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Abstract The numerical forecast methods used to predict ionospheric convective plasma instabilities
associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We
test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine
learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory
located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence

and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are
capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.

Plain Language Summary Equatorial Spread-F (ESF) is a phenomenon that happens in the
ionosphere and it can create disturbances that affect communication and navigation systems, such as GPS

or satellite phones. Scientists have been trying to predict when and where ESF will happen using numerical
forecast methods, but these methods are not very accurate and can be expensive. In this study, we tested a
new way to predict ESF using machine learning models. We used data from a radar in Lima, Peru, and looked
at information such as how the plasma in the ionosphere moves vertically and how active the sun was. The
models were able to predict where and when ESF would occur with about 75% accuracy, which is a promising
development.

1. Introduction

A signature feature of space weather in the postsunset equatorial ionosphere is the frequent occurrence of deep,
broadband plasma density irregularities driven by plasma convective instability. The irregularities can occupy
scale sizes from tens of cm through hundreds of km, span altitudes from the valley region to the topside, and
persist for hours. They alter radio wave reflection, refraction, diffraction, and scattering in the ionosphere and,
consequently, can disrupt a range of radio communication, navigation, and imaging systems. Plasma convective
instability is responsible for the so-called “equatorial spread F”* or “ESF” which has become an umbrella term
for the phenomenon. Extensive reviews of the subject have been presented in the literature (see e.g., Kelley
et al., 2011; Kil, 2015; Woodman, 2009).

The global climatology of ionospheric irregularities associated with ESF is now well established (see e.g.,
Chapagain et al., 2009; Gentile et al., 2006). Although ESF was discovered more than 80 years ago (Booker &
Wells, 1938), forecasts models more reliable than climatologically based models remain elusive. An important
step toward forecasting was taken more than 50 years ago when Farley et al. (1970) pointed out that there seemed
to be a threshold F-region layer height required for instability. This highlighted the critical role of the background
zonal electric field (vertical plasma drift), which influences layer height around sunset and can both establish the
conditions for and subsequently drive instability (e.g., Fejer & Kelley, 1980). It is well known that the background
zonal electric field reverses direction around sunset and exhibits a characteristic “prereversal enhancement,” or
PRE, just before doing so. Understanding the PRE, modeling it, and estimating the impact of PRE on ionospheric
convective instability are key areas of contemporary research into the forecast problem (Chen et al., 2017; Eccles
et al., 2015; Farley et al., 1986; Fejer et al., 1979; Kil et al., 2009; Richmond et al., 2015).

Electric fields and plasma drifts can be measured accurately near the geomagnetic equator using the incoherent
scatter radar (ISR) technique (Woodman, 1970). A substantial database has been accumulated with the Jicamarca
Radio Observatory's main radar, located outside Lima, Peru, near the magnetic equator. The database includes
vertical plasma drift measurements and plasma density irregularities associated with ESF. The database, there-
fore, includes both causes and effects. Efforts have been underway for over a decade to use the data to develop
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and test direct numerical simulations of plasma convective instability using these data (see Hysell et al. (2022)
and references therein). While the results are promising and suggest that the time series of the vertical plasma
drifts around sunset seems to be the main ingredient required for local irregularity forecasting, setting up and
running each individual simulation is very time-consuming. Only a small fraction of the database will ever be
investigated this way.

In this paper, we attempt to bypass first-principles numerical simulations and test whether it is possible to forecast
ionospheric irregularities using vertical plasma drift measurements and machine learning. The project has three
components. The first is to develop a way to quantify the degree of instability observed at Jicamarca on a given
night from the ISR data. The second is to quantify the causal relationship between the drift data and subsequent
instability. The third is to make and assess forecasts. Below, we describe the ISR data set from Jicamarca and then
address each component. We conclude by summarizing with an assessment of the forecast potential of our methods.

2. Measurements and Data Sets Overview

Here, we describe the measurements and data used to classify and forecast ionospheric plasma irregularities using
machine learning. We also describe how the features and labels were selected to feed the machine-learning model.
Furthermore, we outline how the “density-based spatial clustering of applications with noise” or DBSCAN algo-
rithm was used to label the observed instabilities automatically. Finally, we describe the metrics used to filter
high-quality data samples.

2.1. Input Data: Vertical Drifts, Day of Year, and Solar Activity

The data set used in this study consists of equatorial vertical and east-west plasma drift measurements made by
the ISR of the Jicamarca Radio Observatory (11.95°S, 76.87°W, 1° dip) between the years 2010 and 2021. The
drifts are measured using radar beams directed nearly perpendicular to the geomagnetic field. This facilitates
accurate drift measurements and permits the detection of coherent scatter from field-aligned density irregularities
when present (Kudeki et al., 1999). The Jicamarca ISR provides 1045 days of data acquired in this drifts mode
each year.

