Check for
Updates

Characterizing Software Maintenance Meetings: Information
Shared, Discussion Qutcomes, and Information Captured

Adriana Meza Soria
Taylor Lopez
Negin Mashhadi
André van der Hoek

amezasor@uci.edu
lopeztal@uci.edu
nmashhad@uci.edu
andre@uci.edu
Department of Informatics
University of California, Irvine
Irvine, CA, U.S.A.

ABSTRACT

A type of meeting that has been understudied in the software engi-
neering literature to date is what we term the software maintenance
meeting: a regularly scheduled team meeting in which emergent
issues are addressed that are usually out of scope of the daily stand-
up but not necessarily challenging enough to warrant an entirely
separate meeting. These meetings tend to discuss a wide variety
of topics and are crucial in keeping software development projects
going, but little is known about these meetings and how they pro-
ceed. In this paper, we report on a single exploratory case study
in which we analyzed ten consecutive maintenance meetings from
a major healthcare software provider. We analyzed what kind of
information is brought into the discussions held in these meetings
and how, what outcomes arose from the discussions, and what infor-
mation was captured for downstream use. Our findings are varied,
giving rise to both practical considerations for those conducting
these kinds of meetings and new research directions toward further
understanding and supporting them.

CCS CONCEPTS

« Software and its engineering — Maintaining software; Sofi-
ware maintenance tools; Documentation.

KEYWORDS

Meetings, software maintenance, information, resolution

ACM Reference Format:

Adriana Meza Soria, Taylor Lopez, Negin Mashhadi, André van der Hoek,
Elizabeth Seero, Emily Evans, and Janet Burge. 2024. Characterizing Soft-
ware Maintenance Meetings: Information Shared, Discussion Outcomes,
and Information Captured. In 2024 IEEE/ACM 46th International Conference

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623330

Elizabeth Seero
Emily Evans

Janet Burge
1_seero@coloradocollege.edu
ea_evans@coloradocollege.edu
jburge@coloradocollege.edu
Department of Mathematics and Computer Science
Colorado College
Colorado, CO, US.A.

on Software Engineering (ICSE °24), April 14-20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623330

1 INTRODUCTION

Software systems spend a significant proportion of their lifetime
undergoing maintenance [63]. For large deployed systems with a
wide customer base, software teams need to keep track of how well
the software is functioning at the various client sites, respond to any
problems that arise, and plan, develop, and deploy enhancements
[73]. Meetings play an essential role in performing this work. It is
well-known that the weekly agenda of a typical developer may be
dominated by meetings [31]. These meetings range in kind from
daily stand-ups [81] and sprint planning [33], to dedicated design
[61] and release planning [66], to impromptu [87] and retrospectives
[34]. Together, the meetings in which a team engages represent an
intricate network of activities and dependencies among them [79].

To date, meetings have been an understudied subject in the soft-
ware engineering literature, which is a surprise given how frequent
they are and given how much team-oriented intellectual work takes
place in them that shapes the eventual product. Exceptions exist,
with certain types of meetings that have been studied extensively,
such Agile stand-ups (e.g., [80, 82, 83]) or whiteboard software de-
sign meetings (e.g., [20, 53, 75]). Specific aspects of meetings in
general have also been examined in detail, such as meeting dynam-
ics (e.g., [5, 51, 84]), inclusivity (e.g., [18, 45]), and the impact of
hybrid and remote settings (e.g., [65, 67]).

This paper complements the existing literature on meetings in
software engineering by focusing on software maintenance meet-
ings [4]. To date, this kind of meeting has not been studied in the
literature, but from the grey literature (e.g., [1, 30, 50, 52, 56, 70]),
it is clear that it is a common type of meeting. The actual name
for the meeting varies from maintenance meeting, to technical
meeting, to weekly developer meeting, to weekly tech meeting, to
engineering meeting, and more, but we favor the term maintenance
meeting because a common trait is that the meetings take place
in the context of an evolving existing system. What characterizes
these meetings is that they: (1) serve an important role ‘in between’
the daily stand-ups many organizations employ and the dedicated,
less frequent meetings in which a specific type of work gets done,

https://doi.org/10.1145/3597503.3623330
https://doi.org/10.1145/3597503.3623330
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623330&domain=pdf&date_stamp=2024-02-06

ICSE °24, April 14-20, 2024, Lisbon, Portugal

such as sprint planning or a whiteboard design meeting, (2) have a
core set of participants consisting of the technical and project leads,
with other team members attending as needed depending on the
topic(s) to be discussed, (3) are regularly scheduled—usually weekly,
sometimes more frequently—so that people can count on a forum
for emergent issues that require forethought and discussion, and
(4) address a broad range of issues. Maintenance meetings serve
an important role in keeping software projects going, as numerous
decisions are made regarding functionality of the software, complex
issues with deployed systems are diagnosed, and team members
can get help concerning non-trivial issues they face.

In preliminary work [4], we categorized the kinds of discussions
that take place in maintenance meetings. Across ten meetings con-
ducted by a single team from a major healthcare software provider,
we found that the team engaged in forty-five discussions (termed
topics in this paper) of fourteen different kinds, including assessing
a problem, clarifying a misunderstanding, devising a solution, gath-
ering knowledge, automating activities, performing a post-mortem,
planning a future meeting agenda, reviewing a design proposal,
and refining a ticket. This variety in the kinds of discussions held
aligns with research into weekly meetings across industries, which
found that weekly meetings tend to “discuss ongoing projects” and
“routinely discuss the state of the business” [3].

Expanding upon our preliminary work, this paper seeks to deepen
our understanding of maintenance meetings by examining how
information creates a context for the discussions and outcomes
in these kinds of meetings. How discussions in these meetings
proceed depends on the availability of information, together with
what information needs to be produced [9, 36, 42]. In other words,
discussions in maintenance meetings on the one hand rely on in-
formation that is generated or available elsewhere and on the other
hand produce information that shapes next steps on the project.
We specifically address the following four research questions:

(1) What kinds of information do developers rely on during main-
tenance meetings?

(2) How is this information brought into the meetings?

(3) What are the outcomes of maintenance meetings?

(4) Are these outcomes captured for future reference and, if so, how?

The remainder of this paper is organized as follows. We detail
the meetings upon which we perform our analysis in Section 2 and
then introduce our methodology in Section 3. We present findings
in Section 4 and discuss implications for research and practice in
Section 5. We conclude with threats to validity in Section 6, related
work in Section 7, and our plans for future work in Section 8.

2 DATA SET

As part of our prior work [4], we obtained copies of the WebEx
recordings of ten maintenance meetings held at a major healthcare
software development company. These maintenance meetings took
place in the context of a variety of other meetings, including daily
stand-ups, backlog refinement meetings twice a week, sprint plan-
ning every other week, retrospectives (infrequent), and a dedicated
but temporary set of meetings related to a new Ul initiative. The
maintenance meetings are held by the architecture committee, a
standing team that is responsible for maintaining and expanding a

Meza Soria, et al.

software system that is in use by hundreds of hospitals. The soft-
ware stores terabytes of patient health data in the cloud and it is
considered a critical system in the overall portfolio of the company.
Meetings are always through WebEx, with some participants join-
ing from the U.S.A. and the rest joining from India. Meetings are
scheduled for one hour each, with some being slightly shorter and
others going over a bit. The team addresses what it can in the hour
and moves unaddressed items to the agenda for the week thereafter.

The meetings took place from March to July 2020. There were
twelve different participants over that time period: a product owner
and shadow product owner (01, O2), two software architects (A1,
A2), the lead quality assurance engineer (Q1), two managers (M1,
M2), four developers (D1-D4), and an infrastructure engineer (I1).
The main product owner, the two software architects, the QA en-
gineer, and one of the managers were located in the US.A ; the
rest of the participants were in India. A small core (01, A1, A2,
and Q1) attends nearly every meeting; others are only involved in
the meetings either when a topic is discussed that they themselves
placed on the agenda or when a topic requires their expertise. The
median number of attended meetings by these other participants is
4.5. Table 1 documents precisely which participants attended which
meetings.

Anecdotally and not necessarily by any metric being tracked, the
architecture committee is considered a high-performing team by
management, with management using this team and its practices
as a model for organizing other development teams.

When we requested access to the WebEx meetings, we had sev-
eral requirements. First, we wanted the meetings to be maintenance
meetings and not of the other meeting types discussed. Second, we
wanted the meetings to be consecutive over a period of time, to be
able to identify potential issues around topics recurring (which we
did not, but it was an objective in requesting consecutive meetings).
Third, we requested ten meetings total, because it balances depth,
in it being feasible to manually analyze ten hours of meetings in
great detail, with breadth, in having several months of maintenance
discussions available to examine and make sense of.

In our prior work, we found that the ten meetings covered forty-
five distinct topics [4]. While each topic was unique, underneath
were several shared objectives, ranging from assessing a problem,
gathering knowledge, or devising a solution, to reviewing a design
proposal, planning a future meeting agenda, or performing a post-
mortem, to clarifying a misunderstanding, automating activities,
or refining a ticket. Consider the following excerpt:

A2: Do you see that?

01: Oh, wow.

A2: So, what’s on there? Zero instance. I just picked on that
because it’s 11 — Oh. That’s — that’s the reader. So, look at that.
The CPU is higher on the read replica right now. Then if we look
on their writer — Let’s look at that over the last week.

