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Abstract

Cholesterol has been conjectured to be a modulator of the amyloid cas-

cade, the mechanism which produces amyloid-� (A�) peptides impli-

cated in the onset of Alzheimer’s disease. We propose that cholesterol

impacts the genesis of A� not through direct interaction with proteins

in the bilayer, but indirectly through inducing the liquid ordered phase

and accompanying liquid-liquid phase separations, which partition pro-

teins in the amyloid cascade to di↵erent lipid domains and ultimately

to di↵erent endocytotic pathways. We explore the full process of A�

genesis in the context of liquid ordered phases induced by cholesterol,

including protein partitioning to lipid domains, mechanisms of endo-

cytosis experienced by lipid domains and secretases, and pH-controlled

activation of amyloid precursor protein secretases in specific endocytotic

environments. Outstanding questions on the essential role of cholesterol

in the amyloid cascade are identified for future studies.
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1. Alzheimer’s disease, Amyloid-� protein, and the amyloid cascade

Plaques and neurofibrillary tangles in the brain tissue of Alzheimer’s disease (AD) patients

have been implicated in AD since initial observations in demented patients at the turn of the

20th century(86). These plaques were determined to be principally composed of Amyloid-�

(A�) protein, derived from cleavage of the amyloid precursor protein (APP). In 1991, it

was proposed that a biochemical cascade starting from APP and ultimately resulting in the

formation of these A� plaques is responsible for the genesis of AD(200, 81, 80).

The amyloid cascade hypothesis was proposed when many key details leading to pro-

duction of A� plaques were unknown. Subsequently, the principal protein domains, cellular

compartments, and lipid domains involved in the production of A� have been identified.

A� oligomers have since become widely accepted as the potential A� agent responsible

for neurogedeneration through thousands of peer-reviewed investigations(159). Despite ex-

tensive evidence in its favor, this hypothesis has faced controversy due to contradictory

results in clinical trials targeting A� and the existence of evidence for a number of other

hypotheses. The most prominent of these hypotheses is the Tau Hypothesis, in which the

hyperphosphorylation of the Tau protein that makes up the microtubules of axons causes

the formation of disordered neurofibrillary tangles observed in AD patients(142). This

disrupts axon structure and thus the connection of neurons, directly leading to neurode-

generation. Other hypotheses include the Inflammation Hypothesis(137, 63), the Oxidative

Stress Hypothesis(37), the A� membrane carpeting hypothesis, the pore hypothesis, and the

detergent hypothesis(244). These hypotheses, however, do not rule out the amyloid cascade

hypothesis, but may explain upstream or downstream events in the disease’s progression.

For example, hyperphosphorylation of Tau has also been directly connected to A� oligomers,

and it may be that the amyloid and Tau disease pathways are synergistic(25, 105).
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Figure 1

(A) All-atom representation of the amyloid precursor protein (APP) featuring structured domains
predicted by Membranome (entry 117) based on AlphaFold2(56). Secreted APP (sAPP) domain
produced from cleavage by �-secretase (BACE1), the variable amyloid beta domain (A�), and the
intracellular domain visualized with bilayer ecto- and endo-plasmic domains indicated in pink and
cyan. (B) Cartoon representation of APP highlighting structured ectodomains 1 and 2, the
intrinsically disordered inhibitor domain, and the C99 peptide domain. Within the C99 domain is
the variable A� subdomain, pending �-secretase cleavage, as well as a transmembrane hinge at
G708G709 evidenced to significantly modulate A� production.

Cholesterol has received significant attention as a promoter of A� formation. Proposed

mechanisms for the action of cholesterol have largely focused on specific protein-cholesterol

interactions that stand to impact A�-genesis or aggregation. However, at this time little is

known regarding the physiochemical mode of action of cholesterol in the amyloid cascade.

Cholesterol has been more generally implicated in the onset and progression of AD (espe-

cially late-onset AD). The broader discussion of cholesterol in AD falls beyond the scope of

this review but has been reviewed by others in the past(71).

In this review, we present an overview of the lipid liquid ordered phase induced by choles-

terol, lipid phase separation, protein partitioning to lipid domains, the principal proteins

involved in the amyloid cascade, the endocytosis of these proteins to subcellular compart-

ments, the modulation of function of these proteins by intracellular environment pH, and

the current evidence for and against direct C99-cholesterol interactions. In this context,

we provide evidence that cholesterol primarily acts as a modulator of A� generation not

through direct interactions with APP and its secretases, but indirectly through solvation of

the transmembrane helix and induction of the liquid ordered phase and the accompanying

sorting of proteins to particular cellular compartments in which APP processing occurs.

1.1. The Amyloid Precursor Protein and the amyloid cascade

The protein signaling cascade that results in the production of A� begins with APP,

canonically a 770-residue protein known to perform many functions including cell-cell signal-

ing for synaptogenesis, regulation of copper levels, sphingomyelin and cholesterol homeosta-

sis, and promotion of extracellular matrix development(154). Residues 1-671 of APP mostly
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The role of Amyloid Precursor Protein in regulating cholesterol homeostasis

The role of cholesterol in the amyloid cascades should not be surprising given the evidence that APP

is involved in regulating cholesterol biosynthesis and homeostasis. Pierrot et al. showed that moderate

expression of APP in rat cortical neurons decreases cholesterol biosynthesis and negatively impacts choles-

terol homeostasis, while the opposite e↵ects were observed with significant decreases in APP expression

(180). Recently, Mesa et al. further observed cellular defects during the di↵erentiation and maturation

of APP-knockout human induced pluripotent stem cells to human induced Neurons, but such defects were

remedied through significant increases in cholesterol supply and membrane cholesterol content (146). Mon-

tesinos et al. propose that C99, the membrane-bound product of APP �-site cleavage by BACE1, acts

as a lipid-sensing peptide for delivering cholesterol from the plasma membrane to the endoplasmic reticu-

lum, forming detergent-resistant, lipid-raft-like, mitochondria-associated endoplasmic reticulum membrane

domains (149). Normally, esterification of cholesterol in the endoplasmic reticulum enables the dissolution

of these lipid rafts and cholesterol homeostasis; however, when C99 levels increase, lipid-raft formation is

attenuated, resulting in an increase in BACE1 cleavage of APP (149). The discussion of how APP regulates

cholesterol transport and homeostasis lies beyond the scope of this review, but it’s important to recognize

the significant cross-talk between cholesterol regulatory pathways and the amyloid cascade.

