
Characterizing Software Maintenance Meetings: Information
Shared, Discussion Outcomes, and Information Captured

Adriana Meza Soria

Taylor Lopez

Negin Mashhadi

André van der Hoek

amezasor@uci.edu

lopezta1@uci.edu

nmashhad@uci.edu

andre@uci.edu

Department of Informatics

University of California, Irvine

Irvine, CA, U.S.A.

Elizabeth Seero

Emily Evans

Janet Burge

l_seero@coloradocollege.edu

ea_evans@coloradocollege.edu

jburge@coloradocollege.edu

Department of Mathematics and Computer Science

Colorado College

Colorado, CO, U.S.A.

ABSTRACT
A type of meeting that has been understudied in the software engi-

neering literature to date is what we term the software maintenance

meeting: a regularly scheduled team meeting in which emergent

issues are addressed that are usually out of scope of the daily stand-

up but not necessarily challenging enough to warrant an entirely

separate meeting. These meetings tend to discuss a wide variety

of topics and are crucial in keeping software development projects

going, but little is known about these meetings and how they pro-

ceed. In this paper, we report on a single exploratory case study

in which we analyzed ten consecutive maintenance meetings from

a major healthcare software provider. We analyzed what kind of

information is brought into the discussions held in these meetings

and how, what outcomes arose from the discussions, and what infor-

mation was captured for downstream use. Our findings are varied,

giving rise to both practical considerations for those conducting

these kinds of meetings and new research directions toward further

understanding and supporting them.

CCS CONCEPTS
• Software and its engineering → Maintaining software; Soft-
ware maintenance tools; Documentation.

KEYWORDS
Meetings, software maintenance, information, resolution

ACM Reference Format:
Adriana Meza Soria, Taylor Lopez, Negin Mashhadi, André van der Hoek,

Elizabeth Seero, Emily Evans, and Janet Burge. 2024. Characterizing Soft-

ware Maintenance Meetings: Information Shared, Discussion Outcomes,

and Information Captured. In 2024 IEEE/ACM 46th International Conference

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3623330

on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623330

1 INTRODUCTION
Software systems spend a significant proportion of their lifetime

undergoing maintenance [63]. For large deployed systems with a

wide customer base, software teams need to keep track of how well

the software is functioning at the various client sites, respond to any

problems that arise, and plan, develop, and deploy enhancements

[73]. Meetings play an essential role in performing this work. It is

well-known that the weekly agenda of a typical developer may be

dominated by meetings [31]. These meetings range in kind from

daily stand-ups [81] and sprint planning [33], to dedicated design

[61] and release planning [66], to impromptu [87] and retrospectives

[34]. Together, the meetings in which a team engages represent an

intricate network of activities and dependencies among them [79].

To date, meetings have been an understudied subject in the soft-

ware engineering literature, which is a surprise given how frequent

they are and given howmuch team-oriented intellectual work takes

place in them that shapes the eventual product. Exceptions exist,

with certain types of meetings that have been studied extensively,

such Agile stand-ups (e.g., [80, 82, 83]) or whiteboard software de-

sign meetings (e.g., [20, 53, 75]). Specific aspects of meetings in

general have also been examined in detail, such as meeting dynam-

ics (e.g., [5, 51, 84]), inclusivity (e.g., [18, 45]), and the impact of

hybrid and remote settings (e.g., [65, 67]).

This paper complements the existing literature on meetings in

software engineering by focusing on software maintenance meet-

ings [4]. To date, this kind of meeting has not been studied in the

literature, but from the grey literature (e.g., [1, 30, 50, 52, 56, 70]),

it is clear that it is a common type of meeting. The actual name

for the meeting varies from maintenance meeting, to technical

meeting, to weekly developer meeting, to weekly tech meeting, to

engineering meeting, and more, but we favor the term maintenance

meeting because a common trait is that the meetings take place

in the context of an evolving existing system. What characterizes

these meetings is that they: (1) serve an important role ‘in between’

the daily stand-ups many organizations employ and the dedicated,

less frequent meetings in which a specific type of work gets done,

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3597503.3623330
https://doi.org/10.1145/3597503.3623330
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623330&domain=pdf&date_stamp=2024-02-06


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

such as sprint planning or a whiteboard design meeting, (2) have a

core set of participants consisting of the technical and project leads,

with other team members attending as needed depending on the

topic(s) to be discussed, (3) are regularly scheduled—usually weekly,

sometimes more frequently—so that people can count on a forum

for emergent issues that require forethought and discussion, and

(4) address a broad range of issues. Maintenance meetings serve

an important role in keeping software projects going, as numerous

decisions are made regarding functionality of the software, complex

issues with deployed systems are diagnosed, and team members

can get help concerning non-trivial issues they face.

In preliminary work [4], we categorized the kinds of discussions

that take place in maintenance meetings. Across ten meetings con-

ducted by a single team from a major healthcare software provider,

we found that the team engaged in forty-five discussions (termed

topics in this paper) of fourteen different kinds, including assessing

a problem, clarifying a misunderstanding, devising a solution, gath-

ering knowledge, automating activities, performing a post-mortem,

planning a future meeting agenda, reviewing a design proposal,

and refining a ticket. This variety in the kinds of discussions held

aligns with research into weekly meetings across industries, which

found that weekly meetings tend to “discuss ongoing projects” and

“routinely discuss the state of the business” [3].

Expanding upon our preliminarywork, this paper seeks to deepen

our understanding of maintenance meetings by examining how

information creates a context for the discussions and outcomes

in these kinds of meetings. How discussions in these meetings

proceed depends on the availability of information, together with

what information needs to be produced [9, 36, 42]. In other words,

discussions in maintenance meetings on the one hand rely on in-

formation that is generated or available elsewhere and on the other

hand produce information that shapes next steps on the project.

We specifically address the following four research questions:

(1) What kinds of information do developers rely on during main-
tenance meetings?

(2) How is this information brought into the meetings?
(3) What are the outcomes of maintenance meetings?
(4) Are these outcomes captured for future reference and, if so, how?

The remainder of this paper is organized as follows. We detail

the meetings upon which we perform our analysis in Section 2 and

then introduce our methodology in Section 3. We present findings

in Section 4 and discuss implications for research and practice in

Section 5. We conclude with threats to validity in Section 6, related

work in Section 7, and our plans for future work in Section 8.

2 DATA SET
As part of our prior work [4], we obtained copies of the WebEx

recordings of ten maintenance meetings held at a major healthcare

software development company. These maintenance meetings took

place in the context of a variety of other meetings, including daily

stand-ups, backlog refinement meetings twice a week, sprint plan-

ning every other week, retrospectives (infrequent), and a dedicated

but temporary set of meetings related to a new UI initiative. The

maintenance meetings are held by the architecture committee, a
standing team that is responsible for maintaining and expanding a

software system that is in use by hundreds of hospitals. The soft-

ware stores terabytes of patient health data in the cloud and it is

considered a critical system in the overall portfolio of the company.

Meetings are always through WebEx, with some participants join-

ing from the U.S.A. and the rest joining from India. Meetings are

scheduled for one hour each, with some being slightly shorter and

others going over a bit. The team addresses what it can in the hour

and moves unaddressed items to the agenda for the week thereafter.

The meetings took place from March to July 2020. There were

twelve different participants over that time period: a product owner

and shadow product owner (O1, O2), two software architects (A1,

A2), the lead quality assurance engineer (Q1), two managers (M1,

M2), four developers (D1-D4), and an infrastructure engineer (I1).

The main product owner, the two software architects, the QA en-

gineer, and one of the managers were located in the U.S.A.; the

rest of the participants were in India. A small core (O1, A1, A2,

and Q1) attends nearly every meeting; others are only involved in

the meetings either when a topic is discussed that they themselves

placed on the agenda or when a topic requires their expertise. The

median number of attended meetings by these other participants is

4.5. Table 1 documents precisely which participants attended which

meetings.

Anecdotally and not necessarily by any metric being tracked, the

architecture committee is considered a high-performing team by

management, with management using this team and its practices

as a model for organizing other development teams.

When we requested access to the WebEx meetings, we had sev-

eral requirements. First, we wanted the meetings to be maintenance

meetings and not of the other meeting types discussed. Second, we

wanted the meetings to be consecutive over a period of time, to be

able to identify potential issues around topics recurring (which we

did not, but it was an objective in requesting consecutive meetings).

Third, we requested ten meetings total, because it balances depth,

in it being feasible to manually analyze ten hours of meetings in

great detail, with breadth, in having several months of maintenance

discussions available to examine and make sense of.

In our prior work, we found that the ten meetings covered forty-

five distinct topics [4]. While each topic was unique, underneath

were several shared objectives, ranging from assessing a problem,

gathering knowledge, or devising a solution, to reviewing a design

proposal, planning a future meeting agenda, or performing a post-

mortem, to clarifying a misunderstanding, automating activities,

or refining a ticket. Consider the following excerpt:

A2: Do you see that?
O1: Oh, wow.
A2: So, what’s on there? Zero instance. I just picked on that
because it’s 11 – Oh. That’s – that’s the reader. So, look at that.
The CPU is higher on the read replica right now. Then if we look
on their writer – Let’s look at that over the last week.