This excerpt is from a topic discussing the potential consequences
of one of the clients onboarding additional users. In this case, as
part of gathering knowledge to understand the ramifications of the
client’s plans, the team uses one of the tools in the AWS toolkit to
study the CPU load live. In observing that it is higher on the read
replica than on the write replica, they launch into a discussion as to
why this may be (with the team looking up additional information

Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 1: Meeting participants.

Participant ‘ Preferred pronoun ‘ Role

| Location [M1 [M2 [M3 [M4 | M5 | M6 | M7 | M8 | M9 | M10 |

01 she, her, hers Product owner
Al he, him, his Software architect
A2 he, him, his Software architect
Q1 he, him, his QA engineer
02 she, her, hers Product owner
M1 he, him, his Manager

D1 he, him, his Developer

D2 he, him, his Developer

D3 he, him, his Developer

D4 he, him, his Developer

M2 he, him, his Manager

11 he, him, his Infrastructure engineer

US.A.
US.A.
US.A.
US.A.

India

US.A.

India
India
India
India
India
India

X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X
X X X X X
X X X X X X
X X X X X X X
X X X X X
X X X X
X X
X
X X

in the process) and whether the sizeable number of additional users
that are planned to be added would cause the load to go higher yet
or would not impact this part of the system.

As other examples, the team spent time discussing an architec-
tural issue in which unusually high traffic from one client could
render other clients unable to use the system, reviewing a new
feature being proposed by one of the developers, considering how
to reduce the number of idle testing environments that were still
incurring cost for the company, reflecting on the cause of an up-
grade failure, and refining a ticket that had been a placeholder for
the team needing to develop a permanent solution for a CPU uti-
lization issue. This variety is indicative of the unique role that the
weekly maintenance meetings serve: the issues are clearly distinct
from what one may find in a typical stand up or sprint planning
meeting, represent important issues in the day-to-day operations
of the project, require deliberate and thoughtful conversation, yet
are often not large enough to warrant a meeting of their own.

3 METHODOLOGY

Our study is a single exploratory case study [28] that follows a
constructivist approach. Instead of verifying previously established
theory, our study centers on exploring and understanding a partic-
ular phenomenon in its natural setting [28]. All ten WebEx videos
were transcribed by a professional transcription service and we
used the transcriptions and the videos as the sole sources for our
analyses. Our Institutional Review Board approved the study.

To answer our first research question, we performed an inductive
thematic analysis [29, 39] following the guidelines stated by Cruzes
and Dyba [23]. We examined the transcripts for when meeting
participants verbally introduced some information into the discus-
sion, following the Merriam-Webster definition of information: (1)
knowledge obtained from investigation, study, or instruction; (2)
intelligence, news; (3) facts, data. Two researchers independently
performed open coding on the first meeting, after which they com-
pared and discussed their findings to develop a first coding scheme
organizing the categories of information shared. A third researcher
reviewed and gave feedback on the coding scheme and the assigned
codes, which led to further refinements. This process was repeated
meeting-by-meeting, leading to incremental refinements to the cod-
ing scheme. Any changes to the coding scheme led to re-coding of
prior meetings to reflect the changes that were made. Throughout,

the two researchers used a process of negotiated agreement [37] for
their independent coding. When they could not reach an agreement,
the third researcher was consulted.

Once all ten meetings were fully coded, two researchers worked
together to perform axial coding, examining the internal consis-
tency of each category of information as well as potential overlaps
among categories. A few categories were merged and several as-
signed codes were changed to be consistent with one another.

To answer the second research question, we analyzed the dis-
cussion before a piece of information was mentioned to identify
whether the team member shared it voluntarily or in response to a
request from another participant. We also identified whether the
information being shared was visible on the shared screen in WebEx
and thus presumably referenced, or was brought into the meeting
by other means. Finally, we analyzed the discussion immediately
after some information was shared, because on a few occasions the
original answer was corrected by another participant. Because little
ambiguity exists in making these determinations, one researcher
performed this analysis with another verifying the results.

To answer the third research question, we followed a process
similar to the first research question, involving all three researchers
in a similarly iterative process of incremental inductive thematic
coding and review. This time, we sought to determine the various
ways in which the team concluded the discussion of each topic
(e.g., it completed the discussion with nothing further needed; after
discussing, it delegated work to someone not attending the meeting
or to someone who did attend and volunteered to take care of the
task; after discussing for a while, it deferred the topic).

Finally, to answer the fourth research question, we analyzed the
content of the WebEx videos leading up to and immediately after
each discussion concluded to assess whether the team documented
aspects of its deliberations and decisions. We examined the content
of the screen being shared to identify what kinds of notes and/or
tool actions the participant sharing the screen took publicly.

Altogether, the participants engaged in more than 3750 conver-
sational turns (switches in speaker) to which our analyses assigned
over 6500 codes. All coding was performed in MAXQDA [44]. For
confidentiality reasons, the healthcare company that provided the
data does not allow us to share the videos or transcripts that we an-
alyzed. We do, however, have permission to share the anonymized
extracts from the transcripts and anonymized screenshots of the

ICSE °24, April 14-20, 2024, Lisbon, Portugal

videos included in this paper. Note that some aspects of the screen-
shots are blurry to obfuscate sensitive information. The resulting
coding schemes and expanded versions of the anonymized extracts
are available as auxiliary materials along with the paper, at the fol-
lowing URL: https://doi.org/10.5061/dryad.9w0vt4bn8. To perform
member checking, a near-final version of the paper was shared with
one of the architects and the CTO who instituted the architecture
committee. Each was asked to read the paper carefully and to focus
on whether our description of the meetings and discussions was
accurate.

4 RESULTS

In this section, we present the results of our analyses. The section
is organized along the four research questions stated in Section 1.

4.1 What Kinds of Information?

Table 2 presents the 36 categories of information that we identified
as being relied upon by participants in the meetings. Team members
verbally introduced 694 distinct pieces of information across the
meetings, meaning that on average at least once a minute some
information was shared by someone. The types of information rep-
resent a wide range. Types include information pertaining to system
execution (e.g., DEPLOYMENT FACT, RUN-TIME FACT), the state of
development (e.g., FEATURE REQUEST, DEVELOPMENT PROGRESS), the
code itself (e.g., ARCHITECTURE FACT, CODE FACT), the development
process (e.g., TEAM PROCESS, TESTING MANAGEMENT), clients (e.g.,
CUSTOMER cOST, CUSTOMER CONTEXT), and more (e.g., PRoDUCT
METADATA, INTERNAL COSTS).

A detailed description of each kind of information is provided in
the auxiliary materials associated with this paper. Here, we high-
light two particularly subtle differences. First, whereas facts concern
information that is objectively “true” and thus can be verified by
looking something up, assessments concern information that is
more subjective, but nonetheless verifiable by investigating oneself
and drawing one’s own conclusion based on the investigation. An
example DEPLOYMENT FACT is the following (we use underlining to
indicate what we coded as information):

A1: Um, well their costs won’t change because, um, we haven’t
changed the size of their database.

whereas an example DEPLOYMENT QUALITY ASSESSMENT highlights
the more subjective nature of assessments:

A1: Our, um, Postgres tuning is already pretty bad.

In this case, one can go examine the facts of what kind of tuning
is in place, but then still needs to interpret what they see as to
whether it is indeed pretty bad.

The second subtle difference is between facts and management.
Compared to facts, which concern the state of something, e.g., the
code, a test case, or the deployed software, management concerns
information regarding prior actions that were taken or that should
be taken given certain situations. An example of DEPLOYMENT
MANAGEMENT, then, is the following:

M1: Hey, A2. I'm just curious how did the Redis get reset?

A2: Well, do you want to explain the — the — the background?
D2: So, actually whenever we do any access or additional ID
setup, we have to, um, clear the cache, Redis cache.

Meza Soria, et al.

In response to a question, the developer explains that clearing the
REDIS cache is a necessary step after they do any kind of work that
relates to access and user IDs, because otherwise the cache holds
old data.

The kinds of information shared most often reflect the software
being in use (RUN-TIME FACT, DEPLOYMENT MANAGEMENT, DEPLOY-
MENT FACT, ISSUE DETAIL) and under active development (DEVEL-
OPMENT PROGRESS, CODE FACT). The team performs its work by
accounting for what is happening at their customers, considering
what kind of effect decisions might have on the customers’ use, and
addressing emerging issues in the field. The product’s owner, for
instance, brought up a key point as the team was debating whether
and how to scale some cloud service (CUSTOMER CONTEXT):

O1: [client name] reached out to me today, and in the next few
months they were thinking of onboarding a few more, um, of
their clients, which would potentially double the number of calls.

A bit later this led to one of the architects reminding the team
that the current load on one of the servers involved was near its
maximum already (RUN-TIME FACT):

A1: What if they — what if they increase the size of their data-
base? We're already heading 90% during...

In this context, too, we often observed the team sharing facts about
the current state of the code when they deliberated how to tackle
certain problems. The following CobE FAcT illustrates:

D1: So, essentially, that means that I'm going back to the AP,
[component name] API, and it is responding back to me with a
list of applications. So, that is one response time.

In this case, the developer walks through how the current code
works to discuss where they may be able to make changes.

Some types of information have been advocated by the design
rationale literature as important to capture for later (e.g., decisions
[8, 38], alternatives [10, 88], rationale [16, 57]). Besides 17 instances
of ARGUMENT, which represents an underlying reason for some past
action, we did not witness these kinds of information being brought
back. Instead of referring to the actual decision or constraint that
was made, the participants refer to the current state of the code
that embeds that decision or constraint. That is, the team relies on
what in many ways are the manifestations of past deliberations.
The following ARCHITECTURAL FACT, for instance, is clearly the
result of an important decision made in the past:

A1: So, because both, um, you know, tenants or clients, whatever,
share the same compute layer, um, it is possible for one client to,
uh, negatively affect — affect the other...

