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Abstract
A hierarchical multiscale modeling framework is proposed to simulate flowslide
triggering and runout. It couples a system-scale sliding-consolidation model
(SCM) resolving hydro-mechanical feedbacks within a flowslide with a local-
scale solver based on the discrete element method (DEM) replicating the sand
deformation response in the liquefied regime. This coupling allows for the
simulation of a seamless transition from solid- to fluid-like behavior following
liquefaction, which is controlled by the grain-scale dynamics. To investigate the
role of grain-scale interactions, the DEM simulations replace the constitutive
model within the SCM framework, enabling the capture of the emergent rate-
dependent behavior of the sand during the inertial regime of motion. For this
purpose, a novel algorithm is proposed to ensure the accurate passage of the
strain rate from the global analysis to the local DEM solver under both quasi-
static (pre-triggering) and dynamic (post-triggering) regimes of motion. Our
findings demonstrate that the specifics of the coupling algorithm do not bear sig-
nificant consequences to the triggering analysis, in that the grain-scale dynamics
is negligible. By contrast,major differences between the results obtainedwith tra-
ditional algorithms and the proposed algorithm are found for the post-triggering
stage. Specifically, the existing algorithms suffer from loss of convergence and
require proper numerical treatment to capture the micro-inertial effects arising
from the post-liquefaction particle agitation responsible for viscous-like effects
that spontaneously regulate the flowslide velocity. These findings emphasize the
important role of rate-dependent feedback for the analysis of natural hazards
involving granular materials, especially for post-failure propagation analysis.
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1 INTRODUCTION

Loose granular soils initially deforming as solid materials can lose the ability of sustaining shear strength under external
excitations, manifested in liquefaction instabilities, responsible for numerous catastrophic failures of geostructures such
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as embankments, levees, and tailings dam.1–4 This process involves three possible regimes of granular material under
shearing depending on how particles interact,5,6 including (1) quasi-static state with dominating frictional contacts under
extremely slow shear strain rate, (2) intermediate granular flow governed by both frictional and collisional contacts under
moderate shear strain rate, and (3) collisional statewith dominating binary and uncorrelated collisional interactions under
high shear strain rate. Modeling this process through continuum mechanics principles requires adequate representation
of the complex rheological response of granular materials under different regimes, as well as of the transition across these
regimes. Many attempts have been made to propose constitutive laws tackling the response of granular materials under
each individual regime, based on, for example, soil mechanics for plastic flow, for example refs. [7–11], 𝜇(𝐼) rheology12
for moderate granular flows, and kinetic theory13 for rapid collisional flows. Although recently, promising attempts have
been made to formulate unified modeling frameworks covering all such regimes,14–17 this emerging class of continuum
models still requires further evaluation.
In this context, multiscale modeling offers a viable alternative to bypass the complexities within multi-regime

continuummodeling. Hierarchical multiscale modeling18 is particularly effective as it involves the computational homog-
enization of local-scale quantities and the passage of information between global- and local-scale models. A notable
example of this approach is the coupling of global continuum frameworks and local simulations based on the discrete
element method (DEM). In such cases, global-scale models can be constructed using conventional finite element method
(FEM) for small-strain problems19–22 or material point method (MPM) and smoothed particle finite element method
(SPFEM) for large-strain problems.23–25 The local DEM solver replaces the constitutive model, in that it receives strain
increments from the global model and returns the simulated stress tensor.While these techniques are increasingly used in
numerous previous studies, it is important to note that the local DEMmodel is often operated with a rescaled loading rate.
This approach is designed to maintain the local response within the quasi-static regime. While this logic is sound for the
analysis of global-scale problems characterized by limited inertial processes (e.g., slow progressive failure involving the
gradual development of a shear band23,24), it may introduce significant approximationswhen dealingwith highly dynamic
problems,26 such as those involving flow-like behavior and consequent rate effects due to grain-scale inertial feedbacks.
This study aims to enhance hierarchical multiscale modeling frameworks by accounting for the rate-dependent behav-

iors that can spontaneously manifest in local DEM simulations. More generally, the primary objective of the study is
to investigate the impact of grain-scale dynamics on the entire life cycle of flowslide triggering and runout. Given that
the focus of the paper is on the accurate treatment of the passage of the strain rate from the global to the local scale,
a reduced-order model is employed to address the hydromechanical couplings that engage sand deformation and pore
pressure buildup. This framework is a member of the sliding-consolidation models (SCM) family.27,28 It has been recently
augmented to enable the versatile representation of the feedback between flowslide velocity and excess pore pressure
dissipation, accommodating various constitutive relations for the deforming landslide material.29 This choice offers the
advantage of significantly reducing the computational costs involved in the continuum modeling of global problems
through techniques for large deformation analyses (e.g., MPM, SPFEM). Simultaneously, it allows for an in-depth exam-
ination of the constitutive behavior that emerges from the chosen DEM solver, considering both flowslide triggering and
runout. In the following sections, DEM simulations will be used to capture both the onset of liquefaction (the flowslide
triggering stage) and the subsequent flow-like behavior (the flowslide runout stage). These simulations include the emer-
gent rate effects arising from the inter-particle interactions resolved by the DEM. This approach enables us to bypass the
specification of the deformation/flow regime of the granular material. Possible regime transitions are automatically cap-
tured by the DEM solver, as it conducts local analyses at deformation rates consistent with the global inertial behavior of
the landslide system. As a result, the analyses are anticipated to highlight the role played by the rate of sand deformation
at different stages of the flowslide process.

2 NUMERICAL PLATFORM

2.1 Sliding consolidation model

The balance equations governing the triggering and runout of a flowslide are here simulated at the system scale through
the novel SCM framework proposed by Chen and Buscarnera.29 The first proposition of an SCM dates back to the work by
Hutchinson,27 who examined the propagation behavior of a liquefied soil volume by modeling the competition between
the frictional resistance at the base of the landslide and excess pore pressure dissipation. While the original SCM involved
a one-way coupling between pore pressure and frictional strength, later developments of Iverson28 allowed full coupling
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F IGURE 1 Idealization of a soil column with two assumptions in the liquefiable layer: (A) linear velocity profile along 𝑧 direction and
(B) parabolic distribution of excess pore pressure 𝑝𝑤 along 𝑧′ direction.

between sliding and consolidation. In this context, the work by Chen and Buscarnera further expands the scope of the
application of this class of models by allowing a versatile selection of the constitutive behavior for the active zone of
landslide deformation, inelastic effects in the rate of excess pore pressure dissipation, and a streamlined analysis of the
entire cycle of pre-failure, triggering, and post-failure landslide dynamics.29–31 Hereafter, the key features of the SCM
model proposed by Chen and Buscarnera are briefly described.
For an infinite slope with phreatic surface parallel to the bedrock (Figure 1), the inelastic deformation is assumed to

concentrate within a liquefiable layer of thickness ℎs, while the stationary pore water pressure is governed by the phreatic
surface (having elevation ℎ𝑤 from the base of the landslide). Two governing equations are established by considering
downslope flow dynamics and vertical fluid diffusion:

𝑚𝑎 = 𝜏d − 𝜏, (1)

𝑘

𝛾𝑤

𝜕2𝑝𝑤

𝜕𝑧′2
+ 𝜀̇ = 0. (2)

Here𝑚 is themass of the slopematerials, 𝑎 the slopemovement acceleration, 𝜏d the driving shear stress, 𝜏 the resistance
shear stress, 𝑘 the hydraulic conductivity, 𝛾𝑤 the unit weight of water, 𝑝𝑤 the excess pore pressure, and 𝜀 the normal strain
perpendicular to the slope.
Assuming a linear distribution of the flow velocity 𝑣 along the depth of the liquefiable layer with a zero basal velocity,

we can determine the shear strain rate 𝛾̇ using the following equations:

𝛾̇ = −
𝜕𝑣

𝜕𝑧
=

𝑣𝑡
ℎs
, (3)

𝑣 = 𝑣𝑡

(
1 −

𝑧

ℎs

)
, (4)

where 𝑣𝑡 is the flow velocity at the top surface of the liquefiable layer. Furthermore, Equation (2) can be simplified as:

𝜀̇ =
2𝑘

𝛾𝑤(ℎs cos 𝜃)2
𝑝𝑏𝑤 =

2𝑘

𝛾𝑤(ℎs cos 𝜃)2
(𝜎d − 𝜎), (5)

assuming a parabolic distribution of excess pore pressure 𝑝 along 𝑧′ direction, given by:

𝑝𝑤(𝑧
′) = 𝑝𝑏𝑤

[
2

𝑧′

ℎs cos 𝜃
−

(
𝑧′

ℎs cos 𝜃

)2
]
, (6)

where 𝑝𝑏𝑤 is the basal excess pore pressure, 𝜃 is the slope angle, 𝜎d is the driving normal stress to the slope, and 𝜎 is the
resistance normal stress.

 10969853, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3705 by C

ochraneItalia, W
iley O

nline Library on [12/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



YANG and BUSCARNERA 1723

TABLE 1 DEM parameters.

Description Value
Particle density, 𝜌 2650 kg∕m

3

Young’s modulus, 𝐸 2 GPa

Poisson’s ratio, 𝜈 0.25
Coefficient of restitution, 𝜖 0.8
Tangential friction coefficient, 𝜇 0.5
Rolling friction coefficient, 𝜇r 0.1

Abbreviation: DEM, discrete element method.

For simplicity, the following derivations neglect differences in soil density between the liquefiable and non-liquefiable
portions of the slope profile. The mass of the moving slope is therefore expressed as a function of ℎ𝑤,

𝑚 = 𝜌satℎ𝑤 + 𝜌d(ℎ − ℎ𝑤), (7)

where 𝜌d is the dry density of soil above thewater table and 𝜌sat is the saturated density of soil below thewater table. In this
study, we set ℎ𝑤 = ℎs, which occupies 10% of the slope thickness ℎ. The initial internal stress state (𝜏0, 𝜎0) is determined
to ensure equilibrium:

𝜏0 = [𝜌satℎ𝑤 + 𝜌d(ℎ − ℎ𝑤)]𝑔 sin 𝜃, (8)

𝜎0 = [(𝜌sat − 𝜌𝑤)ℎ𝑤 + 𝜌d(ℎ − ℎ𝑤)]𝑔 cos 𝜃. (9)

Given the prescribed driving stress history (𝜏d, 𝜎d), the two governing equations (1) and (5) with four unknown variables
𝑎, 𝜏, 𝜀, and 𝜎 require two additional constitutive relations to be solved. These constitutive relations are provided by the
DEM to complete the analysis.

2.2 Discrete element method

2.2.1 Contact model

The local-scale simulations of sand deformation in this study utilize the open-source DEM program for particle dynamics
simulation called LIGGGHTS.32 The granular assembly consists of polydisperse spherical particles that interact through
soft-contact laws. The contact interactions between particles are modeled using a Hertzian normal model and a history-
dependent tangential model with a Coulomb friction cut-off. To simply account for effects of aspherical particle shape
or surface roughness, the modified elastic-plastic spring dashpot model EPSD333 is employed to incorporate rolling resis-
tance into spherical particles. The DEM parameters used in the simulations are listed in Table 1, which include particle
density 𝜌, particle Young’s modulus 𝐸, Poisson’s ratio 𝜈, coefficient of restitution 𝜖, tangential friction coefficient 𝜇, and
rolling friction coefficient 𝜇r. In this study, a reduced value of 𝐸 compared with around 70 GPa as reported by laboratory
measurements34,35 is adopted. This adjustment ismade to diminish the excessive dilation observedwithin theDEMsample
during the post-liquefaction period. Nevertheless, the chosen value for 𝐸 remains sufficiently high to represent particles
that are nearly undeformable, ensuring that the average normal deflection between particles is negligible compared to the
particle size. The values of 𝜈 and 𝜖 closely align with those reported in previous measurements.34,35 The high value of 𝜖
is selected to introduce a low viscous force for weak dissipation of kinetic energy during particle collisions. A common
value of 𝜇 = 0.5 is used in the shearing stage, as found in the literature [36], to ensure the DEM sample exhibits a reason-
able critical state friction angle. The rolling friction coefficient 𝜇r is set to a small nonzero value to enhance dissipation
while sliding friction remains the main contributing factor. LIGGGHTS adopts an explicit velocity-Verlet time-stepping
scheme to update the positions, velocities, and angular velocities of the spherical particles. The time step sizeΔ𝑡L = 5e-7 s
is chosen to be less than 5% of the Rayleigh-wave propagation time scale and Hertz contact time scale, ensuring sufficient
accuracy in the numerical simulations.
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1724 YANG and BUSCARNERA

(A) (B)

F IGURE 2 Illustration of particle arrangement and boundary conditions for a DEM sample composed of 8800 particles: (A) at the end of
sample preparation; (B) during shearing. The dark particles are glued to the top and bottom walls of the simulation cell. DEM, discrete
element method.

