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a high-throughput, epoch-wide sampling FPGA kernel that enables
pipelining across epochs. When compared to a baseline random-
access sampling kernel, our solution achieves up to 4.26x lower
sampling time per epoch.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have recently emerged as a pow-
erful approach to performing machine learning tasks on graph-
structured data. GNNs have demonstrated excellent performance
on a variety of prediction and classification scenarios, such as rec-
ommendation, fraud detection, and code summarization [10, 13, 19,
29, 31, 33]. In these application domains, graphs are often massive,
consisting of billions of edges and rich vertex attributes [4, 6, 7]. As
a result, the working set size required for large-scale GNN training
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Figure 1: High-level overview of our proposed epoch-wide
in situ sampling. Existing disk-based GNN training frame-
works perform per mini-batch sampling on the CPU. This
approach incurs multiple I/O operations per epoch to load
edges in memory. In contrast, we propose offloading the sam-
pling stage to an FPGA-equipped SSD. Our design enables
overlapping the sampling computation for epoch i+1 with
the mini-batch aggregation for epoch i.

may exceed the capacity of a single machine’s main memory. To
address this scalability challenge, three approaches have been pro-
posed. Distributed in-memory GNN systems [9, 27, 28, 32, 34, 35]
partition the graph across multiple machines that communicate
over the network to perform training. On the other hand, scale-up
designs target high-end servers with multiple GPUs [18, 30]. Finally,
disk-based GNN systems split the graph into partitions that are
gradually transferred to CPU memory during training [21, 26].

To make GNNss friendly to GPU architectures, many training al-
gorithms employ neighborhood sampling to construct fixed-size
mini-batches for weight aggregation [24]. State-of-the-art disk-
based GNN frameworks [21, 26] perform sampling on the CPU,
as shown in Figure 1(a). Edge partitions are transferred from disk
to memory for each mini-batch. We argue that this design (i) incurs
redundant I/O, as entire neighborhoods are loaded in memory only to
be discarded after sampling, and (ii) may lead to low GPU utilization,
as the CPU is busy with sampling and I/O.

To quantify the I/O redundancy of CPU-based sampling when
edge partitions are loaded from secondary storage, we ran experi-
ments with GraphSAGE models trained on the Papers100M [3] and
Yahoo [5] datasets. We measured the average sample size per epoch
and we found that only between 0.6% to 18% of the total edges are
retained during sampling. Thus, repeatedly transferring all edges
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to main memory incurs a significant waste of PCle bandwidth. Ad-
ditionally, we monitored the GPU utilization of a state-of-the-art
disk-based GNN system [26] for five epochs of a 3-layer model.
Indeed, we observed that that the GPU is underutilized (close to
0%) during 60% of the training duration.

Our proposal: Epoch-wide in situ neighborhood sampling.
In this paper, we make the first step towards an inherently differ-
ent approach that harnesses near-storage compute technology to
achieve efficient large-scale GNN training. In particular, we target
a single machine with one or more SmartSSD [16] devices. Our key
insight is to move sampling closer to the storage by leveraging the
platform’s onboard FPGA to effectively alleviate the bottleneck on
the data path to the host. To this end, we develop a high-throughput
sampling FPGA kernel that enables pipelining across epochs.

Figure 1(b) shows how our design can exploit the intra-device
PCle switch to overlap sampling on the SmartSSD with training on
the GPU. While the CPU and GPU are occupied with mini-batch
preparation and aggregation for epoch i, the SmartSSD can perform
sampling on epoch i+1. We believe that in-situ sampling will result
in more efficient end-to-end training by reducing the amount of
I/O and more effectively saturating the GPU resources.

Interestingly, our preliminary results (§ 3) contradict a previ-
ous claim that the SmartSSD architecture is unsuitable for this
workload [17]. Indeed, we show that if the sampling kernel is im-
plemented naively, the SSD — FPGA transfer time dominates. Our
design effectively alleviates this bottleneck thanks to the key obser-
vation that sampling computations across mini-batches (and epochs)
have no data dependencies. The only data dependency occurs be-
tween layers of the same epoch. As a result, we can perform sam-
pling for a layer of an entire epoch at once and avoid triggering
the FPGA kernel per mini-batch. When compared to the baseline
random-access sampler [17], our epoch-wide sampler achieves up
to 4.26x lower end-to-end sampling time.

