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ARTICLE

A scalable and robust variance components method
reveals insights into the architecture of
gene-environment interactions underlying complex traits

Ali Pazokitoroudi,!.7.%* Zhengtong Liu,! Andrew Dahl,> Noah Zaitlen,%3* Saharon Rosset,°
and Sriram Sankararaman!.2.3,*

Summary

Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease
mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep pheno-
typic data hold promise for obtaining novel insights into GxE, our understanding of GXE architecture in complex traits remains limited.
We introduce a method to estimate the proportion of trait variance explained by GXE (GXE heritability) and additive genetic effects (ad-
ditive heritability) across the genome and within specific genomic annotations. We show that our method is accurate in simulations and
computationally efficient for biobank-scale datasets.

We applied our method to common array SNPs (MAF > 1%), fifty quantitative traits, and four environmental variables (smoking,
sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant
genome-wide GXE heritability (p < 0.05/200) with a ratio of GXE to additive heritability of =6.8% on average. Analyzing = 8
million imputed SNPs (MAF > 0.1%), we documented an approximate 28% increase in genome-wide GXE heritability compared
to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values,
revealing that, like additive allelic effects, GXE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE
heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index
(BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context

of sex.
Introduction

Variation in a complex trait is modulated by an interplay
between genetic and environmental factors. Character-
izing the effects of gene-environment interactions (GxE)
on complex trait variation has the potential to shed light
on biological mechanisms underlying the trait,' * inform
public health measures,” identify sources of missing her-
itability,> and improve the accuracy and portability of
trait prediction.®” The growth of biobanks that collect
genetic and deep phenotypic data (that span disease out-
comes, clinical labs, lifestyle factors, and environmental
exposures) across large numbers of individuals offers
the possibility to gain novel insights into GxE.*® Never-
theless, characterizing GXE has proved challenging due,
in part, to the small effect sizes of individual genetic
variants.”"’

A potentially powerful methodological approach aims
to quantify GXE effects aggregated across a set of variants
without needing to pinpoint individual variants. In this
approach, the proportion of trait variation explained by
GxE (GXE heritability or h;xe) is estimated by fitting a class
of variance components models where the model param-

eters, i.e., the variance components, are informative of
hZ,. Methods for estimating h?, using this approach
include GCTA-GxE,'' multitrait GREML (MV-GREML),”
random regression GREML (RR-GREML),”'* and whole-
genome reaction norm model (RNM) and its multitrait
version (MRNM).'? All of these methods (except RNM)
are able to account for differences in the noise or resid-
ual variance across environments (noise heterogeneity),
which is important to mitigate biases in GXE heritability
estimates.'>'* However, these methods work with dis-
crete-valued environmental variables, with RNM and
MRNM further restricted to fit bivariate and univariate en-
vironments, respectively. A more recent general frame-
work, GXEMM,'* can be applied to both discrete and
continuous environmental variables while modeling
noise heterogeneity. However, none of these methods
are practical for biobank-scale datasets with sample sizes
in the hundreds of thousands and genetic variants in
the millions. Two recent methods, GPLEMMA'® and
MEMMA, '© attempt to scale GXE heritability estimation
to large-scale datasets but do not model noise heterogene-
ity. A more recent method, MonsterLM,'” has been shown
to be feasible for biobank-scale datasets and to produce
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unbiased estimates in many scenarios. However, Mon-
sterLM requires SNPs to be filtered to common variants
with low levels of linkage disequilibrium (LD), which
may limit its application to discover GXE. As a result, cur-
rent methods for estimating GxE heritability either do not
scale to the biobank setting or are susceptible to biased
estimates. Additional insights into the architecture of
GxE can be gleaned if we can move beyond genome-
wide estimates of GXE heritability and estimate GxE heri-
tability across specific genomic annotations such as minor
allele frequency (MAF), LD, and functional genomic
annotations.

We propose a scalable and robust method, GENIE (gene-
environment interaction estimator) that can estimate the
proportion of trait variance explained by GXE and additive
genetic effects (additive heritability). Using extensive sim-
ulations and real data analysis, we show that GENIE accu-
rately estimates h§X€ and provides calibrated tests of hgzxe due
to its ability to account for noise that is heterogeneous
across environments. Importantly, GENIE is scalable: able
to estimate GXE on datasets with hundreds of thousands
of individuals, millions of SNPs, and tens of environmental
variables in several hours. The ability of GENIE to be
applied to large-scale datasets is important for power: we
show that GENIE has adequate power to detect h§X€ as
low as 2% across a sample of = 300,000 unrelated individ-
uals. Finally, GENIE is versatile: able to handle multiple
environmental variables (discrete or continuous) and to es-
timate not only genome-wide h,, but also partition h,,
across genomic annotations (both overlapping and non-
overlapping).

To demonstrate its utility, we first applied GENIE to esti-
mate the genome-wide héxe on common SNPs (M =
454,207 SNPs with MAF > 1%) and four environmental
variables (smoking, sex, age, and statin usage) for fifty
quantitative phenotypes measured across 291,273 unre-
lated white British individuals in the UK Biobank (UKB).
Second, we leveraged the scalability of GENIE to partition
hﬁxe across common and low-frequency imputed SNPs
M = 7,774,235 with MAF > 0.1%) in UKB. We parti-
tioned h§X€ into genomic annotations based on the MAF
and local LD score of each SNP to investigate the variation
in GXE effects with population genetic features and to esti-
mate genome-wide hZ,, that includes the contribution of
both common and low-frequency SNPs. Finally, we applied
GENIE to assess whether h;xe shows tissue-specific enrich-
ment by analyzing each of 53 tissue-specific gene sets iden-
tified from the GTEx dataset."®

Material and methods

Generalized GxE linear mixed model

Let X denote a NxM genotype matrix, E denote a NX L matrix of
environmental variables, C denote a NxP matrix of fixed-effect
covariates, and y denote an N-vector of phenotypes. We assume
the following linear mixed model:

L L
y=XB+> (XOE)a+» (INOE))d +Cy+e

=1 I=1

2
5~D<0,3 M)

o'zxel
o ~ D 07 i/IIM

o) ~ D(o, aﬁxe,,IN)

(Equation 1)

€~ D(O, U?IN)

Here, D(u,X) denotes an arbitrary distribution with mean p and
covariance ¥, E,; denotes [-th column of E, and © denotes row-
wise Kronecker product. 8 denotes the M-vector of SNP effect sizes,
v denotes the P-vector of fixed effects, «; denotes the M-vector of ge-
netic effect sizes in the context of environment ! (GXE effects) while é;
denotes the N-vector of noise-by-environment effect sizes for environ-
ment /, and e denotes the N-vector of noise. o7, 03, 03, and a7,
denote the residual variance, additive genetic, gene-by-environment,
and noise-by-environment variance components, respectively. These
variance components can then be transformed into the additive her-
itability or the proportion of variance explained by additive effects (h§
associated with af,) and the GxE heritability or the proportion of vari-
ance explained by interactions of genetics with a given environment
(h;xe_ ; associated with ”éeﬂ' The noise-by-environment matrix for
environment/is obtained as the row-wise Kronecker product between
the NxN identity matrix Iy and the environment vector E,; so that
the vector of environment-specific noise for each individual i (due
to environment /) will be given by E;;d;:. In the simplest case of a binary
environment that is coded as {0, 1}, the phenotype of an individual
whose environmental variable is set to value 1 will have an additional
contribution of noise (6;) relative to an individual whose environ-
ment variable is set to 0. Further, all individuals whose environmental
variable takes the value 1 will have an additional term that contributes
to their phenotypic variance, quantified by o2, , relative to individ-
uals with environmental variable 0. This formulation generalizes to
settings where the environment is coded as categorical (but with
values different from {0,1}) and to continuous-valued environments.
We now refer to the noise-by-environment (or heterogeneous noise)
component as the NxE component and the variance o2,, as the NxE
variance in the following sections.