consist of intrinsically disordered domains separating three spectroscopically-resolved struc-

tured domains, ectodomain 1 (E1) in residues 28-189(45, 88), a serine protease inhibitor

domain in residues 280-354(211), and ectodomain 2 (E2) in residues 374-584(46, 191), and

a single-pass transmembrane (TM) domain in residues 699-724 (Figure 1)(41). The TM

domain contains the sequence of A�42 in residues 672 to 713. APP homodimerization is

shown to be primarily driven by E1-E1 domain association, dependent on both copper

and heparin binding(45, 12), and the E1-E1 dimer conformation switches in response to

pH(69). APP is canonically processed near the TM domain by two separate secretases, ↵-

or �-secretase, each from the a disintegrin and metalloproteinase (ADAM) and beta-site

APP cleaving enzyme (BACE) sheddase protein families and predominantly performed by

ADAM10(120, 182) and BACE1(30, 259), respectively. While alternative APP processing

can occur in ectodomain(7), endodomain(160), and A� domain(113) residues, the potential

roles of these proteolysis reactions in AD genesis remain unclear. The endodomain of APP,

residues 725-770, bind with several proteins such as G protein G0(76), adaptor proteins

Fe65(195), X11(260), mDab1(172), and the kinase Jip1(198). Additionally, Y757ENPTY762

are evidenced to be responsible for clathrin-mediated endocytosis. Aside from the role of

clathrin binding in the endocytotic pathway of APP, which we review in section 4, the role

of intracellular protein interactions involving the endodomain remain mysterious.

1.2. Enzymatic cleavage of APP and the biogenesis of A�

ADAM10 performs “↵-cleavage” on APP at residue 687, producing secreted APP ↵

(sAPP↵) and the 83-residue TM protein C83 from the remaining 83 C-terminal fragment

of APP. C83 does not contain residues 1-16 of A�, and thus cleavage of APP by ADAM10

ends the amyloid pathway. Instead, C83 proceeds along the complementary pathway (Fig-

ure 2.A)(115). BACE1 performs “�-cleavage” of APP at residue 672, producing secreted
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Figure 2

(A) Amyloidogenic and non-amyloidogenic APP processing pathways. (B) The first step in the
biogenesis of A� is implied to occur in liquid ordered lipid raft domains (blue, saturated lipid
tails) is the cleavage of APP by �-secretase (BACE1) to produce C99. This amyloidogenic
cleavage of APP occurs primarily in early endosomes and accounts for 10% of APP processing.
(C) Non-amyloidogenic cleavage of APP by ↵-secretase (ADAM10) accounts for 90% of all APP
processing(240). It primarily occurs in the plasma membrane, implied to occur in liquid
disordered domains (red, unsaturated lipid tails)

producing C83.

APP � (sAPP�) and the 99-residue TM protein C99. C99 contains the A� sequence start-

ing from residue 1, whose juxtamembrane and C-terminal helices have been resolved via

NMR (Figure 2.B)(10, 98, 215). Alternatively, BACE1 can perform “�’-cleavage” of APP

at residue 682, producing secreted APP�’ (sAPP�’) and the TM protein C89(53). Like

with C83, C89 is processed by �-secretase along the non-amyloidogenic pathway.

C99 is encapsulated by the multi-pass transmembrane protein complex �-secretase,

which performs a multi-step cleavage to produce A�(228). �-secretase is composed of

the transmembrane proteins presenilin 1 (PS1), presenilin enhancer 2 (PEN-2), anterior

pharynx-defective 1A (APH-1A) transmembrane proteins. Additionally, it includes the

single transmembrane helix and the ectodomain from nicastrin (NCT)(2). Residues D257

and D385 (TM helices 6 and 7) of PS1 catalyze the proteolysis of the C99 transmembrane

domain (TMD) every 3- or 4-residues up the sequence until release of the product A�.

This process starts at the membrane-cytoplasm interface at residue 48 or 49, which are

the C-terminal end of the C99 TMD. A� ranging from 49 to 33 residues in length can be

produced from this cleavage, although A�40 is the predominant product, at approximately

50%, in CHO cells(224). The produced A� can terminate the amyloid cascade through
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Figure 3

Processive cleavage of C99 by �-secretase occurs in the trans-Golgi network, principally late
endosomes, and results in the formation of A�. The cleavage process, which lacks fidelity, leads to
the production of a distribution of A� isoforms, 33 to 49 residues in length, principally as
A�40(224).

the formation of fibrils and oligomers in either the intra- or extracellular space (Figure

3). A structure of cross-linked C83-�-secretase complex was recently solved by cryo-EM

spectroscopy, elucidating an anti-parallel �-sheet formed by a �-strand induced in APP

residues V721MLKK725 (C99 residues V50MLKK54) interacting with two �-strands induced

in the PS1 intracellular loop region connecting the C- and N-terminal domains of TM he-

lices 6 and 7, suggesting that A� cleavage is performed at the helix-strand interface residues

T719L720V721 (C99 residues T48L49V50)(263).

These proteins have multiple other known functions aside from proteolysis of APP.

ADAM10 is known to proteolyze not only C99, but many other proteins(119), and mouse

knockout experiments have shown that ADAM10 is required for cell viability(108). A no-

table example of critically-important proteins processed by ADAM10 is the Notch pro-

tein, which plays essential roles in signaling for cell di↵erentiation, proliferation, and

apoptosis(117). BACE1 is known to be particularly important for healthy axon myelina-

tion, potentially causing various mental disorders. However, BACE1 knockout mice remain

viable and can reproduce(230, 132). �-secretase is also known to be essential in many

functions, acting as an enzyme for over 90 protein substrates, among which is Notch(252).

Similarly to ADAM10, �-secretase PS1 domain knockout mice are not viable(206). The

many and diverse critically important functions of these proteins have made the develop-

ment of drugs, aiming to prevent the progression of AD by modulating of A� production a

challenging task(171).

Familial Alzheimer’s disease (FAD) mutations, which cause early-onset AD (onset at

under 65 years of age), occur in APP, PS1, and presinilin 2 (PS2), a homologue of PS1(15).

Mutations in ADAM10 can attenuate APP processing and may contribute to late-onset

AD(233). It is not yet known if there are BACE1 mutations that influence AD genesis

and progression(227). Within APP, most FAD mutations appear in the C99 domain near

the BACE1 cleavage site, the E1 copper binding site (important for copper reduction),

the ADAM10 cleavage site, and the �-secretase cleavage site(170, 22). Many FAD mu-

tations also appear in the PS1 domain of �-secretase. However, though these mutations
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are distributed across various regions within PS1 such that it is di�cult to elucidate the

biophysical mechanism by which they modulate A� production(193).

Mutations to APP in the C99 domain can influence tra�cking of APP to di↵erent

subcellular compartments, ultimately impacting the propensities for ↵- or �-cleavage(129).