This excerpt is from a topic discussing the potential consequences

of one of the clients onboarding additional users. In this case, as

part of gathering knowledge to understand the ramifications of the

client’s plans, the team uses one of the tools in the AWS toolkit to

study the CPU load live. In observing that it is higher on the read

replica than on the write replica, they launch into a discussion as to

why this may be (with the team looking up additional information



Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Meeting participants.
Participant Preferred pronoun Role Location M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

O1 she, her, hers Product owner U.S.A. X X X X X X X X

A1 he, him, his Software architect U.S.A. X X X X X X X X X X

A2 he, him, his Software architect U.S.A. X X X X X X X X X X

Q1 he, him, his QA engineer U.S.A. X X X X X X X X

O2 she, her, hers Product owner India X X X X X

M1 he, him, his Manager U.S.A. X X X X X X

D1 he, him, his Developer India X X X X X X X

D2 he, him, his Developer India X X X X X

D3 he, him, his Developer India X X X X

D4 he, him, his Developer India X X

M2 he, him, his Manager India X

I1 he, him, his Infrastructure engineer India X X

in the process) and whether the sizeable number of additional users

that are planned to be added would cause the load to go higher yet

or would not impact this part of the system.

As other examples, the team spent time discussing an architec-

tural issue in which unusually high traffic from one client could

render other clients unable to use the system, reviewing a new

feature being proposed by one of the developers, considering how

to reduce the number of idle testing environments that were still

incurring cost for the company, reflecting on the cause of an up-

grade failure, and refining a ticket that had been a placeholder for

the team needing to develop a permanent solution for a CPU uti-

lization issue. This variety is indicative of the unique role that the

weekly maintenance meetings serve: the issues are clearly distinct

from what one may find in a typical stand up or sprint planning

meeting, represent important issues in the day-to-day operations

of the project, require deliberate and thoughtful conversation, yet

are often not large enough to warrant a meeting of their own.

3 METHODOLOGY
Our study is a single exploratory case study [28] that follows a

constructivist approach. Instead of verifying previously established

theory, our study centers on exploring and understanding a partic-

ular phenomenon in its natural setting [28]. All ten WebEx videos

were transcribed by a professional transcription service and we

used the transcriptions and the videos as the sole sources for our

analyses. Our Institutional Review Board approved the study.

To answer our first research question, we performed an inductive

thematic analysis [29, 39] following the guidelines stated by Cruzes

and Dyba [23]. We examined the transcripts for when meeting

participants verbally introduced some information into the discus-

sion, following the Merriam-Webster definition of information: (1)

knowledge obtained from investigation, study, or instruction; (2)

intelligence, news; (3) facts, data. Two researchers independently

performed open coding on the first meeting, after which they com-

pared and discussed their findings to develop a first coding scheme

organizing the categories of information shared. A third researcher

reviewed and gave feedback on the coding scheme and the assigned

codes, which led to further refinements. This process was repeated

meeting-by-meeting, leading to incremental refinements to the cod-

ing scheme. Any changes to the coding scheme led to re-coding of

prior meetings to reflect the changes that were made. Throughout,

the two researchers used a process of negotiated agreement [37] for

their independent coding. When they could not reach an agreement,

the third researcher was consulted.

Once all ten meetings were fully coded, two researchers worked

together to perform axial coding, examining the internal consis-

tency of each category of information as well as potential overlaps

among categories. A few categories were merged and several as-

signed codes were changed to be consistent with one another.

To answer the second research question, we analyzed the dis-

cussion before a piece of information was mentioned to identify

whether the team member shared it voluntarily or in response to a

request from another participant. We also identified whether the

information being shared was visible on the shared screen inWebEx

and thus presumably referenced, or was brought into the meeting

by other means. Finally, we analyzed the discussion immediately

after some information was shared, because on a few occasions the

original answer was corrected by another participant. Because little

ambiguity exists in making these determinations, one researcher

performed this analysis with another verifying the results.

To answer the third research question, we followed a process

similar to the first research question, involving all three researchers

in a similarly iterative process of incremental inductive thematic

coding and review. This time, we sought to determine the various

ways in which the team concluded the discussion of each topic

(e.g., it completed the discussion with nothing further needed; after

discussing, it delegated work to someone not attending the meeting

or to someone who did attend and volunteered to take care of the

task; after discussing for a while, it deferred the topic).

Finally, to answer the fourth research question, we analyzed the

content of the WebEx videos leading up to and immediately after

each discussion concluded to assess whether the team documented

aspects of its deliberations and decisions. We examined the content

of the screen being shared to identify what kinds of notes and/or

tool actions the participant sharing the screen took publicly.

Altogether, the participants engaged in more than 3750 conver-

sational turns (switches in speaker) to which our analyses assigned

over 6500 codes. All coding was performed in MAXQDA [44]. For

confidentiality reasons, the healthcare company that provided the

data does not allow us to share the videos or transcripts that we an-

alyzed. We do, however, have permission to share the anonymized

extracts from the transcripts and anonymized screenshots of the



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

videos included in this paper. Note that some aspects of the screen-

shots are blurry to obfuscate sensitive information. The resulting

coding schemes and expanded versions of the anonymized extracts

are available as auxiliary materials along with the paper, at the fol-

lowing URL: https://doi.org/10.5061/dryad.9w0vt4bn8. To perform

member checking, a near-final version of the paper was shared with

one of the architects and the CTO who instituted the architecture

committee. Each was asked to read the paper carefully and to focus

on whether our description of the meetings and discussions was

accurate.

4 RESULTS
In this section, we present the results of our analyses. The section

is organized along the four research questions stated in Section 1.

4.1 What Kinds of Information?
Table 2 presents the 36 categories of information that we identified

as being relied upon by participants in the meetings. Teammembers

verbally introduced 694 distinct pieces of information across the

meetings, meaning that on average at least once a minute some

information was shared by someone. The types of information rep-

resent a wide range. Types include information pertaining to system

execution (e.g., Deployment fact, Run-time fact), the state of

development (e.g., Feature reqest, Development progress), the

code itself (e.g., Architecture fact, Code fact), the development

process (e.g., Team process, Testing management), clients (e.g.,

Customer cost, Customer context), and more (e.g., Product

metadata, Internal costs).

A detailed description of each kind of information is provided in

the auxiliary materials associated with this paper. Here, we high-

light two particularly subtle differences. First, whereas facts concern

information that is objectively “true” and thus can be verified by

looking something up, assessments concern information that is

more subjective, but nonetheless verifiable by investigating oneself

and drawing one’s own conclusion based on the investigation. An

example Deployment fact is the following (we use underlining to

indicate what we coded as information):

A1: Um, well their costs won’t change because, um, we haven’t
changed the size of their database.

whereas an example Deployment qality assessment highlights

the more subjective nature of assessments:

A1: Our, um, Postgres tuning is already pretty bad.

In this case, one can go examine the facts of what kind of tuning

is in place, but then still needs to interpret what they see as to

whether it is indeed pretty bad.

The second subtle difference is between facts and management.

Compared to facts, which concern the state of something, e.g., the

code, a test case, or the deployed software, management concerns

information regarding prior actions that were taken or that should

be taken given certain situations. An example of Deployment

management, then, is the following:

M1: Hey, A2. I’m just curious how did the Redis get reset?
A2: Well, do you want to explain the – the – the background?
D2: So, actually whenever we do any access or additional ID
setup, we have to, um, clear the cache, Redis cache.

In response to a question, the developer explains that clearing the

REDIS cache is a necessary step after they do any kind of work that

relates to access and user IDs, because otherwise the cache holds

old data.

The kinds of information shared most often reflect the software

being in use (Run-time fact, Deployment management, Deploy-

ment fact, Issue detail) and under active development (Devel-

opment progress, Code fact). The team performs its work by

accounting for what is happening at their customers, considering

what kind of effect decisions might have on the customers’ use, and

addressing emerging issues in the field. The product’s owner, for

instance, brought up a key point as the team was debating whether

and how to scale some cloud service (Customer context):

O1: [client name] reached out to me today, and in the next few
months they were thinking of onboarding a few more, um, of
their clients, which would potentially double the number of calls.

A bit later this led to one of the architects reminding the team

that the current load on one of the servers involved was near its

maximum already (Run-time fact):

A1: What if they – what if they increase the size of their data-
base? We’re already heading 90% during...

In this context, too, we often observed the team sharing facts about

the current state of the code when they deliberated how to tackle

certain problems. The following Code fact illustrates:

D1: So, essentially, that means that I’m going back to the API,
[component name] API, and it is responding back to me with a
list of applications. So, that is one response time.

In this case, the developer walks through how the current code

works to discuss where they may be able to make changes.