Estimation in the GxE linear mixed model
We assume without loss of generality that y is centered, and the
columns of X and E are standardized. To estimate the variance
components of our linear mixed model (LMM), we use a
method-of-moments (MoM) estimator that searches for parameter
values so that the population moments are close to the sample
moments. Since E[y] = 0, we derived the MoM estimates by
equating the population covariance to the empirical covariance.
For simplicity, we exclude the matrix of covariates C from the
model in the following derivation as the covariates can be effi-
ciently projected out of the phenotype, genotypes, and interac-
tion terms with minimal additional cost (Note S1).

For compactness, we denote Z, = X, Z; = XOE, forl = 1,...,
L,Z =INOE;forl = L+1,...,2L, and Z3;.1 = Iy. The popu-
lation covariance is given by

2L+1

cov(y) = E[yy"] — EYEp"] = D oiK (Equation 2)
1=0
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where

2,7z]
) 1=0,..L
K ={! M’ ;
zZ', 1=L+1,..2L+1
and
af,, 1=0
02 _ ajx&l’ I = 17---,L
, Jﬁxc,h l=L+1,..,2L
a2 | =2L+1

e

Using yy! as our estimate of the empirical covariance, we need
to solve the following least squares problem to find the variance
components.

2L+1 2

a2 = argmin,, ||lyy" — > oK (Equation 3)
1=0 F

The MoM estimator satisfies the following normal equations:

To’ =¢q (Equation 4)

where T is matrix with entries T; = tr(KiK;),i,je {0,...,2L + 1},
and ¢q and ¢? are vectors with entries ; = yTKjy and o7, respec-
tively, for I€ {0, ...,2L + 1}.

The heritability associated with component i for a component
thatrepresents additive genetic or GXE effects (equivalently, the pro-
portion of variance explained by component i) is defined as follows:

2 oitr(K:)

b oitr(Ke)
The aforementioned definition of heritability holds when the
columns of each of the Z matrices have zero means and N is large.
To explicitly ensure that the columns of GXE matrices also have
zero means, a column consisting of all ones is included in the co-
variate matrix. Consequently, when the covariates are projected
out of the GxE matrices (Note S1), it guarantees that all columns
have zero means.

(Equation 5)

Computational challenges

Computing the coefficients of the system of linear Equation 4
presents computational challenges. The main computational
bottleneck is the evaluation of the quantities Tj; for i,je
{0,...,2L+1}, which requires ©O(N?ML). Therefore, the total
time complexity for exact MoM is O(N2ML +L3), imposing chal-
lenging memory or computation requirements for Biobank-scale
data (N in the hundreds of thousands, M in the millions, and L
in the hundreds or thousands).

Scalable estimation

Instead of computing the exact value of T;;, GENIE uses a random-
ized estimator of the trace.'” This estimator uses the fact that for a
given NxN matrix C, w'Cw is an unbiased estimator of ir(C)
(EwTCw] = tr[C] where w is a random vector with mean zero
and covariance Iy). Hence, we can estimate the values Tj;, i,je
{0, ...,2L +1} as follows:

Ty = tr(2Z]2,Z]) = T; - %Zwlzizfz,-szb (Equation 6)
b

Here, wy,...,wp are B independent random vectors with zero
mean and covariance I'y. In GENIE, we draw these random vectors
independently from a standard normal distribution. Note that
computing Tj by using the above estimator involves matrix-vector
multiplications, which are repeated B times. Therefore, the total
running time is O(LNMB).

Moreover, we can leverage the structure of the genotype matrix,
which only contains entries in {0, 1,2}. For a fixed genotype ma-
trix Xj, we can improve the per iteration time complexity of ma-

trix-vector multiplication from O(NM) to O(W) by

using the Mailman algorithm.”” Solving the normal equa-
tions takes O(L®) time so that for a small number of compon-
ents (L), the overall time complexity of our algorithm is

LNMB 2
o (Fax(lagswut)gg oy +L7(NB + L))~

Standard errors of the estimates

We used a computationally efficient block jackknife?’ to compute
standard errors of the estimates, which does not require any as-
sumptions on the distribution of the effect sizes. Each jackknife
subsample was created by removing a block of the genotype ma-
trix, and we approximated the true SE by the jackknife estimate.
Specifically, if we partition the genotype X into ] non-overlapping

blocks [X(l), ...7X(1)], §E = \/U;—l) Z(W(i) — ﬁmck)z, where ﬁ@ is
]

the heritability estimate based on X0 (removing X9 from X),
and ﬁ,mk is the mean of estimates across / jackknife subsamples.
The jackknife estimator was implemented efficiently in GENIE to
compute the estimate in time O(m +JL*(NB +L)).
In our analysis, we used ] = 100 blocks defined over SNPs to
compute the standard errors of the estimates.

Partitioning GxE heritability across the genome

Although the model defined in Equation 1 is beneficial in quanti-
fying genome-wide GXE effects for a given E, it is interesting to
identify and interpret the interaction of E with specific regions
of the genome, such as SNPs with a particular range of minor allele
frequencies or SNPs that lie within genes expressed specifically in a
tissue. Following our previous work,”' the genotype component X
can be assigned to T (potentially overlapping) components with
respect to a set of annotations (such as MAF/LD or functional an-
notations). Thus, we extend our model as follows:

T L L

T
Y= XiB+Y Y (XiOE)au+Y (INOE;)d + Cy +e
t=1

t=1I=1 =1

a2,
ﬂt ~ D("’AZIM[)

Tore
X€,
ag~D|O, i/lt Iy,

o) ~ D(o, aﬁm,IN>

e~ D(0,02Iy)
(Equation 7)

Here, X; is the genotype of annotation f with M; SNPs, and ay
refers to the effect sizes of SNPs in annotation t in the context of
environment [. Analogously, oé%)“,ﬂ refers to the variance compo-
nent for SNPs in annotation t in the context of environment /
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while h;xe_ﬂ refers to the GXE heritability associated with annota-
tion t in the context of environment /.

Given estimated GxE heritabilities under the above model, we
define the enrichment of genetic effects in annotation f in the
context of environment / (also termed GXE enrichment) as follows:

2 T 2
hgxe,tl / Zt =1 hgxe,tl

Enrichment (gxe,t,1) = M. /M
t

,te{l,..., T} le{1,....L}

(Equation 8)

Estimating GxE in the UK Biobank

We applied GENIE to the UKB® where we considered environ-
mental variables such as smoking status, sex, age, and statin medi-
cation. The analyses utilized the UKB Resource under application
331277, with participants’ informed consents verified by the
UKB.?” For every environmental variable, we applied GENIE to
estimate additive heritability (hﬁ) and GxE heritability (h;xc)
across 50 quantitative phenotypes (in a model that included the
environmental variable as a main effect and accounted for noise
heterogeneity) (Table S2). In this study, we restricted our analysis
to SNPs that were present in the UKB Axiom array used to geno-
type the UK Biobank. SNPs with greater than 1% missingness
and MAF smaller than 1% were removed. Moreover, SNPs that
failed the Hardy-Weinberg test at significance threshold 10~7
were removed. We restricted our study to self-reported British
white ancestry individuals who are > 3" degree relatives that
are defined as pairs of individuals with kinship coefficient < 1/
2(9/2) 8 Furthermore, we removed individuals who are outliers for
genotype heterozygosity and/or missingness. Finally, we obtained
asetof N = 291,273 individuals and M = 454,207 SNPs for real
data analyses. No LD pruning or filtering was required by GENIE
subsequently.