The propensity of APP, ADAM10, BACE1, and �-secretase for localization to subcellular

compartments of distinct lipid domain composition and pH are of central importance to

determining the products of these biochemical cascades.

2. E↵ect of the membrane on C99 structure and homodimer stability

The transmembrane domain of C99 features the sequence G29xxxG33xxxG37G38xxxA42

which includes multiple Gxxx[G/A] glycine zipper motifs. Within the C99 GxxxG repeat

motif lies a “GG hinge” at G37G38 in the TMD, initially identified by molecular dynamics

(MD) simulations(148) and confirmed by NMR and EPR experiments(10, 155), which is con-

jectured to be important to processing by �-secretase (Figure 1)(177). Hydrogen-deuterium

exchange studies also observed side chain(177) and alpha helix(33) hydrogen bonds to be

substantially weaker near the GG hinge, suggesting the amide bonds are readily available

for �-cleavage.

At the C-terminal end of the TMD, residues A42, T43, V44, I45, V46, T48, L52, and

K53 all feature several mutations found in AD(250). Some mutations to these residues

decrease the propensity for homodimerization(258), and enhance A�42 production(55). A

“lysine anchor” formed by the triple repeat K53K54K55 is evidenced to register at the C-

terminal end of the TMD membrane surface(121). While these key sequences have been

used in analyzing the structure of C99, much work remains to be done to identify the

roles of specific residues in the initiation and termination of processive cleavage of C99 by

�-secretase and the resulting A� isoform distribution.

Identification of the GxxxG motif

This sequence motif appears in the transmembrane alpha helical domain of GlycophorinA (GpA),

I73TLII77FGVM81AGVI85GTIL89LISY93GI, and has principally been used as a reductive model for un-

derstanding transmembrane helix-helix association since discovery the of its reversible homodimerization

via SDS PAGE assays by Furthmayr and Marchesi(74). Engleman and coworkers found that subdomain

dimerization characterized via SDS PAGE was significantly reduced by the substitution of residues L75,

I76, G79, G83, V84, and T87(124). Subsequently, they found that a poly-Leu model maintaining only

the LIxxGVxxGVxxT motif was su�cient for homodimerization(125). Conformational characterization of

the GpA homodimer was elucidated for GpA in micelles(134) and bilayers(212), quantifying the presence

of characteristic glycine “grooves” along the alpha helical face which provide specific sites for alpha helix

dimerization and a right-handed superhelix(231). The GxxxG motif was later found to appear in abundance

in membrane protein sequences(194, 201). The glycine alpha carbon was later found to stabilize the trans-

membrane structure by serving as a hydrogen bond donor(202, 153), and that alanine serves as a next-best

substitution in the GxxxG motif(4). The GxxxG motif and the predominant right-handed superhelical

structure stabilized by this motif have become a fundamental unit of transmembrane protein structural

characterization and design(150, 106, 136).
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2.1. Changes in membrane thickness, curvature, and phase a↵ect APP C99
domain structure and dimerization

Thickening of the membrane reduces the relative amount of A�42 and A�43 produced while

leading to an overall increase in �-secretase activity(89, 251). Additionally, increasing the

membrane curvature is found to increase the magnitude of fluctuation of the GG hinge and

the overall tilt of the TMD(59). It is likely that the magnitude of fluctuations in the hinge

may enhance A�42 and A�43 production(10).

It has further been noted that the membrane thickness can preferentially stabilize and

environmentally select specific C99 dimer conformations(57, 58, 128, 246). Beyond the hinge

lies another glycine zipper motif, G38xxxA42, often found in TM dimers(4), important

for C99 homodimerization(8). The GxxxG repeat motif appears to facilitate C99 dimer

formation in thicker membranes while the competing GxxxA motif supports dimers most

often observed in thinner membranes and micelles(13).

2.2. E↵ect of membrane on C99 monomer, homodimer, and potential role in
A� production

The competition between C99 homodimerization and C99 monomer cleavage by �-secretase

plays an important role in A� genesis. The single-pass transmembrane protein binding site

in �-secretase is evidenced to only accommodate monomeric proteins, such that C99 must

be monomeric to be cleaved to produce A�(252). Song et al. used EPR experiments to

determine the dissociation constant of the dimer in 3/1 16:0-18:1 PC/16:0-18:1 PG (3/1

POPC/POPG) vesicles to be 0.47 ± 0.15 mol% (-3.2 kcal/mol), a weak propensity for

homodimerization(215). NMR spectra of C99 in micelles of the single-tail 14:0 Lyso PG

(LMPG) and bicelles with 7:0 PC (DHPC) detergent performed at lipid/detergent ratios

(q) below 1 have been found to be nearly indistinguishable(10, 13, 216). It may be that past

NMR characterizations of full-length C99 in DHPC bicelles are not wholly representative

of C99 structure in lipid bilayers.

Caldwell et al. characterized DHPC bicelles with q < 1.0 using small-angle X-ray and

neutron scattering, fluorescence anisotropy, and MD simulation, finding q  0.5 bicelles to be

spheroidal (micellar) in shape, due to mixing of DHPC with other lipids(31). Additionally,

Piai et al. demonstrated that reducing q below 0.7 manifests substantial changes to NMR

spectra as q decreases(179). To address this, recent solution phase bicelle experiments have

been performed using n-dodecyl-�-melibioside (DDMB) detergent to successfully solubilize

C99 in a variety of lipid compositions including both 14:0 PC (DMPC):egg sphingomyelin

(eSM):cholesterol (Chol) (4:2:1) and POPC bicelles(98). These DDMB bicelles were ob-

served to achieve the ideal bicellar disk shape via SAXS and Cryo-EM.

DDMB bicelles were confirmed to solubilize a distribution primarily composed of C99

monomers, a significant population of C99 homodimers, and rarely-observed C99 ho-

motrimers. A particularly notable result is that residues 3, 4, and 64-74 were observed

to be mobile but inaccessible to both hydrophilic and hydrophobic paramagnetic probes.

Overall, the results are suggestive of a C99 homodimer primarily stabilized by a com-

plex ensemble of conformations in which extramembrane domains form transient secondary

structures that can occlude paramagnetic probes from interactions with peptide backbones.

Following this work, we have recently published explicit solvent simulations of the full-

length C99 homodimer and monomer in POPC sampled using generalized Replica Exchange

with Solute Tempering MD(166). We observed that the extramembrane domains of the
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homodimer, including the A� subdomain K16LVFFAED23 and the C-terminal juxtamem-

brane subdomain Y57TSIH61, form metastable inter-protein �-strands that are otherwise

intrinsically disordered in the monomer. These homodimer-induced extramembrane sec-

ondary structure elements apparently cooperatively stabilize the homodimer GxxxG inter-

face. Further experimental and simulation studies are required to fully understand the role

of sequence and membrane environment, including phase separation into lipid domains, in

defining the C99 monomer-dimer equilibrium.

