

**Aperture synthesis imaging of ionospheric irregularities  
using time diversity MIMO radar**

**D. L. Hysell<sup>1</sup> and J. L. Chau<sup>2</sup>**

<sup>4</sup>Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA

<sup>5</sup>Leibniz Institute of Atmospheric Physics at the University of Rostock, Küllungsborn, Germany

**6 Key Points:**

- <sup>7</sup> • Multiple-input, multiple output (MIMO) radar imaging method implemented at Jicamarca to observe large-scale waves in the EEJ.
- <sup>8</sup> • Specific method involves time division multiplexing or time diversity.
- <sup>9</sup> • The resolution of the images was increased but is limited by motion of scatterers
- <sup>10</sup> which needs mitigation.
- <sup>11</sup>

12 **Abstract**

13 Aperture-synthesis images of ionospheric irregularities in the equatorial electrojet are  
 14 computed using multiple-input multiple-output (MIMO) radar methods at the Jicamarca  
 15 Radio Observatory. MIMO methods increase the number of distinct interferometry base-  
 16 lines available for imaging (by a factor of essentially three in these experiments) as well  
 17 as the overall size of the synthetic aperture. The particular method employed here in-  
 18 volves time-division multiplexing or time diversity to distinguish pulses transmitted from  
 19 different quarters of the Jicamarca array. The method comes at the cost of a large in-  
 20 crease in computation time and complexity and a reduced signal-to-noise ratio. We dis-  
 21 cuss the details involved in the signal processing and the trade space involved in image  
 22 optimization.

23 **1 Introduction and motivation**

24 Aperture synthesis imaging (ASI) is a powerful technique with origins in radio as-  
 25 tronomy that enables the construction of high-resolution images of celestial sources with  
 26 high accuracy and precision. The technique involves combining the signals collected by  
 27 multiple radio telescopes arranged in a strategic configuration, forming a virtual dish with  
 28 an aperture equivalent to the maximum separation between the outermost telescopes.  
 29 By measuring the visibilities (complex cross correlations) obtained from these signals,  
 30 which encode the spatial frequency content of the image, the technique can be used to  
 31 produce detailed images of the source with the incorporation of statistical inverse meth-  
 32 ods. The resulting images offer detailed renderings of astrophysical phenomena while pro-  
 33 viding access to physical parameters that can elucidate the underlying physics. For a re-  
 34 view, see Thompson et al. (2017).

35 Aperture synthesis imaging was introduced to the field of radar aeronomy by Kudeki  
 36 and Sürütçü (1991) who were studying backscatter from plasma density irregularities in  
 37 the equatorial electrojet (EEJ) above the Jicamarca Radio Observatory outside Lima,  
 38 Peru. Conventional radar methods, including interferometry, suggested the presence of  
 39 large-scale (kilometer-scale) waves in the EEJ with phase speeds and wavelengths that  
 40 varied according to the time of day (see for example Farley et al., 1981). ASI offered a  
 41 direct, unambiguous means of observing and characterizing these waves, producing im-  
 42 agery directly comparable with numerical simulations that were emerging at about the  
 43 same time (Ronchi et al., 1989, 1991). More sophisticated inverse methods would later

44 be applied to the data inversion, giving rise to sharper images with reduced artifacts (see  
45 e.g., Hysell & Chau, 2006, and references therein). Imaging would go on to be used to  
46 investigate irregularities in other altitude strata over Jicamarca as well as ionospheric  
47 phenomena at different longitudes and at middle and high latitudes (e.g., Hysell et al.,  
48 2002; Bahcivan et al., 2006; Larsen et al., 2007; Saito et al., 2008; Hysell & Chau, 2012;  
49 Harding & Milla, 2013; Sommer & Chau, 2016; Chau et al., 2020; Bui et al., 2023; He  
50 et al., 2023).

51 Jicamarca is especially suitable for aperture synthesis methods because of the mod-  
52 ularity of its main phased-array antenna which can be divided into different modules for  
53 reception, each with an area 1/64 the main array. Radar studies conducted there can  
54 therefore exploit experimental degrees of freedom associated with range, time, Doppler  
55 frequency, and the spatial diversity of the receive antennas.

56 Recently, the idea of exploiting the spatial diversity of antennas used for transmis-  
57 sion was also introduced to radar aeronomy (Urco et al., 2018). The work can be viewed  
58 as an application of multiple-input, multiple-output (MIMO) signal processing as has  
59 been widely applied in areas such as wireless communications (e.g., Zheng & Tse, 2003),  
60 maritime radar navigation (Huang et al., 2011) and over the horizon radar (Frazer et al.,  
61 2007). To exploit spatial diversity of antennas on radar applications, different diversity  
62 schemes on transmission can be applied depending on the target characteristics and the  
63 system capabilities. Examples of radar diversity are time, frequency, polarization, and  
64 code.

65 In aeronomy research, MIMO radar to improve radar interferometry has been fo-  
66 cused on multistatic meteor radars using relatively small transmitting arrays (Chau et  
67 al., 2019). These systems called SIMONe (Spread Spectrum Interferometric Multistatic  
68 meteor radar Observing Network) make use of code diversity to implement MIMO and  
69 estimate winds at mesospheric and lower thermospheric (MLT) altitudes, where a rel-  
70 atively large number of meteor trails can be used to measure line of sight neutral wind  
71 projections from different fields of view. The same SIMONe systems have been also used  
72 to measure ionospheric irregularities where imaging can be performed assuming one tar-  
73 get in a given range, time and Doppler bin (Chau et al., 2021; Huyghebaert et al., 2022).  
74 MIMO in radar aeronomy research has also been applied to study atmospheric processes.  
75 For example, Matsuda and Hashiguchi (2023) has implemented MIMO at the MU radar

76 using frequency diversity to reduce the beam broadening effect in turbulence measurements  
 77 while Urco et al. (2019) used time diversity at MAARSY to remove spatial and  
 78 temporal ambiguities on polar mesospheric summer echoes. Time diversity was implemented  
 79 since it was not possible to implement code diversity at MAARSY.

80 In this paper, we follow on Urco et al. (2018) and incorporate time-diversity MIMO  
 81 into an aperture synthesis imaging framework. This is readily accomplished at Jicamarca  
 82 where transmission can take place separately on individual quarters of the main antenna  
 83 array. For a target, we return to coherent scatter from irregularities in the EEJ and sig-  
 84 natures of large-scale waves within. The goal of MIMO imaging is to increase significantly  
 85 the number of interferometry baselines and visibility measurements available without re-  
 86 lying on additional hardware or construction. The method, its implementation, its draw-  
 87 backs, and the overall optimization trade space is discussed below.

## 88 2 MIMO imaging methods using time diversity

89 The methodology for imaging ionospheric plasma density irregularities with a pulsed  
 90 monostatic coherent scatter radar was established at Jicamarca in the 1990s (Kudeki &  
 91 Sürütü, 1991; Hysell, 1996). Pulses are emitted by the radar at regular intervals denoted  
 92 by the interpulse period (IPP) which is chosen to avoid range and frequency aliasing. (Tar-  
 93 gets for which both can be avoided simultaneously are called “underspread” and are the  
 94 main concern of this paper.) Samples of the echoes are recorded continuously at a rate  
 95 matched to the bandwidth of the emitted pulses. The data yielded by the receivers are  
 96 quadrature baseband voltage samples from multiple spaced antennas. Preliminary data  
 97 processing is used to convert these samples to estimates of all possible cross-spectra per-  
 98 mutations afforded by the various receivers, and these estimates form the basis for imag-  
 99 ing. This preliminary processing includes matched filtering of the baseband samples from  
 100 each receiver. The emitted waveforms used for coherent scatter generally employ binary  
 101 phase codes, and the filtering is matched to the code. In the case of the experiments con-  
 102 sidered here, the code used was a 28-bit maximum length code with a bit width of  $1 \mu\text{s}$   
 103 and an IPP of 1 ms. The corresponding duty cycle is 2.8%, and the range resolution is  
 104 150 m. **The relatively high compression ratio of the pulse code use here is nec-  
 105 essary in view of the requirement for a very high signal-to-noise ratio com-  
 106 bined with the bandwidth needed to resolve the ionospheric target in range.**

107 Spectral analysis is then performed on the time series samples from each receiver  
 108 to convert them from the time to the Doppler frequency domain. The analysis is per-  
 109 formed with discrete Fourier transforms. We typically employ zero padding to remove  
 110 artifacts associated with discontinuities at the start/end of the data window. The num-  
 111 ber of spectral bins considered is chosen to optimize the balance between spectral res-  
 112 olution and the overall measurement cadence. The  $E$  region irregularities in the sampling  
 113 volume over Jicamarca considered for this work evolve on timescales of a few seconds,  
 114 and this fixes the upper limit on the incoherent integration time used in the estimation  
 115 of the cross spectra. For these experiments, we consider 22 spectral bins and an over-  
 116 all incoherent integration time of 5 s. **The spectral bandwidth of the overall ex-  
 117 periment described below will encompass Doppler shifts between  $\pm 375$  m/s.**

118 Interferometry is performed by computing the normalized cross-spectra for all the  
 119 possible permutations of signals from the receiving antennas. The complex normalized  
 120 cross spectra or visibility measurement that can be formed from the signals  $v^i, v^j$  from  
 121 antennas  $i$  and  $j$  can be designated  $V^{ij}$ . Given  $N$  spaced antennas, as many as  $N(N -$   
 122  $1)/2$  distinct interferometry baselines are available, or  $N(N - 1)/2 + 1$  including the  
 123 zero (repeated index) baseline. For the illustrative purposes, we consider in Fig. 1 the  
 124 case of  $N = 2$  with the two receive antennas designated by the numbers 1 and 2.