We included age, sex, age?, age X sex, age? X sex, and the top 20
genetic principal components (PCs) as covariates in our analysis
for all traits. We always include the environmental variable as a co-
variate in these analyses. We used PCs precomputed by the UKB
from a superset of 488,295 individuals. Additional covariates
were used for waist-to-hip ratio (adjusted for body mass index
[BMI]) and diastolic/systolic blood pressure (adjusted for choles-
terol-lowering medication, blood pressure medication, insulin,
hormone replacement therapy, and oral contraceptives). We stan-
dardized environmental variables in our primary analyses. The
standardized coding for binary environmental variables has an
invariant property in the sense that the covariance matrix would
be the same regardless of flipping the 0/1 coding. We also consid-
ered the binary coding of environmental variables to be relevant.
Statin usage is defined as a binary environmental variable based on
C10AA (the American Therapeutic Chemical [ATC] code of statin),
which corresponds to taking any subtype of statin medications.
Smoking status is defined as a categorical variable with three
possible values (never, previous, and current).

We considered an additional analysis of genotypes at high-qual-
ity imputed SNPs (with a hard call threshold of 0.2 and an INFO
score > 0.8) with MAF > 0.1% in the N = 291,273 unrelated
white British individuals. We further restricted our analyses to
SNPs that are under Hardy-Weinberg equilibrium (p < 10~7)
and are confidently imputed in more than 99% of the individuals.
Additionally, we excluded SNPs in the MHC region, resulting in a
total of M = 7,774,235 SNPs.

In our analysis of heritability partitioned based on MAF-LD an-
notations (primarily for the imputed SNPs), we divided SNPs into

eight annotations based on quartiles of the LD scores (computed
in-sample using GCTA) and two MAF bins (MAF < 5% and MAF
> 5%). In our analyses of heritability partitioned based on tis-
sue-specific gene expression annotations, we used the annotations
for the 53 tissue-specific genes generated by Finucane et al.'® using
a matrix of normalized gene expression values from the Genotype-
Tissue Expression (GTEx) database, which included samples from
various tissues, including the focal tissue. The authors calculated a
t statistic for each gene to determine its specific expression in the
focal tissue and ranked all genes based on their t-statistics. They
defined the top 10% of genes with the highest t statistic as the
set of specifically expressed genes for the focal tissue. To improve
the accuracy of the gene set construction, 100-kb windows are
added on either side of the transcribed region of each gene in
the set of specifically expressed genes to generate a genome anno-
tation that corresponds to the focal tissue.

Results

Calibration and power

We assessed the false positive rate of tests of GXE heritabil-
ity based on GENIE in simulations under different genetic
architectures with no GxE heritability. For each archi-
tecture, we simulated 100 phenotype replicates across
N = 291,273 unrelated white British individuals in the
UKB and M = 454,207 SNPs with MAF > 1% genotyped
on the UKB genotyping array. We chose statin usage in
the UKB as the environmental variable. We varied the per-
centage of causal SNPs while fixing the additive heritability
at h§ = 0.25. We ran GENIE with B = 10 random vectors
(see the following section on the choice of the number of
random vectors).

Across all simulations, the false positive rate of rejecting
the null hypothesis of no GxE heritability is controlled
at levels 0.05 and 0.05/200 (we consider this thresh-
old, which controls for the number of trait-environme-
ntal variable [trait-E] pairs that we test in UKB): the average
P(rejection at p < t)is 7.5% and 0% fort = 0.05 and t =
0.05/200, respectively (Figure 1A).

To measure the power of GENIE to detect GXE heritabil-
ity, we simulated phenotypes with a non-zero GxE
heritability. Across genetic architectures, we varied the
GxE heritability with no noise heterogeneity while fixing
the additive heritability at 0.25 and the percentage of
causal SNPs at 10% (these are default values of additive her-
itability and causal ratio across our simulations unless
otherwise specified). We also tested GENIE by varying the
sample size from 30,000 to 300, 000. We simulated 100

replicates for every genetic architecture. Let hgxe(i) be the
estimate of hﬁxe and SE; be the jackknife estimate of the

standard error on the i-the replicate for ie {1,...,100}.
We computed the p value of a test of the null hypothesis

of no h, on the i-th replicate from the Z score defined
as hgxe(i)/SEi forie {1,...,100}. We reported the percentage

of replicates with p value < t as the power of GENIE on a
given genetic architecture for a p value threshold of t.
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Figure 1. Calibration and power of GENIE in simulations (N = 291,273 unrelated individuals, M = 454,207 SNPs)

(A) Q-Q plot of p values (of a test of the null hypothesis of zero GxE heritability) when GENIE is applied to phenotypes simulated in the
absence of GxE effects. Fach panel contains 100 replicates of phenotypes simulated with additive heritability h§ = 0.25 and varying
proportions of causal variants. The causal ratios are the same for the G and GxXE components (10%), and the causal SNPs for the GxE
component are independently sampled to those for the additive genetic component. Across all architectures, the mean of P(rejection
atp < t)is 7.5% and 0% for t = 0.05 and t = %33, respectively (7.5% is not significantly different from the nominal rate of 5%).

(B) The power of GENIE across genetic architectures as a function of GXE heritability. We report power for p value thresholds of te
{0.05,9931}.

(C) The accuracy of h?

o €stimates obtained by GENIE. Across all simulations, statin usage in UKB was used as the environmental variable.

tains estimates of #2,, that are accurate across the environ-

GENIE has adequate power to detect GXE effects with
hZ,. > 0.005 in a sample of 300,000 unrelated individuals
atp < 0.05 (Figure 1B). The power increases from around
20% to 100% as the sample size grows from 30,000 to

300,000 when h2,, = 0.01atp < 0.05 and remains almost

gxe
100% for hZ,, > 0.05 as the sample size reaches 50,000
(Figure S2A). Additionally, GENIE yields unbiased esti-
mates of GxE heritability (Figure 1C), and the SEs esti-
mated by GENIE were concordant with the true SEs
(Figure S3).

Next, we assessed the accuracy of GENIE in a setting with
multiple environmental variables. We simulated pheno-
types from a sub-sampled set of UKB genotypes, choosing
a subset of N = 10,000 individuals and 20,000 SNPs on
chromosome 1 of the UKB Axiom array. We considered a

setting with L = 10 environmental variables with a§ =
0.2, five environmental variables with ‘Tﬁxe = 0, three

environmental variables with ¢2, = 0.1, and two with

gxe

o2, = 0.01. We generated 100 replicates of simulated phe-

gxe

notypes for each set of parameters. We find that GENIE ob-

gxe

mental variables (Figure S1; Table S1).

Impact of randomization on GxE estimates

We investigated the impact of randomization on the esti-
mates obtained by GENIE by comparing it to the exact
MoM. Since exact MoM is computationally infeasible for
large sample sizes, we choose to experiment on a small-scale
dataset consisting of N = 10,000 unrelated white British
individuals and M = 60,000 SNPs selected from the UK
Biobank array SNPs on chromosome 1. We generated 100
replicates of phenotypes with no noise heterogeneity,
h? = 0.1, and varying hZ,, with standardized smoking sta-
tus as the environment variable. We ran GENIE using the
G + GxE + NxE model with B = 10 random vectors and
compared the estimated G and GxE heritability with the re-
sults from GCTA-HE regression'' (exact MoM) on G and
GxE GRM matrices. We see that exact MoM has a slightly
higher statistical power than GENIE (with an increase in po-
wer of 2% to 8% across the values tested; Figure S4A).
Further, the relative contribution of randomization to the
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SE of GENIE remains around 30% despite the variation of
power difference across simulations (Figure S4B).