2.3. Cholesterol interactions with Amyloid Precursor Protein

Cholesterol has been proposed to modulate C99 conformation through a C99-cholesterol

complex. The C99-cholesterol complex was first suggested by Sanders and co-workers based

on observations of shifts in the 1H-15N 2D NMR spectra of C99 in the TMD as a function

of the concentration of cholesterol analogue �-CholBIMALT in LMPG micelles(13, 14).

Subsequent experiments by Barrett et al. in DMPC:DHPC bicelles led to the proposal that

C99 binds to cholesterol via the GxxxG motif in the TMD(10), the same glycine zipper that

stabilizes C99 homodimers(148, 58, 101). It was further proposed that the binding site is

completed by formation of the C99 juxtamembrane helix.

Song et al. developed a phenomenological kinetic superequilibrium constant describing

competing dissociation constant between C99-C99 homodimer and C99-cholesterol com-

plexes with which the C99-cholesterol dissociation constant was found to be 2.7 ± 0.3

mol% (-2.1 kcal/mol)(215). However, this C99-cholesterol dissociation constant is weaker

than typical protein backbone-water hydrogen bonds(70). APP and the C99 substrate

do not contain multiple transmembrane helices necessary to bind cholesterol, as found in

various other transmembrane proteins(139). Because of this weak estimated C99-Chol as-

sociation, extensive unbiased atomistic MD simulations have been used to investigate how

cholesterol interacts with and modulates monomeric C9916�55 structure at a variety of con-

centrations, juxtamembrane (JM) domain K16LVFFAED23 protonation states, and in the

presence of FAD mutants in the JM domain(168). This recent simulation work suggests

that cholesterol modulates C99 structure via ordering the surrounding lipid bilayer envi-

ronment, and weakly interacts with C99 around the TMD with weak specificity, appearing

to act as a co-solvent rather than as a ligand.

This result makes sense in the context of the shift in chemical shifts initially observed

by Beel et al., from which cholesterol-responding residues were identified around all faces of

the TMD domain(13). Cholesterol is also evidenced to enhance the interaction of A� with

the membrane surface. Using atomic force microscopy (AFM), Gao et al. and Kandel et

al. demonstrated that A� pores can be activated within cholesterol concentrations in which

phase separation is observed in a ternary mixture, and deactivated when the cholesterol

concentration increases to the point where phase separation disappears(75, 109). Fantini

et al. demonstrated that Chol:ganglioside (GM1) binary mixtures and Chol:GM1:POPC

ternary mixtures, which form the liquid ordered (Lo) phase and Lo-liquid disordered (Ld)

phase separation (discussed in section 4.2), respectively, stabilize GM1 conformations which

form strong hydrogen bond interactions with A�, facilitating A� aggregation on the mem-

brane surface(68, 99). Rather than through specific protein interactions with cholesterol,

cholesterol seems plays its role in controlling the amyloid cascade through ordering the lipid

environment (Figure 4). It may be that the Lo phase is principally responsible for modifi-

cation to the behavior and conformation of APP, C99, and A� that are often attributed to
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specific interactions with cholesterol. Investigative work on the role of lipid phase on APP

TMD and its secretases requires experiments or molecular simulation approaches that can

reliably capture atomistic details of cholesterol and protein in lipid bilayers.

There are interesting parallels between the discussion of the possible roles of choles-

terol in A� genesis and aggregation and that of the role of urea denaturant in protein

folding. Competing theories were developed to account for the mechanism of action of

urea in facilitating protein unfolding(192). The “direct action” theory posited that urea

changed the nature of the aqueous solution, rendering it less polar and thereby relatively

stabilizing the unfolded state of the protein(95, 247, 32). Conversely, the “indirect action”

theory proposed that urea directly competes for hydrogen bonding with backbone amide

and carbonyl groups, thereby stabilizing the unfolded state of the protein(118, 17, 48). It is

our view that “direct” mechanism best explains urea’s role in protein unfolding, while the

“indirect” mechanism best describes the role of cholesterol in A� genesis.

Figure 4

In bulk-like environments of liquid disordered phase (red) APP transmembrane domain is
evidenced to form a relatively higher population of Gly-out homodimer(58) which can be
stabilized with metastable extra-membrane �-strands(166). In the neutral pH plasma membrane,
the JM domain K16LVFFAED23 ↵-helix is destabilized(165, 170). In raft-like environments of
liquid ordered phase (blue) APP transmembrane domain is evidenced to form a relatively higher
population of Gly-in homodimer, stabilizing the dimer with glycine zipper (white circles)
C↵ · · ·C=O hydrogen bonds. In the acidic endosomal membrane, the JM domain ↵-helix is
stabilized(98, 155).

3. Role of cholesterol and membrane in the amyloid cascade

The role of cholesterol in modulating the amyloid cascade has been the subject of much

speculation(36, 52). The onset of AD has long been correlated to enhanced levels of choles-

terol resulting from diet, genetic predisposition, or aging(210, 189, 188, 207, 183, 266, 257,

253). Enhancements to cellular cholesterol concentration are also observed to up-regulate

A� synthesis(188, 140). There are many non-membrane enzymes which specifically bind to

cholesterol via a wide array of motifs. Most cholesterol-binding proteins perform oxidation,

hydroxylation, sulfonation, or esterification of the head group(127).

In the membrane, cholesterol has been observed to complex with multi-pass transmem-

brane proteins. Most proteins found to complex with cholesterol are G-protein coupled

receptors (GPCRs), which feature a cavity formed by the characteristic GPCR heptad of

transmembrane helices(139).
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3.1. Lipid rafts and protein partitioning to rafts is important to protein-protein
interactions

The intracellular steps in the amyloid cascade involve processing of APP by its secretases

in di↵erent cellular compartments: the plasma membrane (PM), early endosomes (EE),

late endosomes (LE), and the trans-golgi network (TGN)(34, 138, 40). Mutations and

post-translational modifications to these proteins are known to modify tra�cking pathways

and thus the ultimate production of A�. The first potential compartment in which APP

may be processed is in the plasma membrane, in which ADAM10 can cleave APP to abort

the process leading to the production of A�. The cellular compartments and tra�cking

pathways involved in A� production are described in detail in section 4.