Some types of information have been advocated by the design

rationale literature as important to capture for later (e.g., decisions

[8, 38], alternatives [10, 88], rationale [16, 57]). Besides 17 instances

ofArgument, which represents an underlying reason for some past

action, we did not witness these kinds of information being brought

back. Instead of referring to the actual decision or constraint that

was made, the participants refer to the current state of the code

that embeds that decision or constraint. That is, the team relies on

what in many ways are the manifestations of past deliberations.

The following Architectural fact, for instance, is clearly the

result of an important decision made in the past:

A1: So, because both, um, you know, tenants or clients, whatever,
share the same compute layer, um, it is possible for one client to,
uh, negatively affect – affect the other...

The original decision, which concerned a choice of architectural

style and associated cloud-based infrastructure, shows through, but

it itself is not being recounted here.

Some topics relied on a large amount of information, with the

top five topics involving 52, 51, 48, 48, and 48 times, respectively,

that some information was brought up by a team member. Topics

that involved devising a solution to a problem, performing a post-

mortem, and discussions about automating certain activities in the

development and deployment process involved on average the most

information being shared in the discussion. Topics that involved

planning how to triage tickets, defining a future meeting agenda,

and sharing information about future projects involved the least

https://doi.org/10.5061/dryad.9w0vt4bn8


Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Frequency of Different Kinds of Information Verbally Introduced (694 Total).

Category # % Category # % Category # %
Run-time fact 66 9.5% Issue 21 3.0% Misinformation 8 1.2%

Development progress 53 7.6% Argument 17 2.4% Analogous solution 7 1.0%

Code fact 48 6.9% Testing progress 17 2.4% Documentation progress 6 0.9%

Deployment management 47 6.8% Change difficulty 16 2.3% Customer cost 5 0.7%

Deployment fact 43 6.2% Prior issue 13 1.9% Functionality reqest 5 0.7%

Issue detail 43 6.2% Deployment qlty assessment 12 1.7% Code qality assessment 4 0.6%

Customer context 39 5.6% Testing management 12 1.7% Documentation qlty assmnt. 4 0.6%

Infrastructure funct. 36 5.2% General programming knwl. 11 1.6% Architectural qlty assmnt. 3 0.4%

Team housekeeping 35 5.0% Internal cost 11 1.6% Product metadata 2 0.3%

Testing fact 27 3.9% People expertise 11 1.6% External dev. progress 1 0.1%

Architectural fact 25 3.6% Best practice 10 1.4% Infrastructure progress 1 0.1%

Team process 24 3.5% Testing qality assessment 10 1.4% Non-functional reqmnt. 1 0.1%

amount of sharing. The fact that sharing information about future

projects involved among the least amount of information sharing

might seem counter intuitive, but can be explained because these

topics involved quick heads-ups rather than elaborate discussions.

A small but interesting category isMisinformation, which rep-

resents when someone shared some information that subsequently

was corrected. This happened only eight times, but reflected pivotal

moments in the discussions. Consider the following extract:

A1: I will say that, um, [component name] did not have a UI for
the lab or the mappings, so. It would be something new, I guess.
O1: So, would the –
O2: [component name] – [component name] has it. I don’t know
if we are talking the same, but, um, I don’t know if you’re talking
about these mappings. Are you talking about this?
A1: Yeah, I can show my screen really quick.
O2: Yeah, and even – even this mapping is there.

While devising a solution, one of the architects asserts that some

part of the system does not have a user interface. O2 corrects the

architect, points out that it does, and the architect then corrects

themselves and shares their screen to show that, indeed, that part

of the system does have a user interface, with O2 subsequently

pointing out an important aspect of the interface (the mapping).

Had O2 (the shadow product owner) not brought up that the user

interface exists, the team might have gone down a design path that

would be superfluous.

4.2 How Is It Brought Into the Meetings?
Not all information is shared in the sameway.We identifiedwhether

information was brought up voluntarily or by reqest, examined

if each request for information was answered or left the discussion

with missing information, whether any information that was

shared was subsequently corrected and thus was misinformation,

and if the information was shared via some tool on screen or was

shared otherwise (e.g., frommemory or from a tool whose content

was not shared at that time).

Many times information was casually included as part of a

broader point being made. Consider the following excerpt referring

to an Analogous solution:

A1: We – we could do some sort of round robin. And then, if we
do have an endpoint that is misbehaving, start applying back

pressure, or – or exponential back-off where we – kind of like
we do with the Elasticsearch. If – if you take longer than five
seconds, then we’re only gonna send you one message every five
seconds then. Right? Something like that.

Note how the information—in this case a reference to a similar kind

of solution used elsewhere in the code—is brought up. It acts as

an invitation to follow up on the reference if needed (e.g., “What

did we do again?”, “Explain that to me”), but in the absence of such

requests it is assumed that the reference is understood and helps

clarify the solution that the team member is proposing here.

Other times, information is shared to set the stage for the fol-

lowing discussion. Consider this example, which involves three

pieces of information being shared (Issue, Run-time fact, and

Functionality reqest):

I1: Um, so, the thing is this morning some of the environments
were down. The machine processing was at scale and then could
not could not serve the request in time. The [other internal team
name] wanted to have a dashboard or something to detect these
kind of problems.

The infrastructure engineer brings up a problem for the team to

consider, shares a fact about the state of the run-time environment,

and explains that an internal team wants to be able to monitor

and detect if this problem arises again. A discussion follows dur-

ing which they realize they might be able to leverage a newly

implemented run-time data collection tool, briefly touch upon the

information that should go on the dashboard, discuss details of a

possible implementation, and decide when they will work on it.

For all excerpts that we have shown thus far, the information

was voluntarily contributed, that is, the team member shared it out

of their own volition without any prompt by another team member.

They simply included the information in the course of making a

contribution to the discussion. Such voluntary information sharing

was dominant (595 out of 694 total shared pieces of information

were shared voluntarily). The remainder was shared by request:

before someone shared the information with the team, someone

in the meeting asked for it. On most occasions, the request was an

explicit question, but on several occasions it was more implicit, as

in this request for a Deployment fact:

A2: If you try to do 250 con – concurrent requests, you’re gonna
get 429-ed because we’ve got every endpoint limits any site from



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

making, was it, 100 concurrent requests, right, 100 or 150 is the
default. A hundred or 150 –
Q1: I think it’s a – I think it’s 100. That’s ss – good.
A2: – 100 concurrent requests for any site on any end-point.

The architect never explicitly asked the team, instead they just men-

tioned two potential values as part of their narrative. The quality

engineer felt compelled to interject and answered with the actual

value. The architect did not skip a beat, continuing their train of

thought with the clarified limit.

In total, 146 requests for information were made out of which 99

were answered. The remaining 47 requests, however, went unan-

swered (coded as Missing information to indicate that the infor-

mation requested never was provided), with the discussion simply

continuing. An example is the following:

A1: Is there an NFR for how long it should take? Because I think
right now, it’d probably take uh, at least a maybe like a day to
process all the results and set the new type. Or should we consider
doing something with the – at query time for Elasticsearch?
O2: Mm-hmm.
A1: Um, is – is there NFR for this, or is it okay for it take – maybe
that will help make the decision. Um, ’cause currently, we do set
the value in Elasticsearch and Postgres. But we could probably
change that to do something at query time depending on what
the NFR is.

The request was for a Non-functional reqirement and went

unanswered. Indeed, the architect asked twice in the above frag-

ment (which we coded only once, since we did not code repetitions)

and later asked again. The team extensively deliberated what a po-

tentially good limit might be based on a few analogous situations,

but never resolved whether an NFR existed.

Missing information did not follow any particular patterns. Out

of the 36 kinds of information (Table 2), for 22 of them instances ex-

ist where that kind of information was requested and not provided

during the meeting. The maximum number of times some kind

of information went unanswered was seven (Code fact) and the

minimum one (various, including architectural fact, Internal

cost, and Argument).

On a few occasions (19 out of 694) the information being shared

by one participant actually is an explicit recounting of what some-

one else had said in another meeting or forum. As one example, one

of the topics concerned clarifying a misunderstanding between two

developers who were discussing an aspect of the code on Slack (a

case of Misinformation, corrected by an Architectural fact):

A2: I mean, the only – the only thing I’d – the only thing that
gives me hesitation is [person 1] wrote in bold [component name]
will not connect to public internet. What [person 2] said is, it will
be secure over SSL which is connected to the public internet.
In all five examples in this section thus far, the information was

shared from memory or from a source not shared on screen (in the

Slack example, the architect recounted what they had seen prior in

the day). This was the dominant case: out of all 694 pieces of infor-

mation that were brought into the meetings, only 75 were explicitly

visible in the content of the tool that was at that time shared on

the WebEx screen. Of those 75, sometimes a team member would

explicitly reference the content that was visible or even actively use

the tool to navigate to the desired information, as in the example in

Section 2 involving AWS. Other times, the information was visible

on the screen but conversation proceeded without evidence that

the team used or referenced the tool and its content.

Team members used a variety of tools, including Jira (which was

used to share 17 pieces of information), Confluence (17), E-mail/chat

(15), AWS tools (11), deployment/monitoring tools (11), their office

suite (1), and proprietary tools they had developed themselves (3).

A typical use of the tools was to set the stage for a topic discussion.