Confirming that randomization makes a modest differ-
ence on the power of GENIE, we quantified the effect of
the number of random vectors. We explored the choice
of the number of random vectors in two ways. First, we
quantified the contribution of randomization to the SE
of the GxE estimator in GENIE. We simulated 100 pheno-
types where hgxe = 0. We compared the SE of GxE esti-
mates with B = 10 random vectors run 100 times over
one of the replicates (the contribution of the randomiza-
tion to the SE) to the SE of GXE estimates across 100 repli-
cates to determine that, with B = 10, randomization con-
tributes to about 30% of the total SE across various sample
sizes (Figure S5). Second, we verified that our GXE estimates
are highly correlated for the choice of random vectors B =
10 vs. B = 100 (Pearson’s correlation r = 0.99; Figure S6).
These results lead us to conclude that B = 10 random vec-
tors provide stable estimates, and we use this setting in our
remaining analyses.

Noise heterogeneity

Previous studies have shown that accounting for noise het-
erogeneity (NXE component) is essential to avoid false pos-
itives and inflation in estimates of GxE effects.'>'*** To
demonstrate the importance of modeling NxE, we simu-
lated phenotypes in the presence of NxE effect such that
h? 2 .€{0,0.04,0.08,0.10} (we set o2, to 0.04

oxe = Onxe nxe

when h;xe = 0). We ran GENIE, in turn, with and without
the NxE component. Across all simulations, the model that
does not account for the NXE component (G + GxE) yields
statistically significant upward bias in its GXE estimates
(relative bias ranges from 2.5% to 69% across genetic archi-
tectures) while the model that fits a noise heterogeneity
component (G + GXE + NxE) achieves unbiased estimates

of GxE (Figure S7).

| !'\{""’T\ |

0.15
True NXE variance

Figure 2. Comparisons of false positive
rates with existing methods with the pres-
ence of noise heterogeneity

False positive rates of tests for GxE heri-
tability across GENIE, MEMMA, and
MonsterLM using (A) continuous and (B)
discrete environment exposures. We per-
formed simulations with no GxE heritabili-
ty but with varying magnitudes of the vari-
ance of the NxE effect. We computed the
false positive rate as the fraction of rejec-
tions (p value of a test of the null hypothesis
of zero GxE heritability < 0.05) over 100
replicates of phenotypes. The phenotypes
were simulated from N = 40,000 individ-
uals and M = 223,591 SNPs filtered from
M = 454,207 SNPs with the genotype
QC steps in MonsterLM: SNPs that failed
the Hardy-Weinberg test at the significance
threshold 10~ 19 were excluded, and highly
correlated SNPs with LD 72 > 0.9 and SNPs
with MAF < 0.05 were removed. Error bars
correspond to the estimated 95% CI of the
rejection rate.

Method

“ GENIE
MonsterLM
MEMMA

0.20

Comparison with existing methods in simulations

We compared the calibration of tests of GXE from GENIE
with MEMMA'® and MonsterLM."” GPLEMMA" was
excluded due to its focus on multiple environmental vari-
ables. We conducted the benchmark experiments on
M = 454,207 SNPs from a subset of N = 40,000 unre-
lated white British individuals. To ensure a fair comparison
with MonsterLM, which requires genotype QC steps, we
filtered SNPs by removing those with high LD (2 > 0.9)
and low MAF (MAF < 0.05), resulting in 223,591 SNPs
(we report results for GENIE and MEMMA on unfiltered
SNPs in Figure S8). We then simulated phenotypes with
both continuous (cystatin-C) and discrete (statin usage)
environmental variables on the filtered SNPs. In simula-
tions with no GXE or NxE effects, MEMMA had inflated
false positive rates while GENIE and MonsterLM were cali-
brated (Figure 2). The inflated false positive rate for
MEMMA in the absence of the NxE effect can be explained
by a bias in their estimates of the SE of the variance compo-
nents (Figure S9). Under scenarios with noise heterogene-
ity, GENIE remained calibrated while MonsterLM dis-
played inflation in its false positive rate with increasing
NxE variance for both continuous and discrete environ-
ment variables. MEMMA showed elevated false positive
rates with discrete environment variables, and lower but
still inflated false positives with continuous environmental
variables (Figure 2).

Robustness of GENIE in simulations

We tested the robustness of GENIE by varying the correla-
tion between the phenotype (Y) and the environment (E),
simulating heritable E, imposing that the causal SNPs are
the same for the G and GxE components, simulating Y
that has the same causal SNPs with the heritable E, and
simulating a collider bias scenario. In addition, we also
considered a scenario where the environment noise is
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Figure 3. Estimation of G and GxE heritability in six simulated scenarios

We investigated the performance of GENIE in estimating G and GxE heritability under six simulated scenarios. (1) Correlated Y: the phe-
notypes were correlated with the continuous environment exposure, with Pearson’s correlation r = 0.5; (2) heritable E: the environ-
ment exposure E was simulated from the same set of genotype data as in the phenotype simulation, with an additive genetic heritability
of 0.1; (3) same causal SNPs: additive genetic causal SNPs completely overlap with GXE causal SNPs; (4) same causal SNPs for additive and
heritable E: additive genetic causal SNPs completely overlap with the causal SNPs explaining heritability in E, where E is the same as in
scenario (2); (5) collider bias: the phenotype Y and environment exposure E are correlated through an unobserved confounder; we simu-
lated a heritable environment variable with a genetic heritability of 0.1. The phenotypes were then generated to have a Pearson'’s cor-
relation r = 0.2 with the heritable E. We assumed that the correlation was due to an unobserved confounder.'” (6) Heavy-tailed noise:
we drew the environment noise component from the Student’s t-distribution with degrees of freedom = 4. In all scenarios, we simulated
100 replicates of phenotypes with NxE and varying magnitude of GxE effects across N = 291,273 individuals genotyped at 454,207
SNPs. The ground truth GxE heritability was 0, 0.04, and 0.1, with corresponding NxE variance of 0.04, 0.04, and 0.1. The additive ge-
netic heritability was fixed at 0.25. The x and y axes denote the true GxXE heritability and the estimated G and GxE heritability. Points and
error bars represent the mean and estimated 95% CI, respectively. Across all simulations where there is no GxE, the mean of P(rejection at
p < t)are 5.5% and 0% for t = 0.05 and t = 0.05/200, respectively (5.5% is not significantly different from the nominal rate of 5%).

drawn from a heavy-tailed distribution (see Note S3 for
details). In these simulations, we use a continuous envi-
ronmental exposure (to complement our previous set of
simulations that used a discrete environmental exposure,
i.e., statin usage). In scenarios where the environmental
exposure is heritable, we simulated continuous environ-
mental exposure with specific genetic architecture. In sim-
ulations where the environment exposure is not heritable,
we use a continuous exposure measured in UKB (cysta-
tin-C). In all simulations, we simulated phenotypes with
NxE and varying GxE effects across N = 291, 273 individ-
uals genotyped at 454,207 SNPs for 100 replicates. The re-
sults summarized in Figure 3 indicate that GENIE obtains
accurate estimates across these scenarios.

Computational efficiency

We evaluated the runtime of GENIE, MonsterLM, MEMMA,
and GCTA(HE) (which implements an exact MoM esti-
mator) with increasing sample size (N e {10000, 50000,
100000, 290000}) for a fixed number of SNPs (M = 454,
207) and a single environmental variable. All methods
were run on an Intel(R) Xeon(R) Gold 6140 CPU 2.30GHz,

with 187GB RAM. Ten random vectors are used by GENIE
and MEMMA. For GENIE, runtime measurements were ob-
tained for the single component and eight MAF/LD compo-
nents. All other methods fit a single G and GxE variance
component. The runtime of GCTA(HE) includes the
computation of the GRM matrix. Our comparison used
the CPU implementation of MonsterLM, with runtime cal-
culations excluding the preprocessing step for genotype
filtering required by MonsterLM. GENIE is highly scalable
and can estimate GXE on about 300,000 individuals and
roughly 500,000 SNPs within an hour, with the eight-
component model nearly as efficient as the single-compo-
nent model (Figure S11).