Protein-protein interactions are not only dictated by subcellular compartment localiza-

tion, but are also dictated by wether proteins laterally compartmentalize into dense, micro-

scopic domains defined by concentrations of cholesterol, sphingomyelins, and gangliosides

often called “lipid rafts”(209). Certain membrane proteins are evidenced to preferentially

partition into these cholesterol-rich domains from the bulk membrane, driven by sequence

and post-translational modifications(130). The existence and potential role of lipid rafts

has been the subject of controversy. While Lo domains sharing properties characteristic

of lipid rafts have been observed in vitro, raft domains have proven di�cult to observe in

vivo owing to their nanoscopic size and limited lifetime. Nevertheless, there is a developing

consensus that lipid rafts persist in plasma membranes at the nanoscopic scale, identified

using FRET, fluorescence quenching, super-resolution di↵usion, electron microscopy, and

single-molecule tracking(126).

3.2. Lipid phase is a sensitive function of cholesterol level and lipid tail
saturation

There is a rich literature of in vitro lipid bilayer experiments, simulations, and theory that

have elucidated the direct role played by cholesterol in inducing lipid raft formation through

the formation of the Lo lipid bilayer phase from the Ld phase due to the co-localization and

condensation of saturated lipids and sphingomyelins with cholesterol.

In binary saturated lipid:cholesterol mixtures, the main lipid phase transition tempera-

ture (Tm) from the gel (So) to Ld phase and bilayer to non-lamellar phase temperatures are

Identification of the liquid ordered phase

The condensing e↵ect of cholesterol in lipid layers has been known for approximately 100 years, initially

observed in lipid monolayers on aqueous films(122). Quantitative characterization of lipid structure and

dynamics in solvated lipid bilayers has principally been achieved using residual quadripolar splitting of the

deuterium NMR power spectrum, used to determine the carbon-deuterium order parameters, as detailed by

Seelig(199). Brown and Seelig performed some of the first investigations of the e↵ect of cholesterol on 16:0

PC (DPPC) phosphate group(28), followed by Smith and coworkers who quantified the ordering of slightly

shorter saturated lipid DMPC acyl chains in the presence of cholesterol(61). The first binary phase diagram

featuring the Lo to Ld phase transition was determined by Vist and Davis using the carbon-deuterium order

parameter for binary mixtures of DPPC and cholesterol(245).
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broadened until the Lo phase fully forms at about 20 mol% Chol, at which the So is appar-

ently abolished. Detailed all-atom MD investigations have revealed that the Lo phase is not

homogeneous, like Ld and So phases, but instead features a coexistence of Ld and nanoscopic

So-like hexagonally-packed domains (Figure 5.A)(167, 169, 213, 102). The So phase can be

abolished due to presence of cholesterol(87, 93, 100, 110, 147) or when saturated lipids are

in mixtures with unsaturated lipids(131, 178, 221, 254), which lower the Tm of saturated

lipids. In multi-component lipid bilayers, as the local concentration of cholesterol complexes

with saturated lipids or sphingomyelin either through non-equilibrium equilibration or in a

critical fluctuation, the local Lo phase domain is expected to be introduced as continuous

phase transition from Ld or So phases, depending on the system temperature.

Figure 5

(A) Lipid phases and phase transitions exhibited for saturated lipid or sphingomyelin with
increasing local concentrations of cholesterol. Lo lateral tail packing illustration is shown looking
down the membrane normal. (B) Phase diagram representative of many mixtures involving
saturated lipids or sphingomyelins, unsaturated lipids, and cholesterol at fixed temperature and
concentration in aqueous solution in the lipid bilayer phase displaying the miscibility gap where
phase separation is observed.

Over the past 20 years, many investigations have determined phase diagrams of ternary

mixtures of cholesterol with lipids at physiological temperatures(141). Multiple points

on phase diagrams of macroscopically-observable lipid bilayer phase separations resulting

from mixtures of cholesterol, unsaturated lipids, and saturated lipid/sphingomyelins have

been observed using fluorescence spectroscopy(69, 19, 24, 84, 91, 90, 103, 116, 162, 185,

219, 225, 232, 234, 236, 237, 238, 235), X-ray scattering(19, 38, 85, 176, 229, 261, 264),

atomic force microscopy(24, 43, 111, 264), NMR(185, 238, 235, 50, 239), interferometric

scattering(255), and Raman spectroscopy(5, 60), allowing us to achieve a general concept

of ternary lipid mixture phase diagrams. Generally, at physiological temperatures ternary

mixtures are observed to phase separate around equimolar, 1:1:1 molar concentrations of

saturated lipid, unsaturated lipid, and cholesterol, defining a miscibility gap region inside

the phase diagram in which systems are observed to form large, macroscopically-observed

phase separations in the system (Figure 5.B). At low (.10 mol%) and high (&45 mol%)

cholesterol concentrations macroscopic phase separations disappear.
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Above about 66 mol% Chol, cholesterol crystallizes and can crash out of the

solution(100, 214), such that typical membranes can only accommodate up to 66 mol%(96,

173, 218, 249), though there are cellular membranes that can exceed this, such as the oc-

ular cell plasma membranes(26). X-ray scattering experiments have revealed that ⇠60 nm

diameter domains of pure cholesterol domains can coexist with domains of saturated and un-

saturated lipids at these high mol% cholesterol compositions(100, 264, 186, 265). Maze-like

arrangements of cholesterol interlaced with lipid tails(169, 147, 173) may also form at high

cholesterol concentrations due to propensity to form stable cholesterol homodimers(9, 64)

and the unfavorability of cholesterol-lipid hydrogen bonding(47). A critical point, at which

the system is unstable between phase separated and miscible states, appears at ⇠40-50

mol% cholesterol, approximately equimolar saturated and unsaturated lipid concentration,

and physiological temperature. Shaw et al. recently reviewed evidence for these critical

points and their potential functional role (204).

3.3. Strong cholesterol a�nity for saturated lipids and sphingomyelins

The strong preference of cholesterol to associate with saturated lipids and sphingomyelins

over unsaturated lipids is another curious observation, and has led to speculations about the

role of lipid rafts as platforms for facilitating specific protein-cholesterol(77) and protein-

lipid(223) interactions. It is evidenced that there is a cholesterol Lo:Ld phase partitioning

of approximately 4:1 and 2:1 in 20 and 40 mol% cholesterol based on experiments in phase

separating DPPC:18:1 (�9-Cis) PC (DOPC) 1:1 mixtures including cholesterol. Supported

monolayer Raman microscopy experiments performed by Donaldson and Aguiar determined

Lo:Ld partitioning of cholesterol in 20, 33, and 50 mol% cholesterol at 3.9:1, 1.5:1, and

2.2:1, respectively(60). Similarly, Ma et al. determined cholesterol Lo:Ld partitioning to

be 39.9, 3.63, 2.60, 2.17, and 2.13 at 10, 16, 20, 25, and 30 mol% cholesterol(133). The

variable partitioning of cholesterol between Lo and Ld phases as a function of cholesterol

concentration manifests due to the apparently high a�nity of cholesterol for small domains

of saturated lipids, and may allow for the formation of small Lo domains even with minority

concentrations of cholesterol and saturated lipid in complex lipid bilayers. As such, even

in conditions for which a macroscopic phase separation is not observed, there may yet be

nanoscopic Lo domains which may play a role in various biochemical processes.