The drift mode has a nominal altitude resolution of 15 km and produces measurements from altitudes between
200 and 1,000 km with a time resolution of 5 min. Consequently, the natural way to visualize vertical backscat-
ter radar data is as a 2-dimensional array with parameters represented through a color map. The parameters of
interest are the ion drift velocities, measured in meters per second, and the signal-to-noise power ratio (SNR),
measured in dB. The estimation methodology also provides error estimates for the measurements. The hypothesis
is that the time history of the vertical drifts can be the foundation for irregularity forecasting. Irregularities are
associated with strong increases in signal intensity.

In addition to the radar measurements, seasonal parameters, including the day of the year and the solar radiation
flux at 10.7 cm, are used as features for machine learning.

2.2. Features and Labels

The data incorporated in the machine learning model consists of a set of features that describe or quantify each
data sample along with a label possibly associated with those features. We are interested in a model that can
receive these sample features and then predict the most likely label.

For this study, we use the average ion drift velocities measured by the ISR, the day of the year, and the solar flux
as the features or inputs to the machine learning model. For each 5-min interval between 1200 and 1800 LT, the
ion drift velocities are averaged over the 200-850 km altitude range using the squared inverse of the measurement
errors as weights. The day of the year is represented by cartesian (x, y) coordinates in a unit circle to exploit the
cyclical nature of this parameter. Finally, the solar flux for each measurement day is expressed in solar flux units
as a separate feature. Together, there are 75 features for each day: 72 averaged vertical drifts, two DOY numbers,
and one solar activity proxy.

The labels are inferred from the intensity of the backscattered radar signals. Irregularities associated with ESF are
regarded as being present when the SNR of the coherent scatter exceeds a threshold. Space-time clusters of coher-
ent scatter are identified in the data, and a label is derived from the maximum altitude of the cluster members.
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Table 1
The Number of Measurements Was Categorized Based on Solar Flux and
Time of Year

Season Low solar activity High solar activity
Equinox 32 38
Winter Solstice 11 42
Summer Solstice 94 58

Note. The labels “Low Solar Activity” and “High Solar Activity” correspond
to daily F10.7 values below and above 82 s.f.u. (solar flux units), respectively.

Plasma convective instabilities are usually observed shortly after sunset or
thereafter, so we investigate the period between 1800 and 2300 LT. We define
three labels: (a) a cluster is not observed, (b) a cluster is observed with a
maximum altitude below 350 km, and (c) a cluster is observed with a maxi-
mum altitude above 350 km. Here, (b) corresponds roughly to bottom-side
layers, which are common but less disruptive irregularity forms, whereas (c)
corresponds roughly to topside radar plumes, which are less common but
more disruptive (Hysell & Burcham, 1998; Woodman & La Hoz, 1976).
Ideally, it would be desirable to predict the bottom side and topside scattering
layers separately, but this will be a topic of future work.

2.3. Data Processing for Machine Learning

The data for this study were obtained from the CEDAR/Madrigal Data-
base in HDF5 format and processed using the Python libraries pandas,

scikit-learn, and keras. One of this study's main challenges is the marginal size of the data set. The ISR
is run in campaign mode and does not produce a continuous data stream. Moreover, we limited the study to data
acquired after 2010 when the particular experimental mode went into service. Campaign days that exceeded a
specified threshold of missing data or presented excessive experimental variance in the ion drift velocity meas-
urements were deemed unreliable and discarded, further reducing the size of the data set. Efforts were made to
utilize samples that presented only a few missing data by interpolating from adjacent measurements. In total,
245 days were used to train the machine-learning models (Table 1).

It was important to build a robust, autonomous tool for detecting and quantifying clusters of coherent scatter since
we expect this tool to continue to be used in the future on the ever-expanding JRO data set. This cluster identifica-

tion is needed to filter isolated high SNR bins produced by experimental contamination or transients that will not

be included in this analysis. The Python library scikit-learn has an implementation of the DBSCAN algo-

rithm which was used to identify clusters of SNR bins above a predefined threshold. DBSCAN finds core samples

of high density depending on two main parameters and extracts clusters from them. The parameters are eps,

which defines a radius around an analyzed data point, and min samples, the minimum number of samples

inside a circle of radius eps around a data point to be considered part of the cluster (Schubert et al., 2017).

Several factors favored DBSCAN over other clustering algorithms. First, it performs well in applications with
irregularly shaped clusters. Second, it extends clusters only in high-density areas of data points, effectively ignor-
ing outliers in the data. The radio frequency environment is full of interference and clutter that is difficult to char-
acterize, and this algorithm effectively ignores clusters or irrelevant data points. Before applying the DBSCAN
algorithm, the data samples are filtered using a 5 dB threshold, discarding data points with insufficient SNR.
However, some outliers are present after this filtering, and the clustering algorithm effectively mitigates this

problem. This clustering technique provides useful information, including the maximum altitude of the iono-

spheric irregularities, their duration, the average intensity of the cluster, and the size of the cluster. Figure 1
illustrates the process of thresholding and cluster identification using DBSCAN for 1 day of data (Figure 2).