Estimating GxE in the UKB

We applied GENIE to estimate additive heritability (h;) and
GxE heritability (hﬁxf_,) for 50 quantitative phenotypes
measured in UKB across unrelated white British individ-
uals. These 50 phenotypes fall into eight broader pheno-
typic categories (blood biochemistry, kidney biomarkers,
anthropometry, lipid metabolism biomarkers, blood pres-

sure, liver biomarkers, lung, and glucose metabolism

1468 The American Journal of Human Genetics 117, 1462-1480, July 11, 2024



biomarkers) that have been analyzed in prior works.**2°

Following these studies, we applied a rank-based inverse
normal transformation to all phenotypes. For certain phe-
notypes affected by medication usage (systolic/diastolic
blood pressure, LDL direct, and total cholesterol), we adop-
ted heuristic adjustments for medication variables.***” We
then reevaluated the GxE heritability estimates using
GENIE (see Note S4 for details). We considered, in turn,
smoking status, sex, age, and statin usage as environ-
mental variables. We included each environmental vari-
able as a fixed effect in the relevant analyses. First, we
explored the importance of modeling NxE in real data
(building on our simulation results). We then analyzed,
in turn, common SNPs genotyped on the UKB array
(MAF > 1%) and then common and low-frequency
imputed SNPs (MAF > 0.1%). For selected combinations
of phenotypes and environmental variables, we also
applied GENIE to partition GxE heritability across func-
tional annotations to estimate GXE heritability in genes ex-
pressed in specific tissues.

We note that individuals with missing environmental or
phenotype data were removed in the implementation of
GENIE instead of being imputed by the mean value. We
observed that the application of mean imputation to the
phenotype results in underestimation of i and hZ,, while
mean imputation of the environment variables affected
but not h§ (Figure S12). We therefore

recommend that users leave missing exposure and
outcome data as it is when applying GENIE in their anal-
ysis based on the simulation results.

. . 2
the estimation of hg,,

Robustness of GENIE in the UKB

We first assessed the robustness of GENIE by estimating hf,
under three different models: G, G + GxE, and G + GXxE +
NxE, where each model is named by the set of variance
components fitted jointly. The additive heritability esti-
mates were highly correlated across the models (Pearson’s
correlation r > 0.98 for every pair of models), leading us
to conclude that GENIE provides robust estimates of addi-
tive heritability across different models (Figure S13). We
observed a significant difference in hf, for a handful of
trait-E pairs when estimated with G + GxE and G +
GxE + NxE that include alcohol frequency intake and
overall health with smoking status, sex, or age as the envi-
ronmental variable. In previous work,”' we compared the
additive h? estimates from RHE with S-LDSC,”® GRE,”
SumHer,*° and LDSC?!' to find that RHE estimates of
additive heritability for 22 complex traits are consistent
with the existing methods. We additionally compared
the additive heritability estimates from GENIE with those
obtained using LDSC (run with in-sample LD scores esti-
mated from a subset of 50 K unrelated white British indi-
viduals in UKB). The estimates of additive hﬁ from LDSC
were compared against those from GENIE with environ-
mental exposures of smoking status, sex, age, and statin.

The estimates across 50 traits were consistently correlated
for the two methods, with Pearson’s correlations ranging
from 0.87 to 0.93 (Figure S14).

Our simulations in the previous section revealed the
importance of modeling noise heterogeneity (Figure S7).
To investigate the consequences of modeling NxE in real
data, we fitted, in turn, models without and with NxE (in
addition to G and GxE components). The number of
trait-E pairs with significant h2,, (p < 0.05/200) decreased

gxe
from 135 under the G + GxE model to 68 under the G +
GxE + NxE model: changing from 40 to 21 for smoking
(Figure 4B), 27 to 28 for sex (Figure S15B), 28 to 12 for
age (Figure S16B), and 40 to 7 for statin usage (Figure
S17B). For traits with significant hgxe, the magnitudes of
the estimates varied across the two models: the ratios of
h?,, estimates under the G + GXE + NxE to the G + GxE
model were 137% on average (range: 43% — 350%),
110% (70% — 224%), 131% (99% — 166%), and 42%
(21% — 72%) for smoking (Figure 4A), sex (Figure S15A),
age (Figure S16A), and statin (Figure S17A), respectively.
The magnitude of noise heterogeneity across trait-E pairs
can be substantial: 0.05%, 164%, 10%, and 14% of the ad-
ditive heritability on average for smoking, sex, age, and
statin, respectively (Figures S18-S21). To further investi-
gate the effect of modeling NxE, we performed permuta-
tion analyses by randomly shuffling the genotypes while
preserving the trait-E relationship (a setting where there
is expected to be no GXE by construction while the rela-
tionship between phenotype and E is preserved). We
applied GENIE under the G + GxE and G + GxE + NxE
models to each trait-E pair. The false positive rate of reject-
ing the null hypothesis of no GXE across the trait-E pairs is
substantially inflated under the G + GxE model while be-
ing controlled under the G + GxE + NxE model (Figures
4C, S15C, S16C, and S17C for smoking, sex, age, and statin
respectively). These results indicate that modeling NxE is
critical to avoid spurious findings of GxE.

Gene-by-smoking interaction
We applied GENIE to estimate the proportion of phe-
notypic variance explained by gene-by-smoking interac-

tions (h;xSmokmg) for 50 quantitative phenotypes. We find

21 traits showing statistically significant evidence for
2 smoking (P < 0.05/200) with about 6.1% of h?
on average (Figures 5A and 6A). Two of the traits with

the largest K, Were basal metabolic rate and BMI

with estimates of 2.4% and 2.3%, respectively (estimates
remained significant when we used the binary coding of
the smoking status variable obtained by merging the cate-
gories of never and previous; Figures 525 and S28C). Our
estimates are consistent with a previous study that
analyzed BMI and lifestyle factors in the UKB to find signif-

. . . 5
icant GxE for smoking behavior.” The h;xSmoking

for basal metabolic rate and BMI are about 11% and 7%
of their respective h% estimates.

2
hngmoking

estimates
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Model

Effect of noise heterogeneity (NxE) on estimates of heritability associated with GxSmoking across 50 quantitative pheno-

Model G + GXE refers to a model with additive and gene-by-environment interaction components where the environmental variable is
smoking status. Model G + GxE + NxE refers to a model with additive, gene-by-environment interaction, and noise heterogeneity
(noise-by-environment interaction) components.

(A) We ran GENIE under G + GxE and G + GxE + NxE models to assess the effect of fitting an NxE component on the additive and GXE
heritability estimates.

(B) Comparison of GXE heritability estimates obtained from GENIE under a G + GxE 4+ NxE model (x axis) to a G + GxE model (y axis).
Black error bars mark + standard errors centered on the estimated GxE heritability. The color of the dots indicates whether estimates of
GxE heritability are significant under each model.

(C) We performed permutation analyses by randomly shuffling the genotypes while preserving the trait-E relationship and applied
GENIE in each setting under G + GxE and G + GxE + NxE models. We report the fraction of rejections P(p value of a test of the null

hypothesis of zero GXE heritability < %% that accounts for the number of phenotypes tested) over 50 UKB phenotypes.

Gene-by-sex interaction h? although these estimates are not statistically

We find 28 traits w1th statistically significant h2 vsex (P <
0.05/200) with h ngeX /h2 observed to be 8.7% on average
(Figures 5B and 6B). Serum testosterone levels showed

the largest h of 11% with the h%,, nearly as large

ngex gxSex

as h2 consistent with prior work showing differences
in genetic associations’”’* and heritability’* across
males and females. Beyond testosterone, we observe sig-

nificant h2,, for several anthropometric traits, such as

gxSex
waist-hip-ratio (WHR) adjusted for BMI (h2,,, = 4.3%

gxSex

and % = 20%), and lipid measures (results consistent
for binary encoding; Figures S26 and S28B) consistent
with previous work documenting sex-specific differences
in the genetic architecture of anthropometric traits.”**’
Consistent with prior GWAS that identified genetic var-
iants with sex-dependent effects,*”*' our analyses of

serum urate levels show substantial point estimates of

gxSex’
significant.