125 The distinguishing characteristic of MIMO experiments is the use of multiple, spatially-  
 126 separated transmitting antennas. In the case of the present experiments, we transmit-  
 127 ted pulses on either the west or the east quarter of the main antenna at Jicamarca. Dis-  
 128 placing the transmitting antenna spatially in an interferometry experiment has the equiv-  
 129 alent effect of displacing the receive antennas in the opposite direction. The baselines  
 130 formed by correlating signals associated with different transmission locations are con-  
 131 sequently offset by the spatial separation of the transmitters. **(Note that we are mainly  
 132 interested in studying backscatter from magnetic field-aligned plasma den-  
 133 sity irregularities here for which numerous and long east-west interferome-  
 134 try baselines are the most informative.)**

135 **In Fig. 1, arrows represent interferometry baselines associated with vis-  
 136 ibilities  $V_{xy}^{ij}$  for signals originating from transmitting antennas  $x$  and  $y$  and  
 137 acquired with receiving antennas  $i$  and  $j$ . ‘E’ and ‘W’ denote east and west,  
 138 respectively. The black arrows represent interferometry baselines in SIMO**

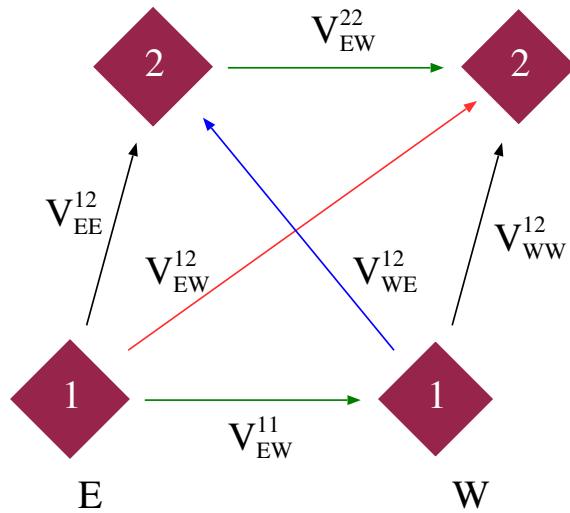
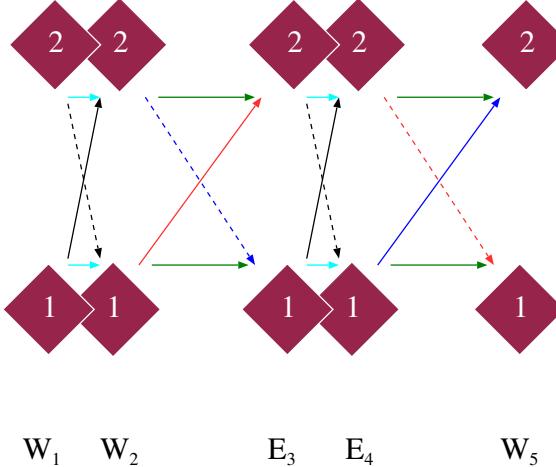



Figure 1. Diagram illustrating visibility measurements in a generalized MIMO experiment involving two transmitting antennas separated east-west (not drawn).


We consider two hypothetical receive antennas numbered 1 and 2. The black arrows represent the interferometry baseline for SIMO data collection when signals transmitted from the east or west quarter are considered by themselves. The red, blue, and green arrows indicate additional baselines for MIMO data collected when pulses transmitted on two different antennas are considered together (see below).

139 (single input, multi output) mode when transmission is performed with ei-  
 140 ther the east or west quarter alone. The red, blue, and green arrows, mean-  
 141 while, represent MIMO baselines when signals originating from different trans-  
 142 mitting antennas are correlated. Note how additional baselines become avail-  
 143 able, some with redundancies. The red and blue lines correspond to two dis-  
 144 tinct spatial baselines measured in MIMO mode. The green lines are redun-  
 145 dant, repeated-index baselines,  $V_{xy}^{ii}$ , with lengths equal to the displacement  
 146 between the transmitting antennas. These are analogous to zero-baseline mea-  
 147 surements in SIMO mode (not shown). Note that for every  $V_{xy}^{ij}$ , there is a  $V_{yx}^{ji}$   
 148 which will be redundant with one of the baselines already shown but which  
 149 could be statistically independent when estimated, depending on how the ex-  
 150 periment is performed.

151 Given  $N$  receiving antennas and  $M$  transmitting antennas, the total number of vis-  
 152 ibility measurements will be  $MN(MN-1)/2$ . Of these,  $MN(N-1)/2$  are SIMO mea-  
 153 surements (with repeated transmit antenna indices) representing up to just  $N(N-1)/2$   
 154 independent baselines. That leaves  $MN(M-1)N/2$  MIMO baselines. Of these,  $NM(M-$   
 155  $1)/2$  will have repeated receive antenna indices and represent up to just  $M(M-1)/2$   
 156 distinct baselines. That leaves  $MN(M-1)(N-1)/2$  additional MIMO baselines with  
 157 distinct transmit and receive antenna indices plus the zero baseline. In the present im-  
 158 plementation, there are 28 distinct SIMO baselines and 57 distinct MIMO baselines for  
 159 a total, including the zero baseline, of 86.

160 The benefit of MIMO as implemented here is therefore a multiplicative increase in  
 161 the number of interferometry baselines available (by a factor of essentially 3 in the case  
 162 of two transmitting antennas). (As the imaging problem is an underdetermined one in  
 163 most practical applications, more baselines is better.) This comes without the expense  
 164 of adding receivers, receive antennas, and other associated hardware. Moreover, some  
 165 of the new MIMO baselines will be longer than the longest SIMO baseline. **This is be-**  
 166 **cause the overall MIMO baseline lengths combine the receiving antenna dis-**  
 167 **placements and the transmitting antenna displacements.**

168 The problem then becomes distinguishing signals which originated from different  
 169 transmitting antennas. (Distinguishing signals from different receive antennas is no prob-  
 170 lem since each receive antenna has its own receiver and data stream.) As mentioned ear-



**Figure 2.** Diagram illustrating the sampling and formation of visibility estimates for the hypothetical two-antenna imaging case **employing time-division multiplexing**. The space depicted here is that of an abstract network, with the diamonds representing data streams acquired from the given antenna following pulse transmission from the given quarter. Here, baselines that share a color also share a spatial geometry. Dashes indicate  $V^{ij}$  with  $i > j$  while green and cyan lines indicate  $i = j$ . Note that colors have different meanings in Figs. 1 and 2.

171 lier, this can be done in principle using polarization diversity or code diversity (see e.g.,  
 172 Urco et al., 2018). In the present case, the experiments were conducted using time di-  
 173 versity (or time division multiplexing), i.e., different antenna quarters were used for pulse  
 174 transmission at different times. Specifically, we alternated transmitting antenna arrays  
 175 from one pulse to the next following the sequence WWEEWWEE... Later we discuss the  
 176 advantages and disadvantages of our implementation, but for now, given the relative large  
 177 dynamic range as well as wide spectral characteristics of equatorial ionospheric irregu-  
 178 larities, time diversity can be an expedient implementation.