In this study, the DEM samples are constructed using 8800 spheres with low polydispersity, where 𝐷max∕𝐷min = 1.5

and 𝐷min = 5 mm, with 𝐷max and 𝐷min representing the maximum and minimum particle diameters, respectively. The
particle sizes between 𝐷min and 𝐷max follow a uniform distribution of particle volumes. These particles are randomly
generated and placed on a three-dimensional (3D) sparse lattice of 20 × 20 × 22 to ensure that there is no overlap between
particles. This 3D lattice is contained in a rectangular cell, where all six sides of the cell act as rigid walls. To achieve the
desired stress state 𝝈0, which should be compatible with the initial internal stress state (𝜏0, 𝜎0) provided by the SCM, the
sample is compressed by translating the six sides of the cell. In the DEM simulations, we consider the stress components
𝜎𝑧𝑥 (or 𝜎𝑥𝑧) and 𝜎𝑧𝑧 of the stress tensor 𝝈 as the shear stress 𝜏 and normal stress 𝜎, respectively, in the SCM. Therefore,
we set 𝜎𝑧𝑥0 = 𝜏0 and 𝜎𝑧𝑧0 = 𝜎0 to match the initial stress state. For simplicity, the other normal stress components of 𝝈0,
including 𝜎𝑥𝑥0 and 𝜎𝑦𝑦0, are set equal to 𝜎0, while the other shear stress components are set to zero.
The DEM sample is prepared following a four-stage sample preparation process37,38: (1) using a small tangential friction

coefficient 𝜇 = 𝜇I and compressing the sparse cell by moving the six rigid walls at a constant small velocity until the
void ratio 𝑒 reaches 1.2; (2) setting the velocities of all six walls to zero and using a servo-control algorithm to densify
the sample isotropically to the target mean stress 𝑝 = 0.1𝜎0 with the same 𝜇I; (3) replacing the four lateral sides with
periodic boundaries, increasing the target mean stress to 0.2𝜎0, and continuing isotropic compression with the same 𝜇I;
(4)modifying 𝜇 = 0.5 for further compressing the sample anisotropically to the final target stress state where three normal
stresses reach 𝜎0 and shear stress 𝜎𝑧𝑥 equals 𝜏0. It should be noted that the choice of 𝜇I determines the sample density.
In this study, we use a relatively high value of 𝜇I to prepare loose granular packings. Figure 2A shows an example of a
sample prepared using the above procedure. The sample is placed in the bi-periodic simulation cell, where the top and
bottom sides are rigid walls, and the four lateral sides are periodic boundaries.
During simple shearing, the four lateral sides are fixed to constrain lateral normal strains. The bottomwall is also fixed,

and only the top wall is allowed to move horizontally or vertically to induce shear or volumetric strain, respectively. To
reduce possible slippage between thewalls and the sample, one layer of particles is glued to the top and bottomwalls. These
glued particles are represented by the dark spheres in Figure 2B. Figure 3 presents the macroscopic response of simulated
undrained simple shear tests on fourDEM samples under a small constant shear strain rate 𝛾̇ ≃ 0.06 s−1. Undrained shear-
ing is achieved by maintaining a fixed sample height throughout the simulation, thereby preserving a constant volume.
The use of the constant 𝛾̇ serves to ensure quasi-static loading conditions prior to liquefaction. We verify this by moni-
toring the dimensionless inertial number 𝐼 = 𝛾̇𝐷̄

√
𝜌∕𝑝, where 𝐷̄ the average particle diameter, 𝜌 particle density, and 𝑝

the mean stress. Shear deformation is considered to be nearly quasi-static if 𝐼 ≪ 1 and typically the threshold is assumed
to coincide with 1e-3. However, Figure 3C suggests that 𝐼 can surpass this threshold due to unstable deformation and a
sudden decrease in 𝑝. This behavior is an inherent characteristic of liquefaction and remains unaltered by variations in the
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YANG and BUSCARNERA 1725

(A) (B)

(C)

F IGURE 3 DEM simulated macroscopic results of constant-volume (undrained) simple shear tests on loose packings: (A) stress path,
(B) stress-strain response, and (C) evolution of inertial number 𝐼. DEM, discrete element method.

loading rate. Note that 𝑝 never reaches zero as otherwise 𝐼 would diverge. The four DEM samples in Figure 3 exhibit local
peak shear stress in undrained simple shear tests, followed bymassive decrease of normal stress and noticeable generation
of shear strain, a phenomenon named undrained instability widely observed in loose saturated sands. After instability, the
sample with 𝑒0 = 0.790 keep contracting and falls into full liquefaction with negligible effective stress, losing shear stress
completely while the one with 𝑒0 = 0.751 contracts first and then dilates, regaining significant shear strength. The two
samples in between fall into complete liquefaction first and then regain shear strength when shear strain develops more
than 25%, as shown in the inset window of Figure 3B.

2.2.2 Homogenization of the material response

Before conducting multiscale analyses, it is necessary to determine an average stress tensor that appropriately captures
the influence of loading rate on the response of the DEM sample. The average stress tensor ⟨𝝈⟩ for the selected region
 of the granular system can be obtained through a volume-based homogenization of the particle average stress tensor⟨𝝈𝑝⟩39,40:

⟨𝝈⟩ = 1

𝑉

∑
𝑝∈

𝑉𝑝,⟨𝝈𝑝⟩. (10)
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1726 YANG and BUSCARNERA

Here, 𝑉𝑝, represents the intersection volume of particle 𝑝 with the region . If particle 𝑝 is fully contained within the
region , 𝑉𝑝, is equal to the volume of particle 𝑝 denoted as 𝑉𝑝.
The particle average stress tensor ⟨𝝈𝑝⟩ that incorporates inertial effects is derived based on the approach proposed by

Nicot et al.,41 which satisfies the linear momentum balance of particle 𝑝:

⟨𝝈𝑝⟩ = 1

𝑉𝑝

∑
𝑐∈𝑝

𝒓𝑐,𝑝 ⊗ 𝒇𝑐,𝑝 −
1

𝑉𝑝 𝝌 ⋅
[
(𝝎̇𝑝 ⋅ 𝝐) + 𝝎𝑝 ⊗ 𝝎𝑝 − ||𝝎𝑝||2𝐈]. (11)

The first term on the right hand side (RHS) corresponds to the contact formulation in quasi-static regime, while the
second term, involving rotational velocities and accelerations of particle 𝑝, accounts for inertial mechanisms. In the first
term, 𝑝 represents the contact set of particle 𝑝, 𝒓𝑐,𝑝 = 𝒓𝑐 − 𝒓𝑝 connects the contact point 𝑐 with the center of particle 𝑝,
and 𝒇𝑐,𝑝 is the contact force applied on particle 𝑝 at the contact point 𝑐. In the second term, 𝝌 = ∫

𝑉𝑝 𝜌𝒓 ⊗ 𝒓d𝑉, where
𝒓 = 𝒙 − 𝒓𝑐 and 𝒙 is the position vector. 𝝌 is known as the inertia matrix, different from the moment of inertia in the
diagonal components. 𝝐 denotes the Levi-Civita symbol, 𝝎𝑝 is the particle’s rotational velocity vector, and 𝐈 represents the
second-order identity tensor.
Assume that all particles are contained within the region , implying 𝑉𝑝, = 𝑉𝑝 in Equation (10). Under quasi-static

loading conditions, where the unbalanced force/torque for each particle is negligible, Equation (10) can be combined with
Equation (11), omitting the second RHS term, resulting in Bagi’s stress tensor formulation42:

⟨𝝈⟩B = 1

𝑉

[∑
𝑐∈

𝒍𝑐 ⊗ 𝒇𝑐 +
∑
𝑒∈

𝒍𝑒 ⊗ 𝒇𝑒

]
. (12)