The original decision, which concerned a choice of architectural
style and associated cloud-based infrastructure, shows through, but
it itself is not being recounted here.

Some topics relied on a large amount of information, with the
top five topics involving 52, 51, 48, 48, and 48 times, respectively,
that some information was brought up by a team member. Topics
that involved devising a solution to a problem, performing a post-
mortem, and discussions about automating certain activities in the
development and deployment process involved on average the most
information being shared in the discussion. Topics that involved
planning how to triage tickets, defining a future meeting agenda,
and sharing information about future projects involved the least

https://doi.org/10.5061/dryad.9w0vt4bn8

Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 2: Frequency of Different Kinds of Information Verbally Introduced (694 Total).

Category [# [% [Category [# [% [Category [# [%
RUN-TIME FACT 66 | 9.5% | IsSUE 21 | 3.0% | MISINFORMATION 8 1.2%
DEVELOPMENT PROGRESS 53 | 7.6% | ARGUMENT 17 | 2.4% | ANALOGOUS SOLUTION 7 1.0%
CODE FACT 48 | 6.9% | TESTING PROGRESS 17 | 2.4% | DOCUMENTATION PROGRESS 6 0.9%
DEPLOYMENT MANAGEMENT 47 | 6.8% | CHANGE DIFFICULTY 16 | 2.3% | CUSTOMER COST 5 0.7%
DEPLOYMENT FACT 43 | 6.2% | PRIOR ISSUE 13 | 1.9% | FUNCTIONALITY REQUEST 5 0.7%
ISSUE DETAIL 43 | 6.2% | DEPLOYMENT QLTY ASSESSMENT | 12 | 1.7% | CODE QUALITY ASSESSMENT 4 0.6%
CUSTOMER CONTEXT 39 | 5.6% | TESTING MANAGEMENT 12 | 1.7% | DOCUMENTATION QLTY ASSMNT. | 4 0.6%
INFRASTRUCTURE FUNCT. 36 | 5.2% | GENERAL PROGRAMMING KNWL. | 11 | 1.6% | ARCHITECTURAL QLTY ASSMNT. | 3 0.4%
TEAM HOUSEKEEPING 35 | 5.0% | INTERNAL COST 11 | 1.6% | PRODUCT METADATA 2 0.3%
TESTING FACT 27 | 3.9% | PEOPLE EXPERTISE 11 | 1.6% | EXTERNAL DEV. PROGRESS 1 0.1%
ARCHITECTURAL FACT 25 | 3.6% | BEST PRACTICE 10 | 1.4% | INFRASTRUCTURE PROGRESS 1 0.1%
TEAM PROCESS 24 | 3.5% | TESTING QUALITY ASSESSMENT | 10 | 1.4% | NON-FUNCTIONAL REQMNT. 1 0.1%

amount of sharing. The fact that sharing information about future
projects involved among the least amount of information sharing
might seem counter intuitive, but can be explained because these
topics involved quick heads-ups rather than elaborate discussions.
A small but interesting category is MISINFORMATION, which rep-
resents when someone shared some information that subsequently
was corrected. This happened only eight times, but reflected pivotal
moments in the discussions. Consider the following extract:

A1: I will say that, um, [component name] did not have a UI for
the lab or the mappings, so. It would be something new, I guess.
O1: So, would the —

02: [component name] — [component name] has it. I don’t know
if we are talking the same, but, um, I don’t know if you’re talking
about these mappings. Are you talking about this?

A1: Yeah, I can show my screen really quick.

02: Yeah, and even — even this mapping is there.

While devising a solution, one of the architects asserts that some
part of the system does not have a user interface. O2 corrects the
architect, points out that it does, and the architect then corrects
themselves and shares their screen to show that, indeed, that part
of the system does have a user interface, with O2 subsequently
pointing out an important aspect of the interface (the mapping).
Had O2 (the shadow product owner) not brought up that the user
interface exists, the team might have gone down a design path that
would be superfluous.

4.2 How Is It Brought Into the Meetings?

Not all information is shared in the same way. We identified whether
information was brought up VOLUNTARILY or BY REQUEST, examined
if each request for information was ANSWERED or left the discussion
with MISSING INFORMATION, whether any information that was
shared was subsequently corrected and thus was MISINFORMATION,
and if the information was shared via some tool ON SCREEN or was
shared OTHERWISE (e.g., from memory or from a tool whose content
was not shared at that time).

Many times information was casually included as part of a
broader point being made. Consider the following excerpt referring
to an ANALOGOUS SOLUTION:

A1: We — we could do some sort of round robin. And then, if we
do have an endpoint that is misbehaving, start applying back

pressure, or — or exponential back-off where we — kind of like
we do with the Elasticsearch. If — if you take longer than five
seconds, then we’re only gonna send you one message every five
seconds then. Right? Something like that.

Note how the information—in this case a reference to a similar kind
of solution used elsewhere in the code—is brought up. It acts as
an invitation to follow up on the reference if needed (e.g., “What
did we do again?”, “Explain that to me”), but in the absence of such
requests it is assumed that the reference is understood and helps
clarify the solution that the team member is proposing here.

Other times, information is shared to set the stage for the fol-
lowing discussion. Consider this example, which involves three
pieces of information being shared (IssuE, RUN-TIME FACT, and
FUNCTIONALITY REQUEST):

I1: Um, so, the thing is this morning some of the environments
were down. The machine processing was at scale and then could
not could not serve the request in time. The [other internal team
name] wanted to have a dashboard or something to detect these

kind of problems.

The infrastructure engineer brings up a problem for the team to
consider, shares a fact about the state of the run-time environment,
and explains that an internal team wants to be able to monitor
and detect if this problem arises again. A discussion follows dur-
ing which they realize they might be able to leverage a newly
implemented run-time data collection tool, briefly touch upon the
information that should go on the dashboard, discuss details of a
possible implementation, and decide when they will work on it.

For all excerpts that we have shown thus far, the information
was voluntarily contributed, that is, the team member shared it out
of their own volition without any prompt by another team member.
They simply included the information in the course of making a
contribution to the discussion. Such voluntary information sharing
was dominant (595 out of 694 total shared pieces of information
were shared voluntarily). The remainder was shared by request:
before someone shared the information with the team, someone
in the meeting asked for it. On most occasions, the request was an
explicit question, but on several occasions it was more implicit, as
in this request for a DEPLOYMENT FACT:

A2: If you try to do 250 con — concurrent requests, you’re gonna
get 429-ed because we’ve got every endpoint limits any site from

ICSE °24, April 14-20, 2024, Lisbon, Portugal

making, was it, 100 concurrent requests, right, 100 or 150 is the
default. A hundred or 150 —

Q1: I think it’s a — I think it’s 100. That’s ss — good.

A2: - 100 concurrent requests for any site on any end-point.

The architect never explicitly asked the team, instead they just men-
tioned two potential values as part of their narrative. The quality
engineer felt compelled to interject and answered with the actual
value. The architect did not skip a beat, continuing their train of
thought with the clarified limit.

In total, 146 requests for information were made out of which 99
were answered. The remaining 47 requests, however, went unan-
swered (coded as MISSING INFORMATION to indicate that the infor-
mation requested never was provided), with the discussion simply
continuing. An example is the following:

A1: Is there an NFR for how long it should take? Because I think
right now, it’d probably take uh, at least a maybe like a day to
process all the results and set the new type. Or should we consider
doing something with the — at query time for Elasticsearch?
02: Mm-hmm.

A1:Um, is — is there NFR for this, or is it okay for it take — maybe
that will help make the decision. Um, "cause currently, we do set
the value in Elasticsearch and Postgres. But we could probably
change that to do something at query time depending on what
the NFR is.

The request was for a NON-FUNCTIONAL REQUIREMENT and went
unanswered. Indeed, the architect asked twice in the above frag-
ment (which we coded only once, since we did not code repetitions)
and later asked again. The team extensively deliberated what a po-
tentially good limit might be based on a few analogous situations,
but never resolved whether an NFR existed.

Missing information did not follow any particular patterns. Out
of the 36 kinds of information (Table 2), for 22 of them instances ex-
ist where that kind of information was requested and not provided
during the meeting. The maximum number of times some kind
of information went unanswered was seven (CODE FACT) and the
minimum one (various, including ARCHITECTURAL FACT, INTERNAL
cosT, and ARGUMENT).

On a few occasions (19 out of 694) the information being shared
by one participant actually is an explicit recounting of what some-
one else had said in another meeting or forum. As one example, one
of the topics concerned clarifying a misunderstanding between two
developers who were discussing an aspect of the code on Slack (a
case of MISINFORMATION, corrected by an ARCHITECTURAL FACT):

A2:] mean, the only — the only thing I'd — the only thing that

gives me hesitation is [person 1] wrote in bold [component name]

will not connect to public internet. What [person 2] said is, it will
be secure over SSL which is connected to the public internet.

In all five examples in this section thus far, the information was
shared from memory or from a source not shared on screen (in the
Slack example, the architect recounted what they had seen prior in
the day). This was the dominant case: out of all 694 pieces of infor-
mation that were brought into the meetings, only 75 were explicitly
visible in the content of the tool that was at that time shared on
the WebEx screen. Of those 75, sometimes a team member would
explicitly reference the content that was visible or even actively use
the tool to navigate to the desired information, as in the example in

Meza Soria, et al.