Gene-by-age interaction

We find 12 traits with statistically significant hngge
(p < 0.05/200) with hZ,,./hZ observed to be 4.3% on
average (Figures 5C and 6C). Lipid and blood pressure mea-
sures show some of the largest h2 uage (@bout 2.5% for LDL

and total cholesterol and 1.9% for diastolic blood pres-
sure). Previous studies have found genetic variants in
SORT1 to have age-dependent effects on LDL cholesterol*”
and nominal evidence for age-dependent genetic effects
on blood pressure regulation.”®> We find that BMI shows
evidence for significant hZ,,,, while WHR does not, exp-
anding on prior work that identified age-dependent ge-
netic variants for BMI but not for WHR in genome-wide as-
sociation studies (GWASs).”® Interestingly, we used a
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Figure 6. Estimates of the ratio of GxE to additive heritability across phenotypes in UKB

Liver @ Other

Estimates of the ratio of (A) GxSmoking, (B) GxSex, (C) GxAge, and (D) GxStatin to additive heritability across 50 UKB phenotypes. Error
bars mark =+ 2 standard errors centered on the point estimates. The asterisk and double asterisk correspond to the nominal p < 0.05 and
p < 0.05/200, respectively.
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standardized encoding of age so that GxAge effects capture
the interaction of genetic effects on the phenotype as a
function of deviation from the mean age in UKB while pre-
vious studies typically focus on changes in genetic effects
in bins of age. It is plausible that other codings of age,
e.g., coding age to measure interactions as a function of
older vs. younger individuals, could yield differing results.

Gene-by-statin interaction
We find seven traits that show statistically significant evi-

dence for hgxsmnn (p < 0.05/200) with an average ratio of
h2

2 statin 10 M2 across traits of 5.2% (Figures 5D and 6D).
We find that LDL and total cholesterol show significant
(1.7% and 1.6% respectively) while HDL choles-

of 0.4% does not (re-

sults consistent for binary encoding; Figures S27 and

S28A). We observe the largest estimates of hngtatln for

HbAlc and blood glucose measurements (2% and 1.2%
respectively), which are interesting in light of statin usage
being shown to be associated with a small increase in risk
for type 2 diabetes.**

ngtutm

terol with a point estimate of h;xmﬁn

GxE heritability estimates stratified by sex

Quantitative measurements like testosterone concentra-
tions are strongly determined by sex, and therefore, one
might be concerned with the possibility of collider bias
in hﬁxe estimates on the whole population for these sex-
determined traits. To address this issue, we repeated our
previous analyses to estimate GxSmoking, GxAge, and
GxStatin in females and males separately across the 50
traits. The results show that the sex-specific GXE heritabil-
ity estimates are overall consistent with the results on all
individuals (Pearson’s correlations ranging from 0.67 to
0.80). By comparing GxE heritability estimates between fe-
male and male individuals, we noted Pearson’s correlations
of 0.50, 0.61, and 0.40 for GxSmoking, GxAge, and GxSta-
tin, respectively (Figures S22-524). In terms of the GXE her-

-
itability of testosterone specifically, we see that 57 is no
8

longer significant for testosterone in female and male indi-
viduals (Figure S22) while estimates of h2 overlap

gxSmoking
with the previous results: (—0.82%,0.97%) and
(—0.71%,1.37%) in females and males, respectively, and
(0.58%,1.47%) in the whole population. Hence, the atten-
uation of our estimates could be explained by the possibil-
ity of collider bias or a reduction in power. In general, the
phenotypes that have the most significant GXE interac-
tions are in the categories of anthropometry and blood
biochemistry for GxSmoking, blood pressure and glucose
metabolism for GxAge, and glucose metabolism and lipid
metabolism for GxStatin in the sex-stratified analyses. In
particular, GxSmoking estimates on BMI, basal metabolic
rate, and white blood cell count remain significant for
both males and females under p < 0.05/200. The differ-
ences in the GxXE estimates between males and females

could suggest the presence of sex-specific GXE interaction
effects.

Comparison with existing methods on significant trait-E
pairs

We compared GxE heritability estimates of MEMMA,
MonsterLM, and GENIE on real UKB phenotypes. While
the consistency of GXE estimates from methods based on
different model assumptions can enhance our confidence
in the results, such comparisons have inherent limita-
tions—our simulations have revealed variations in false
positive rates among different methods. With these ca-
veats, we evaluated GxE heritability using MonsterLM
and MEMMA on 68 significant trait-E pairs detected by
GENIE (p < 0.05/200). We noted Pearson’s correlation
r = 091 between the point estimates of GENIE and
MonsterLM and 0.24 between GENIE and MEMMA across
the 68 trait-E pairs (Figure S10). The closer alignment be-
tween the point estimates by GENIE and MonsterLM can
be attributed to the shared consideration of noise heteroge-
neity within both models.

Estimating GxE heritability from imputed SNPs
We applied GENIE to estimate 17, q, xiner Moxser Havager and
2 stain Attributable to M = 7,774,235 imputed SNPs
with MAF > 0.1%. Prior work has shown that analyzing
common and low-frequency variants with a single vari-
ance component can result in biased estimates of additive
heritability.*>*® A solution to this problem involves fitting
multiple variance components obtained by partitioning
SNPs based on their frequency and local LD scores (as
quantified by the LD scores®! or the LDAK scores*”).?%#¢748
We follow this approach by partitioning SNPs into eight
annotations based on quartiles of the LD scores and two
MAF annotations (MAF < 5% and MAF > 5%; material
and methods).

We performed simulations to show that GENIE applied
with SNPs partitioned based on MAF and LD scores can
accurately estimate hm across varying MAF and LD-depen-
dent genetic architectures while using a single component
for all SNPs can lead to substantial biases (Note S2,
Figure S29). We applied GENIE using MAF-LD partitions

to jointly estimate hZ and h,, (Figures $30-$33). While es-
timates of hgxe from imputed SNPs are largely concordant
with the estimates obtained from array SNPs, we identify
nine trait-E pairs for which the hw estimates are signifi-
cantly different (p < 0.05/200). In all these cases, hﬁxe
mates from imputed SNPs are higher than those from
array SNPs. For example, we estimated hgmmokmg for BMI
= 6.5+0.5%, which is larger than our estimate based on
array SNPs as well as a previous estimate of 4.0 +0.8%
based on common HapMap3 SNPs.® Across all trait-E pairs,

M) is 1.17 (1.66,

we observed that the average ratio (=5 )
1.23, 0.71, and 1.17, respectively, for GxSmoking, GxSex,

esti-
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(A) The squared per-allele GXE effect size for four selected pairs of trait and environment (trait-E pairs).

(B) The squared per-allele additive effect size for the same trait-E pairs. The x axis corresponds to MAF-LD annotations where annotation
i.j includes SNPs in MAF bin i and LD quartile j where MAF bin 1 and MAF bin 2 correspond to SNPs with MAF < 5% and MAF > 5%,
respectively, while the first quartile of LD scores correspond to SNPs with the lowest LD scores respectively). The y axis shows the per-

allele GXE (or additive) effect size squared defined as %

) where hf is the GXE (or additive) heritability attributed to bin k, My is the

number of SNPs in bin k, and fx is the mean MAF in bin k. Error bars mark =2 standard errors centered on the estimated effect sizes.