Here  represents the set of interior contacts, 𝒍𝑐 is the branch vector connecting the centers of two particles in contact,
 denotes the set of exterior contacts (contact point on the boundary of ), and 𝒍𝑒 is the vector connecting the particle
center to the contact point.40 For a granular system subjected to dynamic loading, we can substitute Equation (11) into
Equation (10) to obtain the stress tensor formulation proposed by Nicot et al.41:

⟨𝝈⟩N = ⟨𝝈⟩B − 1

𝑉

∑
𝑝∈

𝝌 ⋅
[
(𝝎̇𝑝 ⋅ 𝝐) + 𝝎𝑝 ⊗ 𝝎𝑝 − ||𝝎𝑝||2𝐈]. (13)

It should be noted that Equation (13) slightly differs from the equation presented by Nicot et al.,41 as the first RHS term
of Equation (13) is expressed through the Love-Weber stress tensor formula.43,44 This formulation does not distinguish
between interior and exterior contacts. The Love-Weber formula is applicable in cases where no exterior contacts exist,
such as a cubic DEM sample with all six sides as periodic boundaries. However, it is known that small approximations
in the contributions of peripheral particles can lead to significant and inaccurate calculation of the homogenized stress
tensor.45,46
Figure 4 illustrates the results of a constant-volume simple shear test on a loosely isotropically consolidated DEM sam-

ple, subjected to two different loading rates characterized by the dimensionless inertial number 𝐼. The cases with 𝐼 = 1e-4
and 2e-2 represent the quasi-static and dynamic loading conditions, respectively. Clearly, the macroscopic behaviors of
both cases are significantly different due to the distinct loading rates. In each case, both stress tensor formulations, given
by Equations (12) and (13), are employed to analyze the stress evolution. Surprisingly, regardless of the loading rate, the
stress paths obtained using Bagi’s and Nicot’s stress tensor formulations completely overlap, suggesting a negligible con-
tribution from the second RHS term of Equation (13). Within the range of 𝐼 considered in this study, the rate effect on the
macroscopic stress path is primarily captured by the first RHS term of Equation (13), which accounts for the persistent
contact network, rather than the second RHS term that directly incorporates the inertial effects of particles.
It is important to highlight that Equation (13) does not account for the kinetic or streaming contribution related to the

fluctuating velocities 𝒗𝑝 of the particles. This contribution is expressed by the kinetic stress tensor47,48:

⟨𝝈⟩𝑘 = 1

𝑉

∑
𝑝∈

𝑚𝑝𝒗𝑝 ⊗ 𝒗𝑝, (14)

where 𝑚𝑝 represents the mass of particle 𝑝. We analyzed the effect of ⟨𝝈⟩𝑘 in the subsequent multiscale modeling sim-
ulations and observed negligible contributions (less than 0.5%) to the total stress tensor ⟨𝝈⟩N + ⟨𝝈⟩𝑘. Consequently, one
can use ⟨𝝈⟩B, ⟨𝝈⟩N, or ⟨𝝈⟩N + ⟨𝝈⟩𝑘 for the following multiscale modeling analyses. In this study, we adopt ⟨𝝈⟩N.
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(A) (B)

F IGURE 4 DEM simulation results of constant-volume simple shear tests under different loading rates quantified by the inertial
number 𝐼: (A) stress path and (B) stress-strain response. DEM, discrete element method.

Non-liqu
efiable zone

Liquefia
ble layer

Bedrock

Phreatic
 surface

Soil column

Stra
in Δ
ε
and
ε

Stress σ

DEM solver

F IGURE 5 Illustration of the hierarchical multiscale coupling scheme of SCM and DEM. DEM, discrete element method; SCM,
sliding-consolidation model.

2.3 Hierarchical coupling between SCM and DEM

Figure 5 presents a schematic of the hierarchical multiscale model that couples the global-scale SCM with the local-scale
DEM solver. In this model, the DEM sample functions as the constitutive model, deforming in response to the received
strain increment and strain rate from the SCM, and providing the computed stress tensor back to the global-scale model.
We adopt an explicit time integration scheme that combines the central difference method and forward Euler method for
integrating the equations of sliding dynamics and fluid diffusion, respectively. Please refer to Algorithm 1 formore detailed
information on the integration procedure. Furthermore, this algorithm is designed to support MPI parallel computing,
with one CPU dedicated to global-scale model integration and all the CPUs assigned to the local-scale DEM calculations.
One of the main challenges in the multiscale coupling is establishing the relation between the global-scale strain 𝜺G

and the local-scale strain 𝜺L. Traditionally, many studies, for example refs. [20, 22, 49], have assumed that the global-scale
strain increment Δ𝜺G is equal to the local-scale strain increment Δ𝜺L, that is, Δ𝜺G = Δ𝜺L. However, the relation between
the global level strain rate 𝜺̇G and the local level strain rate 𝜺̇L remains unclear. Previous studies have often neglected this
relation and instead rescaled the local strain rate to lower values in order to achieve quasi-static deformation of the DEM
sample, thus assuming a rate-independent material model. For instance, a scalar value can be defined as the upper bound
strain rate 𝜀̇UL applied to DEM sample, and the number of DEM running steps 𝑛step and the local-scale strain rate 𝜺̇L can
be determined as follows:

𝑛step =
⌊‖Δ𝜺G‖∕ (𝜀̇UL Δ𝑡L)⌋ + 1, (15a)
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1728 YANG and BUSCARNERA

ALGORITHM 1 Explicit time integration scheme for hierarchical coupling of SCM/DEMmultiscale approach.

1: Initialize 𝑥0, 𝑣0, 𝜀0, Δ𝑡, 𝑡 = 0

2: Compute 𝑎0 =
(
𝜏0d − 𝜏0

)
∕𝑚, 𝑣

(
1

2
Δ𝑡

)
= 𝑣0 +

1

2
Δ𝑡𝑎0

3: while 𝑡 < 𝑡f do

4: Displacement: 𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑡𝑣
𝑡+

1

2
Δ𝑡 , 𝜀𝑡+Δ𝑡 = 𝜀𝑡 + Δ𝑡

2𝑘

𝛾𝑤(ℎ𝑠 cos 𝜃)
2

(
𝜎𝑡d − 𝜎𝑡

)
5: Strain increment: Δ𝛾 = Δ𝑥∕ℎ𝑠 , Δ𝜀 = 𝜀𝑡+Δ𝑡 − 𝜀𝑡 , Δ𝑥 = 𝑥𝑡+Δ𝑡 − 𝑥(𝑡)

6: Convert (Δ𝛾, Δ𝜀) to (𝑛step, 𝑣𝑥𝑧, 𝑣𝑧) used for DEM simulations
7: Run 𝑛step DEM steps using 𝑣𝑥𝑧 and 𝑣𝑧 to shear RVE and return Δ𝜏 and Δ𝜎
8: Compute 𝜏𝑡+Δ𝑡 = 𝜏𝑡 + Δ𝜏, 𝜎𝑡+Δ𝑡 = 𝜎𝑡 + Δ𝜎