We have made our code and experiments publicly available'.

2 IN SITU NEIGHBORHOOD SAMPLING

In this section, we first provide the necessary background on GNN
neighborhood sampling and our target hardware platform (§2.1).
We then describe a baseline random-access sampling kernel and
analyze its limitations (§2.2). Finally, we introduce our proposed
epoch-wide kernel (§2.3) and contrast it with the baseline.

2.1 Preliminaries

Neighborhood sampling in GraphSAGE. In this work, we focus
on mini-batch training of GraphSAGE GNN models [12]. Graph-
SAGE is an inductive model that learns representations of graph
nodes as functions of their neighborhoods. Training proceeds in
epochs that correspond to a full pass over the training nodes of the
graph. At the beginning of an epoch, training nodes are divided into
small batches. GraphSAGE follows a message-passing architecture,
where a node iteratively gathers and aggregates information from
its neighbors. A model may have one or more layers, reaching to
the k-hop neighborhood of the training nodes. For each mini-batch,
GraphSAGE samples multi-hop neighborhoods of the target nodes

!https://github.com/CASP-Systems-BU/damon24-gnn-in-situ-sampling/
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Figure 2: Illustration of the random-access sampler. (1) The
host generates random offsets to sample from and sends them
to the FPGA. (2) The corresponding blocks are transferred to
the FPGA DRAM with a P2P read. (3) The FPGA extracts the
neighbors from the blocks. (4) Finally, the FPGA sends the
sampled results to the host using DMA.

uniformly at random. It then retrieves the features of these neigh-
bors and iteratively aggregates their features. At each layer, a target
node’s features are combined with those of the sampled neighbors
to produce updated features, while the sampled neighbors serve
as the target nodes for the next layer. As iterations proceed, the
features capture the characteristics of the target nodes’ neighbor-
hoods. Finally, the training nodes of the mini-batch are sent to the
GPU for training along with the aggregated feature vectors.

Hardware platform. A SmartSSD [16] can offload computations
to an embedded FPGA that has a direct communication channel to
a NAND array and the host. The host can issue read/write requests
to the SSD controller and computation requests to the FPGA. The
SmartSSD has a PCle 3.0 connection to the host and an on-board
PCle 3.0 switch that provides an internal data path between the
SSD NAND and the FPGA DRAM.

2.2 Limitations of a random-access kernel

To highlight the challenges of developing a high-performing sam-
pling kernel, we first analyze the limitations of the random-access
solution introduced as a baseline in SmartSAGE [17]. This baseline
kernel is a straightforward adaptation of mini-batch sampling on
the SmartSSD. Figure 2 illustrates its operation. The main idea is
to transfer the necessary neighbors from the SmartSSD NAND to
FPGA DRAM and then to the host. For each mini-batch, the host
generates a set of random offsets and triggers the FPGA kernel
to collect the corresponding data. This naive approach incurs a
significant data transfer overhead due to the fact that the minimum
transfer block size for P2P communication from the SSD NAND
to the FPGA memory is 512B. As a result, a separate read opera-
tion per neighbor (4B) results in 128x space amplification. Further,
since sampling is performed per mini-batch, the kernel is called
thousands of times per epoch, adding to the total overhead.

We implement two optimizations to improve the performance of
this basic kernel. First, we implement batch-wise sample dedupli-
cation to reduce the amount of data transferred to the host. Since
training nodes may have common neighbors, some nodes may ap-
pear repeatedly in the sample. We perform deduplication at the
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Figure 3: Illustration of the epoch-wide sampler. (1) The host
sends the set of target nodes to the FPGA. (2) The correspond-
ing chunks are read from the SSD NAND to the FPGA DRAM.
(3) The FPGA performs random sampling and (4) uses DMA
to copy the results back to the host.

host to only retain unique nodes as targets for the next layer. The
second optimization addresses the case where multiple sampled
nodes belong to same 512B block. While the naive implementation
issues a separate read of that block for each node, we use buffer
offsets to enable extracting multiple samples from the same block.