Section 2 involving AWS. Other times, the information was visible
on the screen but conversation proceeded without evidence that
the team used or referenced the tool and its content.

Team members used a variety of tools, including Jira (which was
used to share 17 pieces of information), Confluence (17), E-mail/chat
(15), AWS tools (11), deployment/monitoring tools (11), their office
suite (1), and proprietary tools they had developed themselves (3).
A typical use of the tools was to set the stage for a topic discussion.
The excerpt below provides an example (ISSUE):

A1: So, I think that’s worth talking about. Um, basically, like 12
days ago, um, [person name] was trying to send, uh, automated
workflows, uh, out of the [client name 1] system, but the entire
system was being, uh, clogged by [client name 2] or, you know,
another phrase for it is like a noisy neighbor.

In this case, a team member shares the background of a reported
issue to kick off a root cause analysis by summarizing the content
from a Confluence page where one developer raised the issue and
others had already contributed notes documenting the issue and
its undesirable behavior.

While Jira, as an issue tracking platform, is ideally suited for this
kind of use, it is interesting to observe that the team had set up a
set of pages in Confluence that it calls "Ask an Architect” (shown
in Figure 1). These pages were designed as an explicit channel for
anyone in the team or even beyond the team to directly bring issues
to the architecture committee, whether it concerns something one
is not sure about, asking for design help, or verifying assumptions
one might have about the code. This avoids issues becoming lost in
the much larger set of issues that Jira tracks and also provides an
informal way to reach out to the team. The architects check these
pages regularly and anybody can add notes. In the case of Figure 1,
the issue was newly reported on March 12, 2020, with a description
in the fourth column. Notes have already been added in the fifth
column, giving the team some starting points for the discussion.

Sometimes, the team used tools other than Jira of Confluence
to introduce a topic to be discussed. On one occasion, for instance,
the meeting participants brought up Slack and showed an ongoing
discussion in a Slack channel that was indicative of an emerging
issue in the field that was not yet recorded in Jira or Confluence.

Another use of tools was to provide illustrations that helped the
team understand the behavior of the deployed system. They used
either standard AWS tooling to gain insight into the resource use of
their cloud application or would bring up a monitoring tool they had
connected to their own logging infrastructure for detailed insight
into code-level behavior. As an example, they studied test results
to remind themselves of what the various parts of the test suite
covered (four TESTING FACTS: the first is shared spontaneously, the
second a request, the third an answer, the fourth expanded detail):

A1: So, here are the two test runs, [A2], and it looks like DB or
sorry, Merge runs everything for UL

A2: Oh, okay. We got live site there?

A1: Yeah.

A2: Live site, local code, local test. Okay. It’s just — it’s just
everything except all the, uh, mm, perfect.

On seven occasions, the team brought up a deployment or monitor-
ing tool specifically in response to a request being made, with the
team subsequently using the tool to find the answer to the request.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Meza Soria, et al.

BH12 Mar2020 | NEW | [confidential]

On 3/12 [confidential] could not get its AWF to trigger for [confidential] ¢ Currently one queue handles both evaluation and
because AWF services were busy processing [confidential]. | just wanted to action

bring to your notice so that you could discuss about this and plan to introduce
a minimum level of QoS for each environment.

Actions should be queued
¢ External system changes

Figure 1: Recreation of a Video Capture of a Snippet from Ask an Architect in Confluence.

4.3 What Discussion Outcomes?

Not all topic discussions conclude in the same manner. To anchor
the analysis of our final research question—what is captured in
maintenance meetings—we therefore first studied the various out-
comes at which the team eventually arrives for each of the topics.

We identified four different outcomes: topics that were RESOLVED,
where either what needs to be done next is fully understood and
written down in a new ticket or updated in an existing ticket for
downstream work by a programmer, or the question that was posed
to the team is fully answered online (e.g., in Ask an Architect) or in
person; DELEGATED, where the outcome as to what to do next has
become clear, the team could keep working together to fully resolve
the topic, but someone volunteers or is assigned to do the work of
creating tickets, writing up an answer, etc. outside of the meeting;
DEFERRED, where the team does not have sufficient information
to determine a satisfactory path forward and tasks someone with
gathering additional information to determine whether the issue is a
non-issue or needs to be further discussed by the team; and UPDATE
COMPLETE, when someone finished giving an update to the team,
possibly answering some questions in the process. In a few cases we
were unable to determine the outcome UNKNOWN. Table 3 shows
the number of each resolution type per all fourteen discussion types
identified in our prior work [4]. We discuss examples of each in the
below, except for UNKNOWN for obvious reasons.

Table 3: Outcome per Type of Discussion.

Update completed

Resolved

Discussion Type

~ || Delegated
w|| Deferred
~ || Unknown

Assess problem
Automate activities
Clarify misunderstanding
Define internal practices
Devise solution

Gather knowledge 1 1
Manage accounts 3
Manage computatnl. resources
Perform post-mortem 2 1
Plan future meeting agenda
Plan how to triage tickets 1
Refine ticket 11 2
Review design proposal 2 |1 1
Share info. about future projects 2
Totals per type 22191446

e = DN
—_

._.
DO SR R W W o ufl Total

'S
a

Approximately half the topics that the team handled over the ten
meetings were resolved, meaning that it considered the discussion
finished, with an answer provided or a clear action item to be
worked on downstream decided upon. Resolved issues sometimes
involved someone typing an answer to a question (e.g., in Ask an
Architect) and changing the status of the question from “new” to
“done”. At other times, the team added a new ticket to Jira or updated
an existing ticket. These tickets were not necessarily assigned to
someone during the meeting, but the team felt that the issue was
now sufficiently documented in the ticket so that, during a next
round of sprint planning, the ticket can be properly considered and
scheduled for implementation.

Sometimes someone on the team would resolve the issue during
the meeting. As one example, the team observed they should remove
running instances of their testing environment that they no longer
needed, but were still using up resources and thus incurring cost
to the company because their testing environments (and deployed
environments) run in an external cloud service. In this case, a team
member who was not sharing their screen stated that they had
performed the removal on the spot:

AZ2: Right. [software name] is gone, it is terminated.
A1: Thank you.

Note that half the resolved cases concerned refinement of tickets.
The ninth meeting was completely dedicated to considering a suite
of tickets in Jira that had come in, were incomplete or not fully
understood yet, and needed to be discussed by the team in order to
figure out what was going on and what to do with each ticket. In
a few cases, the discussion revealed that the new but incomplete
ticket described an issue that the team currently was working on
or had already completed under another ticket; these tickets were
closed. In other cases, the tickets led the team to perform investiga-
tive work or discuss amongst themselves what the ticket might be
about, followed by the team making updates to the tickets. Various
other types of discussions were resolved as well, including a design
proposal review that completed, two post-mortems, and a change
to an internal practice upon which they agreed in the meeting.

Delegated issues involved situations where the discussion in
the meeting did not fully complete, but was completed sufficiently
so that the team as a whole did not need to continue deliberating
at length. In other words, the team would reach a point where a
broad consensus was reached about the way forward, but not all
aspects were considered yet or some details needed to be looked
at before the outcome could be finalized. In such cases, the team
asked someone—or someone volunteered—to take it forward on
their own. In the following example, the product owner volunteered
to create a ticket based on the discussion the team had just had,
recognizing that they need to get a little bit of additional feedback
from elsewhere before doing so:

O1: Okay. Um, I think this is good. [person name 1] is meeting
with [person name 2] to go over it tomorrow. Um, we’ll get some

Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured

feedback from here, and I guess we’ll just go from there. But, um,
in the meantime, I'll create this ticket to bring to hmm, actually
yeah, I'll just create this ticket.

On a few occasions, delegation also involved the team deciding
that a certain issue was not theirs to fix, but belonged to another
team. Overall, delegation occurred in nine out of 45 cases, meaning
that together with the number of resolved cases, the team success-
fully addressed two-thirds of the topics that came its way.

As compared to delegation, when the team’s discussion leads to
it identifying the way forward, deferred issues are where the dis-
cussion is inconclusive; this happened on four occasions. Typically,
the team felt that it needed additional information that would help
it decide what they were facing. Consider the following example:

A1: So, yeah, I think the more load is fine, probably.

A2: Oh, yeah. Again — Yeah, if they double it — I don’t — I don’t

think we’ll — We’ll just have to monitor and make sure it’s okay.

The topic concerns a client planning to add a significant number
of new users, with the team concerned that it may cause some of
their servers to be unable to handle the additional load that the
new users would incur. The underlying issue is that, if the load
becomes too high, it would require a re-architecting of some of their
software. The discussion, though extensive, cannot predict what the
future server load will likely be, though they feel it should probably
be okay. As a result, they defer the issue, deciding to monitor the
server instead, and only planning to return to the discussion if the
load indeed becomes problematic.

We examined whether missing information (verbal requests for
information that were not answered in the meeting, see Section 4.2)
might have played a role in some topics being deferred. Across the
four deferred topics, only four requests for information went unan-
swered, which is right at the average of one unanswered request
per topic, indicating that it is unlikely that it causes deferral. Indeed,
upon close inspection, the four deferrals all concerned situations
where the necessary information was not available at the time and
needed to be collected in future, as in the example above.

Updates took place four times and represented short briefings
where someone updates the team on an issue they had been working
on or a future plan. The following excerpt presents an example of
how an update on the state of application security was started by
one of the architects.

A1: Um, cool. Um, AppSec update, I just got this today. [person
name] is always very bad at planning ahead, I guess. I have a
meeting tomorrow at 10:00 to go over next steps. Um, it looks like
be doing planning, essentially.