179 Let us attach ordinal numbers to the pulses and write the sequence as  $W_1 W_2 E_3 E_4 W_5 \dots$   
 180 for the sake of clarity. To process the data, we sort them into five streams, each contain-  
 181 ing every fourth sample in time beginning with  $W_1$ ,  $W_2$ ,  $E_3$ ,  $E_4$ , and  $W_5$ , respectively.  
 182 (Stream  $W_5$  is identical to stream  $W_1$  except delayed four samples in time.) Each of the  
 183 streams is henceforth named according to its first sample. Each stream has an effective  
 184 IPP four times the overall IPP or 4 ms in the present case. Each of the streams is then  
 185 transformed from the time to the frequency domain by discrete Fourier transform.

186 The processing is illustrated in the diagram in Fig. 2 considering, again, the hy-  
 187 pothetical two-antenna interferometer case for simplicity. MIMO measurements derive  
 188 from correlating the  $W_2$  and  $E_3$  streams and the  $E_4$  and  $W_5$  streams. Note that a tem-  
 189 poral lag as well as a spatial displacement is unavoidably inherent in these comparisons.  
 190 For purposes of symmetry, the SIMO measurements will also incorporate temporal lags,  
 191 i.e. they will derive from comparisons between the  $W_1$  and  $W_2$  streams and the  $E_3$  and  
 192  $E_4$  streams.

193 The normalized cross-spectra or visibilities  $V^{ij}$  for the SIMO measurements for re-  
 194 ceivers  $i$  and  $j > i$  will consequently be:

$$2V_{W_1 W_2}^{ij}(\omega) = \frac{\langle v_{W_1}^i(\omega) v_{W_2}^{j*}(\omega) \rangle}{\sqrt{\langle v_{W_1}^i(\omega) v_{W_2}^{i*}(\omega) \rangle} \sqrt{\langle v_{W_1}^j(\omega) v_{W_2}^{j*}(\omega) \rangle}} \quad (1)$$

$$+ \left( \frac{\langle v_{W_1}^j(\omega) v_{W_2}^{i*}(\omega) \rangle}{\sqrt{\langle v_{W_1}^j(\omega) v_{W_2}^{j*}(\omega) \rangle} \sqrt{\langle v_{W_1}^i(\omega) v_{W_2}^{i*}(\omega) \rangle}} \right)^* \quad (2)$$

$$2V_{E_3 E_4}^{ij}(\omega) = \frac{\langle v_{E_3}^i(\omega) v_{E_4}^{j*}(\omega) \rangle}{\sqrt{\langle v_{E_3}^i(\omega) v_{E_4}^{i*}(\omega) \rangle} \sqrt{\langle v_{E_3}^j(\omega) v_{E_4}^{j*}(\omega) \rangle}} \quad (3)$$

$$+ \left( \frac{\langle v_{E_3}^j(\omega) v_{E_4}^{i*}(\omega) \rangle}{\sqrt{\langle v_{E_3}^j(\omega) v_{E_4}^{j*}(\omega) \rangle} \sqrt{\langle v_{E_3}^i(\omega) v_{E_4}^{i*}(\omega) \rangle}} \right)^* \quad (4)$$

195 where the expectations are estimated by post-detection averaging (incoherent integra-  
 196 tion). One purpose of the normalization is to remove phase changes associated with tem-  
 197 poral displacements, retaining only decorrelation and phase changes associated with spa-  
 198 tial displacements.

199 Time series offset by time  $\tau$  in the time domain will differ by a phase factor  $\exp(i\omega\tau)$   
 200 in the Frequency domain. That factor could be removed from the visibility estimates as  
 201 was done by Urco et al. (2019). However, if the signals are frequency aliased, which could  
 202 be the case for the EEJ,  $\omega$  here will be influenced by the aliased component of the power  
 203 in the given frequency bin (Sahr et al., 1989). Our normalization scheme shown above  
 204 accounts for any frequency aliasing that might be present in the decimated data.

205 Note that the four expressions on the right sides of Eq. 1 – 4 are four equivalent  
 206 but independent estimators of the visibility for the interferometry baseline formed by re-  
 207 ceivers  $i$  and  $j \geq i$ . These are represented by the black arrows in Fig. 2. They must  
 208 all be evaluated separately. Note that we do not actually estimate the value of the vis-

209      ability for the zero baselines (with like  $i$  and  $j$  indices) as this is unity by definition. **(In**  
 210      **our notation, the  $j \leq i$  terms just repeat the terms already written.)**

211      Note also that noise estimation and removal is not part of these calculations. We  
 212      assume the noise is uncorrelated in all the products in the equations above. This differs  
 213      from conventional interferometry experiments where temporal displacements are not in-  
 214      corporated.

215      The new interferometry information afforded by MIMO concerning receivers  $i$  and  
 216       $j \geq i$  comes from the following four additional estimators:

$$V_{W_2 E_3}^{ij}(\omega) = \frac{\langle v_{W_2}^i(\omega) v_{E_3}^{j*}(\omega) \rangle}{\sqrt{\langle v_{W_1}^i(\omega) v_{W_2}^{i*}(\omega) \rangle} \sqrt{\langle v_{E_3}^j(\omega) v_{E_4}^{j*}(\omega) \rangle}} \quad (5)$$

$$V_{W_2 E_3}^{ji}(\omega) = \frac{\langle v_{W_2}^j(\omega) v_{E_3}^{i*}(\omega) \rangle}{\sqrt{\langle v_{W_1}^j(\omega) v_{W_2}^{j*}(\omega) \rangle} \sqrt{\langle v_{E_3}^i(\omega) v_{E_4}^{i*}(\omega) \rangle}} \quad (6)$$

$$V_{E_4 W_5}^{ij}(\omega) = \frac{\langle v_{E_4}^i(\omega) v_{W_5}^{j*}(\omega) \rangle}{\sqrt{\langle v_{E_3}^i(\omega) v_{E_4}^{i*}(\omega) \rangle} \sqrt{\langle v_{W_1}^j(\omega) v_{W_2}^{j*}(\omega) \rangle}} \quad (7)$$

$$V_{E_4 W_5}^{ji}(\omega) = \frac{\langle v_{E_4}^j(\omega) v_{W_5}^{i*}(\omega) \rangle}{\sqrt{\langle v_{E_3}^j(\omega) v_{E_4}^{j*}(\omega) \rangle} \sqrt{\langle v_{W_1}^i(\omega) v_{W_2}^{i*}(\omega) \rangle}} \quad (8)$$

217      Here, the estimator in Eq. 5 corresponds to the solid red arrow in Fig. 2, Eq. 6 to the  
 218      dashed blue arrow, Eq. 7 to the solid blue arrow, and Eq. 8 to the dashed red arrow. Note  
 219      again that the estimators in Eq. 6 and Eq. 7 are redundant but statistically independent.  
 220      The same is true for Eq. 5 and Eq. 8. So, there are twice as many MIMO baselines as  
 221      SIMO baselines, but there are four independent estimators of each of the SIMO base-  
 222      lines compared with just two of each of the MIMO baselines.

223      Recall also that the visibilities in the MIMO analysis with common  $i$  and  $j$  indices  
 224      represent finite interferometry baselines with the same spatial displacement as the trans-  
 225      mitting antennas. This is depicted by the green horizontal arrows in Fig. 2. Measure-  
 226      ments of MIMO visibilities with common indices are not only useful but are, in fact, cru-  
 227      cial to the imaging method during calibration. We calibrate the phases of the receivers,  
 228      which have random offsets associated with cabling differences, by identifying quasi point  
 229      targets in the SIMO data and adjusting the individual receiver phase offsets for optimal  
 230      focusing. The MIMO phases include an additional bias, however, associated with a po-  
 231      tential phase difference between the two transmitting systems. (This difference is nulled  
 232      manually in the field during experimental setup but cannot be removed completely.) Once

233 the receiver phases have been calibrated, the transmit phase difference appears in the  
 234 MIMO zero baseline measurements. From these, the bias can be estimated and negated.

235 Some peculiar attributes of the visibility measurements in our time diversity MIMO  
 236 implementation warrant repetition. Visibility measurements with exchanged indices  $i \Leftrightarrow j$   
 237 are not complex conjugate pairs as they are in conventional SIMO experiments. How-  
 238 ever, visibility measurements with exchanged indices and exchanged sequencing  $WE \Leftrightarrow$   
 239  $EW$  describe common spatial interferometry baselines and have expectations which are  
 240 complex-conjugate pairs. Furthermore, the samples used for the  $WE$  measurements are  
 241 distinct from those used for  $EW$  measurements, as illustrated in Fig. 2.