9: Compute 𝑎𝑡+Δ𝑡 = 1

𝑚

(
𝜏𝑡+Δ𝑡d − 𝜏𝑡+Δ𝑡

)
10: Compute 𝑣𝑡+

3

2
Δ𝑡
= 𝑣

𝑡+
1

2
Δ𝑡
+ Δ𝑡𝑎𝑡+Δ𝑡

11: 𝑡 ← 𝑡 + Δ𝑡

12: end while

𝑡DEM = 𝑛stepΔ𝑡L, (15b)

𝜺̇L = Δ𝜺G∕𝑡DEM, (15c)

where Δ𝑡L represents the DEM time step, 𝑡DEM refers to the local-scale simulation time, ‖ ⋅ ‖ represents the norm of a
vector, ⌊⋅⌋ represents the integer part of a number, and the 1 in Equation (15a) avoids a zero 𝑡DEM, otherwise causing an
issue in Equation (15c). Equations (15) can be interpreted as follows:

‖𝜺̇L‖ ≃ 𝜀̇UL , if
⌊‖Δ𝜺G‖∕ (𝜀̇UL Δ𝑡L)⌋ + 1 ≃ ‖Δ𝜺G‖∕ (𝜀̇UL Δ𝑡L) , (16a)

‖𝜺̇L‖ ≃ ‖Δ𝜺G‖∕Δ𝑡L ≪ 𝜀̇UL , if
⌊‖Δ𝜺G‖∕ (𝜀̇UL Δ𝑡L)⌋ ≪ 1. (16b)

Equation (16a)works as expected.However, Equation (16b) indicates a significant discrepancy between the specified strain
rate 𝜀̇UL and the rate 𝜺̇L applied to theDEMsample. This discrepancy does notmatter in caseswhere changes in strain rate do
not significantly affect the response, such as quasi-static shearing. However, if the loading rate effect is significant, Equa-
tion (16b) can cause numerical convergence issues, meaning that the simulation results will change with the global level
time step Δ𝑡G. This is because smaller Δ𝑡G will activate Equation (16b) more frequently given the same global-scale strain
rate 𝜺̇G. For instance, consider a simulationwithΔ𝑡G such that𝑛step = 10 at a certain stage, implying ⌊‖Δ𝜺G‖∕(𝜀̇UL Δ𝑡L)⌋ = 9.
The local DEM solver will run with ‖𝜺̇L‖ ≃ 𝜀̇UL . If we rerun the simulation using one hundredth of Δ𝑡G and assume negli-
gible changes in 𝜺̇G within Δ𝑡G, then at each global step equal to 0.01Δ𝑡G, 𝑛step = 1 since ⌊0.01‖Δ𝜺G‖∕(𝜀̇UL Δ𝑡L)⌋ = 0, and‖𝜺̇L‖ ≃ 0.1𝜀̇UL . Despite having Δ𝜺G = Δ𝜺L, the latter simulation with 0.01Δ𝑡G will noticeably diminish the rate effect.
Figure 6 demonstrates the convergence of multiscale simulations that couple SCM and DEM. The strain incrementΔ𝜺G

from SCM is applied to a loose DEM sample with the strain rate derived from 𝐼. Pure DEM simulation results, including
stress path and stress-strain response, are included for comparison. Ideally, one would expect perfect agreement between
the SCM/DEMmultiscale modeling and pure DEM simulations when using the same 𝐼. This agreement holds for low 𝐼, as
shown in Figures 6A,C. The choice ofΔ𝑡G has negligible effects on the simulations, including the sliding velocity evolution
in Figure 6E with low 𝐼, unless Δ𝑡G is very small due to explicit integration. However, these agreements and convergence
with reducing Δ𝑡G do not apply to the multiscale simulation results for high 𝐼 = 1e-2, as shown in Figures 6B,D,F. Inter-
estingly, even better agreement is observed between themultiscale modeling results using largeΔ𝑡G = 1e-3 s and the pure
DEM data, which can be attributed to Equation (16b) being activated less frequently, thereby preserving the rate effect. As
Δ𝑡G is reduced to 1e-6 s, the multiscale simulation results become more similar to those obtained under quasi-static load-
ing, deviating significantly from the pure DEMdata with 𝐼 = 1e-2 at the beginning of loading. Furthermore, the computed
sliding velocity evolution is affected by the choice of Δ𝑡G.
Considering the limitations of Equation (16b) in handling high loading rates on the local-scale DEM, we can propose

two numerical strategies to avoid Equation (16b) and ensure that ‖𝜺̇L‖ ≃ 𝜀̇UL at all times:
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(A) (B)

(C) (D)

(E) (F)

F IGURE 6 Convergence of multiscale modeling results coupling SCM with RI-DEM and comparison with pure DEM simulation
response: (A) stress path, (C) stress-strain relation, and (E) sliding velocity evolution for loading rate of 𝐼 = 1e-4; (B) stress path, (D)
stress-strain relation, and (F) sliding velocity evolution for loading rate of 𝐼 = 1e-2. DEM, discrete element method; RI-DEM,
rate-independent DEM; SCM, sliding-consolidation model.

1. If the DEM time step Δ𝑡L is adjustable, we can continuously reduce Δ𝑡L so that the first RHS term in Equation (15a)
always return an integer value greater than 1. This approach ensures that Equation (16a) is activated instead of
Equation (16b). For example, we can define a default DEM time step Δ𝑡UL as an upper bound of Δ𝑡L:

𝑡DEM = Δ𝜺G∕𝜀̇
U
L , (17a)
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1730 YANG and BUSCARNERA

𝑛step =
⌊
𝑡DEM∕Δ𝑡

U
L
⌋
+ 1, (17b)

Δ𝑡L = 𝑡DEM∕𝑛step. (17c)

In this case, we ensure that Δ𝑡L ≲ min{Δ𝑡UL , ‖Δ𝜺G‖∕𝜀̇UL }. The validity of Equation (17) relies on the assumption that the
effect of DEM time stepΔ𝑡L on the DEM simulation results is negligible unless it becomes sufficiently small, regardless
of the loading rate.

2. If the DEM time step Δ𝑡L can not be adjusted or varying it is impractical, an alternative approach is to introduce an
additional term 𝜺accumL that accumulates Δ𝜺G until the condition

𝑛step =
⌊‖𝜺accumL ∕

(
𝜀̇UL Δ𝑡L

) ‖⌋ + 1 ≥ 𝑛accumstep (18)

is satisfied, where 𝑛accumstep is a user-defined integer greater than 1. During the accumulation of small Δ𝑡G increments,
the local DEM solver is not executed, and only the global-scale integration continues without updating DEM-related
quantities, such as stresses and void ratio (i.e.,Δ𝜏 = 0 andΔ𝜎 = 0 in step 7 of Algorithm 1). Once 𝜺accumL reaches a suffi-
cient magnitude to satisfy Equation (18), the local DEM solver runs for 𝑛step steps, followed by global-scale integration
of SCM. Afterwards, 𝜺accumL is reset to zero. It is important to note that setting 𝑛accumstep = 1 implies that the algorithm
reverts to operating according to Equations (16), essentially recovering the standard algorithm discussed previously as
a special case.