GxAge, and GxStatin; Figure S34). Across trait-E pairs with

significant hZ,,, the average hZ,, is 2.8% on the imputed

data compared to 1.5% on array data while the ratio of
2

hﬁf is 14.3% on the imputed data compared to 6.8% on
8

the array data (averaged across trait-E pairs, we estimated

hﬁxe = 0.9% on imputed vs. 0.7% on array data).

We explored the impact of fitting multiple variance com-
ponents based on MAF and LD by applying GENIE to fit a
single GXE and additive variance component using smoking
status as the environmental variable. While ten traits

showed significant h;xSmoking in both analyses, five traits

were exclusively significant in the MAF-LD model while
one was exclusively significant in the single-component
model. Restricting to traits with significant GxSmoking in
both models, hZ estimates in the MAF-LD model

gxSmoking
were about three times those from the single-component
model on average (Figure S35). We also investigated whether
MAF-LD partitioning affected estimates of h2 ob-

gxSmoking
tained from array SNPs. We find that h?xSmoking estimates

are largely concordant whether obtained from a single
component or an MAF-LD partitioned model (ratio of 0.99
on average) consistent with the array SNPs being relatively
common (MAF > 1%). Our analysis suggests that partition-
ing by MAF and LD is helpful for estimating h;xe from both
common and low-frequency SNPs and the inclusion low-fre-

quency SNPs can increase estimates of hﬁxe for specific traits.

Partitioning GxE heritability across MAF and LD
annotations

Previous studies have shown that the additive SNP effects
increase with decreasing MAF and local levels of
LD?"*97! likely due to the effects of negative selection.
Similar to previous analyses,'*'” we explored the MAF-
LD dependence of SNP effects in the context of specific
environmental factors. Our analyses in the preceding sec-
tion, showing differences in the genome-wide hgxc
mates when partitioning by MAF and LD vs. fitting a single
variance component, suggest that GXE effects are expected
to vary by MAF and LD in a pattern that is distinct from
what would be expected when fitting a single variance
component, which assumes that the effect size at a SNP

varies with its allele frequency fas ﬁ while not varying

esti-

with local LD (for a fixed value of the allele frequency f). To
explore the MAF-LD dependence of GxE effects, we used
GENIE to partition hﬁxe across MAF and LD annotations
(while simultaneously partitioning additive heritability)
of M = 7,774,235 imputed SNPs divided into eight anno-
tations based on quartiles of LD-scores and two MAF bins
(low-frequency bins with MAF < 5% and high-freque-
ncy bins with MAF > 5%). Within each of these eight
bins, we defined the per-allele squared effect size as
ﬂf = Wﬁ_m where k2 is the GXE (or additive) heritabil-
ity attributed to bin k, My is the number of SNPs in bin k,
and fi is the mean MAF in bin k.
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For the sake of presentation, we selected one phenotype
with high genome-wide GxE heritability for each of the
four environmental variables analyzed (Figure 7; see
Table S4 for results on all trait-E pairs). Across bins of MAF
and LD, the magnitude of additive allelic effects tends to
be larger than those of the GxE effects consistent with the
genome-wide results. We observed that the per-allele
squared GXE effect size ﬂgxe tends to increase with lower
MAF within a given quartile of LD score and to increase
with lower bins of LD score for a fixed MAF bin
(Figure 7A). These trends are analogous to the relationship
observed for additive per-allele effect sizes (Figure 7B).
Across the trait-E pairs, restricting to the lowest quartile of
LD scores, low-frequency SNPs tend to have higher per-allele
GXE effect sizes compared to high-frequency SNPs: the ratio
of 62, in low vs. high MAF bins is 8.2+11.2, 24.6+ 19.7,
3.4=2.1, and 3.7+1.2 for HbAlc-statin, BMI-smoking,
LDL-age, and testosterone-sex, respectively. In the highest
quartile of LD scores, we found no statistically significant
differences in 63,
the four trait-E pairs (we also plot the per-standardized geno-

across low and high MAF SNPs in any of
type additive and GXE heritability, 1% in Figure S36).

Partitioning GxE heritability across tissue-specific genes
The ability of GENIE to simultaneously estimate multiple,
potentially overlapping, additive and GxE variance com-

ponents enables us to explore how h;xe

is localized across
the genome. Specifically, we set to answer the question of
whether hﬁxe is enriched in genes specifically expressed in
a given tissue as a means to identify tissues that are rele-
vant to a trait in a specific environmental context.

We applied GENIE to estimate hZ and h,, across each of
53 sets of genomic annotations defined as regions around
genes that are highly expressed in a specific tissue in the
GTEx dataset'® (Table S3). For each of the four environ-
mental variables, we analyzed only traits with genome-
wide significant h2,, based on our prior analyses of the

gxe

array SNPs. For every set of tissue-specific genes, we fol-
lowed prior work'® by jointly modeling the tissue-specific
gene annotation as well as 28 genomic annotations that
are part of the baseline LDSC annotations that include
genic regions, enhancer regions, and conserved regions.”®
Specifically, our model has 29 additive variance compo-
nents and 29 GxE variance components and estimates
the additive and GxE heritability that can be attributed
to genes specifically expressed in a tissue while controlling
for the effects of the background annotations. A positive

2 e . . .
hs 4issue TEPTESENLS @ pOsitive contribution of genetic effects

in a tissue to additive heritability.'® Analogously, a positive

2 PR . . .
h5ye rissue TEPTESENLS @ Ositive contribution of genetic effects

in this tissue to trait heritability in the context of the

. . . n, . Jh?
specific environment. We test estimates of - sl
Miissue /Miotal

w2, /h? . . .
g.thAlte/ 8.total to answer Whethel‘ a tissue Of interest is en-
Miissue / Miotal

riched for GXE (additive) heritability conditional on the re-
maining genomic annotations included in the model.
We first verified that our approach is able to detect previ-
ously reported enrichments for additive effects such as
brain-specific enrichment for BMI and adipose-specific
enrichment for WHR (Figure 8).'® Across 68 trait-E pairs
with significant genome-wide GxE that we tested, we
observed significant enrichment of h2 (FDR < 0.10)

gxe,tissue
for at least one tissue in five trait-E pairs (we plot four of
these pairs in Figure 8 since the results from the fifth
LDL-age are highly correlated with cholesterol-age). Across
these trait-E pairs, we documented differential patterns of
enrichments for GXE effects compared to additive effects.
BMI exhibits brain-specific enrichment of h?

gxSmoking
hZ while WHR exhibits enrichment of hZ,,

and
and hZ in adi-
pose and breast tissue (in addition to the enrichment of h?
in the uterus and cardiovascular tissues). The adipose-tis-
sue-specific enrichment of h;xm in WHR is notable in light
of known instances of genes associated with WHR in adi-
pose tissue in a sex-dependent manner. ADAMTSY, a
gene involved in insulin sensitivity,” is specifically ex-
pressed in adipose tissue and has been shown to be located
near GWAS hits for WHR that are specific to females.***°>?
The transcription factor, KLF14, is located near a sex-
dependent GWAS variant for WHR, type 2 diabetes, and
multiple other metabolic and anthropometric traits.>
Further, the expression level of this gene is associated
with the GWAS variant in adipose but not with other tis-
sues.’” We also found instances where tissues that are en-

riched for hﬁxe are distinct from those that are enriched

2 i 2
for hy. We observed that the enrichment of hg,g,,

metabolic rate in brain and adipose tissues is distinct from
the tissues that are enriched in h§ for the same trait (cardio-

for basal

vascular and digestive tissues) (Figure 8). Finally, we find
suggestive evidence that the liver is the most enriched tis-

sue for hZ g, in HbAIc (p = 0.02) as well as for 13, in

testosterone (p = 0.005), although neither enrichment is
significant at FDR of 0.10. These enrichments recapitulate
known biology: the liver-specific enrichment of GxStatin
effects for HbAlc reflect the tissues in which the target of
statins (HMG-CoA-reductase) is expressed®* while the
liver-specific enrichment of GxSex for testosterone is
consistent with previous findings implicating CYP3A7, a
gene involved in testosterone metabolism that is specif-
ically expressed in the liver and lies within a locus that
contains one of the strongest GWAS signals for serum
testosterone in females.””