### 242 3 Imaging method with uncertainty analysis

243 The fundamental principles behind aperture synthesis imaging are well known and  
 244 widely applied across astronomy and space physics. For a review, consult Thompson et  
 245 al. (2017). In radar applications, images are constructed in every radar range and Doppler  
 246 frequency bin. In each range bin, we take the scattered signal measured by an antenna  
 247 at the spatial location  $\mathbf{x}$  with Doppler frequency  $\omega$  to be

$$248 v(\mathbf{x}, \omega) = \int d\Omega E(\mathbf{k}, \omega) e^{i\mathbf{k} \cdot \mathbf{x}} \quad (9)$$

249 where  $\mathbf{E}$  is the amplitude of the far-zone electric field,  $\mathbf{k}$  is the scattered wavevector, and  
 250  $d\Omega$  is a differential solid angle interval. Correlating signals received at two separate lo-  
 251 cations then yields

$$\langle v(\mathbf{x}_1, \omega) v^*(\mathbf{x}_2, \omega) \rangle = \left\langle \int d\Omega E(\mathbf{k}, \omega) e^{i\mathbf{k} \cdot \mathbf{x}_1} \int d\Omega' E^*(\mathbf{k}', \omega) e^{-i\mathbf{k}' \cdot \mathbf{x}_2} \right\rangle \quad (10)$$

$$252 = \int d\Omega \langle |E(\mathbf{k}, \omega)|^2 \rangle e^{i\mathbf{k} \cdot (\mathbf{x}_1 - \mathbf{x}_2)} \quad (11)$$

253 Next, we assume the amplitudes of signals scattered from different bearings to be un-  
 254 correlated. We further assume that the scattering is spatially homogeneous such that  
 255 the correlation on the left only depends on the difference between  $\mathbf{x}_1$  and  $\mathbf{x}_2$ . Normal-  
 256 izing both sides of the equation by  $\langle |v(\mathbf{x}, \omega)|^2 \rangle = \int d\Omega \langle |E(\mathbf{k}, \omega)|^2 \rangle$  then gives

$$\begin{aligned} 257 V(\delta\mathbf{x}; k, \omega) &= \int d\Omega B(\mathbf{k}, \omega) e^{i\mathbf{k} \cdot \delta\mathbf{x}} \\ &= \int d\eta d\xi \frac{B(\eta, \xi, \omega)}{\sqrt{(1 - \eta^2 - \xi^2)}} \exp \left\{ ik \left( \eta\delta x + \xi\delta y + \sqrt{1 - \eta^2 - \xi^2}\delta z \right) \right\} \quad (12) \end{aligned}$$

258 where we have defined the visibility  $V(\delta\mathbf{x}; k, \omega)$  and the brightness distribution  $B(\eta, \xi)$ .

259 The integral over solid angles has been rewritten in terms of direction cosines  $\eta$  and  $\xi$ .

257 From Eq. 12, it is clear that the transformation between the measured visibility distri-  
 258 bution and the sought-after brightness distribution is nearly a Fourier transform. In the  
 259 event that all the antennas lie in a plane so that  $\delta z$  vanishes and that the imaging field  
 260 of view is small so that the radical in the denominator of Eq. 12 is always nearly uni-  
 261 form, the transformation is a Fourier transformation exactly. In any event, Eq. 12 is a  
 262 linear transformation.

263 Inverting Eq. 12 generally requires recourse to a statistical inverse method given  
 264 that the visibility distribution will be irregularly and incompletely sampled in practice.  
 265 In practice, the problem will also be underdetermined. At Jicamarca, the most often ap-  
 266 plied inverse method is rooted in the principle of maximum entropy (Werneck & D'Addario,  
 267 1977; Skilling & Bryan, 1984; Wilczek & Drapatz, 1985). This is a regularization method  
 268 which maximizes the entropy of the brightness distribution while holding the chi-square  
 269 discrepancy between the predicted and measured visibilities to its expected value. The  
 270 maximum entropy (MaxEnt) method finds the brightness distribution that is consistent  
 271 with the measurements while being minimally committal to features without support in  
 272 the data. The solution is restricted to positive values for the brightness distribution ev-  
 273 erywhere. The method is a super-resolution method and exceeds the diffraction limit.  
 274 By the measure of Shannon's channel capacity theorem, no alternative method has a su-  
 275 perior resolution (Jaynes, 1982; Kosarev, 1990).

276 In the discrete language of linear algebra, MaxEnt determines the brightness dis-  
 277 tribution  $b$ , which can be a vector of any size, by minimizing the objective function:

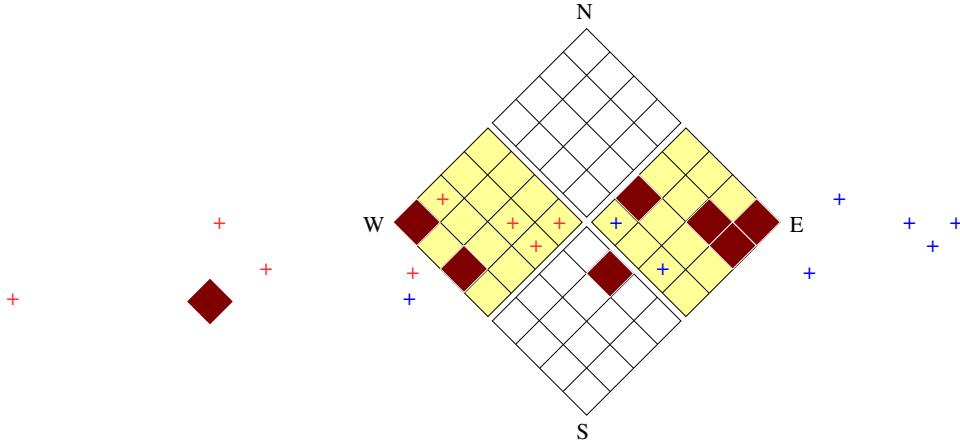
$$b = \underset{b}{\operatorname{argmin}} \quad s + \lambda^T (Ab + e - v) - \Lambda(e^T C_d^{-1} e - \Sigma) \quad (13)$$

278 where  $s$  is the negative of the entropy of the brightness distribution,  $A$  is the linear trans-  
 279 formation specified by Eq 12,  $v$  is the visibility data,  $e$  is a column vector of experimen-  
 280 tal errors,  $C_d$  is the visibility error covariance matrix,  $\lambda$  is a column vector of Lagrange  
 281 multipliers,  $\Lambda$  is an additional Lagrange multiplier, and  $\Sigma$  is the expected chi-square value  
 282 which is normally set to the number of visibility data. The term  $B$  is the sum of all the  
 283 elements of  $b$  which is unity by definition for this problem. The optimization problem  
 284 is one of maximizing the entropy of the brightness while constraining the chi-square pa-  
 285 rameter to equal its expectation.

286 Using standard optimization techniques, the minimum of the objective function can  
 287 be shown to correspond to a brightness distribution with the following form:

$$s = \sum_j b_j \ln(b_j/B) \quad (14)$$

$$b_j = B \frac{e^{-\lambda^T A^{[j]}}}{Z} \quad (15)$$


$$Z = \sum_j e^{-\lambda^T A^{[j]}} \quad (16)$$

288 where  $Z$  plays the role of a partition function. Substituting this form back into Eq. 13  
 289 and minimizing with respect to the free parameters produces a system of  $n$  coupled equa-  
 290 tions for  $n$  Lagrange multipliers in terms of  $n$  real-valued data. The equations can be  
 291 solved using conventional nonlinear solvers based on Levenberg-Marquardt methods. For  
 292 details, see Hysell and Chau (2006).

293 An important aspect of the data inversion involves the specification of the data er-  
 294 ror covariance matrix  $C_d$ . For SIMO experiments, all the terms in  $C_d$  can be estimated  
 295 using standard statistical methods (see e.g., Farley, 1969). The recipe for populating  $C_d$   
 296 is given in the appendix of Hysell and Chau (2006). That recipe remains applicable to  
 297 visibility acquired in MIMO mode.

298 The error covariance matrix entry for visibility estimates  $V^{ij}$  and  $V^{kl}$  depends on  
 299 the number of statistically independent samples, the signal-to-noise (SNR) ratio, and the  
 300 products of the visibilities  $V^{ik}$ ,  $V^{jl}$ ,  $V^{il}$ , and  $V^{jk}$  in quadratic, cubic, and quartic com-  
 301 binations. In SIMO mode, estimates of all the required visibility permutations are made  
 302 in the course of data processing. The same is true in MIMO mode, except that we must  
 303 now distinguish not just the receive antenna number but also whether illumination came  
 304 from the east or west antenna. We must also bear in mind that there are two distinct  
 305 ways to estimate each MIMO interferometry baseline.