Due to the limited flexibility of the LIGGGHTS configuration in changing DEM time step Δ𝑡L, we can only implement
the second numerical strategy discussed earlier. Therefore, we rerun the multiscale simulations presented in Figure 6
using Equation (18) with 𝑛accumstep = 10. The results of these simulations are shown in Figure 7. Notably, this approach does
not affect the simulated response of the local DEM sample under quasi-static loading, ensuring that the results remain
consistent. However, it guarantees convergence and maintains good agreement with pure DEM simulation results when
dealing with high loading rates. We also verify that further increasing the value of 𝑛accumstep does not noticeably alter the
simulation results.
While the procedures mentioned earlier address the numerical challenges associated with shearing the local DEM

sample at a high strain rate, they do not entirely eliminate the issue of the mismatch between 𝜺̇G and 𝜺̇L, which involves
the temporal scales of both global and local scales. In this study, we make the simplifying assumption that 𝜺̇G and 𝜺̇L
are equal, that is, 𝜺̇L = 𝜺̇G. This assumption serves as an additional constraint for the information exchange between
scales, along with Δ𝜺L = Δ𝜺G. At each global time step Δ𝑡G, the computed 𝜺̇G corresponds to 𝜀̇UL of Equation (18), which
determines the rate at which the local DEM sample is sheared. We refer to this multiscale modeling scheme as SCM/RD-
DEM, where RD stands for rate-dependent, indicating the incorporation of the specified 𝜀̇UL and 𝜺̇G. Additionally, we
have the conventional multiscale modeling scheme, SCM/RI-DEM with RI representing rate-independent, where 𝜀̇UL
is set to a small value to ensure quasi-static loading and is therefore detached from 𝜺̇G. By comparing the simulation
results obtained from SCM/RD-DEM and SCM/RI-DEM, we can assess the effect of strain rate on flowslide triggering
and runout.

3 SIMULATION RESULTS

3.1 Flowslide triggering

To investigate the influence of grain-scale interaction dynamics on flowslide triggering,we apply a shear load to the sloping
ground at a constant rate of 𝜏̇d = 1e3 kPa/min using both the RI-DEM and RD-DEM schemes. The properties of the
sloping ground are listed in Table 2. Figure 8 compares the multiscale modeling results obtained from SCM/RD-DEM
and SCM/RI-DEM for the sloping ground. In the SCM/RI-DEM simulation, the DEM sample is sheared with an inertial
number 𝐼 = 1e-4, as depicted by the solid blue line in Figure 8D, where the dashed curves represent the computed inertial
number using the global-scale strain rate 𝜺̇G. Before the shear stress 𝜏 reaches its peak, indicated by the asterisk marker,
both simulations exhibit a very similar response, characterized by low sliding velocity and inertial numberwithin the range
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(A) (B)

(C) (D)

(E) (F)

F IGURE 7 Convergence of multiscale modeling results coupling SCM with RD-DEM and comparison with pure DEM simulation
response: (A) stress path, (C) stress-strain relation, and (E) sliding velocity evolution for loading rate of 𝐼 = 1e-4; (B) stress path, (D)
stress-strain relation, and (F) sliding velocity evolution for loading rate of 𝐼 = 1e-2. DEM, discrete element method; RD-DEM, rate-dependent
DEM; SCM, sliding-consolidation model.

TABLE 2 Model parameters for sliding consolidation model.

𝝆sat (𝐤𝐠∕𝐦
𝟑
) 𝝆d (𝐤𝐠∕𝐦

𝟑
) 𝒉 (𝐦) 𝒉s (𝐦) 𝒌 (𝐦∕𝐬)

2000 1500 2 0.2 0
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1732 YANG and BUSCARNERA

(A) (B)

(C) (D)

F IGURE 8 Comparison in multiscale modeling results of coupling SCM with RD-DEM versus RI-DEM for sloping ground with slope
angle 𝜃 = 5◦: (A) stress path, and evolutions of (B) shear stress, (C) sliding velocity and (D) inertial number 𝐼 where dashed line refers to the
computed 𝐼 using sliding velocity 𝑣 for SCM coupled with RI-DEM. DEM, discrete element method; RD-DEM; rate-dependent DEM;
RI-DEM, rate-independent DEM; SCM, sliding-consolidation model.

of quasi-static loading (less than 1e-3), indicating the system’s stability. Once the stress path surpasses the instability point,
slight differences emerge between the two simulations, and the system starts to accelerate, resulting in drastic increase
in sliding velocity. This acceleration is caused by the imbalance between the applied driving stress, 𝜏d, and the rapidly
decreasing values of resisting stress, 𝜏. Eventually, the system reaches a state of full liquefaction, characterized by extremely
low values of normal effective stress 𝜎 and peak values of inertial number, as indicated by the circular marker. Following
this state, the two simulations diverge noticeably: the shear stress 𝜏 computed by RI-DEM remains negligible, while the
RD-DEM exhibits fluctuating shear stress with noticeable magnitudes, as illustrated in Figure 8B. These post-liquefaction
oscillations in the shear stress of the SCM/RD-DEM simulation arise from particle agitations resulting from the high
sliding velocity. These rate-dependent elevated shear stresses contribute to a higher resistance against the external stress
𝜏d, which in turn reduces slope acceleration and delays the development of sliding velocity, as demonstrated in Figure 8C.
Along with the shear stress oscillations, Figure 8D illustrates the variations in 𝐼 within the RD-DEM sample. These

variations reflect changes in the shear strain rate 𝛾̇ (or sliding velocity) and 𝜎. While we manipulate the value of local-
scale 𝛾̇L applied to the RI-DEM sample to maintain a constant 𝐼, the calculated 𝐼 in RI-DEM using the global-scale 𝛾̇G, as
indicated by the dashed line, exhibits a highermagnitude of 𝐼 compared to the RD-DEM sample. Although bothmultiscale
simulations display a similar evolution of sliding velocity (Figure 8C), it can be concluded that higher strain rate induces
larger 𝜎 values in the liquefaction regime, as demonstrated in Figure 9A, which aligns with observations in a prior study.50
This increase in 𝜎 indicates the tendency of the RD-DEM sample to dilate, which under constant-volume conditions,
effectively brings the sample out of a liquefaction regime. In contrast, the RI-DEM sample, subjected to much lower shear
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(A) (B)

F IGURE 9 Development of (A) normal stress 𝜎 and (B) transient friction coefficient 𝜇 in multiscale simulations using constant 𝜏d under
the sloping ground with slope angle 𝜃 = 5◦.