The excerpt below provides an example (Issue):

A1: So, I think that’s worth talking about. Um, basically, like 12
days ago, um, [person name] was trying to send, uh, automated
workflows, uh, out of the [client name 1] system, but the entire
system was being, uh, clogged by [client name 2] or, you know,
another phrase for it is like a noisy neighbor.

In this case, a team member shares the background of a reported

issue to kick off a root cause analysis by summarizing the content

from a Confluence page where one developer raised the issue and

others had already contributed notes documenting the issue and

its undesirable behavior.

While Jira, as an issue tracking platform, is ideally suited for this

kind of use, it is interesting to observe that the team had set up a

set of pages in Confluence that it calls "Ask an Architect" (shown

in Figure 1). These pages were designed as an explicit channel for

anyone in the team or even beyond the team to directly bring issues

to the architecture committee, whether it concerns something one

is not sure about, asking for design help, or verifying assumptions

one might have about the code. This avoids issues becoming lost in

the much larger set of issues that Jira tracks and also provides an

informal way to reach out to the team. The architects check these

pages regularly and anybody can add notes. In the case of Figure 1,

the issue was newly reported on March 12, 2020, with a description

in the fourth column. Notes have already been added in the fifth

column, giving the team some starting points for the discussion.

Sometimes, the team used tools other than Jira of Confluence

to introduce a topic to be discussed. On one occasion, for instance,

the meeting participants brought up Slack and showed an ongoing

discussion in a Slack channel that was indicative of an emerging

issue in the field that was not yet recorded in Jira or Confluence.

Another use of tools was to provide illustrations that helped the

team understand the behavior of the deployed system. They used

either standard AWS tooling to gain insight into the resource use of

their cloud application or would bring up amonitoring tool they had

connected to their own logging infrastructure for detailed insight

into code-level behavior. As an example, they studied test results

to remind themselves of what the various parts of the test suite

covered (four Testing facts: the first is shared spontaneously, the

second a request, the third an answer, the fourth expanded detail):

A1: So, here are the two test runs, [A2], and it looks like DB or
sorry, Merge runs everything for UI.
A2: Oh, okay. We got live site there?
A1: Yeah.
A2: Live site, local code, local test. Okay. It’s just – it’s just
everything except all the, uh, mm, perfect.

On seven occasions, the team brought up a deployment or monitor-

ing tool specifically in response to a request being made, with the

team subsequently using the tool to find the answer to the request.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

Figure 1: Recreation of a Video Capture of a Snippet from Ask an Architect in Confluence.

4.3 What Discussion Outcomes?
Not all topic discussions conclude in the same manner. To anchor

the analysis of our final research question—what is captured in

maintenance meetings—we therefore first studied the various out-

comes at which the team eventually arrives for each of the topics.

We identified four different outcomes: topics that were resolved,

where either what needs to be done next is fully understood and

written down in a new ticket or updated in an existing ticket for

downstream work by a programmer, or the question that was posed

to the team is fully answered online (e.g., in Ask an Architect) or in

person; delegated, where the outcome as to what to do next has

become clear, the team could keep working together to fully resolve

the topic, but someone volunteers or is assigned to do the work of

creating tickets, writing up an answer, etc. outside of the meeting;

deferred, where the team does not have sufficient information

to determine a satisfactory path forward and tasks someone with

gathering additional information to determinewhether the issue is a

non-issue or needs to be further discussed by the team; and update

complete, when someone finished giving an update to the team,

possibly answering some questions in the process. In a few cases we

were unable to determine the outcome unknown. Table 3 shows

the number of each resolution type per all fourteen discussion types

identified in our prior work [4]. We discuss examples of each in the

below, except for unknown for obvious reasons.

Table 3: Outcome per Type of Discussion.

Discussion Type R
es
ol
ve

d

D
el
eg

at
ed

D
ef
er
re
d

U
pd

at
e
co

m
pl
et
ed

U
nk

no
w
n

To
ta
l

Assess problem 1 3 1 5

Automate activities 2 2

Clarify misunderstanding 1 1 2

Define internal practices 1 1 1 1 4

Devise solution 1 1 2

Gather knowledge 1 1 2

Manage accounts 3 3

Manage computatnl. resources 1 1

Perform post-mortem 2 1 3

Plan future meeting agenda 1 1

Plan how to triage tickets 1 1

Refine ticket 11 2 13

Review design proposal 2 1 1 4

Share info. about future projects 2 2

Totals per type 22 9 4 4 6 45

Approximately half the topics that the team handled over the ten

meetings were resolved, meaning that it considered the discussion

finished, with an answer provided or a clear action item to be

worked on downstream decided upon. Resolved issues sometimes

involved someone typing an answer to a question (e.g., in Ask an

Architect) and changing the status of the question from “new” to

“done”. At other times, the team added a new ticket to Jira or updated

an existing ticket. These tickets were not necessarily assigned to

someone during the meeting, but the team felt that the issue was

now sufficiently documented in the ticket so that, during a next

round of sprint planning, the ticket can be properly considered and

scheduled for implementation.

Sometimes someone on the team would resolve the issue during

themeeting. As one example, the team observed they should remove

running instances of their testing environment that they no longer

needed, but were still using up resources and thus incurring cost

to the company because their testing environments (and deployed

environments) run in an external cloud service. In this case, a team

member who was not sharing their screen stated that they had

performed the removal on the spot:

A2: Right. [software name] is gone, it is terminated.
A1: Thank you.
Note that half the resolved cases concerned refinement of tickets.

The ninth meeting was completely dedicated to considering a suite

of tickets in Jira that had come in, were incomplete or not fully

understood yet, and needed to be discussed by the team in order to

figure out what was going on and what to do with each ticket. In

a few cases, the discussion revealed that the new but incomplete

ticket described an issue that the team currently was working on

or had already completed under another ticket; these tickets were

closed. In other cases, the tickets led the team to perform investiga-

tive work or discuss amongst themselves what the ticket might be

about, followed by the team making updates to the tickets. Various

other types of discussions were resolved as well, including a design

proposal review that completed, two post-mortems, and a change

to an internal practice upon which they agreed in the meeting.

Delegated issues involved situations where the discussion in

the meeting did not fully complete, but was completed sufficiently

so that the team as a whole did not need to continue deliberating

at length. In other words, the team would reach a point where a

broad consensus was reached about the way forward, but not all

aspects were considered yet or some details needed to be looked

at before the outcome could be finalized. In such cases, the team

asked someone—or someone volunteered—to take it forward on

their own. In the following example, the product owner volunteered

to create a ticket based on the discussion the team had just had,

recognizing that they need to get a little bit of additional feedback

from elsewhere before doing so:

O1: Okay. Um, I think this is good. [person name 1] is meeting
with [person name 2] to go over it tomorrow. Um, we’ll get some



Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured ICSE ’24, April 14–20, 2024, Lisbon, Portugal

feedback from here, and I guess we’ll just go from there. But, um,
in the meantime, I’ll create this ticket to bring to hmm, actually
yeah, I’ll just create this ticket.
On a few occasions, delegation also involved the team deciding

that a certain issue was not theirs to fix, but belonged to another

team. Overall, delegation occurred in nine out of 45 cases, meaning

that together with the number of resolved cases, the team success-

fully addressed two-thirds of the topics that came its way.

As compared to delegation, when the team’s discussion leads to

it identifying the way forward, deferred issues are where the dis-

cussion is inconclusive; this happened on four occasions. Typically,

the team felt that it needed additional information that would help

it decide what they were facing. Consider the following example:

A1: So, yeah, I think the more load is fine, probably.
A2: Oh, yeah. Again – Yeah, if they double it – I don’t – I don’t
think we’ll – We’ll just have to monitor and make sure it’s okay.

The topic concerns a client planning to add a significant number

of new users, with the team concerned that it may cause some of

their servers to be unable to handle the additional load that the

new users would incur. The underlying issue is that, if the load

becomes too high, it would require a re-architecting of some of their

software. The discussion, though extensive, cannot predict what the

future server load will likely be, though they feel it should probably

be okay. As a result, they defer the issue, deciding to monitor the

server instead, and only planning to return to the discussion if the

load indeed becomes problematic.

We examined whether missing information (verbal requests for

information that were not answered in the meeting, see Section 4.2)

might have played a role in some topics being deferred. Across the

four deferred topics, only four requests for information went unan-

swered, which is right at the average of one unanswered request

per topic, indicating that it is unlikely that it causes deferral. Indeed,

upon close inspection, the four deferrals all concerned situations

where the necessary information was not available at the time and

needed to be collected in future, as in the example above.

Updates took place four times and represented short briefings

where someone updates the team on an issue they had beenworking

on or a future plan. The following excerpt presents an example of

how an update on the state of application security was started by

one of the architects.

A1: Um, cool. Um, AppSec update, I just got this today. [person
name] is always very bad at planning ahead, I guess. I have a
meeting tomorrow at 10:00 to go over next steps. Um, it looks like
be doing planning, essentially.