4.4 Captured for Future Reference?

A large variety of information was captured for future reference in
support of the outcomes upon which the team decided. In total, the
team captured 186 pieces of information of 17 different kinds (Ta-
ble 4). The most frequent was IDEA/ALTERNATIVE, with an example
provided in Figure 2. In this case, the team was discussing the issue
shown in Figure 1 and captured aspects of the discussion by editing
the fifth column in Ask an Architect for this issue. Two ideas were
raised in the discussion. The first was to attempt auto retry (about
two-thirds down in the notes), the second to use one queue per
tenant (near the bottom). Both ideas were captured along with a

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

variety of other things, such as a CODE STATE capturing how the
code currently works (“Currently one queue handles both evalua-
tion and action”) and a PROBLEM BACKGROUND/STATUS of which the
architects reminded the team (“Actions should be queued”), each
listed at the top of Figure 2. One of the architects took these notes
throughout the discussion, with the notes visible on the screen be-
ing shared over WebEx so all team members could see. Eventually,
the team preferred the first idea and the second was crossed out.
Eventually, too, the team felt the issue was satisfactory resolved and
changed the status of the item from “NEW” (column 2 in Figure 1) to
“DONE” (METADATA). The team also linked (METADATA) the item in
Ask an Architect to a Jira ticket it created in the meeting to capture
the decision to create a proof-of-concept splitting the evaluator and
action services (ISSUE/TICKET HIGH-LEVEL DESCRIPTION).

Ask an Architect was not the only way in which the team used
Confluence to document important information for future refer-
ence. The team also used what it calls playbook entries to record
system documentation, notes pages to hold meeting notes, and topic
pages to document specialized knowledge concerning important
subjects. Interestingly, despite the goal of capturing notes for every
meeting and despite the template for notes pages, they kept formal
notes in only two meetings; all other times, no notes pages were
created, although information was captured in other ways as the
above example of using Ask an Architect illustrates. One of the two
cases where they did create a notes page concerned a post-mortem,
which had the explicit goal of documenting ways in which the team
could improve aspects of the process it uses to address situations in
which someone breaks the master build. The debrief resulted in a
new process (PLAN OF ACTION) that they detailed, including which
leaders should be notified if the problem recurs (BEST PRACTICE).

Currently one queue handles both evaluation and
action

Actions should be queued

External System changes

Back pressure

Wh tom-taki
¥

£ time-t { then-del

postgres advisory locking
when processing a message for
External System A then create
an advisory lock on External
System
retry limit?
only try so many times
One queue per External System
when service starts up it binds
to all queues
Split the services (step 1)
One service to evaluate
One service to send(action)
Goals: scalable and durable
Reasonable timeout
currently 5 min
Auto retry
There are some cases where we should
auto retry
timeout
maybe everything?

System changes
Alerts to HIE Admin

One queue per tenant
Round robin strategy to ensure each
AWF Action is given attention

Keep the system multi tenant!

Figure 2: Recreation of a Video Capture of Copt FacT and Two
IDEAS/ALTERNATIVES Being Documented in Ask an Architect.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Meza Soria, et al.

Table 4: Frequency of Different Kinds of Information Captured (186 Total).

Category [# [% [Category [# [% [
IDEA/ALTERNATIVE 36 | 19.4% | ACTION ITEM 7 3.8%
TEAM PROCESS 23 | 12.4% | ISSUE/TICKET HIGH-LEVEL DESCRIPTION | 5 2.7%
METADATA 19 | 10.2% | IMPLEMENTATION GOAL/SCOPE 4 2.2%
DiscUSSION ITEM 19 | 10.2% | SCHEDULING ESTIMATE 3 1.6%
DESIGN FEEDBACK 18 | 9.7% REQUIREMENT 3 1.6%
CODE STATE 14 | 7.5% IMPACT ESTIMATE 2 1.1%
IMPLEMENTATION ROADMAP 11 | 5.9% ADMINISTRATIVE DECISION 2 1.1%
RATIONALE 4.8% BEST PRACTICE 2 1.1%
SITUATION’S BACKGROUND/STATUS 9 4.8%

Compared to Confluence, which was used to capture 141 pieces
of information, Jira was used 44 times. Given its role as a repository
of issues to be addressed in the code base, this is not too surprising,
because not everything the team discusses directly results in specific
code tasks. Still, the kind of information captured in Jira was broader
than just ISSUE/HIGH-LEVEL DESCRIPTION, with IDEA/ALTERNATIVE,
DESIGN FEEDBACK, RATIONALE, and IMPLEMENTATION GOAL/SCOPE
also happening six, six, six, and three times, respectively.

Figure 3 provides a final example of how the team works and
documents its outcomes. As part of a discussion to improve the test
suite of the system, the team created a topic page in Confluence and
took notes as they settled on the overall IMPLEMENTATION ROADMAP
(only a small part shown) and SCHEDULING ESTIMATE. They included
RATIONALE as to why they should do a proof-of-concept now, not
later, and left as an AcTioN ITEM that someone should take the
roadmap and turn it into specific Jira tickets.

While a great deal of information is captured, it is not done for
every topic. Capture took place for 26 out of 45 topics. A few inter-
esting patterns exist in when the team does and does not document.
When work was delegated, for instance, discussion information was
only captured a third of the time and never captured to whom the
topic was delegated; it was assumed that someone would remember
and inform the person. For deferred topics, no information was
recorded at all; the same was true for topics that were updates to
the team.

The type of discussion held also seemed to influence whether
information was captured. Surprisingly, none of the topics focusing
on assessing a problem (five) or gathering knowledge (two) involved
information capture. Both of these types of discussions are focused
on obtaining information that the team does not have, which should
make it prudent for the team to document what it learns in the
process so it can be used at a later time. It seems that in these cases,
however, the team is content with discussing the topic and letting
whomever led them take the information forward.

5 DISCUSSION

Our study is novel in focusing on software maintenance meetings, a
type of meeting that to date has not been studied in depth. Similar to
Ko et al. [42], who catalogued the types of information developers
seek, we chose to focus on the role of information. Ko et al. found
21 types of information sought, with about one third focused on
code. Our study reveals an even broader set of information relevant
to software maintenance meetings, but with much less focus on

code and more of a focus on run-time and deployment information
as well as architecture and process-related information. This is not
surprising, given the higher-level tasks in which the architecture
committee engaged and given that the team works on a cloud-based
system. Our study further differs from Ko et al. in also documenting
the resolution of the topic discussions as well as the information
capture practices in which the team engaged.

Recurring meetings [60] are a regular in software organizations
with, for instance, Agile stand-ups [80, 81], bug triage meetings [78],
and weekly status meetings [47] all having been studied before. The
software maintenance meetings we examined sometimes involved
activities somewhat similar to what takes place in these other kinds
of meetings (e.g., a progress update for a fix for a client, some early
pre-triaging). On the whole, however, the meetings exhibited a
strong focus on planning and problem-solving topics surrounding
the deployment, operation, and evolution of the system, instead of
updates from individuals as to how their tasks are coming along.
Our study, then, uniquely documents the effect of this different
focus on the nature and breadth of information being shared.

The software maintenance meetings we studied take place in
the context of a variety of other meetings at the organization (see
Section 2). This is in line with Lavalee and Robillard [47], who
observed a rich interconnected set of meetings taking place in their
study and argued that it is important to build an understanding of
the information flow among these meetings. Our result offer a basis
for creating this understanding by documenting precisely what
information flows in and out of software maintenance meetings,
which serve an essential role in the overall ecosystem of meetings.

In the remainder of this section, we first recap the main findings
and then discuss the implications of our study.

Takeaway 1: The deliberations taking place in maintenance meet-
ings rely on a large amount of highly varied information. On average,
some piece of information was brought up approximately once a
minute, with the diversity of the topics being addressed shining
through in the diversity of the kinds of information shared. The
fact that the system is already deployed leads to much informa-
tion being ‘fleeting’ in nature, representing the current state of
deployment or code base. Topics that involved devising a solution
to a problem, performing a post-mortem, and automating certain
activities in the development and deployment process involved on
average the most information being shared in the discussion.

Takeaway 2: A significant amount of information is captured to
document the outcomes of topic discussions in maintenance meetings.
On average once every four minutes some kind of information is

Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

a IRATIONALE

“ | Biggest bump for our buck is increase component performance testing
Allows us to gather information on the reusable components of the FE to
executonPon | determine performance impact of new features

a

CTION ITEM

To be ticketed

D\ N

S : e | |

i

IMPLEMENTATION ROADMAP|

POC on writing component tests for the FE

(We have [person’s name] tests for the BE, which is already in the pipeline —
src/test/back-end-integration/db-service/test-db-service-performance.js)

SCHEDULING ESTIMATE
|_| <1 Sprint

Figure 3: Information Captured during the Discussion Centered on the Design of Major Improvements to the Test Suite.

recorded. As with information sharing, the kinds of information
being captured by the team vary strongly and especially vary with
the type of discussion held. A significant portion pertains to design
and code level guidance and decisions, but some portion also covers
the team itself and how it operates and addresses emergent issues.
Takeaway 3: Yet, only 60% of the topics that were discussed in-
volved information capture for later reference. Even though there
was a process and standard format for taking notes, the prescribed
Confluence notes pages were only used in two meetings. Only for
one-third of the topics involving delegation was anything captured
and nothing was captured for the topics that were deferred.
Takeaway 4: People are crucial to managing the meetings’ infor-
mation. With only about 10% of information being shared visible in
a tool on the shared screen, individual participants play a key role
in sharing information either from memory or from another tool
or source they have locally open on their computer. Most requests
for information were similarly answered by a participant without
referencing the shared screen. And, with 40% of the topics not lead-
ing to any notes being taken, much of the responsibility in taking
discussion outcomes forward falls on the individual team members.
Takeaway 5: Tools nonetheless play an important role. Conflu-
ence and Jira were the dominant tools for capturing information,
documenting outcomes and important aspects of the discussions.
Confluence and Jira also served an important role in agenda setting
for the topics being discussed, though other tools were also used
to locate and bring relevant information into the meetings, with
AWS and several home-grown tools essential to understanding the
actual behavior of the deployed system and associated code base.