strain rate, maintains a lower 𝜎 with negligible dilation and thus remains in the liquefaction regime. As the shearing
process continues, both DEM samples gradually approach a steady state characterized by vanishing volumetric response.
To determine the steady state, we examine the evolution of the transient friction coefficient, defined by the stress ratio
𝜏∕𝜎, as shown in Figure 9B. We assume that the steady state is reached when the shear strain 𝛾 exceeds 50%. The value
of 𝜇 at steady state, denoted as 𝜇ss, is determined by calculating the mean of 𝜇 values when 𝛾 > 50%, as indicated in
Figure 9B. It is worth noting that the RD-DEM sample exhibits a notably higher value of 𝜇ss compared to the RI-DEM
sample. This observation aligns with the 𝜇(𝐼) rheology in granular flows,5,12 where 𝜇ss increases with increasing 𝐼. In the
case of the RD-DEM sample, the post-liquefaction shear stresses stem from two sources by referring to 𝜏 = 𝜇(𝐼)𝜎: first,
the shear-induced transient dilation intensified by the large strain rate, arising from the solid-like nature of the granular
system, and second, the increasing friction coefficient at steady state, contributing to the effective viscosity12 due to the
fluid-like behavior.
Figure 10 presents the distributions of shear velocity, shear stress, and vertical stress along the thickness of the DEM

sample within the multiscale simulation with RD-DEM, to reveal potential non-homogeneity. In this analysis, we parti-
tion the DEM sample into 10 equal sublayers along the 𝑧 axis. For each sublayer, we calculate the average shear velocity⟨𝑣𝑥⟩, average shear stress ⟨𝜏⟩, and average vertical stress ⟨𝜎⟩. To facilitate comparisons, ⟨𝑣𝑥⟩ is normalized by the shear
velocity of the top layer ⟨𝑣𝑥⟩top. Likewise, ⟨𝜏⟩ and ⟨𝜎⟩ are normalized by the homogenized counterparts, 𝜏 and 𝜎 respec-
tively. Figure 10A demonstrates a nearly linear distribution of ⟨𝑣𝑥⟩ along the 𝑧 axis prior to soil liquefaction. However, the
applicability of this linear relation deteriorates after soil liquefaction, indicating the transferring momentum downwards.
As a result, the value of ⟨𝜏⟩ in the top layers notably increases. Interestingly, this non-homogeneity is not observed for⟨𝜎⟩. To mitigate this issue, one can consider implementing Lees-Edwards boundary conditions for example refs. [51, 52],
to enforce the desired linear relation between ⟨𝑣𝑥⟩ and 𝑧.
3.2 Flowslide runout

In order to analyze the flowslide runout, we apply a transient shear stress history capable of triggering an instability29
using a sinusoidal function: Δ𝜏d = 𝐴 sin(𝜋𝑡∕𝑇) for 𝑡 < 𝑇. The shear pulse Δ𝜏d is then removed for 𝑡 ≥ 𝑇 to examine the
resulting runout response. To replicate a small and short-lived perturbation, the amplitude𝐴 of the shear pulse is initially
set to 3 kPa (the resulting stress path is provided in Figure 8A), and the duration of the pulse, 𝑇, is set to 2 s. Figure 11
compares the flow dynamics based on multiscale simulations using SCM/RD-DEM and SCM/RI-DEM for a sloping
ground with an angle of 𝜃 = 5◦. As expected, both simulations present similar pre-liquefaction stress paths as shown
in the inset in Figure 11B. The evolution of the sliding velocity in Figure 11A starts to diverge when 𝑣 increases beyond
2 m∕s in the post-liquefaction period. The reducing acceleration observed in the multiscale simulation with RD-DEM
is attributed to the post-liquefaction elevated shear stress evolving with the dilative granular system, reflected by the
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1734 YANG and BUSCARNERA

(A) (B)

(C)

F IGURE 10 Distributions of (A) normalized average shear velocity, (B) normalized shear stress, and (C) normalized normal stress
along the depth of the DEM sample at different snapshots along the multiscale simulation with RD-DEM. DEM, discrete element method;
RD-DEM; rate-dependent DEM.
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F IGURE 11 Comparison in multiscale modeling results of coupling SCM with RD-DEM versus RI-DEM for sloping ground with slope
angle 𝜃 = 5◦: (A) flow velocity versus sliding distance and (B) pore pressure evolution. DEM, discrete element method; RD-DEM;
rate-dependent DEM; RI-DEM, rate-independent DEM; SCM, sliding-consolidation model.
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F IGURE 1 2 Effect of sinusoidal pulse amplitude 𝐴 on the flowslide dynamics based on multiscale modeling results of coupling SCM
with RD-DEM (solid line) versus RI-DEM (dashed line) for sloping ground with slope angle 𝜃 = 5◦: (A) flow velocity versus sliding distance
and (B) pore pressure evolution. DEM, discrete element method; RD-DEM; rate-dependent DEM; RI-DEM, rate-independent DEM; SCM,
sliding-consolidation model.

increasing excess pore pressure in Figure 11B. The continuously increasing sliding velocity will enhance these dynamic
effects compared to the triggering analysis in Figure 8A. The magnitude of the shear stress enhanced by internal inertial
effects can occasionally become larger than 𝜏d after the pulse, which eventually decelerates the growth of the sliding
velocity. Upon further movement, the reduced flow velocity will in turn decrease the rate-dependent shear contributions
below the current value of driving shear stress 𝜏d, thus enabling again further acceleration. This type of cycle will continue
until an expected steady state with a constant sliding velocity that enables an internal shear stress balanced with 𝜏d.
A comparison between the post-liquefaction results obtained with RI- and RD-DEM analyses shows major differences.

It is readily apparent that RI-DEM simulations predict a sand response affected by a permanent state of fully liquefaction
(i.e., lack of effective stress confinement). The fully liquefied condition corresponds to a steady-state unaffected by dilative
volume change fluctuations thatmay promote rate-dependent strengthening. Hence, after the sinusoidal pulse, the sliding
velocity evolves with a constant acceleration given constant 𝜏d and vanishing 𝜏, which corresponds to a parabolic relation
between sliding velocity 𝑣 and runout 𝑥.
RD-DEM simulations restore internal inertial feedbacks, which are in turn regulated by the characteristics of the shear

pulse (i.e., its magnitude and duration). For example, Figure 12 illustrates the results obtained by varying the sinusoidal
pulse amplitude𝐴without changing the period 𝑇. Themultiscale simulations conducted using RI-DEMdemonstrate that
increasing the sliding velocity and displacement is expected when𝐴 increases. This is because varying𝐴 does not alter the
steady-state strength of the RI-DEM sample, resulting in an increase in the sliding acceleration. In the case of RD-DEM,
the effect of increasing𝐴 on the simulation results is evident before reaching the deceleration point. Prior to this point, the
DEM sample has not regained sufficient shear strength to balance the post-pulse external loading. However, as the strain
rate increases, the DEM sample eventually acquires significant shear strength. Consequently, the paths of 𝑣 and 𝑥 start to
converge, irrespective of𝐴, revealing a consistent 𝑣max . This convergence of paths implies that the RD-DEM sample loses
memory of its previous loading history and exhibits more fluid-like behavior.
The choice of 𝑘 = 0 m∕s in the simulations suppresses the mechanism of excess pore pressure dissipation. However,

in Figure 13, this constraint is removed, and five different small values of hydraulic conductivity are introduced to ensure
instability triggering. The effect of hydraulic conductivity on the flowslide runout in the multiscale SCM/RD-DEM simu-
lations is noticeable. Increasing 𝑘 leads to a decrease in the maximum sliding velocity and the corresponding runout. This
can be attributed to the enhanced dilative tendency, as indicated by the earlier increase in pore pressure in Figure 13B.
However, it is important to note that this observation does not fully apply to the multiscale SCM/RI-DEM simulations
where the non-zero hydraulic conductivity provides the sole source of dissipating excess pore pressure. In this case, a
critical value of hydraulic conductivity is required to sufficiently balance the contraction tendency of the RI-DEM sample,
thereby bringing its steady state out of the liquefaction regime. Base on Figure 13A, this critical value is approximately
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1736 YANG and BUSCARNERA