3. Model Details

We now describe the two machine learning models applied to our data. For this study, we used Random Forests

(RF) to analyze the relationship between the features and the labels and extract feature importance and perfor-
mance information. Additionally, a Convolutional Neural Network (CNN) was constructed and fitted to the data
to improve the time-series classification accuracy further.

3.1. Label Classification Using Random Forests

The first model applied to the data was Random Forests, an ensemble machine-learning technique that imple-
ments several individual decision trees for regression and classification problems (Breiman, 1996). The
scikit-learn package was used to implement a supervised classification task on our data samples and
extract individual feature importance that indicates which of the analyzed features is most relevant to each
sample class. This classifier algorithm uses binary decision trees constructed using the Classification and
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Figure 1. (Top left) SNR values versus altitude and local time. (Bottom Left) Only the bins above a threshold of 5 dB are retained. The red rectangle is filtered using
the DBSCAN algorithm. (Right) DBSCAN-filtered SNR map derived from the previous plot.

Regression Trees algorithm. Each tree consists of several internal nodes and leaves representing features and
attributes, respectively. In our data, the attributes correspond to the numeric values of those parametric features.
The splitting decision for each node is based on a threshold value calculated to minimize the variance of the
data in the two child nodes. In our model, the mean squared error is used to calculate the splitting threshold
for each node, creating an iterative process that only stops when the tree can correctly classify all training data
samples.

An individual decision tree presents high variance, leading to poor performance with unseen data. Random
forests minimize this problem by taking random bootstrap samples (samples with replacement) from the training

Features

Average drifts between 12:00-18:00
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10.7 cm solar
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Figure 2. Diagram illustrating the architecture of the model. The machine-learning model tries to reconstruct a function that
maps average drifts, day of the year, and solar flux to the defined labels.
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set and constructing several decision trees. In our classification task, the output of the RF classifier is the output
mode of the individual trees.

The scikit-learn's package includes a built-in random forest feature importance module which computes
the percentage relevance of each individual feature by analyzing how on average, it contributes to reducing the
likelihood of a new unseen data sample being misclassified (Coppersmith et al., 1999). In our study, feature
importance data provides insight into which portion of the time series better predicts the presence and location
of SNR clusters after sundown.

3.2. Convolutional Neural Networks to Forecast Labels

In our study, a CNN was used as an alternative method of time-series classification (TSC), tuned in accordance
with the results obtained from the RF model application. CNNs are commonly used in image classification
tasks, where 2-dimensional arrays are filtered and analyzed in search of specific repeating patterns for samples
belonging to the same output class. Recent studies have shown that this approach can be applied to a TSC prob-
lem and achieve a more accurate model than using recurrent neural networks (Fawaz et al., 2019). In our study,
a 1-dimensional univariate array of points is convolved in search of specific patterns in average ion drift velocity
variations over time.

Several motivations existed for using this model in our TSC problem. First, the batch normalization operation
before each activation function accelerates the training of the network by reducing the covariance shift of
the data, which cannot be implemented between time steps in networks like RNNs (loffe & Szegedy, 2015).
Second, they perform relatively well where some samples are missing (Likowski et al., 2022). The samples
obtained from the ISR often present missing data points, and despite applying interpolation techniques, the
artificial generation of data points may pose a larger problem in other algorithms. Finally, aggregating a pooling
layer after the convolution layers significantly reduces the computational cost when the network is deep (Liu
et al., 2016).

In our study, we used a Fully Convolutional Neural Network (FCN) architecture (Wang et al., 2017) to clas-
sify the time-series sequence. The Python framework Keras, which is built atop TensorFlow 2, was used
to implement the FCN. The designed architecture presents three convolutional layers, with 128, 256, and 128
filters, respectively, activated by a Rectified Linear Unit function; a 1-dimensional global average pooling layer,
which emphasizes the portions of the time series that most contributed to the predicted class; and a dense final
layer activated using a softmax function that normalizes the final output to get a probability estimate. The best
parameters for batch size and the number of epochs were found through an exhaustive search performed by the
GridSearchCV method for model selection implemented in Keras. Finally, initial tests showed overfitting,
so dropout layers were inserted between layers as regularization.

4. Results and Discussion

A total of 275 days of measurements made between 2010 and 2021 were available to train and test our
machine-learning models. For our analyses, the data were randomly split into a training subset containing 245
samples, and the remaining 30 days were used as validation data to calculate the accuracy of the model.

