Inference efficiency comparison on Sports dataset. In the “Time” column, “m” and “s” stand for minutes and seconds,
respectively.

Methods

Sequential Recommendation Top-N Recommendation Explanation Generation (%)

HR@5 NDCG@5 HR@10 NDCG@10 Time HR@5 NDCG@5 HR@10 NDCG@10 Time BLEU-4 ROUGE-2 ROUGE-L Time

Continuous+Discrete 0.0509 0.0411 0.0583 0.0432 24m6s 0.2079 0.1508 0.2882 0.1763 48m31s 1.0012 2.0436 11.1202 9m30s

Continuous only (POD) 0.0496 0.0396 0.0576 0.0419 22m17s 0.2086 0.1506 0.2873 0.1756 47m13s 1.0013 2.0436 11.1236 8m59s

Improvement (%) -2.55 -3.65 -1.20 -3.01 7.54 0.34 -0.13 -0.31 -0.40 2.68 0.01 0.00 0.03 5.44

0 10 20 30 40 50
Prompt number K

0.040

0.045

0.050

0.055

0.060

Re
co

m
m

en
da

tio
n

Pe
rfo

rm
an

ce HR@5
NDCG@5
HR@10
NDCG@10

(a) Sequential recommendation

0 10 20 30 40 50
Prompt number K

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Re
co

m
m

en
da

tio
n

Pe
rfo

rm
an

ce
HR@5
NDCG@5 (×2)
HR@10
NDCG@10

(b) Top-N recommendation

0 10 20 30 40 50
Prompt number K

10

11

12

13

14

Ex
pl

an
at

io
n

Pe
rfo

rm
an

ce

BLEU-4 (×14)
ROUGE-1
ROUGE-2 (×7)
ROUGE-L

(c) Explanation generation

Figure 4: The effect of continuous prompt number K on different tasks on the Sports dataset. The values of some metrics are
linearly scaled for better visualization.

We also notice that when N grows large, the performance im-

provement of our approach against baselines becomes small. Owing

to the leave-one-out evaluation protocol as explained in Sec. 4.1,

there is only one ground-truth item in the testing set. Hence, the

more items for testing (i.e., larger N), the higher the hit ratio of base-

lines. However, this would not help with our approach’s accuracy,

since it already can correctly predict the item at the first position,

i.e., top-1 recommendation. This attribute is of great practical value,

especially when the number of recommendations is limited, e.g.,

in conversational recommendation scenario where the system can

only display a few (usually just one) recommendation results.

5.3 Explanation Generation
The performance comparison between different explanation gen-

eration methods is presented in Table 4. The results on the three

datasets are not very consistent. Our approach obtains the best per-

formance on Sports dataset, and comparable results on Beauty and

Toys datasets. Admittedly, it does not always outperform baselines,

probably because the evaluation metrics BLEU and ROUGE only

compute the overlapping segments from generated explanations

and the ground-truth [40]. This actually puts LLM at disadvantage,

as they are capable of generating diverse and expressive content,

given that they have learned the world knowledge during the pre-

training stage. As for the baselines, we can see that the results of

Att2Seq and NRT are generally not as competitive as the other two

Transformer-based methods, which could be explained by the fact

that recurrent neural networks (i.e., LSTM in Att2Seq and GRU in

NRT) suffer from long-range dependency problem. However, this

is not a problem to Transformer [38], whose self-attention mecha-

nism allows future tokens to fully attend to proceeding tokens in a

sequence.

5.4 Training Efficiency
The efficiency of training an LLM with multiple tasks is a criti-

cal issue. In this work, we propose an efficient training strategy

named Task-alternated Training. To verify its effectiveness in help-

ing improve the training efficiency, we compare it with the training

method used in a previous work [9]. We name this comparative

method Sample-mixed Training, as the samples from different tasks

are mixed in one batch. The experiments are conducted on Sports

dataset with an NVIDIA Tesla V100S GPU. When testing the two

training strategies, we tune the batch size to its maximum so that

the model can occupy as much memory as possible for a fair com-

parison. We keep the other settings the same for both methods.

The experimental results are given in Table 5. Although sample-

mixed training takes less epochs to train, its overall training time

is twice as long as our task-alternated training. With regard to the

average training time per epoch, our approach is approximately

five times more efficient than the compared approach. As we have

explained before, mixing the samples of different tasks in the same

batch would waste a lot of memory on padding because they are

very likely to be of different length. On one GPU with fixed amount

of memory, the batch size would be small, and the number of itera-

tions as well as the training time would be increased. Our training

strategy mitigates this problem by alternately feeding the LLM a

batch of samples from the same task.