4.4 Captured for Future Reference?
A large variety of information was captured for future reference in

support of the outcomes upon which the team decided. In total, the

team captured 186 pieces of information of 17 different kinds (Ta-

ble 4). The most frequent was Idea/alternative, with an example

provided in Figure 2. In this case, the team was discussing the issue

shown in Figure 1 and captured aspects of the discussion by editing

the fifth column in Ask an Architect for this issue. Two ideas were

raised in the discussion. The first was to attempt auto retry (about

two-thirds down in the notes), the second to use one queue per

tenant (near the bottom). Both ideas were captured along with a

variety of other things, such as a Code state capturing how the

code currently works (“Currently one queue handles both evalua-

tion and action”) and a Problem background/status of which the

architects reminded the team (“Actions should be queued”), each

listed at the top of Figure 2. One of the architects took these notes

throughout the discussion, with the notes visible on the screen be-

ing shared over WebEx so all team members could see. Eventually,

the team preferred the first idea and the second was crossed out.

Eventually, too, the team felt the issue was satisfactory resolved and

changed the status of the item from “NEW” (column 2 in Figure 1) to

“DONE” (Metadata). The team also linked (Metadata) the item in

Ask an Architect to a Jira ticket it created in the meeting to capture

the decision to create a proof-of-concept splitting the evaluator and

action services (Issue/ticket high-level description).

Ask an Architect was not the only way in which the team used

Confluence to document important information for future refer-

ence. The team also used what it calls playbook entries to record

system documentation, notes pages to hold meeting notes, and topic
pages to document specialized knowledge concerning important

subjects. Interestingly, despite the goal of capturing notes for every

meeting and despite the template for notes pages, they kept formal

notes in only two meetings; all other times, no notes pages were

created, although information was captured in other ways as the

above example of using Ask an Architect illustrates. One of the two

cases where they did create a notes page concerned a post-mortem,

which had the explicit goal of documenting ways in which the team

could improve aspects of the process it uses to address situations in

which someone breaks the master build. The debrief resulted in a

new process (Plan of action) that they detailed, including which

leaders should be notified if the problem recurs (Best practice).

Figure 2: Recreation of a Video Capture of Code Fact and Two
Ideas/alternatives Being Documented in Ask an Architect.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

Table 4: Frequency of Different Kinds of Information Captured (186 Total).

Category # % Category # %
Idea/alternative 36 19.4% Action item 7 3.8%

Team process 23 12.4% Issue/ticket high-level description 5 2.7%

Metadata 19 10.2% Implementation goal/scope 4 2.2%

Discussion item 19 10.2% Scheduling estimate 3 1.6%

Design feedback 18 9.7% Reqirement 3 1.6%

Code state 14 7.5% Impact estimate 2 1.1%

Implementation roadmap 11 5.9% Administrative decision 2 1.1%

Rationale 9 4.8% Best practice 2 1.1%

Situation’s background/status 9 4.8%

Compared to Confluence, which was used to capture 141 pieces

of information, Jira was used 44 times. Given its role as a repository

of issues to be addressed in the code base, this is not too surprising,

because not everything the team discusses directly results in specific

code tasks. Still, the kind of information captured in Jira was broader

than just Issue/high-level description, with Idea/alternative,

Design feedback, Rationale, and Implementation goal/scope

also happening six, six, six, and three times, respectively.

Figure 3 provides a final example of how the team works and

documents its outcomes. As part of a discussion to improve the test

suite of the system, the team created a topic page in Confluence and

took notes as they settled on the overall Implementation roadmap

(only a small part shown) and Scheduling estimate. They included

Rationale as to why they should do a proof-of-concept now, not

later, and left as an Action item that someone should take the

roadmap and turn it into specific Jira tickets.

While a great deal of information is captured, it is not done for

every topic. Capture took place for 26 out of 45 topics. A few inter-

esting patterns exist in when the team does and does not document.

When work was delegated, for instance, discussion information was

only captured a third of the time and never captured to whom the

topic was delegated; it was assumed that someone would remember

and inform the person. For deferred topics, no information was

recorded at all; the same was true for topics that were updates to

the team.

The type of discussion held also seemed to influence whether

information was captured. Surprisingly, none of the topics focusing

on assessing a problem (five) or gathering knowledge (two) involved

information capture. Both of these types of discussions are focused

on obtaining information that the team does not have, which should

make it prudent for the team to document what it learns in the

process so it can be used at a later time. It seems that in these cases,

however, the team is content with discussing the topic and letting

whomever led them take the information forward.

5 DISCUSSION
Our study is novel in focusing on software maintenance meetings, a

type of meeting that to date has not been studied in depth. Similar to

Ko et al. [42], who catalogued the types of information developers

seek, we chose to focus on the role of information. Ko et al. found

21 types of information sought, with about one third focused on

code. Our study reveals an even broader set of information relevant

to software maintenance meetings, but with much less focus on

code and more of a focus on run-time and deployment information

as well as architecture and process-related information. This is not

surprising, given the higher-level tasks in which the architecture

committee engaged and given that the teamworks on a cloud-based

system. Our study further differs from Ko et al. in also documenting

the resolution of the topic discussions as well as the information

capture practices in which the team engaged.

Recurring meetings [60] are a regular in software organizations

with, for instance, Agile stand-ups [80, 81], bug triage meetings [78],

and weekly status meetings [47] all having been studied before. The

software maintenance meetings we examined sometimes involved

activities somewhat similar to what takes place in these other kinds

of meetings (e.g., a progress update for a fix for a client, some early

pre-triaging). On the whole, however, the meetings exhibited a

strong focus on planning and problem-solving topics surrounding

the deployment, operation, and evolution of the system, instead of

updates from individuals as to how their tasks are coming along.

Our study, then, uniquely documents the effect of this different

focus on the nature and breadth of information being shared.

The software maintenance meetings we studied take place in

the context of a variety of other meetings at the organization (see

Section 2). This is in line with Lavalee and Robillard [47], who

observed a rich interconnected set of meetings taking place in their

study and argued that it is important to build an understanding of

the information flow among these meetings. Our result offer a basis

for creating this understanding by documenting precisely what

information flows in and out of software maintenance meetings,

which serve an essential role in the overall ecosystem of meetings.

In the remainder of this section, we first recap the main findings

and then discuss the implications of our study.

Takeaway 1: The deliberations taking place in maintenance meet-
ings rely on a large amount of highly varied information. On average,

some piece of information was brought up approximately once a

minute, with the diversity of the topics being addressed shining

through in the diversity of the kinds of information shared. The

fact that the system is already deployed leads to much informa-

tion being ‘fleeting’ in nature, representing the current state of

deployment or code base. Topics that involved devising a solution

to a problem, performing a post-mortem, and automating certain

activities in the development and deployment process involved on

average the most information being shared in the discussion.

Takeaway 2: A significant amount of information is captured to
document the outcomes of topic discussions in maintenance meetings.
On average once every four minutes some kind of information is



Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 3: Information Captured during the Discussion Centered on the Design of Major Improvements to the Test Suite.

recorded. As with information sharing, the kinds of information

being captured by the team vary strongly and especially vary with

the type of discussion held. A significant portion pertains to design

and code level guidance and decisions, but some portion also covers

the team itself and how it operates and addresses emergent issues.

Takeaway 3: Yet, only 60% of the topics that were discussed in-
volved information capture for later reference. Even though there

was a process and standard format for taking notes, the prescribed

Confluence notes pages were only used in two meetings. Only for

one-third of the topics involving delegation was anything captured

and nothing was captured for the topics that were deferred.

Takeaway 4: People are crucial to managing the meetings’ infor-
mation.With only about 10% of information being shared visible in

a tool on the shared screen, individual participants play a key role

in sharing information either from memory or from another tool

or source they have locally open on their computer. Most requests

for information were similarly answered by a participant without

referencing the shared screen. And, with 40% of the topics not lead-

ing to any notes being taken, much of the responsibility in taking

discussion outcomes forward falls on the individual team members.

Takeaway 5: Tools nonetheless play an important role. Conflu-
ence and Jira were the dominant tools for capturing information,

documenting outcomes and important aspects of the discussions.

Confluence and Jira also served an important role in agenda setting

for the topics being discussed, though other tools were also used

to locate and bring relevant information into the meetings, with

AWS and several home-grown tools essential to understanding the

actual behavior of the deployed system and associated code base.

5.1 Implications for Practice
As stated earlier, the teamwe studied is considered high-performing

by its leadership. We see this echoed in the outcomes: two-thirds of

the topics are fully resolved or delegated for final resolution, and the

deferred topics are not borne out of problems in the discussion but

represent the genuine case of needing to acquire future information

by monitoring the system. The few remaining topics were either

updates (no resolution necessary) or we could not deduce the reso-

lution from the data. In this context, we discuss what our findings

might mean for other teams involved in maintenance meetings.

Practice 1: Ensure the right team members are present. It is essen-
tial that maintenance meetings involve knowledgeable personnel.

In the case of the team we studied, the two architects shared a ma-

jority of the information (75%), partly because how long they had

been with the team. Other team members, however, were explicitly

invited to the meeting for their specialized knowledge.