Given the limited availability of days of measurements for this study, the performance results were obtained
by taking the average of several model applications. In our RF classification, the performance was calculated
with the accuracy_score metric in the Scikit-learn Python package. This function computes subset accuracy
for multi-label classification by comparing the predicted and true testing labels, which must match exactly. The
model presented a high variability in testing accuracy. This high variance can be explained by the low number
of samples available for training. To mitigate this problem, we took the average of 500 random forests, with 100
estimators in each forest. The averaged confusion matrix is presented in Table 2, and it shows the average number
of samples that were predicted for each label versus the true number of samples for each class. This provides a
visual representation of the overall performance of the random forest algorithm. The rows represent the actual
labels derived from analyzing the testing data, while the columns show the labels forecasted by our model. For
instance, our model's average prediction for label 1 was actually label 0, occurring 3 times. Moreover, the model
accurately predicted labels 0, 1, and 2, with frequencies of 10, 4.7, and 34 times, respectively.

GARCIA ET AL.

50f 8

0d ‘T “€T0T “06€LTYST

:sdny woxy

AsURDIT suowwio)) aanear) ajqearidde ayy £q pauIaA03 Axe SAIIE V() $asN JO ST 10 ATRIQIT UIUQ AR[IAL UO (SUONIIPUOD-PUB-SULI}/WOY" K[1M" AIRIGIUI[UO//:sdNY) SUONIPUOD) PUB SWIAL, Y} QS “[$70T/L0/1] U0 Areiqry auruQ Aipy “ANsIoatun w10 £ SOSE00MSETOT/6T0T 01/10p/Wod" K1m*AIRIqIUIUO



A70 |
MN\I.
ADVANCING EARTH
AND SPACE SCIENCES

Space Weather

10.1029/2023SW003505

Table 2
Average Confusion Matrix for RF Classification
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True Label

4.7

9.5

12

34

1

Predicted Label

As observed, the model successfully identifies samples exhibiting no clusters and high-altitude clusters. However,

the model struggles to find a good feature-label relationship for low-altitude clusters. This indicates that the exist-

ing patterns in the time series are not incisive enough to differentiate clusters of varying altitudes in the RF classi-

fication. Nonetheless, there exists a clear relationship between the features and the presence of high SNR clusters.

The individual feature importance for our model (Figure 3) indicates that seasonal parameters are strongly corre-
lated to the presence of clusters. This feature is the most relevant during the classification task as expected (Fejer
etal., 1979). The parameter that contributes the most to the predicted class is the day of the year, represented as (x, y)
coordinates of a unit circle. It can be observed that the y-coordinate is significantly more relevant for the model

than the x-coordinate, which can be explained by one of the following hypotheses: (a) in the case of correlated
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Figure 4. Evolution of the loss function and model accuracy for different stages of the training.

features, the built-in feature importance method can select one of the features and neglect the importance of the other
(Breiman, 2001); (b) the presence of convective plasma instabilities is directly correlated to the sinusoidal compo-
nent of the time series. Furthermore, the importance of the averaged drift time series is most pronounced right before
1800 LT, which indicates that the model may obtain similar results by shortening the time series to the last few hours.

The results obtained with the FCN are summarized in Figure 4. Both the training and validation loss functions
decrease for increasing epochs. Even though both curves seem to converge, we see that the training loss function
tends to a value half of the validation loss function. This could be a combination of two factors. First, the vali-
dation data set does not represent the training data, so the model will always have difficulty modeling new data.
Second, the input parameters of the model may not have enough predictive power to capture the clustering labels
compared to their variability. Nevertheless, the accuracy oscillates around 75%, which is significantly greater
than the 33% of random choice. It is important to emphasize that this latter claim does not imply that we expect
our model to significantly outperform simpler statistical models or a similar model that does not consider the
information of the drifts. Increasing the number of training epochs would produce overfitting.

5. Summary and Conclusions

In this work, we built two models based on machine learning to predict the occurrence of ionospheric irregulari-
ties associated with ESF based on vertical drift data measured at the JRO. The occurrence of these irregularities
is associated with clusters of high SNR and is identified using the DBSCAN clustering algorithm. The processed
radar data are then labeled with O (no cluster), 1 (cluster located below 350 km), and 2 (cluster located above
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350 km). Then, we used Random Forests and Convolutional Neural Networks to build models that map averaged
vertical drifts, day of the year, and solar activity to these clustering labels.

Our results suggest that even though climatology is still the strongest predictor, the vertical drifts from a few
hours before sundown have predictive power. Despite the small data sets, the Neural Network achieves an accu-
racy of around 75%, which is remarkable considering the simplicity of the model. In the future, new data sets may
be assimilated to increase the predictive power of the model.
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