5.5 Inference Efficiency
As discussed above, we drop the discrete prompt and only use the

continuous prompt during the inference stage so as to reduce com-

putation cost. As an ablation study, we investigate whether this

strategy can indeed help improve inference efficiency. There is no

doubt that the comparative method should use both the continuous

1355

Prompt Distillation for Efficient LLM-based Recommendation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

prompt and the discrete prompt, which we denote as “Continu-

ous+Discrete”. Again, we test the two methods on Sports dataset

with an NVIDIA Tesla V100S GPU, and keep their settings the same.

The results are shown in Table 6. As we can see from the table, the

inference efficiency can be improved when the discrete prompt is

removed, while the recommendation and explanation performances

do not change much. We also notice that the efficiency improve-

ment on the top-N recommendation task is less significant than

the other two tasks. The reason is as follows. There are in total

101 IDs (i.e., one user ID, one target item ID and 99 negative item

IDs) for this task, which result in approximately 400 tokens. Com-

pared with them, the prompt templates are much shorter, which

would make the improvement room small. Nevertheless, this exper-

iment demonstrates that our POD approach can indeed reduce the

inference time.

5.6 Number of Continuous Prompt Vectors
At last, we would like to investigate how varying number of con-

tinuous prompt vectors K would affect the performance of differ-

ent recommendation tasks. We conduct the experiment on Sports

dataset, and search K from [1, 3, 5, 10, 20, 50]. As we can see from

Fig. 4, the trend of recommendation performance and that of ex-

planation performance are different. With the increase of K , the
performances of both sequential recommendation and top-N rec-

ommendation generally grow, but the explanation performance

could already reach its optimum when K is small (i.e., 1 or 3). Con-

sidering that a large amount of prompt vectors would affect both

training and inference efficiency, we prefer a smallK . Therefore, we
set K to 3, where the explanation performance is the best and the

recommendation performance can already beat all the baselines.

6 CONCLUSION
In this work, we present a simple but effective PrOmpt Distillation

(POD) approach that can distill the knowledge of discrete prompt

templates into continuous prompt vectors for LLM-based recom-

mendation models. In our experiments, we demonstrate that POD is

both effective on typical recommendation tasks and efficient during

the inference stage. We also propose a Task-alternated Training

strategy that can largely improve the efficiency of training an LLM-

based recommendation model. We believe that both approaches

have the potential to be extended to other fields where the tasks

have different data formats. As simply removing the discrete prompt

could lead to improved inference efficiency, we plan to make the

LLM light-weighted so as to save computation cost. Also, we are

interested in cross-task prompt transfer [1, 39, 41, 46] that might

be able to generalize LLM to new recommendation tasks.

ACKNOWLEDGMENTS
This work was supported by Hong Kong Research Grants Council

(RGC) GRF project (RGC/HKBU12201620), Hong Kong Baptist Uni-

versity IG-FNRA project (RC-FNRA-IG/21-22/SCI/01), and partially

supported by NSF IIS-1910154, 2007907, and 2046457. Any opinions,

findings, conclusions or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect those of

the sponsors.

REFERENCES
[1] Akari Asai, Mohammadreza Salehi, Matthew Peters, and Hannaneh Hajishirzi.

2022. ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures

of Soft Prompts. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Abu

Dhabi, United Arab Emirates, 6655–6672. https://aclanthology.org/2022.emnlp-

main.446

[2] Eyal Ben-David, Nadav Oved, and Roi Reichart. 2022. PADA: Example-based

Prompt Learning for on-the-fly Adaptation to Unseen Domains. Transactions of
the Association for Computational Linguistics 10 (04 2022), 414–433.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. In Advances in neural
information processing systems.

[4] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model

compression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. 535–541.

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[6] Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. 2022. M6-

Rec: Generative Pretrained Language Models are Open-Ended Recommender

Systems. arXiv preprint arXiv:2205.08084 (2022).
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

2019 Annual Conference of the North American Chapter of the Association for
Computational Linguistics.

[8] Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou, and Ke Xu.

2017. Learning to generate product reviews from attributes. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. 623–632.

[9] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized

Prompt & Predict Paradigm (P5). In Sixteenth ACM Conference on Recommender
Systems.

[10] Shijie Geng, Juntao Tan, Shuchang Liu, Zuohui Fu, and Yongfeng Zhang. 2023.

VIP5: Towards Multimodal Foundation Models for Recommendation. arXiv
preprint arXiv:2305.14302 (2023).

[11] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based recommendations with recurrent neural networks. In Inter-
national Conference on Learning Representations (ICLR).

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network.