Practice 2: Use tools such as Confluence and Jira, but surround
them with meaningful structure. Both in terms of kicking off topic

discussions and in capturing important outflow from these discus-

sions, the team established practices through which not just the

team but others who may need to invoke the team can easily ap-

proach it. Ask an Architect is the most powerful example, but the

team also explicitly spent time on how to best triage, re-considering

established practices in testing and handling emergencies at clients,

and documenting team processes and best practices. Such reflective

practices characterize high-performing teams [86].

Practice 3: Allow the instant look-up of information if necessary
to the discussion. Rather than postponing a topic, the team was

effective in using its tools to dynamically bring up information

about the deployed system. This was essential to a number of the

discussions. Being able to do so quickly and visible to everyone was

a key enabler in getting several topics resolved successfully. Such

‘artifact seeding’ is an important part of good practice [32].

Practice 4: Be consistent in capturing discussion outflow. Some

teams are too reliant on individuals’ memory to share important

outcomes and considerations from meetings. Being more principled

about taking notes, perhaps through collaborative notetaking as it

has shown auxiliary benefits [21, 68, 74], would be a good general

practice, particularly in light of the next suggestion.

Practice 5: Pay attention to unanswered information requests.
While the impact of the unanswered requests for information was

not a focus of our analysis, it is still possible that the team could

have done better had these been answered. A side benefit of con-

scientiously answering all requests for information is that it can

forge strong team cohesion. Ignoring others, especially when they

are remote, can have negative and long-lasting effects [76].

5.2 Implications for Research
Our findings give rise to a number of different research directions

that we believe are worthwhile pursuing.

Future Research 1: Other teams.We strongly feel that our study

should be replicated on other teams with other characteristics,

including, among others, a lower-performing team, a team working

in a different domain, and a team working with different tools. By



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

juxtaposing results from such studies, more can be learned about

effective and less effective practices in maintenance meetings.

Future Research 2: Conversational analysis. A logical next step

is to perform a detailed analysis of the conversations that take

place, to examine in detail the impact of the information shared

on the discussions taking place. Answering questions such as if

the information is relevant and how it impacts the discussions and

outcomes is important to identify best practices (e.g., [5, 54]).

Future Research 3: Tools. Design rationale tools have long been

explored to capture meeting outcomes in software development

(e.g., [15, 22, 48, 85]). Given that our findings show that not all topics

in maintenance meetings concern design, more general meeting

capture tools as explored in the CSCW and HCI literature might

be more applicable (e.g., [68, 71, 91]). With new AI-driven meeting

capture tools offering automated transcription and summarization

(e.g., [2, 41, 89]), opportunities exist for exploring new maintenance

meeting tools that offload much of the notetaking responsibility.

Future Research 4:Meeting ecosystem. No meeting stands alone

[3] and so it is with maintenance design: as already stated, the

meetings we studied are part of a rich ecosystem of many different

meetings for the team and its members. As others already noted

[47], it is important to study how these meetings interconnect,

particularly in terms of the information flow amongst them.

6 THREATS TO VALIDITY
Our findings are subject to a variety of threats to validity. First is

the issue of representativeness. The 36 categories of information

that we witnessed being shared may not be representative of all

categories shared across all meetings held by the team. Similarly,

the set of 10 meetings may not be representative of all meetings

by the team. By choosing a window of nearly three months we

hope to have reduced this potential issue. Other issues related to

representativeness (e.g., single team, high-performing team, single

company, healthcare domain, cloud-based system) are an artifact

of the research methodology of a single exploratory case study.

Additional studies of other teams in other situations are necessary.

Second is the threat of incompleteness: because only a single

screen was shared at the time, it is possible that team members

engaged in invisible work that could influence our findings, for

instance by sharing quick notes with each other or privately captur-

ing discussion notes for later use. Additional study is necessary to

understand the prevalence and potential impact of such practices.

Third are potential concerns with the study execution in terms

of the consistency and stability of the analysis process, together

with the confirmability of the results. To counter this threat, we

followed established practices in inductive thematic analysis, with

two researchers performing coding independently before compar-

ing and resolving notes and a third researcher providing indepen-

dent feedback at each step. Additionally, as described in Section 3,

we performed member checking. Both the architect and the CTO

felt that our description of the meetings was accurate, our coding

seemed appropriate, and results, though including some surprises

(e.g., frequency of information sharing, limited capture of informa-

tion), aligned with their perceptions.

7 RELATED WORK
Software maintenance has been studied from a broad range of per-

spectives, including but not limited to empirical studies of develop-

ers making code changes (e.g., [13, 14]), novel tools to understand

and modify code (e.g., [26, 64]), characterizing different mainte-

nance activities (e.g., [19, 49], visualizing code (e.g., [46, 90]), and

re-engineering and refactoring (e.g., [27, 35, 58, 59]). A particularly

relevant thread of work has examined the information needs of soft-

ware developers in their day-to-day programming (e.g., [24, 42, 72])

and created new tools for helping them deal with these information

needs (e.g., [24, 43]). Our work follows this thread and contributes

a first look at both information needs and information capture in

maintenance meetings.

Closely related to our work are studies of Agile meetings (e.g.,

[80, 81]), studies of designmeetings (e.g., [25, 55, 57, 61]), and studies

of hybrid and remotemeetings (e.g., [6, 62, 67]). Ourwork is inspired

by these studies documenting in detail a range of phenomena that

take place in different kinds of software development meetings and

follows a similar methodological approach. It is unique, however,

in our focus on maintenance meetings specifically and the role that

information has in setting a context for the work that takes place

in these meetings.

To the best of our knowledge, no studies have been performed to

date detailing the role of Confluence or Jira in software development

meetings, though issue tracking has been studied extensively (e.g.,

[7, 12]) and the use of wikis in software development has also been

a subject of study (e.g., [17]). Our findings are unique in detailing

the use of these tools in software maintenance meetings.

An extensive strand of research has sought to develop tools that

help capture aspects of meetings, whether specifically for software

development discussions through design rationale tools (e.g., [16,

22, 40, 85]) or more broadly through generic meeting capture tools

(e.g., [11, 17, 69, 77]). Our work at this time does not seek to develop

a tool, but has implications for the design of such tools.

8 CONCLUSIONS
Maintenance meetings are the heartbeat of a software project: they

are necessary to ensure a project keeps on track, emergent issues are

addressed, and new ideas are fostered and have a place to be vetted.

This paper contributes a first look at the kind of information that

flows into software maintenance meetings, how it flows into those

meetings, what kinds of outcomes result from the discussions in

them, and what information is captured in the meetings to support

downstream activities. Among others, our findings include that: (1)

developers rely on a wide variety of information in the discussions

in these meetings, (2) they use a range of tools to share additional

information, (3) they successfully address most topics brought up

in the meetings, and (4) only 60% of the topics involve information

being captured for later use.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under grants CCF-2210812 and CCF-2210813.



Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured ICSE ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] 2023. Engineering Meetings: Tips to Help Your Team | Range. https://www.

range.co/blog/engineering-meeting Accessed on 07/2023.

[2] 2023. Otter.ai - Voice Meeting Notes & Real-time Transcription. https://otter.ai/

Accessed on 08/2022.

[3] Joseph A. Allen, Tammy Beck, Cliff W. Scott, and Steven G. Rogelberg. 2014.

Understanding workplace meetings: A qualitative taxonomy of meeting purposes.

Management Research Review 37, 9 (Jan. 2014), 791–814. Publisher: Emerald

Group Publishing Limited.

[4] Anon Anon. 2022. removed for blind review.

[5] Alex Baker and André van der Hoek. 2010. Ideas, subjects, and cycles as lenses

for understanding the software design process. Design Studies 31, 6 (Nov. 2010),
590–613.

[6] Jose Maria Barrero, Nicholas Bloom, and Steven J. Davis. 2021. Why working from
home will stick. Technical Report 28731. National Bureau of Economic Research.

https://www.nber.org/papers/w28731

[7] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. 2010. Commu-

nication, collaboration, and bugs: the social nature of issue tracking in small,

collocated teams. In Proceedings of the 2010 ACM conference on Computer supported
cooperative work (CSCW ’10). ACM, 291–300.

[8] Manoj Bhat, Klym Shumaiev, and Florian Matthes. 2017. Towards a Framework

for Managing Architectural Design Decisions. In 11th European Conference on
Software Architecture: Companion Proceedings (ECSA ’17). 48–51.

[9] Tingting Bi, Wei Ding, Peng Liang, and Antony Tang. 2021. Architecture infor-

mation communication in two OSS projects: The why, who, when, and what.

Journal of Systems and Software 181 (Nov. 2021), 111035.
[10] Daniel G. Bobrow and Ira P. Goldstein. 1980. Representing design alternatives.

In Proceedings of the 1980 AISB Conference on Artificial Intelligence (AISB’80). IOS
Press, 25–35.

[11] Gerald Bortis. 2010. Informal software design knowledge reuse. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 2. 385–388.