5.1 Implications for Practice

As stated earlier, the team we studied is considered high-performing
by its leadership. We see this echoed in the outcomes: two-thirds of
the topics are fully resolved or delegated for final resolution, and the
deferred topics are not borne out of problems in the discussion but
represent the genuine case of needing to acquire future information
by monitoring the system. The few remaining topics were either
updates (no resolution necessary) or we could not deduce the reso-
lution from the data. In this context, we discuss what our findings
might mean for other teams involved in maintenance meetings.
Practice 1: Ensure the right team members are present. It is essen-
tial that maintenance meetings involve knowledgeable personnel.

In the case of the team we studied, the two architects shared a ma-
jority of the information (75%), partly because how long they had
been with the team. Other team members, however, were explicitly
invited to the meeting for their specialized knowledge.

Practice 2: Use tools such as Confluence and Fira, but surround
them with meaningful structure. Both in terms of kicking off topic
discussions and in capturing important outflow from these discus-
sions, the team established practices through which not just the
team but others who may need to invoke the team can easily ap-
proach it. Ask an Architect is the most powerful example, but the
team also explicitly spent time on how to best triage, re-considering
established practices in testing and handling emergencies at clients,
and documenting team processes and best practices. Such reflective
practices characterize high-performing teams [86].

Practice 3: Allow the instant look-up of information if necessary
to the discussion. Rather than postponing a topic, the team was
effective in using its tools to dynamically bring up information
about the deployed system. This was essential to a number of the
discussions. Being able to do so quickly and visible to everyone was
a key enabler in getting several topics resolved successfully. Such
‘artifact seeding’ is an important part of good practice [32].

Practice 4: Be consistent in capturing discussion outflow. Some
teams are too reliant on individuals’ memory to share important
outcomes and considerations from meetings. Being more principled
about taking notes, perhaps through collaborative notetaking as it
has shown auxiliary benefits [21, 68, 74], would be a good general
practice, particularly in light of the next suggestion.

Practice 5: Pay attention to unanswered information requests.
While the impact of the unanswered requests for information was
not a focus of our analysis, it is still possible that the team could
have done better had these been answered. A side benefit of con-
scientiously answering all requests for information is that it can
forge strong team cohesion. Ignoring others, especially when they
are remote, can have negative and long-lasting effects [76].

5.2 Implications for Research

Our findings give rise to a number of different research directions
that we believe are worthwhile pursuing.

Future Research 1: Other teams. We strongly feel that our study
should be replicated on other teams with other characteristics,
including, among others, a lower-performing team, a team working
in a different domain, and a team working with different tools. By

ICSE °24, April 14-20, 2024, Lisbon, Portugal

juxtaposing results from such studies, more can be learned about
effective and less effective practices in maintenance meetings.
Future Research 2: Conversational analysis. A logical next step
is to perform a detailed analysis of the conversations that take
place, to examine in detail the impact of the information shared
on the discussions taking place. Answering questions such as if
the information is relevant and how it impacts the discussions and
outcomes is important to identify best practices (e.g., [5, 54]).
Future Research 3: Tools. Design rationale tools have long been
explored to capture meeting outcomes in software development
(e.g., [15, 22, 48, 85]). Given that our findings show that not all topics
in maintenance meetings concern design, more general meeting
capture tools as explored in the CSCW and HCI literature might
be more applicable (e.g., [68, 71, 91]). With new Al-driven meeting
capture tools offering automated transcription and summarization
(e.g., [2, 41, 89]), opportunities exist for exploring new maintenance
meeting tools that offload much of the notetaking responsibility.
Future Research 4: Meeting ecosystem. No meeting stands alone
[3] and so it is with maintenance design: as already stated, the
meetings we studied are part of a rich ecosystem of many different
meetings for the team and its members. As others already noted
[47], it is important to study how these meetings interconnect,
particularly in terms of the information flow amongst them.

6 THREATS TO VALIDITY

Our findings are subject to a variety of threats to validity. First is
the issue of representativeness. The 36 categories of information
that we witnessed being shared may not be representative of all
categories shared across all meetings held by the team. Similarly,
the set of 10 meetings may not be representative of all meetings
by the team. By choosing a window of nearly three months we
hope to have reduced this potential issue. Other issues related to
representativeness (e.g., single team, high-performing team, single
company, healthcare domain, cloud-based system) are an artifact
of the research methodology of a single exploratory case study.
Additional studies of other teams in other situations are necessary.

Second is the threat of incompleteness: because only a single
screen was shared at the time, it is possible that team members
engaged in invisible work that could influence our findings, for
instance by sharing quick notes with each other or privately captur-
ing discussion notes for later use. Additional study is necessary to
understand the prevalence and potential impact of such practices.

Third are potential concerns with the study execution in terms
of the consistency and stability of the analysis process, together
with the confirmability of the results. To counter this threat, we
followed established practices in inductive thematic analysis, with
two researchers performing coding independently before compar-
ing and resolving notes and a third researcher providing indepen-
dent feedback at each step. Additionally, as described in Section 3,
we performed member checking. Both the architect and the CTO
felt that our description of the meetings was accurate, our coding
seemed appropriate, and results, though including some surprises
(e.g., frequency of information sharing, limited capture of informa-
tion), aligned with their perceptions.

Meza Soria, et al.

7 RELATED WORK

Software maintenance has been studied from a broad range of per-
spectives, including but not limited to empirical studies of develop-
ers making code changes (e.g., [13, 14]), novel tools to understand
and modify code (e.g., [26, 64]), characterizing different mainte-
nance activities (e.g., [19, 49], visualizing code (e.g., [46, 90]), and
re-engineering and refactoring (e.g., [27, 35, 58, 59]). A particularly
relevant thread of work has examined the information needs of soft-
ware developers in their day-to-day programming (e.g., [24, 42, 72])
and created new tools for helping them deal with these information
needs (e.g., [24, 43]). Our work follows this thread and contributes
a first look at both information needs and information capture in
maintenance meetings.

Closely related to our work are studies of Agile meetings (e.g.,
[80, 81]), studies of design meetings (e.g., [25, 55, 57, 61]), and studies
of hybrid and remote meetings (e.g., [6, 62, 67]). Our work is inspired
by these studies documenting in detail a range of phenomena that
take place in different kinds of software development meetings and
follows a similar methodological approach. It is unique, however,
in our focus on maintenance meetings specifically and the role that
information has in setting a context for the work that takes place
in these meetings.

To the best of our knowledge, no studies have been performed to
date detailing the role of Confluence or Jira in software development
meetings, though issue tracking has been studied extensively (e.g.,
[7, 12]) and the use of wikis in software development has also been
a subject of study (e.g., [17]). Our findings are unique in detailing
the use of these tools in software maintenance meetings.

An extensive strand of research has sought to develop tools that
help capture aspects of meetings, whether specifically for software
development discussions through design rationale tools (e.g., [16,
22, 40, 85]) or more broadly through generic meeting capture tools
(e.g., [11, 17, 69, 77]). Our work at this time does not seek to develop
a tool, but has implications for the design of such tools.

8 CONCLUSIONS

Maintenance meetings are the heartbeat of a software project: they
are necessary to ensure a project keeps on track, emergent issues are
addressed, and new ideas are fostered and have a place to be vetted.
This paper contributes a first look at the kind of information that
flows into software maintenance meetings, how it flows into those
meetings, what kinds of outcomes result from the discussions in
them, and what information is captured in the meetings to support
downstream activities. Among others, our findings include that: (1)
developers rely on a wide variety of information in the discussions
in these meetings, (2) they use a range of tools to share additional
information, (3) they successfully address most topics brought up
in the meetings, and (4) only 60% of the topics involve information
being captured for later use.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grants CCF-2210812 and CCF-2210813.

Characterizing Software Maintenance Meetings: Information Shared, Discussion Outcomes, and Information Captured

REFERENCES

[1] 2023. Engineering Meetings: Tips to Help Your Team | Range.

[2

[9

[10

[12

[13

[14

(15

(17

[18

[19

[20

[22

[23

[24

[25

[26

—

=

]

]

]

]

]

https://www.
range.co/blog/engineering-meeting Accessed on 07/2023.

2023. Otter.ai - Voice Meeting Notes & Real-time Transcription. https://otter.ai/
Accessed on 08/2022.

Joseph A. Allen, Tammy Beck, Cliff W. Scott, and Steven G. Rogelberg. 2014.
Understanding workplace meetings: A qualitative taxonomy of meeting purposes.
Management Research Review 37, 9 (Jan. 2014), 791-814. Publisher: Emerald
Group Publishing Limited.

Anon Anon. 2022. removed for blind review.

Alex Baker and André van der Hoek. 2010. Ideas, subjects, and cycles as lenses
for understanding the software design process. Design Studies 31, 6 (Nov. 2010),
590-613.