306 Suppose we desire the covariance between  $V_{ab}^{ij} = (1/2)(V_{ab}^{ij} + V_{ba}^{ji*})$  and  $V_{cd}^{kl} =$   
 307  $(1/2)(V_{cd}^{kl} + V_{dc}^{lk*})$  where  $i, j, k, l$  are antenna numbers with  $j \geq i$  and  $l \geq k$  and  $a, b, c, d$   
 308 are either E or W. There are four cross terms to consider, each predicted individually  
 309 by the four permuted visibilities written in the previous paragraph. That means sixteen  
 310 terms in all, but these are redundant, and the overall covariance can be specified entirely  
 311 in terms of  $V_{ac}^{ik}, V_{bd}^{jl}, V_{ad}^{il}, V_{bc}^{jk}, j \geq i, l \geq k$ . This formalism covers and is essentially no  
 312 different than the strictly SIMO case except for the increased multiplicity of permuta-

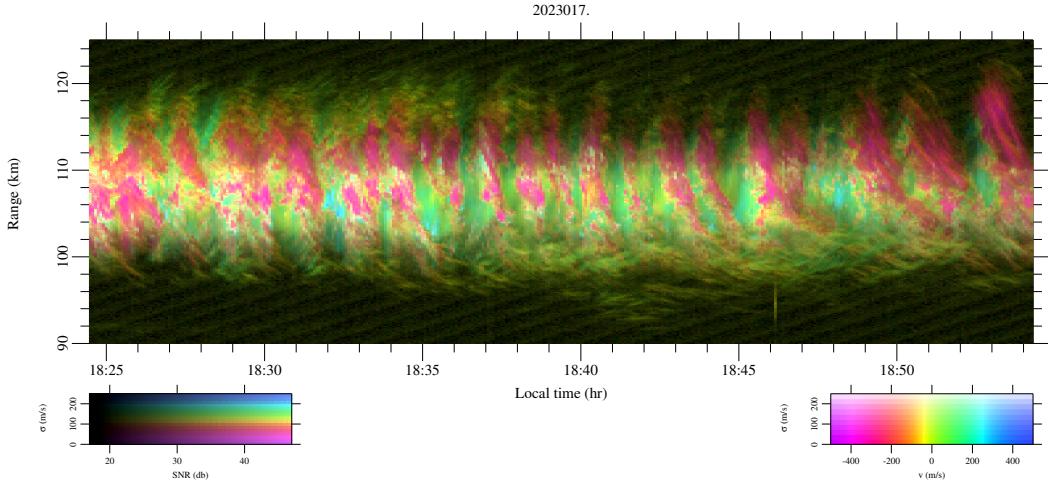


**Figure 3.** Plan view of the Jicamarca antenna array. Eight modules are used for reception (colored red) while two quarters are used for transmission (colored yellow). The reception modules were selected to provide a fairly uniform distribution of east-west interferometry baselines. Red and blue crosses indicate the positions of virtual antennas afforded by our time diversity MIMO mode.

313 tions. The only other consideration is that MIMO visibilities with repeated indices do  
 314 not refer to the zero baseline as with SIMO.

#### 315 4 Jicamarca example

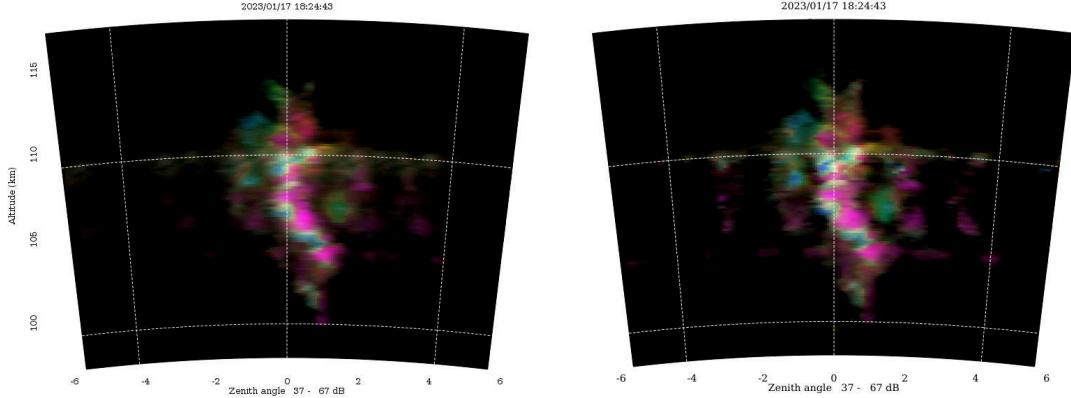
316 A plan view of the Jicamarca antenna array is shown in Fig. 3. Eight independent  
 317 modules are used for reception, and two quarters are used for transmission. The distance  
 318 between the quarters is approximately 34 wavelengths. The longest baseline for SIMO  
 319 (MIMO) processing is approximately 94 (128) wavelengths. The distribution of receiv-  
 320 ing antennas is elongated in the east-west direction deliberately. The magnetic field runs  
 321 approximately north-south, and the Bragg scatter from field-aligned plasma density ir-  
 322 regularities comes from the locus of perpendicularity which runs east-west in the figure.  
 323 Images of the irregularities are very sharply concentrated in the plane perpendicular to  
 324 the magnetic field, and baseline diversity in the east-west direction is consequently what  
 325 is critical. Transmitting on the east and west quarters increases the longest east-west base-  
 326 line and the diversity of east-west baselines on the whole. For SIMO (MIMO) process-  
 327 ing, a total of 29 (86) interferometry baselines are available for imaging.


328 The point spread function (PSF) for the 29- and 86-baseline arrangements have been  
 329 calculated in the high SNR limit assuming integration times consistent with the present

| bin | 29 baselines | 86 baselines |
|-----|--------------|--------------|
| -4  | 8.235e-07    |              |
| -3  | 8.258e-03    | 6.260e-04    |
| -2  | 5.542e+00    | 1.537e+00    |
| -1  | 2.543e+02    | 1.410e+02    |
| 0   | 2.476e+02    | 5.164e+02    |
| 1   | 2.476e+02    | 1.069e+02    |
| 2   | 1.275e+01    | 2.173e+00    |
| 3   | 1.241e-01    | 8.405e-03    |
| 4   | 4.365e-04    | 1.179e-05    |
| 5   | 8.235e-07    |              |

**Table 1.** Point spread function for 29- and 86-baseline imaging configurations. The image space in this case spans 768 zenith angle bins, centered on bin 0, each  $0.03^\circ$  wide. All nonzero values within machine precision are shown.

330 experiments. To calculate the point spread function, all visibilities were set to a value  
 331 of unity, and their variances were taken to be uniform and independent. Images were com-  
 332 puted on a 2D grid using 768 horizontal bins, and a cut was taken through the horizon-  
 333 tal bisector. The results are shown in Table 1. **The profiles indicate how a point**  
 334 **target would be resolved by the imaging algorithm given the number and lengths**  
 335 **of baselines available in the two cases.** They indicate that the PSF is down by  $\sim 15$   
 336 dB in the  $\pm 2$  bins for the SIMO configuration and about  $\sim 25$  dB in the MIMO config-  
 337 uration. Both configurations have PSF's that are confined essentially within  $\pm 4$  bins.