[12] Gerald Bortis and André van der Hoek. 2013. PorchLight: A tag-based approach

to bug triaging. In 2013 35th International Conference on Software Engineering
(ICSE). 342–351.

[13] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek

Janni. 2014. Identifying the characteristics of vulnerable code changes: an empir-

ical study. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). ACM, 257–268.

[14] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.

2009. Two studies of opportunistic programming: interleaving web foraging,

learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). ACM, 1589–1598.

[15] Janet Burge andDavid Brown. 2008. SEURAT. In 2008 ACM/IEEE 30th International
Conference on Software Engineering. 835–838.

[16] Janet E. Burge, John M. Carroll, Raymond McCall, and Ivan Mistrik. 2008.

Rationale-Based Software Engineering. Springer Berlin Heidelberg.

[17] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali

Babar. 2016. 10 years of software architecture knowledge management: Practice

and future. Journal of Systems and Software 116 (June 2016), 191–205.
[18] Andrew Chan, Karon MacLean, and Joanna McGrenere. 2008. Designing haptic

icons to support collaborative turn-taking. International Journal of Human-
Computer Studies 66, 5 (2008), 333–355. Publisher: Elsevier.

[19] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan.

2001. Types of software evolution and software maintenance. Journal of Software
Maintenance and Evolution: Research and Practice 13, 1 (2001), 3–30.

[20] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. 2007. Let’s Go to

the Whiteboard: How and Why Software Developers Use Drawings. In SIGCHI
Conference on Human Factors in Computing Systems (CHI ’07). 557–566.

[21] Patrick Chiu, John Boreczky, Andreas Girgensohn, and Don Kimber. 2001.

LiteMinutes: an Internet-based system for multimedia meeting minutes. In Pro-
ceedings of the 10th international conference on World Wide Web. 140–149.

[22] E. Jeffrey Conklin and K. C. Burgess Yakemovic. 1991. A process-oriented ap-

proach to design rationale. Human-Computer Interaction 6, 3 (Sept. 1991), 357–

391.

[23] Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic

Synthesis in Software Engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement. 275–284.

[24] Brian De Alwis. 2008. Supporting conceptual queries over integrated sources of

program information. (2008). Publisher: University of British Columbia.

[25] Uri Dekel. 2005. Supporting distributed software design meetings: what can we

learn from co-located meetings? ACM SIGSOFT Software Engineering Notes 30, 4
(2005), 1–7.

[26] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane

Ducasse. 2015. Untangling fine-grained code changes. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER).
341–350.

[27] B. Du Bois, S. Demeyer, and J. Verelst. 2004. Refactoring - improving coupling

and cohesion of existing code. In 11th Working Conference on Reverse Engineering.
IEEE Comput. Soc, 144–151.

[28] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.

2008. Selecting Empirical Methods for Software Engineering Research. In Guide
to Advanced Empirical Software Engineering, Forrest Shull, Janice Singer, and Dag
I. K. Sjøberg (Eds.). Springer, 285–311.

[29] Jennifer Fereday and Eimear Muir-Cochrane. 2006. Demonstrating Rigor Using

Thematic Analysis: A Hybrid Approach of Inductive and Deductive Coding and

Theme Development. International Journal of Qualitative Methods 5, 1 (March

2006), 80–92. Publisher: SAGE Publications Inc.

[30] Mark Ferlatte. 2017. Well Met: the Software Engineering Meetings You Actu-

ally Need — Truss. https://truss.works/blog/2017/2/3/well-met-the-software-

engineering-meetings-you-actually-need Accessed on 07/2023.

[31] Matthew Finnegan. 2022. For developers, too many meetings, too little ’focus’

time. https://www.computerworld.com/article/3669911/for-developers-too-

many-meetings-too-little-focus-time.html

[32] Gerhard Fischer, Jonathan Grudin, Raymond McCall, Jonathan Ostwald, David

Redmiles, Brent Reeves, and Frank Shipman. 2001. Seeding, evolutionary growth

and reseeding: The incremental development of collaborative design environ-

ments. Coordination theory and collaboration technology 447 (2001), 472. Publisher:
Citeseer.

[33] Frederik M. Fowler. 2019. The Sprint Planning Meeting. In Navigating Hybrid
Scrum Environments. Apress, 83–88. http://link.springer.com/10.1007/978-1-

4842-4164-6_13

[34] Frederik M. Fowler. 2019. The Sprint Retrospective. In Navigating Hybrid Scrum
Environments. Apress, 97–100. http://link.springer.com/10.1007/978-1-4842-

4164-6_16

[35] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley.

[36] Thomas Fritz and Gail C. Murphy. 2010. Using information fragments to answer

the questions developers ask. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, Vol. 1. 175–184.

[37] D. R. Garrison, M. Cleveland-Innes, Marguerite Koole, and James Kappelman.

2006. Revisiting methodological issues in transcript analysis: Negotiated coding

and reliability. The Internet and Higher Education 9, 1 (Jan. 2006), 1–8.

[38] Fabian Gilson, Sam Annand, and Jack Steel. 2020. Recording Software Design

Decisions on the Fly. In Joint Proceedings of SEED & NLPaSE. 53–66.
[39] Greg Guest, Kathleen M. MacQueen, and Emily E. Namey. 2011. Applied Thematic

Analysis. SAGE Publications.

[40] G. P Heliades and E. A Edmonds. 1999. On facilitating knowledge transfer in

software design. Knowledge-Based Systems 12, 7 (1999), 391–395.
[41] Francois Jacquenet, Marc Bernard, and Christine Largeron. 2019. Meeting Sum-

marization, A Challenge for Deep Learning. In Advances in Computational In-
telligence (Lecture Notes in Computer Science), Ignacio Rojas, Gonzalo Joya, and

Andreu Catala (Eds.). Springer International Publishing, 644–655.

[42] Amy J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collo-

cated Software Development Teams. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 344–353.

[43] Amy J. Ko and Brad A. Myers. 2004. Designing the whyline: a debugging inter-

face for asking questions about program behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’04). ACM, 151–158.

[44] Udo Kuckartz and Stefan Rädiker. 2019. Analyzing Qualitative Data with
MAXQDA: Text, Audio, and Video. Springer.

[45] Catherine Lai, Jean Carletta, and Steve Renals. 2013. Modelling participant affect

in meetings with turn-taking features. In Proc. Workshop of Affective Social Speech
Signals.

[46] Thomas D. LaToza and Brad A. Myers. 2011. Visualizing call graphs. In 2011
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
117–124.

[47] Mathieu Lavallée and Pierre N. Robillard. 2015. Why Good Developers Write

Bad Code: An Observational Case Study of the Impacts of Organizational Factors

on Software Quality. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 677–687.

[48] J. Lee. 1997. Design rationale systems: understanding the issues. IEEE Expert 12,
3 (May 1997), 78–85.

[49] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. 1978. Characteristics of applica-

tion software maintenance. Commun. ACM 21, 6 (June 1978), 466–471.

[50] loopinhq. 2023. Weekly Tech Meeting. https://www.loopinhq.com/meeting-

templates/weekly-tech-meeting Accessed on 07/2023.

[51] Marisela Gutierrez Lopez, Kris Luyten, Davy Vanacken, and Karin Coninx. 2017.

Untangling Design Meetings: Artefacts as Input and Output of Design Activities.

In Proceedings of the European Conference on Cognitive Ergonomics 2017. ACM,

176–183.

[52] Marin Luetic. 2023. 15 topics to discuss during weekly developer team meetings.

https://decode.agency/article/development-team-meeting-topics/ Accessed on

07/2023.

https://www.range.co/blog/engineering-meeting
https://www.range.co/blog/engineering-meeting
https://otter.ai/
https://www.nber.org/papers/w28731
https://truss.works/blog/2017/2/3/well-met-the-software-engineering-meetings-you-actually-need
https://truss.works/blog/2017/2/3/well-met-the-software-engineering-meetings-you-actually-need
https://www.computerworld.com/article/3669911/for-developers-too-many-meetings-too-little-focus-time.html
https://www.computerworld.com/article/3669911/for-developers-too-many-meetings-too-little-focus-time.html
http://link.springer.com/10.1007/978-1-4842-4164-6_13
http://link.springer.com/10.1007/978-1-4842-4164-6_13
http://link.springer.com/10.1007/978-1-4842-4164-6_16
http://link.springer.com/10.1007/978-1-4842-4164-6_16
https://www.loopinhq.com/meeting-templates/weekly-tech-meeting
https://www.loopinhq.com/meeting-templates/weekly-tech-meeting
https://decode.agency/article/development-team-meeting-topics/


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Meza Soria, et al.

[53] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek.

2015. How Software Designers Interact with Sketches at the Whiteboard. IEEE
Transactions on Software Engineering 41, 2 (Feb. 2015), 135–156.

[54] Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020.

On the relationship between design discussions and design quality: a case study

of Apache projects. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2020). ACM, 543–555.

[55] Gloria Mark. 2002. Extreme collaboration. Commun. ACM 45, 6 (2002), 89–93.