Jose Maria Barrero, Nicholas Bloom, and Steven J. Davis. 2021. Why working from
home will stick. Technical Report 28731. National Bureau of Economic Research.
https://www.nber.org/papers/w28731

Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. 2010. Commu-
nication, collaboration, and bugs: the social nature of issue tracking in small,
collocated teams. In Proceedings of the 2010 ACM conference on Computer supported
cooperative work (CSCW ’10). ACM, 291-300.

Manoj Bhat, Klym Shumaiev, and Florian Matthes. 2017. Towards a Framework
for Managing Architectural Design Decisions. In 11th European Conference on
Software Architecture: Companion Proceedings (ECSA ’17). 48-51.

Tingting Bi, Wei Ding, Peng Liang, and Antony Tang. 2021. Architecture infor-
mation communication in two OSS projects: The why, who, when, and what.
Journal of Systems and Software 181 (Nov. 2021), 111035.

Daniel G. Bobrow and Ira P. Goldstein. 1980. Representing design alternatives.
In Proceedings of the 1980 AISB Conference on Artificial Intelligence (AISB’80). 10S
Press, 25-35.

Gerald Bortis. 2010. Informal software design knowledge reuse. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 2. 385-388.

Gerald Bortis and André van der Hoek. 2013. PorchLight: A tag-based approach
to bug triaging. In 2013 35th International Conference on Software Engineering
(ICSE). 342-351.

Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the characteristics of vulnerable code changes: an empir-
ical study. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). ACM, 257-268.

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI "09). ACM, 1589-1598.

Janet Burge and David Brown. 2008. SEURAT. In 2008 ACM/IEEE 30th International
Conference on Software Engineering. 835-838.

Janet E. Burge, John M. Carroll, Raymond McCall, and Ivan Mistrik. 2008.
Rationale-Based Software Engineering. Springer Berlin Heidelberg.

Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali
Babar. 2016. 10 years of software architecture knowledge management: Practice
and future. Journal of Systems and Software 116 (June 2016), 191-205.

Andrew Chan, Karon MacLean, and Joanna McGrenere. 2008. Designing haptic
icons to support collaborative turn-taking. International Journal of Human-
Computer Studies 66, 5 (2008), 333-355. Publisher: Elsevier.

Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan.
2001. Types of software evolution and software maintenance. Journal of Software
Maintenance and Evolution: Research and Practice 13, 1 (2001), 3-30.

Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. 2007. Let’s Go to
the Whiteboard: How and Why Software Developers Use Drawings. In SIGCHI
Conference on Human Factors in Computing Systems (CHI '07). 557-566.

Patrick Chiu, John Boreczky, Andreas Girgensohn, and Don Kimber. 2001.
LiteMinutes: an Internet-based system for multimedia meeting minutes. In Pro-
ceedings of the 10th international conference on World Wide Web. 140-149.

E. Jeffrey Conklin and K. C. Burgess Yakemovic. 1991. A process-oriented ap-
proach to design rationale. Human-Computer Interaction 6, 3 (Sept. 1991), 357—
391.

Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic
Synthesis in Software Engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement. 275-284.

Brian De Alwis. 2008. Supporting conceptual queries over integrated sources of
program information. (2008). Publisher: University of British Columbia.

Uri Dekel. 2005. Supporting distributed software design meetings: what can we
learn from co-located meetings? ACM SIGSOFT Software Engineering Notes 30, 4
(2005), 1-7.

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling fine-grained code changes. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER).
341-350.

[27]

[28

[29

@
=

[31

[32

[33

&
=)

[35

[36

(37]

[38

(39]

(41

[42]

[43]

[44]

'S
)

[46

[47

[48

[49]

[50

a
=

[52

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

B. Du Bois, S. Demeyer, and J. Verelst. 2004. Refactoring - improving coupling
and cohesion of existing code. In 11th Working Conference on Reverse Engineering.
IEEE Comput. Soc, 144-151.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research. In Guide
to Advanced Empirical Software Engineering, Forrest Shull, Janice Singer, and Dag
L. K. Sjeberg (Eds.). Springer, 285-311.

Jennifer Fereday and Eimear Muir-Cochrane. 2006. Demonstrating Rigor Using
Thematic Analysis: A Hybrid Approach of Inductive and Deductive Coding and
Theme Development. International Journal of Qualitative Methods 5, 1 (March
2006), 80-92. Publisher: SAGE Publications Inc.

Mark Ferlatte. 2017. Well Met: the Software Engineering Meetings You Actu-
ally Need — Truss. https://truss.works/blog/2017/2/3/well-met-the-software-
engineering-meetings-you-actually-need Accessed on 07/2023.

Matthew Finnegan. 2022. For developers, too many meetings, too little ‘focus’
time. https://www.computerworld.com/article/3669911/for-developers-too-
many-meetings-too-little-focus-time.html

Gerhard Fischer, Jonathan Grudin, Raymond McCall, Jonathan Ostwald, David
Redmiles, Brent Reeves, and Frank Shipman. 2001. Seeding, evolutionary growth
and reseeding: The incremental development of collaborative design environ-
ments. Coordination theory and collaboration technology 447 (2001), 472. Publisher:
Citeseer.

Frederik M. Fowler. 2019. The Sprint Planning Meeting. In Navigating Hybrid
Scrum Environments. Apress, 83-88. http://link.springer.com/10.1007/978-1-
4842-4164-6_13

Frederik M. Fowler. 2019. The Sprint Retrospective. In Navigating Hybrid Scrum
Environments. Apress, 97-100. http://link.springer.com/10.1007/978-1-4842-
4164-6_16

Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley.

Thomas Fritz and Gail C. Murphy. 2010. Using information fragments to answer
the questions developers ask. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, Vol. 1. 175-184.

D. R. Garrison, M. Cleveland-Innes, Marguerite Koole, and James Kappelman.
2006. Revisiting methodological issues in transcript analysis: Negotiated coding
and reliability. The Internet and Higher Education 9, 1 (Jan. 2006), 1-8.

Fabian Gilson, Sam Annand, and Jack Steel. 2020. Recording Software Design
Decisions on the Fly. In Joint Proceedings of SEED & NLPaSE. 53-66.

Greg Guest, Kathleen M. MacQueen, and Emily E. Namey. 2011. Applied Thematic
Analysis. SAGE Publications.

G. P Heliades and E. A Edmonds. 1999. On facilitating knowledge transfer in
software design. Knowledge-Based Systems 12, 7 (1999), 391-395.

Francois Jacquenet, Marc Bernard, and Christine Largeron. 2019. Meeting Sum-
marization, A Challenge for Deep Learning. In Advances in Computational In-
telligence (Lecture Notes in Computer Science), Ignacio Rojas, Gonzalo Joya, and
Andreu Catala (Eds.). Springer International Publishing, 644-655.

Amy J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Collo-
cated Software Development Teams. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 344-353.

Amy J. Ko and Brad A. Myers. 2004. Designing the whyline: a debugging inter-
face for asking questions about program behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "04). ACM, 151-158.
Udo Kuckartz and Stefan Radiker. 2019. Analyzing Qualitative Data with
MAXQDA: Text, Audio, and Video. Springer.

Catherine Lai, Jean Carletta, and Steve Renals. 2013. Modelling participant affect
in meetings with turn-taking features. In Proc. Workshop of Affective Social Speech
Signals.

Thomas D. LaToza and Brad A. Myers. 2011. Visualizing call graphs. In 2011
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
117-124.

Mathieu Lavallée and Pierre N. Robillard. 2015. Why Good Developers Write
Bad Code: An Observational Case Study of the Impacts of Organizational Factors
on Software Quality. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 677-687.

J. Lee. 1997. Design rationale systems: understanding the issues. IEEE Expert 12,
3 (May 1997), 78-85.

B. P. Lientz, E. B. Swanson, and G. E. Tompkins. 1978. Characteristics of applica-
tion software maintenance. Commun. ACM 21, 6 (June 1978), 466—-471.
loopinhgq. 2023. Weekly Tech Meeting. https://www.loopinhq.com/meeting-
templates/weekly-tech-meeting Accessed on 07/2023.

Marisela Gutierrez Lopez, Kris Luyten, Davy Vanacken, and Karin Coninx. 2017.
Untangling Design Meetings: Artefacts as Input and Output of Design Activities.
In Proceedings of the European Conference on Cognitive Ergonomics 2017. ACM,
176-183.

Marin Luetic. 2023. 15 topics to discuss during weekly developer team meetings.
https://decode.agency/article/development-team-meeting-topics/ Accessed on
07/2023.

https://www.range.co/blog/engineering-meeting
https://www.range.co/blog/engineering-meeting
https://otter.ai/
https://www.nber.org/papers/w28731
https://truss.works/blog/2017/2/3/well-met-the-software-engineering-meetings-you-actually-need
https://truss.works/blog/2017/2/3/well-met-the-software-engineering-meetings-you-actually-need
https://www.computerworld.com/article/3669911/for-developers-too-many-meetings-too-little-focus-time.html
https://www.computerworld.com/article/3669911/for-developers-too-many-meetings-too-little-focus-time.html
http://link.springer.com/10.1007/978-1-4842-4164-6_13
http://link.springer.com/10.1007/978-1-4842-4164-6_13
http://link.springer.com/10.1007/978-1-4842-4164-6_16
http://link.springer.com/10.1007/978-1-4842-4164-6_16
https://www.loopinhq.com/meeting-templates/weekly-tech-meeting
https://www.loopinhq.com/meeting-templates/weekly-tech-meeting
https://decode.agency/article/development-team-meeting-topics/

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[53

[54

[59

[60]

[61]

[62

[63

[64]

[65

[66

[67]

(68

[69]

[70

[71

[72]

[73]

[74]

[75]

[76]

Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek.
2015. How Software Designers Interact with Sketches at the Whiteboard. IEEE
Transactions on Software Engineering 41, 2 (Feb. 2015), 135-156.

Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020.
On the relationship between design discussions and design quality: a case study
of Apache projects. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2020). ACM, 543-555.

Gloria Mark. 2002. Extreme collaboration. Commun. ACM 45, 6 (2002), 89-93.
Stanic Mislav. 2023. 7 important software engineering meetings you actually
need. https://www.shakebugs.com/blog/software-engineering-meetings/#The_
technical_meeting Accessed on 07/2023.

Thomas P. Moran and John M. Carroll. 2020. Design Rationale: Concepts, Tech-
niques, and Use. CRC Press.

Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-
ancarlo Succi. 2008. A Case Study on the Impact of Refactoring on Quality and
Productivity in an Agile Team. In Balancing Agility and Formalism in Software En-
gineering (Lecture Notes in Computer Science), Bertrand Meyer, Jerzy R. Nawrocki,
and Bartosz Walter (Eds.). Springer, 252-266.

Raimund Moser, Alberto Sillitti, Pekka Abrahamsson, and Giancarlo Succi. 2006.
Does Refactoring Improve Reusability?. In Reuse of Off-the-Shelf Components
(Lecture Notes in Computer Science), Maurizio Morisio (Ed.). Springer, 287-297.
Karin Niemantsverdriet and Thomas Erickson. 2017. Recurring Meetings: An
Experiential Account of Repeating Meetings in a Large Organization. Proceedings
of the ACM on Human-Computer Interaction 1, CSCW (Dec. 2017), 84:1-84:17.
Gary M. Olson, Judith S. Olson, Mark R. Carter, and Marianne Storrosten. 1992.
Small Group Design Meetings: An Analysis of Collaboration. Human—Computer
Interaction 7, 4 (1992), 347-374.

K Parker,] Horowitz, and R Minkin. 2020. How the Coronavirus
Outbreak Has - and Hasn’t - Changed the Way Americans Work.
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-
outbreak-has-and-hasnt-changed-the-way-americans-work/ Accessed on
02/2023.

VT. Rajlich and K.H. Bennett. 2000. A staged model for the software life cycle.
Computer 33, 7 (July 2000), 66-71.

Sarah Rastkar and Gail C. Murphy. 2013. Why did this code change?. In 2013
35th International Conference on Software Engineering (ICSE). 1193-1196.

Sean Rintel, Priscilla Wong, Advait Sarkar, and Abigail Sellen. 2020. Methodology
and Participation for 2020 Diary Study of Microsoft Employees Experiences
in Remote Meetings During COVID-19. Technical Report. 46 pages. https:
//www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-
SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf

G. Ruhe and M.O. Saliu. 2005. The Art and Science of Software Release Planning.
IEEE Software 22, 6 (Nov. 2005), 47-53.

Banu Saatgi, Kaya Akyiiz, Sean Rintel, and Clemens Nylandsted Klokmose.
2020. (Re)Configuring Hybrid Meetings: Moving from User-Centered Design to
Meeting-Centered Design. Computer Supported Cooperative Work (CSCW) 29, 6
(2020), 769-794.

Samiha Samrose, Daniel McDuff, Robert Sim, Jina Suh, Kael Rowan, Javier Her-
nandez, Sean Rintel, Kevin Moynihan, and Mary Czerwinski. 2021. MeetingCoach:
An Intelligent Dashboard for Supporting Effective & Inclusive Meetings. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1-13.

Bill N. Schilit, Lynn D. Wilcox, and Nitin "Nick" Sawhney. 1997. Merging the
benefits of paper notebooks with the power of computers in dynomite. In CHI *97
Extended Abstracts on Human Factors in Computing Systems (CHI EA *97). ACM,
22-23.

Olga Semusheva. 2023. The 6 Most Important Project Development Meet-
ings. https://steelkiwi.com/blog/6-most-important- project-development-
meetings/ Accessed on 07/2023.

Yang Shi, Chris Bryan, Sridatt Bhamidipati, Ying Zhao, Yaoxue Zhang, and Kwan-
Liu Ma. 2018. MeetingVis: Visual Narratives to Assist in Recalling Meeting
Context and Content. IEEE Transactions on Visualization and Computer Graphics
24, 6 (June 2018), 1918-1929.

Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering
Questions during a Programming Change Task. IEEE Transactions on Software
Engineering 34, 4 (July 2008), 434-451.

J. Singer. 1998. Practices of software maintenance. In Proceedings. International

Conference on Software Maintenance (Cat. No. 98CB36272). 139-145.

G. Singh, L. Denoue, and A. Das. 2004. Collaborative note taking. In The 2nd IEEE
International Workshop on Wireless and Mobile Technologies in Education, 2004.
163-167.

David Socha and Josh Tenenberg. 2013. Sketching Software in the Wild. In 35th
International Conference on Software Engineering. 1237-1240.

Sabine Sonnentag. 2001. High performance and meeting participation: An obser-
vational study in software design teams. Group Dynamics: Theory, Research, and
Practice 5 (2001), 3-18. Publisher: Educational Publishing Foundation.

Meza Soria, et al.

Lisa Stifelman, Barry Arons, and Chris Schmandt. 2001. The audio notebook:
paper and pen interaction with structured speech. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "01). ACM, 182-189.
Viktoria Stray. 2018. Planned and unplanned meetings in large-scale projects. In
Proceedings of the 19th International Conference on Agile Software Development:
Companion (XP ’18). ACM, 1-5.

Viktoria Stray and Nils Brede Moe. 2020. Understanding coordination in global
software engineering: A mixed-methods study on the use of meetings and Slack.
Journal of Systems and Software 170 (Dec. 2020), 110717.

Viktoria Stray, Nils Brede Moe, and Gunnar R. Bergersen. 2017. Are Daily Stand-
up Meetings Valuable? A Survey of Developers in Software Teams. In Agile
Processes in Software Engineering and Extreme Programming (Lecture Notes in
Business Information Processing), Hubert Baumeister, Horst Lichter, and Matthias
Riebisch (Eds.). 274-281.

Viktoria Stray, Dag I K. Sjeberg, and Tore Dyba. 2016. The daily stand-up meeting:
A grounded theory study. Journal of Systems and Software 114 (2016), 101-124.
Viktoria Gulliksen Stray, Yngve Lindsjern, and Dag LK. Sjeberg. 2013. Obstacles
to Efficient Daily Meetings in Agile Development Projects: A Case Study. In
2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement. 95-102.

Viktoria Gulliksen Stray, Nils Brede Moe, and Aybiike Aurum. 2012. Investi-
gating Daily Team Meetings in Agile Software Projects. In 2012 38th Euromicro
Conference on Software Engineering and Advanced Applications. 274-281.
Antony Tang, Aldeida Aleti, Janet Burge, and Hans van Vliet. 2010. What makes
software design effective? Design Studies 31, 6 (Nov. 2010), 614-640.

Antony Tang, Yan Jin, and Jun Han. 2007. A rationale-based architecture model
for design traceability and reasoning. Journal of Systems and Software 80, 6 (2007),
918-934.

Joost Visser, Sylvan Rigal, Gijs Wijnholds, and Zeeger Lubsen. 2016. Building
Software Teams: Ten Best Practices for Effective Software Development. "O’Reilly
Media, Inc.".

J. Wu, T.C.N. Graham, and PW. Smith. 2003. A study of collaboration in software
design. In 2003 International Symposium on Empirical Software Engineering, 2003.
ISESE 2003. Proceedings. IEEE Comput. Soc, 304-313.

Lihua Xu, Scott A. Hendrickson, Eric Hettwer, Hadar Ziv, André van der Hoek,
and Debra J. Richardson. 2006. Towards supporting the architecture design
process through evaluation of design alternatives. In Proceedings of the ISSTA
2006 workshop on Role of software architecture for testing and analysis (ROSATEA
'06). ACM, 81-87.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. 2023. Ex-
ploring the Limits of ChatGPT for Query or Aspect-based Text Summarization.
http://arxiv.org/abs/2302.08081 arXiv:2302.08081 [cs].

YoungSeok Yoon, Brad A. Myers, and Sebon Koo. 2013. Visualization of fine-
grained code change history. In 2013 IEEE Symposium on Visual Languages and
Human Centric Computing. 119-126.

Ying Zhang, Marshall Bern, Juan Liu, Kurt Partridge, Bo Begole, Bob Moore, Jim
Reich, and Koji Kishimoto. 2010. Facilitating meetings with playful feedback. In
CHI’10 Extended Abstracts on Human Factors in Computing Systems. 4033-4038.

https://www.shakebugs.com/blog/software-engineering-meetings/#The_technical_meeting
https://www.shakebugs.com/blog/software-engineering-meetings/#The_technical_meeting
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf
https://steelkiwi.com/blog/6-most-important-project-development-meetings/
https://steelkiwi.com/blog/6-most-important-project-development-meetings/
http://arxiv.org/abs/2302.08081

	Abstract
	1 Introduction
	2 Data set
	3 Methodology
	4 Results
	4.1 What Kinds of Information?
	4.2 How Is It Brought Into the Meetings?
	4.3 What Discussion Outcomes?
	4.4 Captured for Future Reference?

	5 Discussion
	5.1 Implications for Practice
	5.2 Implications for Research

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