338 Coherent backscatter from plasma density irregularities in the equatorial electro-  
 339 jet are depicted in range-time-intensity format in Fig. 4. This is a conventional format  
 340 for presenting comparable data, and the figure shown here is typical for observations ob-  
 341 tained around twilight (Swartz & Farley, 1994; Farley et al., 1994). The figure is char-  
 342 acterized by alternating, tilted bands of red- and blue-shifted echoes exhibiting a period  
 343 of approximately 1 min. The bands are asymmetric, with the red-shifted bands being  
 344 more prominent, intense, and faster than the blue-shifted bands. This behavior is typ-  
 345 ical for so-called “large scale waves” which are kilometer-scale waves created by gradi-

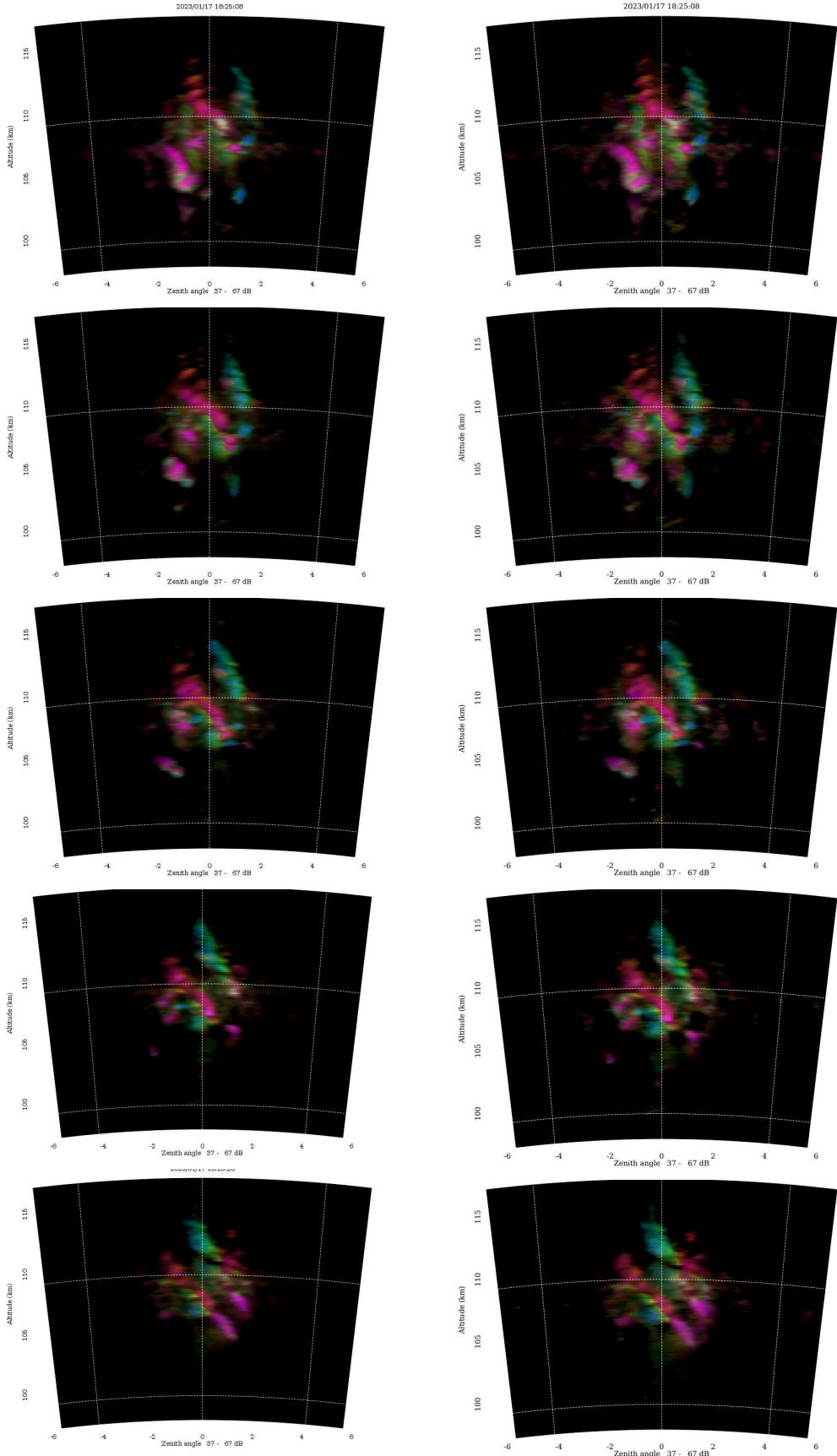


**Figure 4.** Range time intensity (RTI) representation of coherent scatter from plasma density irregularities in the equatorial electrojet. The brightness, hue, and saturation of the pixels indicate the SNR ratio, Doppler shift, and spectral width of the echoes, respectively, according to the legends shown. (Red/blue hues denote red/blue shifts, respectively.) The time resolution is 5 s, and the range resolution is 150 m. Local times are shown.

346 ent drift instability in the electrojet region. The waves increase in wavelength between  
 347 daytime and nighttime and tend to aperiodic behavior around the postsunset reversal  
 348 of the background zonal electric field. The theory of large-scale waves has been discussed  
 349 at length by Kudeki et al. (1982); Pfaff et al. (1987); Ronchi et al. (1989, 1991); Hu and  
 350 Bhattacharjee (1999); Hysell and Chau (2002). Large-scale wave are perhaps among the  
 351 best understood phenomena in equatorial aeronomy as the congruity of observations, in-  
 352 cluding those presented here, and numerical simulations is excellent. Questions remain  
 353 nonetheless including the precise nature of the coupling between gradient drift and Far-  
 354 ley Buneman waves, anomalous effects of gradient drift waves on transport, and the role  
 355 of sporadic *E* layers in the electrojet (Ronchi, 1990). These questions prompt efforts to  
 356 improve our experimental methods.

357 The plasma density irregularities under study here are strongly magnetic field aligned,  
 358 and all of the backscatter comes from the plane in which the scattering wavevector is nor-  
 359 mal to the background magnetic field (Kudeki & Farley, 1989). Although our radar im-  
 360 ages are constructed in two dimensions, we consider 1D cuts through the locus of per-  
 361 pendicularity, stacking the results in range to produce 2D images. Each Doppler bin is  
 362 processed separately, and the results are combined by plotting pixels with brightness,




**Figure 5.** Comparison of representative images formed using 29 interferometry baselines in SIMO mode (left) and 86 baselines in MIMO mode (right).

hue, and saturation being indicative of the SNR, Doppler shift, and spectral width in the given range-azimuth angle cell.

Fig. 5 shows a comparison between images computed using 29 interferometry baselines in SIMO mode and 86 baselines in MIMO mode. The images represent five seconds of incoherent integration time. A Doppler spectrum has been computed behind each pixel, and the pixel brightness, hue and saturation are indicative of the SNR, Doppler shift, and spectral width, respectively. The span of within-the-pixel SNRs depicted is 37–67 dB. Doppler velocities span  $\pm 375$  m/s with blue (red) tones denoting blue (red) shifts. That the backscatter arrives mainly from the horizontal center of the images is a consequence of the beamwidth and radiation pattern of the transmitting antenna quarters.

Differences between the two panels in Fig. 5 are subtle in view of the broad span of SNRs depicted, but they are unmistakable. **The detail in the MIMO-mode panel is greater, and fine structure at the boundaries of color islands in particular is more clearly defined. The level of detail in the MIMO image is most obviously greater around 110 km range where structure at the individual pixel level becomes apparent.** The MIMO SNRs are slightly greater as the imaging algorithm is more able to concentrate power in occupied pixels and exclude it from unoccupied ones.

Fig. 6 shows sequences of contiguous images computed in SIMO (left) and MIMO (right) mode. The images continue to represent five-second incoherent integration times

**Figure 6.** Similar to Fig. 5 but for a contiguous sequence of images from top to bottom.

383 and are spaced by five seconds. The images depict the propagation of large-scale gra-  
 384 dient drift waves propagating from east to west and downward with time. The red-shifted  
 385 phases of the waves are brighter and more distinct than the blue-shifted phases. Long,  
 386 animated sequences of images show that the wave period is approximately one minute  
 387 such that about half a period is depicted in Fig. 6. The figure also shows secondary wave  
 388 features superimposed on the primary waves. There is considerable fine structure in the  
 389 imagery which is more discernible in MIMO mode than in SIMO mode. The motion of  
 390 the wavefronts is sufficiently rapid to introduce smearing in the images as well, however,  
 391 and this most likely contributes as much distortion to the images as the finite aperture  
 392 size in either SIMO or MIMO mode. Dynamic distortion like this could be reduced with  
 393 the adoption of shorter incoherent integration times, but that would increase the vari-  
 394 ances of the visibility data and reduce the image sharpness accordingly. The images pre-  
 395 sented here represent an attempt to find an optimal balance.

## 396 5 Summary and Evaluation

397 This paper considered the theory and application of time diversity MIMO for aper-  
 398 ture synthesis radar imaging. The specific application was to VHF coherent scatter from  
 399 the EEJ, but the treatment has been sufficiently general to apply broadly to volume scat-  
 400 ter. Incorporating MIMO into the imaging methodology allows all of the degrees of free-  
 401 dom available in radar experiments (i.e. range, time, Doppler frequency, receiver diver-  
 402 sity, and transmitter diversity) to be exploited.

403 For the most part, incorporating MIMO methods in imaging represents an incre-  
 404 mental change in the algorithm coding, although the bookkeeping is considerably more  
 405 complicated, and the computational cost is considerably greater. The computational cost  
 406 of the method described here, i.e., with MaxEnt, are essentially  $\mathcal{O}(n^3)$  where  $n$  is the  
 407 number of visibility measurements. Increasing the number of baselines therefore increases  
 408 computation time considerably, although this can be mitigated in large part by paral-  
 409 lelization. The algorithm scales efficiently in view of the fact that images for different  
 410 range and Doppler bins can be formed using independent threads.