F IGURE 13 Effect of hydraulic conductivity 𝑘 on the flowslide dynamics based on multiscale modeling results of coupling SCM with
RD-DEM (solid line) versus RI-DEM (dashed line) for sloping ground with slope angle 𝜃 = 5◦: (A) flow velocity versus sliding distance and
(B) pore pressure evolution. DEM, discrete element method; RD-DEM; rate-dependent DEM; RI-DEM, rate-independent DEM; SCM,
sliding-consolidation model.

F IGURE 14 Effect of DEM sample initial void ratio 𝑒0 on the flowslide dynamics based on multiscale modeling results of coupling SCM
with RD-DEM (solid line) versus RI-DEM (dashed line) for sloping ground with slope angle 𝜃 = 5◦: (A) flow velocity versus sliding distance
and (B) pore pressure evolution. DEM, discrete element method; RD-DEM; rate-dependent DEM; RI-DEM, rate-independent DEM; SCM,
sliding-consolidation model.

4e-5 m∕s. Once the hydraulic conductivity exceeds this critical value, we observe a similar effect of 𝑘 on the flowslide
runout in the multiscale simulations with RI-DEM.
In addition to varying hydraulic conductivity to facilitate excess pore pressure dissipation, another approach to reduce

the velocity of flowslide motion is to increase the density of the DEM sample, which enhances its dilative tendency.
Figure 14 illustrates the multiscale simulation results of four loose DEM samples, whose macroscopic response under
quasi-static loading is shown in Figure 3. The DEM sample with 𝑒0 = 0.771 exhibits noticeable post-liquefaction shear
stress fluctuations in the constant-volume simple shear test in Figure 3B. However, in the multiscale simulation with RI-
DEM, its fragile contact network does not affect the sliding velocity evolution. When incorporating the rate-dependency
through RD-DEM, the corresponding multiscale simulation result is astonishing, showing much smaller sliding velocity
and displacement, compared to the very loose sample with 𝑒0 = 0.790. The effect of volume dilation becomes significant in
the multiscale simulation with RI-DEM when considering the sample with 𝑒0 = 0.765, where the rate-dependent nature
still introduces much difference in the simulated macroscopic response. The difference in multiscale modeling using RI-
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DEM versus RD-DEM becomes negligible when further reducing the sample void ratio to 0.751, as the sliding velocity
becomes very small. However, this does not mean that rate-dependent effect on these samples is not significant, as the
current loading pulse does not result in large sliding velocity or strain rate. If these samples were subjected to shearing
under a large strain rate (such as by increasing the pulse amplitude and period), it is expected that these two types of
multiscale simulations would yield distinct results. However, the difference may not be as significant as in the case of the
very loose sample with 𝑒0 = 0.790 due to the strong dilative tendency in these other samples.

4 CONCLUSIONS

In this paper we propose a hierarchical multiscale modeling framework to simulate flowslide triggering and runout. This
framework couples a global-scale SCM that accounts for hydro-mechanical feedbacks within a liquefied sand layer with a
local-scale solver based on the DEM. This coupling is meant to seamlessly simulate the transition from solid- to fluid-like
behavior following liquefaction, which is controlled by the local grain-scale dynamics. The DEM particle assembly serves
as the constitutive law for the global-scale SCM, used to predict the emergent rate-dependent response of the sand during
the inertial regime of motion. Unlike other multiscale modeling methods that presume a rate-independent nature for the
local DEM sample, this approach incorporates both strain increment and strain rate in the passage of information from
the global to the local scale.
We first investigate the effect of the loading rate on the stress tensor calculation of the DEM sample and find that it

has a negligible influence, confirming the choice of using Bagi’s stress tensor in this study. Next, we address a numerical
issue encountered when transitioning from quasi-static loading in the local-scale DEM solver to dynamic loading, that
is, how to ensure the correct passage of the strain rate from the global analysis to the local DEM solver. A numerical
strategy is proposed in this study by accumulating the local strain increment until a sufficient amount is reached, so that
the DEM sample can be sheared under the desired strain rate, resolving the bottleneck that possibly hinders the dynamic
analysis. This novel algorithm enables the incorporation of the actual strain rate emerging from global balance equations,
eliminating the need of rescaling the local timescale of computation for DEM analyses. We adopt explicit time integration
scheme to numerically integrate the governing equations of the global-scale SCM and themultiscale modeling framework
supports parallel computing using MPI.
Using this multiscale modeling framework, we simulate flowslide triggering and runout based on loose DEM sam-

ples. At the local scale, we introduce two modes, rate-dependent DEM (RD-DEM) and rate-independent DEM (RI-DEM),
depending on whether the global-scale strain rate is used to shear the DEM sample. By comparing the multiscale
simulation results of RD-DEM versus RI-DEM, we observe no noticeable difference in the grain-scale dynamics
during the triggering process. However, we do observe significant effects of micro-inertial feedback on the runout,
where post-liquefaction particle agitation generates spontaneous viscous-like effects that ultimately slow down the
flowslide propagation. In the analysis of varying flowslide triggering magnitudes, we confirm that the sample exhibit-
ing micro-inertial effects loses memory of its previous loading history. Additionally, we observe that facilitating pore
pressure diffusion and enhancing the dilative tendency of the samples contribute to slowing down the flowslide
movement.
It is important to note that this study primarily addresses the computational challenges inherent in multiscale model-

ing, particularly when dealing with dynamic systems. However, open issues still remain regarding the synchronization
of global- and local-scale dynamic systems throughout the loading process. In particular, further research is needed
with reference to the interplay between the natural frequency of the multiple dynamic systems involved in the analysis.
Additionally, the simple assumption of equally transferring the global-scale strain rate to the local scale warrants fur-
ther investigation, possibly by providing theoretical support for this transfer from the perspective of energy conservation.
Despite these open questions, extending the current study by replacing the global-scale SCM with a more versatile solver
capable of simulating large deformations, such as MPM and SPH, would be a valuable endeavor. This extension could
facilitate exploring the impact of strain rate on the classic dynamic problems, such as soil column collapse, laboratory
flume test, and full-scale analyses of flowslide events.
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