Discussion

We have described GENIE, a method that can jointly esti-
mate the proportion of variation in a complex trait that
can be attributed to GXE and additive genetic effects.
GENIE can also partition GXE heritability across the
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cific annotation, we use GENIE to test whether this annotation is significantly enriched for per-SNP heritability, conditional on 28 func-
tional annotations that are part of the baseline LDSC annotations. The dashed and solid lines correspond to the nominal p < 0.05 and
FDR < 0.1 threshold, respectively. We have labeled two tissues with the most significant p values for each figure.

genome with respect to annotations such as functional
and tissue-specific annotations or annotations defined
based on the MAF and local LD score of each SNP to
localize signals of GxE. GENIE provides well-calibrated
tests for the existence of a GXE effect and has high power
to detect GXE effects while being scalable to large datasets.

Our simulations and real data analysis results confirm
the importance of including noise heterogeneity in GXE
models. Simulations comparing the calibration of GENIE
to MEMMA and MonsterLM suggest that modeling NxE

does not introduce biases in scenarios without noise
heterogeneity. Furthermore, it aids in controlling false pos-
itive rates when noise heterogeneity exists. In UKB data
analyses, we observed that about half of trait-E pairs with
significant hgxe under the G + GxE model are no longer sig-
nificant under the G + GxE + NxE model. Consistent with
this observation, we estimated a substantial contribution
of noise heterogeneity to trait variation. While our results
demonstrated the importance of integrating noise hetero-

geneity for a more reliable and accurate estimation of GXE
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heritability, alternative methods—adjusting the pheno-
type values of individuals in different quantile bins of
the environment variable separately as proposed in Di Sci-
pio et al."’—can prove effective under moderate levels of
noise heterogeneity.

After accounting for noise heterogeneity, we observe sig-
nificant genome-wide hﬁxe across more than a quarter of
the trait-E pairs analyzed. Our finding has implications
for understanding trait heritability by moving beyond
the definition of narrow-sense heritability that only in-
cludes additive genetic effects. Based on our analyses, it is
conceivable that approaches that can jointly model the
hundreds of environmental variables measured in bio-
bank-scale datasets will further increase estimates of hﬁxe.
Additionally, our recovery of additional hZ,, from low-fre-
quency SNPs (0.1% < MAF < 1%) point to traits where
an understanding of GXE effects can benefit from whole-
exome and whole-genome studies. Our analyses of com-
mon and low-frequency SNPs lead us to recommend that
SNPs should be partitioned based on MAF and LD when
estimating GxE heritability (while such partitioning does
not qualitatively affect results for common SNPs). Further,
our results point to traits where GXE has the potential to
improve genome-wide polygenic scores (GPSs) of complex
traits (since hZ,, quantifies the maximum predictive accu-
racy that is achievable by a linear predictor based on GXE
effects). In the context of sex as an environmental variable,
sex-specific GPS has been shown to provide improved ac-
curacy over agnostic scores.’**?>>°¢ GxE has also been
recently proposed as a possible explanation for why GPS
may not generalize beyond the cohort on which these pre-
dictors were trained® so that modeling GxE in relevant
traits could improve their transferability. Our finding that
allelic effects for GxE increase with decreasing MAF and
LD analogous to the relationship observed for additive
allelic effects motivates an evolutionary understanding of
these trends and can inform what we expect to learn
from studies of rare genetic variation. Finally, our identifi-
cation of sets of genes that are enriched for GxE can offer
clues on trait-relevant tissues and pathways and has the
potential to inform functional genomic studies.”’>®

We discuss the limitations of our work as well as direc-
tions for future research. First, GENIE does not explicitly
model G-E correlations.'” While such correlations can
lead to biases in estimates of GXE in the fixed-effect
setting,’” it has been shown that, in the polygenic setting,
the GxE variance component estimates remain unbiased
when G-E correlations are independent of the polygenic
GxE effects."* Further, our simulations suggest that
GENIE is robust in the presence of G-E correlations. Never-
theless, there are plausible settings, where such correla-
tions can lead to false positive or biased estimates of GxE,
e.g., where the phenotype directly affects the environ-
mental variable. Developing scalable methods that are ac-
curate in these settings is an important direction for future
work. Second, estimates of GXE heritability are sensitive to
the scale on which traits and environmental variables are

measured and how environmental variables are encoded.
In this work, we analyze quantile-normalized traits (follo-
wing prior studies) and encode discrete environmental var-
iables using a univariate parameterization (either as a 0-1
vector for each environmental variable or as a standardized
version). It might be preferable to work with traits mea-
sured on their original scale and to encode each level of
discrete environmental variables by a separate 0-1 covari-
ate (leading to k environmental covariates for a k-valued
environmental variable). While such choices would neces-
sarily be guided by domain knowledge and interpretability,
GENIE supports easy-to-use and rapid exploration of the
consequences of these choices and can aid in assessing
the robustness of these choices (we have explored a limited
space of these choices here). Third, the environmental var-
iable relevant for GXE may not be measured directly or
accurately, so the environmental variable that is measured
in a dataset is best viewed as a proxy for the relevant latent
environmental covariate. It is essential to acknowledge
that the missingness patterns of phenotypes in biobanks
frequently display structure that is more intricate than
random missingness.®”°" Consequently, removing indi-
viduals with missing data on Es can potentially affect
GxE and other heritability estimates. One approach to
tackle this complexity involves accurate imputation of
missing data while mitigating the introduction of addi-
tional biases as observed in the mean imputation simula-
tions (Figure S12). We view this as an important direction
for future work. Fourth, the model underlying GENIE is
not applicable to binary traits (either with or without ascer-
tainment). GENIE can be extended to be applicable to bi-
nary traits (e.g., disease status) along the lines proposed
in the context of additive®*®* and GxE estimation."*
Apart from the constraints inherent to the GENIE
model, we stress the need for cautious interpretations of
the results of this study due to several limitations. While
GENIE can model the impact of heterogeneous noise re-
sulting from observed environmental variables by intro-
ducing NxE components, it is important to note that the
heterogeneous noise may also arise due to non-observed
environmental variables. Several recent works have tried
to test for GXE when the environmental variables are not
observed.'”®* These issues along with the possibility of
reverse causality, i.e., where the phenotype affects the
environmental variable, warrant caution in any causal
interpretation of our results (although it might be possible
to overcome some of these limitations in specific analyses
such as GxSex). Moreover, while the primary focus of our
work is on the methodological aspects of GxE heritability
estimation, our application of GENIE to medication-sensi-
tive traits highlights the complexities arising in this setting
that warrant care in interpreting the results. To explore
these issues, we repeated our previous analyses after per-
forming heuristic adjustments of phenotypes for relevant
medications. Our additional analyses of GXE estimates on
measurements adjusted for medication usage suggest
that, while most of our results are robust to these issues
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(e.g., GXE for systolic and diastolic blood pressure, GxSta-
tin on HbA1lc), some are less so (e.g., GxAge on LDL and
cholesterol) (see Note S4 for details). Finally, while analyses
in this work were based on a cohort of self-identified white
British individuals, it is valuable to investigate GXE effects
using GENIE across a broader range of populations for
stronger and more comprehensive results.

Data and code availability

GENIE software is an open-source software freely available
at https://github.com/sriramlab/GENIE. The software requ-
iresg + + , cmake, and make to compile the C + + codeon
a Linux machine. Please see the documentation in the
GitHub repository for further information.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2024.05.015.
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