2.3 Epoch-wide sampling kernel

Our proposed design is motivated by two key observations: (i) the
set of training nodes that serve as the target nodes for the first layer
of sampling is fixed and known before the training starts, and (ii)
computing a sample for mini-batch j + 1 does not depend on the
result of mini-batch j. The only data dependency occurs between
layers of the same mini-batch. Therefore, we can sample neighbors
of each layer for all mini-batches of an epoch in parallel. The set of
training nodes are randomly shuffled before each epoch starts, thus,
sampling for multiple epochs can also be performed independently.
Next, we describe how we leverage these insights to achieve high-
throughput sampling and avoid redundant I/O. Figure 3 provides
an overview of the epoch-wide sampler.

Data organization. We perform a lightweight preprocessing step
to organize edges into fixed-size sorted indexed chunks. As shown
in Figure 4, each chunk has a header followed by the neighbor-
hood data. The header includes the ID of the first node (src), the
number of nodes in this chunk (cnt), and a list of pointers to the
starting positions of each node’s neighborhood (offsets). Chunks
are optionally padded in the end to respect the 512B alignment
requirement. Packing multiple neighborhoods in a single chunk
allows drawing multiple samples per layer with a single read and
reduces redundant data transfers. For the results we present in this
paper, we set the chunk size to 512MB, which leads to a 1.2x space
increase, in the worst-case. We leave the task of carefully tuning
the chunk size as future work.

Host program. The host program orchestrates the kernel calls
and reconstructs the mini-batch subgraphs after sampling. For each
epoch, the host collects the target nodes of the current layer, sorts
them, and looks up their corresponding chunk IDs. It then initiates
the P2P read to load the necessary chunks to the FPGA and triggers
the sampling kernel. Even though the host currently waits for all
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layers of an epoch to complete before triggering sampling for the
next one, our methods are designed to operate in an asynchronous
manner. This design allows the host to initiate sampling for the next
epoch before the current one has finished, and to trigger sampling
kernels on multiple SmartSSD devices concurrently.

FPGA kernel. The epoch-wide kernel organizes the FPGA memory
into (i) an input buffer where chunk data are loaded, (ii) a result
buffer to store resulting samples, and (iii) an array that contains the
sorted target node IDs for the current layer. For each chunk, the
kernel iterates over the target nodes and computes their neighbor-
hood offset boundaries. If the degree is less than the sample size,
all neighbors are copied to the result buffer, and the remaining po-
sitions are filled with special dummy values. Otherwise, the kernel
draws a uniform sample of offsets and extracts the neighbors from
the resulting locations.

Example. We show an example chunk in Figure 4. The chunk
contains the neighborhoods of 3 nodes, starting from node ID 0.
This information is followed by a list of offsets (6, 11, 13, 15) and the
neighbors. The zero padding in the end is necessary to make the
chunk size a multiple of 16 in this example. Given target nodes 0
and 2 with a fanout of 2, the FPGA kernel can simultaneously draw
samples for both nodes. By looking up the offsets in the header, it
determines that the neighbors of target nodes 0 and 2 are stored in
the ranges [6, 11) and [13, 15), respectively. It then draws random
samples from these ranges according to the fanout and stores them
in the result buffer.

Discussion. The random-access kernel performs the sampling task
on the host by generating random offsets. In this case, the SmartSSD
only acts as an accelerator to retrieve data from the SSD to the host.
This approach does not fully exploit the FPGA’s parallelization or
the internal high-bandwidth PCle switch. In contrast, the epoch-
wide kernel computes the samples on the FPGA in parallel and fully
utilizes the PClIe bandwidth by streaming the entire edge file, chunk
by chunk, to the FPGA memory.