411 The adoption of MIMO methods in radar imaging is a question in a complicated  
 412 trade space. **MIMO increases both the number and maximum length of inter-**  
 413 **ferometry baselines without the need for additional hardware or real estate.**

414 **This can improve the fidelity and resolution of aperture synthesis imagery**  
 415 **over SIMO methods.** The improvement comes at the cost of additional coding com-  
 416 plexity and computation time, as mentioned above.

417 Perhaps most importantly, the time diversity strategy employed for this work re-  
 418 duces the SNR by a factor of four in the present case. While the SNR (per range gate)  
 419 for the EEJ echoes was very high, on the order of 50 dB at times and in places, the 6  
 420 dB reduction is not insignificant in imaging applications. (This can be contrasted with  
 421 many other radar applications where increasing the signal-to-noise ratio (SNR) beyond  
 422 about 10 dB often has little effect on downstream confidence intervals (Farley, 1969)).  
 423 Kosarev (1990) showed that the resolution improvement of the aperture synthesis anal-  
 424 ysis described here is predicted by Shannon's channel capacity theorem, i.e.

$$R = \frac{1}{3} \log_2(1 + S/N) \quad (17)$$

425 where  $R$  is the multiplicative improvement in the imaging resolution compared to the  
 426 diffraction limit which, in turn, is set by the longest interferometry baseline length. The  
 427 latter increased by a factor of 1.36 with the introduction of MIMO methods in the Ji-  
 428 camarca experiment. This factor is completely offset by the decrease in  $S/N$  by 6 dB  
 429 when the SNR falls below 22.7 dB. As all of the echoes shown in this paper were stronger  
 430 than this, MIMO was always advantageous, although the reduction in SNR blunted the  
 431 improvement even for the strongest echoes. Not only the maximum length but also the  
 432 number of interferometry baselines contribute to overall image quality, however, and cost/benefit  
 433 ratio of MIMO is more complicated than this and hard to quantify.

434 The MIMO implementation described in this paper is therefore only beneficial in  
 435 the high signal-to-noise limit. If the signal strength is sufficient, it could be advantageous  
 436 to adopt more than two transmitter locations. This strategy could be used to implement  
 437 an enormous number of interferometry baselines which could be advantageous, for ex-  
 438 ample in 2D imaging applications involving a large number of compact targets.

439 Using time diversity has a few advantages over code diversity along with a num-  
 440 ber of disadvantages. The former is comparatively easy to implement in experiments and  
 441 is more resilient to clutter associated with range sidelobes. Note that the MaxEnt al-  
 442 gorithm only fails to converge in practice when range clutter is substantial as can some-  
 443 times happen with targets with high dynamic range like the EEJ. The disadvantages of  
 444 time diversity compared to code diversity are a reduced duty cycle, reduced effective IPP,

445 reduced SNR, and increased analysis complexity. **These disadvantages could be highly**  
 446 **detrimental in some applications, the study of overspread targets like plasma**  
 447 **density irregularities associated with equatorial spread *F* (ESF) for example.**  
 448 **For overspread targets, increasing the effective IPP may not be a practical**  
 449 **option.** In most circumstances, where code diversity is possible, it will outperform time  
 450 diversity.

451 Finally, there are a number of ways to improve the experiment described in this  
 452 paper. For one, the PRF could be increased somewhat in view of the limited altitude  
 453 range of the EEJ echoes. This would reduce or eliminate the possibility of frequency alias-  
 454 ing. For another, the width of the imaging region over Jicamarca could be increased by  
 455 spoiling the transmit antenna beam to illuminate a broader sector in the EEJ. In sim-  
 456 ilar experiments conducted in the past, this permitted the rendering of multiple wave-  
 457 lengths of the large-scale waves overhead (Hysell & Chau, 2002). Finally, we note that  
 458 the EEJ images presented in this paper suffered non-negligible smearing due to the hor-  
 459 izontal motion of the irregularities being illuminated. In view of the apparent horizon-  
 460 ical speeds of the scatterers, the smearing was comparable to the effects of the finite aper-  
 461 ture size. In the future, the effects of horizontal motion could be largely removed using  
 462 one of a number of adaptive filtering methods (e.g., Du et al., 2015; Ma, 2020). The ex-  
 463 perimental and computational cost-to-benefit ratio would seem to be attractive compared  
 464 to further refinements in the static imaging methodology.

#### 465 Acknowledgments

466 The Jicamarca Radio Observatory is a facility of the Instituto Geofísico del Perú  
 467 operated with support from NSF award AGS-2213849 through Cornell. The help of the  
 468 staff is much appreciated.

469 *Open Research* Data used for this publication are available through Hysell and  
 470 Chau [2023].

#### 471 References

472 Bahcivan, H., Hysell, D. L., Lummerzheim, D., Larsen, M. F., & Pfaff, R. F. (2006).  
 473 Observations of collocated optical and radar auroras. *J. Geophys. Res.*, 111,  
 474 A12308, doi:10.1029/2006JA011923.

475 Bui, M. X., Hysell, D. L., & Larsen, M. F. (2023). Midlatitude sporadic E-  
 476 layer horizontal structuring modulated by neutral instability and mix-  
 477 ing in the lower thermosphere. *J. Geophys. Res.*, 128(e2022JA030929),  
 478 <https://doi.org/10.1029/2022JA030929>.

479 Chau, J. L., Urco, J. M., Avsarkisov, V., Vierinen, J. P., Latteck, R., Hall, C. M.,  
 480 & Tsutsumi, M. (2020). Four-dimensional quantification of Kelvin-Helmholtz  
 481 instabilities in the polar summer mesosphere using volumetric radar imaging.  
 482 *Geophys. Res. Lett.*, 47, <https://doi.org/10.1029/2019GL086081>.

483 Chau, J. L., Urco, J. M., Pekka Vierinen, J., Andrew Volz, R., Clahsen, M., Pf-  
 484 feffer, N., & Trautner, J. (2019). Novel specular meteor radar systems  
 485 using coherent MIMO techniques to study the mesosphere and lower ther-  
 486 mosphere. *Atmospheric Measurement Techniques*, 12(4), 2113–2127. doi:  
 487 [10.5194/amt-12-2113-2019](https://doi.org/10.5194/amt-12-2113-2019)

488 Chau, J. L., Urco, J. M., Vierinen, J., Harding, B. J., Clahsen, M., Pfeffer, N., ...  
 489 Erickson, P. J. (2021). Multistatic Specular Meteor Radar Network in Peru:  
 490 System Description and Initial Results. *Earth and Space Science*, 8(1), e01293.  
 491 doi: [10.1029/2020EA001293](https://doi.org/10.1029/2020EA001293)

492 Du, H., Wang, W., & Bai, L. (2015). Observation noise modeling based par-  
 493 ticle filter: An efficient algorithm for target tracking in glint noise envi-  
 494 ronment. *Neurocomputing*, 158, 155-166. Retrieved from <https://www.sciencedirect.com/science/article/pii/S0925231215001046> doi:  
 495 <https://doi.org/10.1016/j.neucom.2015.01.057>

496 Farley, D. T. (1969). Incoherent scatter correlation function measurements. *Radio*  
 497 *Sci.*, 4, 935-953.

498 Farley, D. T., Ierkic, H. M., & Fejer, B. G. (1981). Radar interferometry: A new  
 499 technique for studying plasma turbulence in the ionosphere. *J. Geophys. Res.*,  
 500 86, 1467–1472.

501 Farley, D. T., Swartz, W. E., Hysell, D. L., & Ronchi, C. (1994). High-resolution  
 502 radar observations of daytime kilometer-scale wave structure in the equatorial  
 503 electrojet. *J. Geophys. Res.*, 99, 299.

504 Frazer, G. J., Abramovich, Y. I., & Johnson, B. A. (2007). Spatially waveform di-  
 505 verse radar: Perspectives for high frequency othr. In *2007 ieee radar conference*  
 506 (p. 385-390). doi: [10.1109/RADAR.2007.374247](https://doi.org/10.1109/RADAR.2007.374247)

508 Harding, B. J., & Milla, M. A. (2013, October). Radar imaging with compressed  
 509 sensing. *Radio Sci.*, 582–588, DOI: 10.1002/rds.20063.