3.4. Phase separation and raft partitioning of proteins in the amyloid cascade

The structural and composition di↵erences between the Lo phase of lipid rafts and the Ld

phase of the lipid bulk play a role in modulating protein structure and function. APP,

C99, ADAM10, BACE1, and �-secretase are each suggested to preferentially partition into

di↵erent lipid domains. The cleavage of APP and C99 is believed to typically occur in

di↵erent cellular compartments and lipid domains for each complex. How and why these

proteins prefer to localize and interact in such environments requires understanding the

e↵ect of these environments on protein structures.

Localization of proteins to membranes of the same subcellular compartment (discussed

in section 4) is necessary but not su�cient for the association of two proteins to facilitate

proteolysis. Within the same membrane, there can be a separation of lipids and proteins to

lipid rafts which further compartmentalize the spaces in which protein-protein associations

are likely to occur(217). There is general consensus in the literature that �-secretase and

BACE1 partition to lipid raft domains while APP and ADAM10 partition to the non-raft
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membrane bulk, based on in vivo physiochemical analyses.

Increases in cholesterol concentration have been demonstrated to correlate with increases

in A� production and enhancement of BACE1 in lipid raft domains(62). Fabelo et al. and

Dı̀az et al. analyzed the physiochemical properties of early AD human brain samples and

found increases in lipid ordering and lipid raft formation caused by a relative decrease

in unsaturated lipid concentrations. They also found a significant positive correlation of

lipid viscosity with APP-BACE1 interactions(67, 54). Using healthy human and rat brain

tissue samples, Hur et al. determined that �-secretase is principally found in lipid rafts(97).

Barros et al. used using atomic force to observe that �-secretase preferentially partitions

to Lo domains, and that �-secretase can facilitate Lo domain growth(11).

Multiscale MD simulations of �-secretase in a variety of membrane environments and

cholesterol concentrations found that cholesterol can bind to the multi-pass transmembrane

helices in a manner similar to that observed in GPCRs, and that the catalytic dyad of

�-secretase adopts a more active conformation in cholesterol-enriched bilayers(3).

Using endothelial cells, Reiss et al. demonstrated that an increase in unsaturated lipid

concentration enhanced ADAM-mediated substrate cleavage, implying larger Ld domain

bulk (reduction in Lo domains) functionally enhances ADAM activity(190). In recent work,

we analyzed the e↵ect of Lo and Ld domains on the structure of BACE1 and ADAM10

transmembrane domains in simulations. Our results revealed a definite di↵erence in the

character of the proteins in Lo compared to Ld domains(1).

The propensity of APP, ADAM10, BACE1, and �-secretase to partition to Lo or Ld do-

mains has been demonstrated to be a key determining factor in the kinetic processes leading

to A� production. APP, BACE1, and �-secretase also undergo palmitoyl post-translational

modifications that can selectively enhance their enrichment in lipid raft domains, a phe-

nomenon which has been quantitatively characterized via fluorescence experiments to a↵ect

the domain partitioning of proteins in general(130). We explore the role of palmitoylation

in A� genesis in the following subsection.

3.5. Role of palmitoylation on protein partitioning and association

S-Palmitoylation is a reversible lipidation in which a palmitoyltransferase attaches palmitate

to a cysteine residue via a thioester bond(104, 51). This post-translational modification can

have numerous e↵ects on a protein, including its subcellular localization and tra�cking, its

propensity to dimerize, and, particularly relevant to this review, its partitioning between Lo

and Ld membrane domains(23). The role of palmitoylation in the amyloid cascades remains

an open and active area of study.

Palmitoylation of APP C186 and C187 in E1 domains is observed to partition APP to

lipid raft domains(20). These lipidation sites imply that the APP E1 domain inserts to the

lipid bilayer in addition to the TMD, causing for a major conformational rearrangement

of APP on the membrane surface. Changes to the structure, function, and protein-protein

interactions attributed to an insertion of the E1 palmitoylation site to bilayers remain

mysterious, but are correlated with the partitioning of palmitoylated APP into lipid raft

domains(21) (Figure 6). Enhancing partitioning to raft domains and homodimerization may

prevent APP processing by ADAM10 in the plasma membrane, enhancing the concentration

of APP that comes to be processed by BACE1 in EE. Fluorescence spectroscopy experiments

using cell-derived giant plasma membrane vesicles have demonstrated a strong preference

for partitioning C99 to Ld domains in simple ternary phase separating membranes(35). This
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Figure 6

(A) Without palmitoylation, �-secretase, BACE1, and APP may partition to Ld domains, along
with ADAM10, which is not evidenced to be amenable to palmitoylation. (B) �-secretase,
BACE1, and APP are hypothesized to more likely partition to Lo domains upon palmitoylation
(potential sites are labelled), which will cause conformational changes, particularly the association
of extramembrane residues near the palmitoylated site with the lipid surface.

suggests an essential role for more complex lipid mixtures or C99-protein interactions in

order to establish preferential partitioning of C99 to raft domains.

Palmitoylation of BACE1 may also play a role in A� production. BACE1 is known to

be S-palmitoylated at residues C474, C478, C482, and C485 in and near its transmembrane

domain(16, 243) (Figure 6). While experimental evidence agrees that the palmitoylation of

BACE1 increases its a�nity for lipid rafts, the e↵ect of this on A� formation is still debated.

Replacing the TMD and C-terminal domains of BACE1 with a glycosylphosphatidylinositol

(GPI) anchor was initially found to increase A� and sAPP� production(44). However, it has

since been found that the GPI anchor leads to preferential BACE1 cleavage of APP at its �-

site rather than its �’-site, resulting in an increase in amyloidogenic A� production without

a↵ecting the overall APP-cleavage activity of BACE1(241). Further, while raft-localization

of palmitoylation-deficient cysteine to alanine BACE1 mutants is reduced compared to

wildtype BACE1 in neuroblastoma cells, the mutations do not a↵ect �-site cleavage of APP

by BACE1 or amyloidogenic A� production(243, 152). More recent work exploring the same

cysteine to alanine mutations in vivo, observed reduced raft localization of BACE1, cerebral

amyloid burden, and cognitive decline in transgenic mouse models compared to wildtype(6).