3 PRELIMINARY RESULTS

We use two GraphSAGE configurations for our experiments: a 2-
layer model with fanout {25, 10} and a 3-layer model with fanout
{20, 15, 10}. Our SmartSSD system consists of a 4TB Samsung SSD
connected to a Xilinx KU15P Kintex UltraScale FPGA through
PCle Gen3 x4. In all experiments, we set the unrolling factor to 32.
The host CPU is an AMD EPYC (Milan) 7713P 64C/128T 2.0Ghz
with 252GB of DRAM. We use two real-world graphs that comprise
billions of edges. Their characteristics are shown in Table 1. The
raw edge file size of the Papers100M graph is 25GB and the Yahoo
edge file is 67GB. Our preprocessing phase compresses the graph
structure to 6.5GB and 30GB of data, respectively. While the edges
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Figure 5: Preliminary evaluation results on two real-world graphs using GraphSAGE.

Dataset [ Vertices [ Edges [ Training Nodes
Papers100M [3] | 111 x 10° | 1.6 x 10° 1.2 x 10°
Yahoo [5] 1.4x 107 | 6.6 x 10° 1.4 x 10°

Table 1: Graph datasets we use in our evaluation.

of both datasets can comfortably fit in the main memory of our
system, we emphasize that our goal is to overlap the sampling
computation on the SmartSSD with mini-batch preparation on the
CPU and weight aggregation on the GPU. End-to-end training will
require access to the full graph, including the feature vectors, which
can exceed the available memory. At the time of writing, evaluating
our sampling kernel on even larger datasets is work in progress.

Bandwidth savings. To quantify the bandwidth savings of our
solution, we perform training for five epochs. We measure the final
sample size per epoch, computed as the sum of the sample sizes per
layer. Table 2 shows the results. We report the average sample size
per epoch and the corresponding bandwidth savings compared to
existing disk-based approaches that perform sampling on the CPU.
For the 3-layer model on Yahoo, the final sample size is only 1.17GB,
resulting in 28.83GB of bandwidth and memory savings per epoch.
Considering that models need to be trained for 10 — 100 epochs to
achieve good accuracy, the total savings can be enormous.

Sampling performance. Next, we measure the average per-epoch
speedup of the epoch-wide sampling kernel compared to the random-
access kernel. Figure 5a shows the results. The epoch-wide kernel
achieves between 3.4x and 4.26X better performance over the base-
line. To understand the overheads that our proposed solution ad-
dresses, we plot the breakdown of the execution time in Figure 5b
and Figure 5c. For both models, the random-access kernel spends
most of its time on data transfer, which indicates that the SSD —
FPGA communication becomes a bottleneck. In contrast, the epoch-
wide sampler spends most of the execution time on the FPGA,
performing the sampling computation.

4 RELATED WORK

Various recent works show that sampling can become a bottleneck
during GNN training [11, 14, 20, 21]. A promising direction is to

Dataset [ Fanout [ Sample Size (GB) [ Savings (GB)
(20, 15, 10} 0.76 5.74
Papersl00M |——5-=0 0.19 631
(20, 15, 10} 1.17 28.83
Yahoo 125, 10) 032 29.68

Table 2: Average sample size and bandwidth saving per epoch

accelerate this phase of GNN training by performing the sampling
computation on GPUs [11, 14]. However, for larger-than-memory
graphs, transferring edges to the GPU without direct access technol-
ogy, like GPUDirect [2], would require an expensive intermediate
copy. The benefits of in-storage computing extend beyond GNNs
to other large-scale ML and data analytics workloads [8, 15, 23, 25].
NeSSA [22] is a recent example that uses a SmartSSD-GPU system
to accelerate DNN training.

5 CONCLUSION AND FUTURE WORK

In this paper, we show that near-storage computational devices offer
an opportunity for high-performance and cost-effective large-scale
GNN training. By pushing the sampling computation closer to the
storage, we can reduce data transfer overheads and offload CPU cy-
cles to enable potential overlapped execution. Our proposed epoch-
wide kernel leverages the fact that sampling computations across
mini-batches are independent to perform per-layer sampling of an
entire epoch with a single kernel call. Our preliminary evaluation
demonstrates significant benefits over the random-access baseline
and bandwidth savings over existing disk-based approaches.

As an immediate next step, we plan to integrate our sampling
kernel with DGL [1] and evaluate its benefits over end-to-end train-
ing. We will also extend the host program to enable triggering
sampling kernels on multiple SmartSSD devices in parallel. Finally,
we are working on implementing sampling kernels for alternative
GNN algorithms and extend support to layer-wise sampling.
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