[56] Stanic Mislav. 2023. 7 important software engineering meetings you actually

need. https://www.shakebugs.com/blog/software-engineering-meetings/#The_

technical_meeting Accessed on 07/2023.

[57] Thomas P. Moran and John M. Carroll. 2020. Design Rationale: Concepts, Tech-
niques, and Use. CRC Press.

[58] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-

ancarlo Succi. 2008. A Case Study on the Impact of Refactoring on Quality and

Productivity in an Agile Team. In Balancing Agility and Formalism in Software En-
gineering (Lecture Notes in Computer Science), Bertrand Meyer, Jerzy R. Nawrocki,

and Bartosz Walter (Eds.). Springer, 252–266.

[59] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson, and Giancarlo Succi. 2006.

Does Refactoring Improve Reusability?. In Reuse of Off-the-Shelf Components
(Lecture Notes in Computer Science), Maurizio Morisio (Ed.). Springer, 287–297.

[60] Karin Niemantsverdriet and Thomas Erickson. 2017. Recurring Meetings: An

Experiential Account of Repeating Meetings in a Large Organization. Proceedings
of the ACM on Human-Computer Interaction 1, CSCW (Dec. 2017), 84:1–84:17.

[61] Gary M. Olson, Judith S. Olson, Mark R. Carter, and Marianne Storrosten. 1992.

Small Group Design Meetings: An Analysis of Collaboration. Human–Computer
Interaction 7, 4 (1992), 347–374.

[62] K Parker, J Horowitz, and R Minkin. 2020. How the Coronavirus

Outbreak Has – and Hasn’t – Changed the Way Americans Work.

https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-

outbreak-has-and-hasnt-changed-the-way-americans-work/ Accessed on

02/2023.

[63] V.T. Rajlich and K.H. Bennett. 2000. A staged model for the software life cycle.

Computer 33, 7 (July 2000), 66–71.

[64] Sarah Rastkar and Gail C. Murphy. 2013. Why did this code change?. In 2013
35th International Conference on Software Engineering (ICSE). 1193–1196.

[65] Sean Rintel, Priscilla Wong, Advait Sarkar, and Abigail Sellen. 2020. Methodology
and Participation for 2020 Diary Study of Microsoft Employees Experiences
in Remote Meetings During COVID-19. Technical Report. 46 pages. https:

//www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-

SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf

[66] G. Ruhe and M.O. Saliu. 2005. The Art and Science of Software Release Planning.

IEEE Software 22, 6 (Nov. 2005), 47–53.
[67] Banu Saatçi, Kaya Akyüz, Sean Rintel, and Clemens Nylandsted Klokmose.

2020. (Re)Configuring Hybrid Meetings: Moving from User-Centered Design to

Meeting-Centered Design. Computer Supported Cooperative Work (CSCW) 29, 6
(2020), 769–794.

[68] Samiha Samrose, Daniel McDuff, Robert Sim, Jina Suh, Kael Rowan, Javier Her-

nandez, Sean Rintel, KevinMoynihan, andMary Czerwinski. 2021. MeetingCoach:

An Intelligent Dashboard for Supporting Effective & Inclusive Meetings. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–13.

[69] Bill N. Schilit, Lynn D. Wilcox, and Nitin "Nick" Sawhney. 1997. Merging the

benefits of paper notebooks with the power of computers in dynomite. In CHI ’97
Extended Abstracts on Human Factors in Computing Systems (CHI EA ’97). ACM,

22–23.

[70] Olga Semusheva. 2023. The 6 Most Important Project Development Meet-

ings. https://steelkiwi.com/blog/6-most-important-project-development-

meetings/ Accessed on 07/2023.

[71] Yang Shi, Chris Bryan, Sridatt Bhamidipati, Ying Zhao, Yaoxue Zhang, and Kwan-

Liu Ma. 2018. MeetingVis: Visual Narratives to Assist in Recalling Meeting

Context and Content. IEEE Transactions on Visualization and Computer Graphics
24, 6 (June 2018), 1918–1929.

[72] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering

Questions during a Programming Change Task. IEEE Transactions on Software
Engineering 34, 4 (July 2008), 434–451.

[73] J. Singer. 1998. Practices of software maintenance. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). 139–145.

[74] G. Singh, L. Denoue, and A. Das. 2004. Collaborative note taking. In The 2nd IEEE
International Workshop on Wireless and Mobile Technologies in Education, 2004.
163–167.

[75] David Socha and Josh Tenenberg. 2013. Sketching Software in the Wild. In 35th
International Conference on Software Engineering. 1237–1240.

[76] Sabine Sonnentag. 2001. High performance and meeting participation: An obser-

vational study in software design teams. Group Dynamics: Theory, Research, and
Practice 5 (2001), 3–18. Publisher: Educational Publishing Foundation.

[77] Lisa Stifelman, Barry Arons, and Chris Schmandt. 2001. The audio notebook:

paper and pen interaction with structured speech. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’01). ACM, 182–189.

[78] Viktoria Stray. 2018. Planned and unplanned meetings in large-scale projects. In

Proceedings of the 19th International Conference on Agile Software Development:
Companion (XP ’18). ACM, 1–5.

[79] Viktoria Stray and Nils Brede Moe. 2020. Understanding coordination in global

software engineering: A mixed-methods study on the use of meetings and Slack.

Journal of Systems and Software 170 (Dec. 2020), 110717.
[80] Viktoria Stray, Nils Brede Moe, and Gunnar R. Bergersen. 2017. Are Daily Stand-

up Meetings Valuable? A Survey of Developers in Software Teams. In Agile
Processes in Software Engineering and Extreme Programming (Lecture Notes in
Business Information Processing), Hubert Baumeister, Horst Lichter, and Matthias

Riebisch (Eds.). 274–281.

[81] Viktoria Stray, Dag I. K. Sjøberg, and Tore Dybå. 2016. The daily stand-upmeeting:

A grounded theory study. Journal of Systems and Software 114 (2016), 101–124.
[82] Viktoria Gulliksen Stray, Yngve Lindsjørn, and Dag I.K. Sjøberg. 2013. Obstacles

to Efficient Daily Meetings in Agile Development Projects: A Case Study. In

2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement. 95–102.

[83] Viktoria Gulliksen Stray, Nils Brede Moe, and Aybüke Aurum. 2012. Investi-

gating Daily Team Meetings in Agile Software Projects. In 2012 38th Euromicro
Conference on Software Engineering and Advanced Applications. 274–281.

[84] Antony Tang, Aldeida Aleti, Janet Burge, and Hans van Vliet. 2010. What makes

software design effective? Design Studies 31, 6 (Nov. 2010), 614–640.
[85] Antony Tang, Yan Jin, and Jun Han. 2007. A rationale-based architecture model

for design traceability and reasoning. Journal of Systems and Software 80, 6 (2007),
918–934.

[86] Joost Visser, Sylvan Rigal, Gijs Wijnholds, and Zeeger Lubsen. 2016. Building
Software Teams: Ten Best Practices for Effective Software Development. "O’Reilly
Media, Inc.".

[87] J. Wu, T.C.N. Graham, and P.W. Smith. 2003. A study of collaboration in software

design. In 2003 International Symposium on Empirical Software Engineering, 2003.
ISESE 2003. Proceedings. IEEE Comput. Soc, 304–313.

[88] Lihua Xu, Scott A. Hendrickson, Eric Hettwer, Hadar Ziv, André van der Hoek,

and Debra J. Richardson. 2006. Towards supporting the architecture design

process through evaluation of design alternatives. In Proceedings of the ISSTA
2006 workshop on Role of software architecture for testing and analysis (ROSATEA
’06). ACM, 81–87.

[89] Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. 2023. Ex-

ploring the Limits of ChatGPT for Query or Aspect-based Text Summarization.

http://arxiv.org/abs/2302.08081 arXiv:2302.08081 [cs].

[90] YoungSeok Yoon, Brad A. Myers, and Sebon Koo. 2013. Visualization of fine-

grained code change history. In 2013 IEEE Symposium on Visual Languages and
Human Centric Computing. 119–126.

[91] Ying Zhang, Marshall Bern, Juan Liu, Kurt Partridge, Bo Begole, Bob Moore, Jim

Reich, and Koji Kishimoto. 2010. Facilitating meetings with playful feedback. In

CHI’10 Extended Abstracts on Human Factors in Computing Systems. 4033–4038.

https://www.shakebugs.com/blog/software-engineering-meetings/#The_technical_meeting
https://www.shakebugs.com/blog/software-engineering-meetings/#The_technical_meeting
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf
https://steelkiwi.com/blog/6-most-important-project-development-meetings/
https://steelkiwi.com/blog/6-most-important-project-development-meetings/
http://arxiv.org/abs/2302.08081

	Abstract
	1 Introduction
	2 Data set
	3 Methodology
	4 Results
	4.1 What Kinds of Information?
	4.2 How Is It Brought Into the Meetings?
	4.3 What Discussion Outcomes?
	4.4 Captured for Future Reference?

	5 Discussion
	5.1 Implications for Practice
	5.2 Implications for Research

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