The palmitoylation of other proteins involved, either directly or indirectly, with the

amyloid cascades may be important for A� production. The S-palmitoylation of �-secretase

at C689 of nicastrin and residues C182 and C245 of APH-1 has been identified as an

important factor for �-secretase stability and raft localization(39). However, overexpression

of non-palmitoylated nicastrin and APH-1 was not found to influence �-secretase cleavage

of C99 or C89(39). It has also been shown that palmitoylation of flotillins, which regulate

the tra�cking of APP and BACE1, is required for their membrane association(151, 157).

The interplay of palmitoylation of APP, the secretases, and other involved proteins is

inherently related to the discussion of the role of membrane phases and cholesterol on A�

production. Indeed, the aforementioned studies have revealed the critical role of palmitoyla-

tion on the proteins’ partitioning; however, in many cases, the overall e↵ect of palmitoylation

on A� production is still debated. Further research is necessary to settle this controversy

and understand how palmitoylation may be involved in AD development.
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4. Role of cellular tra�cking and pH in the amyloid cascade

APP, BACE1, ADAM10, and �-secretase proteins mature from the endoplasmic reticulum

(ER) to the Golgi apparatus and are transported to the plasma membrane (PM) via secre-

tory vesicles along the constitutive secretory pathway(34, 138, 40). ADAM10 is particularly

enriched in the PM(175), where 90% of APP cleavage occurs(240), resulting in secretion

of sAPP↵ and production of C83(175). Endocytosis plays a critical role in the amyloido-

genic pathway. APP and BACE1 are evidenced to be separated in the PM and encounter

each other in EE(49) via clathrin-mediated endocytosis (CME) and clathrin-independent

endocytosis (CIE).

CME is a rapid endocytotic process which principally involves the formation of triskelia

of clathrin protein that form a lattice, causing the membrane to bud and eventually pinch

o↵ part of the PM, forming and releasing a vesicle which develops into an EE(27, 83).

ADAM10 and APP are both found to bind to the clathrin-adaptor protein AP2 and other

adaptins which bind proteins in the membrane bulk for CME(259, 138, 161, 123, 29).

Phosphorylation of residues in the APP endodomain influences APP tra�cking and

amyloidogenesis. Among the phosphorylatable residues T729, S730, T743, and Y757(163,

203), phosphorylation of S730 enhances APP tra�cking to the Golgi apparatus and Ala

point mutation of T743 may enhance production of A�40 and A�42(72, 181, 197) and im-

pacts APP interaction with some enzymes(222). Y757 phosphorylation has been identified

to occur at higher propensity in AD patients and is suspected to prevent the interactions

of APP with adaptor proteins due to its inclusion in the Y757ENPTY762 motif(160, 181).

BACE1 is evidenced to be endocytosed through CIE, though AP2 is evidenced to be

necessary for endocytotic recycling of BACE1(18). CIE occurs via binding with flotillin-

1(82, 107), or ARF6(196). Flotillins are integral membrane proteins that support the forma-

tion of lipid rafts and facilitate endocytosis(164). ARF6 endocytosis requires lipid domains

enriched in cholesterol, likely also forming lipid raft environments(156). As such, the parti-

tioning of APP and ADAM10 to clathrin-containing bulk membrane phase and the BACE1

partitioning to environments with CIE-inducing proteins that are in lipid rafts is a likely

explanation for why APP is processed by ADAM10 in the PM prior to endocytosis. Ulti-

mately, changes in the lipid environment and pH are required for activating secretases in

the amyloid cascade (Figure 7).

4.1. Endosomal environment pH activates BACE1 and �-secretase, and
discourages APP homodimerization

The role of pH in A� genesis and aggregation has received significant attention(114, 112,

256, 226). Unlike cytoplasmic and extracellular environments, endosomal compartments

are acidic(174). pH lowers from ⇠6.5 to 4 as endosomes develop from EE to LE to

lysosomes(94). Both BACE1 and �-secretase are active over a range of pH spanned by

lysosomal environments and the PM. However, acidic subcellular environments are optimal

for BACE1 and �-secretase activity. BACE1 and �-secretase are evidenced to be most

active at pH 4.5(208, 78, 92, 65) and 6.5(145, 184, 79), respectively. BACE1 and APP

have been visualized in HeLa cells and mouse neurons to be separate when tra�cked to

the PM(73), implying that BACE1 only processes APP upon associating together in acidic

endosomal environments. Likewise, �-secretase has been visualized in mouse neurons in

vivo processing C99 in LE and lysosomes(135), and has been shown to be associated with

lipid rafts in endosomes of mouse neuroblastoma(242).
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Figure 7

Illustration of subcellular compartments involved in the amyloid and complementary cascade
pathways. APP, ↵-secretase (ADAM10), and �-secretase (BACE1) are represented in purple,
blue, and red, respectively. A� is displayed in pink. The �-secretase complex nicastrin, PEN-2,
APH-1A, and presenilin 1 domains displayed in blue, pink, orange, and green, respectively. Lo

domains represented with blue, ordered saturated lipid tails and a higher concentration of
cholesterol, Ld domains represented with red, disordered unsaturated lipid tails and a lower
concentration of cholesterol.

The majority of A� is evidenced to reside in the cytosol(262) and lysosomes where A�

may oligomerize(66). In addition to controlling activity of BACE1 and �-secretase, lower

pH is observed to promote the formation of A� oligomers(144) via protonation of E22(112),

which stabilizes the characteristic �-turn defined by hydrogen bonding between E22-K28.

This �-turn may serve as a nucleus for A� aggregation(220). This observation suggests that

pH shock could play a role in the nucleation and growth of A� aggregates by stabilizing

aggregation prone N⇤ states exhibiting this critical �-turn(256, 143, 158, 187).

In low pH environments APP E1 domains are evidenced to undergo a conforma-

tional switch which may be important for modulating their homodimer dissociation con-

stant and thus their availability for processing by ADAM10 and BACE1(88). Aside from

ectodomains, residues with moderate pKa values and FAD mutants featuring charged

residues are evidenced to play a significant role in determining the structure in the �-turn

prone K16LVFFAED23 subsequence of C99 and A�.

Monomeric A� congeners including residues 1-28 have been demonstrated to form ↵-

helices in very low pH environments upon a neutralizing mutation such as the E22Q FAD

mutant using NMR(42). In C99 both low pH environments and E22Q D23N FAD mutants

were observed in MD simulations to stabilize the juxtamembrane domain ↵-helix in C99
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by neutralizing residues E22 and D23(168, 165). The stabilization of an ↵-helix in residues

22-28 precludes the formation of �-strands evidenced to be necessary to formation of stable

A� oligomers and fibrils(159).