[13] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong

Wen. 2022. Towards Universal Sequence Representation Learning for Recom-

mender Systems. In Proceedings of the 28th ACM SIGKDDConference on Knowledge
Discovery and Data Mining. 585–593.

[14] Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, and Yongfeng Zhang. 2023.

UP5: Unbiased Foundation Model for Fairness-aware Recommendation. arXiv
preprint arXiv:2305.12090 (2023).

[15] Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2023. How

to Index Item IDs for Recommendation Foundation Models. arXiv preprint
arXiv:2305.06569 (2023).

[16] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[17] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[18] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language

independent subword tokenizer and detokenizer for Neural Text Processing. In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Association for Computational Linguistics,

Brussels, Belgium, 66–71. https://doi.org/10.18653/v1/D18-2012

[19] Lei Li, Yongfeng Zhang, and Li Chen. 2020. Generate neural template explanations

for recommendation. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. 755–764.

[20] Lei Li, Yongfeng Zhang, and Li Chen. 2021. Extra: Explanation ranking datasets

for explainable recommendation. In Proceedings of the 44th International ACM
SIGIR conference on Research and Development in Information Retrieval. 2463–
2469.

[21] Lei Li, Yongfeng Zhang, and Li Chen. 2021. Personalized Transformer for Ex-

plainable Recommendation. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics. 4947–4957.

[22] Lei Li, Yongfeng Zhang, and Li Chen. 2023. Personalized prompt learning for

explainable recommendation. ACM Transactions on Information Systems 41, 4
(2023), 1–26.

1356

https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://doi.org/10.18653/v1/D18-2012

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Lei Li, Yongfeng Zhang, & Li Chen

[23] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. 2017. Neural

rating regressionwith abstractive tips generation for recommendation. In Proceed-
ings of the 40th International ACM SIGIR conference on Research and Development
in Information Retrieval. 345–354.

[24] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous

prompts for generation. In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics.

[25] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.

In Text summarization branches out. 74–81.
[26] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of

prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[27] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and

Jie Tang. 2021. GPT understands, too. arXiv preprint arXiv:2103.10385 (2021).
[28] Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization.

In International Conference on Learning Representations.
[29] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for

sequential recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 825–833.

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of

transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[32] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford,Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.

In International Conference on Machine Learning. PMLR, 8821–8831.

[33] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452–461.

[34] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[35] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-

resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[36] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-

tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems.
[39] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. 2022. Spot:

Better frozen model adaptation through soft prompt transfer. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics.

[40] Xiaolei Wang, Xinyu Tang, Wayne Xin Zhao, Jingyuan Wang, and Ji-Rong Wen.

2023. Rethinking the Evaluation for Conversational Recommendation in the Era

of Large Language Models. arXiv preprint arXiv:2305.13112 (2023).
[41] Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and

Yoon Kim. 2023. Multitask prompt tuning enables parameter-efficient transfer

learning. In International Conference on Learning Representations (ICLR).
[42] Shuyuan Xu, Wenyue Hua, and Yongfeng Zhang. 2023. OpenP5: Benchmarking

Foundation Models for Recommendation. arXiv preprint arXiv:2306.11134 (2023).
[43] Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, De-

qing Wang, Guanfeng Liu, and Xiaofang Zhou. 2019. Feature-level Deeper

Self-Attention Network for Sequential Recommendation. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence. 4320–4326.

[44] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping

Ma. 2014. Explicit factor models for explainable recommendation based on

phrase-level sentiment analysis. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval. 83–92.

[45] Yongfeng Zhang, Haochen Zhang, Min Zhang, Yiqun Liu, and Shaoping Ma. 2014.

Do users rate or review? Boost phrase-level sentiment labeling with review-

level sentiment classification. In Proceedings of the 37th international ACM SIGIR
conference on Research & development in information retrieval. 1027–1030.

[46] Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. 2022. Panda:

Prompt transfer meets knowledge distillation for efficient model adaptation.

arXiv preprint arXiv:2208.10160 (2022).
[47] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,

Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning

for sequential recommendation with mutual information maximization. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management. 1893–1902.

1357

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Tasks Formulation
	3.2 Discrete Prompt for Recommendation
	3.3 Prompt Distillation
	3.4 Task-alternated Training
	3.5 Generation with Beam Search

	4 Experimental Setup
	4.1 Datasets
	4.2 Baselines
	4.3 Evaluation Metrics
	4.4 Implementation Details

	5 Results and Analysis
	5.1 Sequential Recommendation
	5.2 Top-N Recommendation
	5.3 Explanation Generation
	5.4 Training Efficiency
	5.5 Inference Efficiency
	5.6 Number of Continuous Prompt Vectors

	6 Conclusion
	Acknowledgments
	References