510 He, Z., Chen, G., Yan, C., Zhang, S., Yang, G., & Li, Y. (2023). Imaging radar  
 511 observations of the daytime F-region irregularities in low-latitudes of China. *J.*  
 512 *Geophys. Res.*, 128(e2022JA030878), <https://doi.org/10.1029/2022JA030878>.

513 Hu, S., & Bhattacharjee, A. (1999). Gradient drift instabilities and turbulence in the  
 514 nighttime equatorial electrojet. *J. Geophys. Res.*, 104(A12), 28,123–18,132.

515 Huang, Y., Brennan, P. V., Patrick, D. E., Weller, I., Roberts, P., & Hughes, K.  
 516 (2011). Fmcw based mimo imaging radar for maritime navigation. *Progress in*  
 517 *Electromagnetics Research-pier*, 115, 327-342.

518 Huyghebaert, D., Clahsen, M., Chau, J. L., Renkwitz, T., Latteck, R., Johnsen,  
 519 M. G., & Vierinen, J. (2022). Multiple E-Region Radar Propagation Modes  
 520 Measured by the VHF SIMONe Norway System During Active Ionospheric  
 521 Conditions. *Frontiers in Astronomy and Space Sciences*, 9(May), 1–16. doi:  
 522 [10.3389/fspas.2022.886037](https://doi.org/10.3389/fspas.2022.886037)

523 Hysell, D. L. (1996). Radar imaging of equatorial *F* region irregularities with maxi-  
 524 mum entropy interferometry. *Radio Sci.*, 31, 1567.

525 Hysell, D. L., & Chau, J. L. (2002). Imaging radar observations and nonlocal theory  
 526 of large-scale waves in the equatorial electrojet. *Ann. Geophys.*, 20, 1167.

527 Hysell, D. L., & Chau, J. L. (2006). Optimal aperture synthesis radar imaging. *Ra-*  
 528 *dio Sci.*, 41, 10.1029/2005RS003383, RS2003.

529 Hysell, D. L., & Chau, J. L. (2012). Aperture synthesis imaging for upper atmo-  
 530 spheric research. In J. Bech & J. L. Chau (Eds.), *Doppler radar observations*  
 531 *- weather radar, wind profiler, ionospheric radar, and other advanced applica-*  
 532 *tions* (p. DOI: 10.5772/39024). InTech.

533 Hysell, D. L., & Chau, J. L. (2023). Jan. 2023 EEJ dataset. [Dataset],  
 534 JRO Database, <https://www.igp.gob.pe/observatorios/radio-observatorio->  
 535 [jicamarca/database/dataset/2023-january-16-18-imaging-intermediate-data](https://jicamarca/database/dataset/2023-january-16-18-imaging-intermediate-data)

536 Hysell, D. L., Yamamoto, M., & Fukao, S. (2002). Imaging radar observations  
 537 and theory of type I and type II quasi-periodic echoes. *J. Geophys. Res.*, 107  
 538 (A11), 1360.

539 Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. *Proc. IEEE*,  
 540 70, 939.

541 Kosarev, E. L. (1990). Shannon's superresolution limit for signal recovery. *Inverse*  
 542 *Problems*, 6, 55–76.

543 Kudeki, E., & Farley, D. T. (1989). Aspect sensitivity of equatorial electrojet irregu-  
 544 larities and theoretical implications. *J. Geophys. Res.*, 94, 426.

545 Kudeki, E., Farley, D. T., & Fejer, B. G. (1982). Long wavelength irregularities in  
 546 the equatorial electrojet. *Geophys. Res. Lett.*, 9, 684.

547 Kudeki, E., & Sürütü, F. (1991). Radar interferometric imaging of field-aligned  
 548 plasma irregularities in the equatorial electrojet. *Geophys. Res. Lett.*, 18, 41.

549 Larsen, M. F., Hysell, D. L., Zhou, Q. H., Smith, S. M., Friedman, J., & Bishop,  
 550 R. L. (2007). Imaging coherent scatter radar, incoherent scatter radar, and op-  
 551 tical observations of quasiperiodic structures associated with sporadic *E* layers.  
 552 *J. Geophys. Res.*, 112, A06321, doi:10.1029/2006JA012051.

553 Ma, Y. (2020, jan). A research on dynamic target tracking with camera based on  
 554 kalman filter. *Journal of Physics: Conference Series*, 1453(1), 012106. Re-  
 555 trieved from <https://dx.doi.org/10.1088/1742-6596/1453/1/012106> doi:  
 556 10.1088/1742-6596/1453/1/012106

557 Matsuda, T., & Hashiguchi, H. (2023). Ddma-mimo observations with the mu radar:  
 558 Validation by measuring a beam broadening effect. *IEEE Journal of Selected*  
 559 *Topics in Applied Earth Observations and Remote Sensing*, 16, 3083-3091. doi:  
 560 10.1109/JSTARS.2023.3258139

561 Pfaff, R. F., Kelley, M. C., Kudeki, E., Fejer, B. G., & Baker, K. D. (1987). Electric  
 562 field and plasma density measurements in the strongly driven daytime equa-  
 563 torial electrojet, 1, The unstable layer and gradient drift waves. *J. Geophys.*  
 564 *Res.*, 92, 13,578.

565 Ronchi, C. (1990). *Large scale turbulence in the equatorial electrojet* (Unpublished  
 566 doctoral dissertation). Cornell Univ., Ithaca, N. Y.

567 Ronchi, C., Similon, P. L., & Sudan, R. N. (1989). A nonlocal linear theory of  
 568 the gradient drift instability in the equatorial electrojet. *J. Geophys. Res.*, 94,  
 569 1317.

570 Ronchi, C., Sudan, R. N., & Farley, D. T. (1991). Numerical simulations of large-  
 571 scale plasma turbulence in the daytime equatorial electrojet. *J. Geophys. Res.*,  
 572 96, 21,263.

573 Sahr, J. D., Farley, D. T., & Swartz, W. E. (1989). Removal of aliasing in pulse-to-

574 pulse Doppler radar measurements. *Radio Sci.*, 24, 697.

575 Saito, S., Yamamoto, M., & Hashiguchi, H. (2008). Imaging observations of night-  
576 time mid-latitude F-region field-aligned irregularities by an MU radar ultra-  
577 multi-channel system. *Ann. Geophys.*, 26, 2345–2352.

578 Skilling, J., & Bryan, R. K. (1984). Maximum entropy image reconstruction: Gen-  
579 eral algorithm. *Mon. Not. R. Astron. Soc.*, 211, 111.

580 Sommer, S., & Chau, J. L. (2016). Patches of polar mesospheric summer echoes  
581 characterized from radar imaging observations with MAARSY. *Ann. Geophys.*,  
582 34(12), 1231–1241.

583 Swartz, W. E., & Farley, D. T. (1994). High-resolution radar measurements of tur-  
584 bulent structure in the equatorial electrojet. *J. Geophys. Res.*, 99, 309.

585 Thompson, A. R., Moran, J. M., & Jr., G. W. S. (2017). *Interferometry and synthe-*  
586 *sis in radio astronomy, 3rd ed.* New York: John Wiley.

587 Urco, J. M., Chau, J. L., Milla, M. A., Vierinen, J. P., & Weber, T. (2018). Co-  
588 herent MIMO to improve aperture synthesis radar imaging of field-aligned  
589 irregularities: First results at Jicamarca. *IEEE Trans. Geosci. and Remote  
590 Sens.*, 56(5), 2980–2990, doi:10.1109/TGRS.2017.2788425.

591 Urco, J. M., Chau, J. L., Weber, T., & Latteck, R. (2019). Enhancing the spa-  
592 tiotemporal features of polar mesosphere summer echoes using coherent mimo  
593 and radar imaging at maarsy. *Atmospheric Measurement Techniques*, 12(2),  
594 955–969. Retrieved from <https://www.atmos-meas-tech.net/12/955/2019/>  
595 doi: 10.5194/amt-12-955-2019

596 Wernecke, S. J., & D'Addario, L. R. (1977). Maximum entropy image reconstruc-  
597 tion. *IEEE Trans. Computers*, c-26, 351.

598 Wilczek, R., & Drapatz, S. (1985). A high accuracy algorithm for maximum entropy  
599 image restoration in the case of small data sets. *Astron. Astrophys.*, 142, 9.

600 Zheng, L., & Tse, D. (2003). Diversity and multiplexing: a fundamental tradeoff in  
601 multiple-antenna channels. *IEEE Transactions on Information Theory*, 49(5),  
602 1073–1096. doi: 10.1109/TIT.2003.810646