4.2. Role of pH and cholesterol-induced lipid phase on C99 structure and
kinetics

This brings us to our attempt to understand how pH, FAD mutants to the JM domain, and

cholesterol may make C99 available for processing by �-secretase.

As discussed earlier, thickening lipid bilayers make the G37G38 hinge more rigid and

reduce the quantity of A� produced by �-cleavage(89, 251). However, �-cleavage is be-

lieved to occur in thicker, liquid ordered domains. Barrett et al. suggested that cholesterol

may specifically bind to C99(10), however Song et al. characterized the C99-Chol dissoci-

ation constant as a mere -2.1 kcal/mol, and unbiased MD simulations of their association

demonstrated weak specificity for association of Chol around particular faces of the TMD

(215).

Additionally, �- and �-cleavage occur in low pH endosomal environments, where residues

E22 and D23 in the C99 JM domain have been estimated to be protonated, thus stabilizing

an ↵-helix in the JM domain(165), which seems to discourage formation of �-strands in the

extramembrane domain and C↵ · · ·O=C hydrogen bonds along the GxxxG zipper motif

which stabilize the C99 homodimer(166). Moreover, formation of Lo domains by introduc-

tion of cholesterol into bilayers featuring saturated lipids has been demonstrated via MD

simulation to promote ↵-helical structure in C99(168).

We believe the C99 homodimer is thus destabilized in Lo domains and at low pH, mak-

ing C99 (potentially also full APP) within the endosomal environment more available for

processing by �- (and �-) secretase. It seems that in the Ld phase at neutral pH C99 ho-

modimers are the most kinetically stable. But upon endocytosis to endosomal environments

at lower pH and potentially higher concentrations of saturated lipids and cholesterol, C99

(APP) may be partitioned into lipid raft domains with � (�) secretase, where the homod-

imer is less kinetically stable due to formation of the JM domain ↵-helix, and thus becomes

available for processing (Figure 4).

5. Conclusions and future perspectives

In this Perspective, we explore several basic questions framed in order to better understand

how lipid bilayers and cholesterol impact APP and A� genesis. The e↵ect of varying choles-

terol concentrations on lipid phase separations and the associated complex phase behavior

is discussed. The e↵ect of introducing the Lo phase via addition of cholesterol and the im-

pact on the conformational ensemble of C99 is explored. The role of membrane structure,

including thickness of the lipid bilayer, on the conformational ensemble of full-length C99

is discussed. Recent findings from NMR experiments and large-scale simulations regarding

the nature of full-length C99 monomer and homodimer conformational ensembles are dis-

cussed. We summarize the known interplay of lipid phase separation, protein tra�cking,

and pH in the amyloid cascade.

In this perspective, we have noted competing theories for the role of cholesterol in A�

genesis. The “direct action” theory posits that cholesterol establishes specific complexes

with C99 that impact A� partitioning between lipid domains and cleavage by �-secretase.
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A competing theory of “indirect interaction,” which has gained significant recent support,

suggests that cholesterol impacts lipid phase separation and domain formation, which in

turn impacts C99 structure, partitioning, and processing by secretases. In our view, the

“indirect” mechanism best describes the cholesterol’s mode of action in A� genesis.

Below we provide a summary of our current understanding and a list of future issues

that we feel are well-suited for study at this time, using a variety of computational and

experimental approaches described in this review.

SUMMARY POINTS

1. Observations of protein tra�cking derived from in vivo studies of proteins in the

amyloid cascade imply that APP and ADAM10 partition to Ld domains and BACE1

and �-secretase partition to Lo domains. Direct observation using fluorescence

probes has confirmed C99 strongly partitions Ld domains.

2. Cholesterol induces the formation of the Lo phase in bilayers upon achieving su�-

cient local concentrations in complex with saturated tail lipids. The modulation of

lipid raft formation by cholesterol appears to be the principal, indirect mechanism

by which cholesterol modulates the amyloid cascade.

3. Prior direct mechanisms for cholesterol modulation of protein structure via bind-

ing to membrane proteins, particularly binding to the single-pass transmembrane

domain of APP (C99), might instead be attributed to the formation of the Lo

environment.

4. Endocytotic tra�cking is not only a mechanism by which proteins are sorted in the

amyloid cascade. It is the principal determinant of when various stages of APP

cleavage occur due to the pH activation of secretases and conformational changes

in APP and C99.

5. Palmitoylation of APP, BACE1, and �-secretase likely enhances the partitioning of

these proteins to Lo domains. In addition, palmitoylation of BACE1 is conjectured

to enhance production of A�.

FUTURE ISSUES

1. The partitioning coe�cient of ADAM10, and BACE1 between Ld and Lo domains

has not been quantified in any membrane system. Measurement of these partition-

ing coe�cients would enable the development of kinetic models of A� production

through which the role of Lo phase formation in A� formation may be explored.

2. Understanding the impact of pH, which di↵ers between plasma membrane and

endosomal environments, on the structure and function of APP, C99, ADAM10,

BACE10, �-secretase, and A�, and the encounter complex of all of these proteins,

remains an important topic for future research.

3. Palmitoylation is an important factor in determining the domain partitioning of

APP, BACE1, and �-secretase. However, little is known regarding how palmitoyla-

tion impacts protein structure and partitioning between domains.

4. Cholesterol may modulate the structure, function, and cleavage of membrane pro-

teins, beyond those discussed in this review, indirectly through domain formation
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and protein partitioning. This may be particularly true for single-pass transmem-

brane proteins which lack cholesterol binding pockets, unlike the GPCRs for which

direct cholesterol binding has been observed.

5. Lipid rafts have mostly been investigated as domains of cholesterol, saturated lipids,

sphingomyelins, and gangliosides which facilitate protein-protein interactions. How-

ever, the role of protein concentration and partitioning coe�cients in formation of

Lo phase has received attention very recently(205, 248). Investigations of the e↵ect

of protein on Lo domain formation is of interest in general as well as in the specific

cases of APP, C99, ADAM10, BACE1, and �-secretase.

6. With the exception of CME facilitated by clathrin binding at the APP

Y757ENPTY762 domain, the role of APP and C99 intracellular domain interac-

tions with various cytosolic proteins in amyloidogenesis remains mysterious. Fur-

ther characterization of the intracellular proteins that bind the APP intracellular

domain is necessary to complete our understanding of the amyloidogenic pathway

in relation to other biochemical processes.
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