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Abstract

Cholesterol has been conjectured to be a modulator of the amyloid cas-
cade, the mechanism which produces amyloid-8 (Af) peptides impli-
cated in the onset of Alzheimer’s disease. We propose that cholesterol
impacts the genesis of AS not through direct interaction with proteins
in the bilayer, but indirectly through inducing the liquid ordered phase
and accompanying liquid-liquid phase separations, which partition pro-
teins in the amyloid cascade to different lipid domains and ultimately
to different endocytotic pathways. We explore the full process of Aj
genesis in the context of liquid ordered phases induced by cholesterol,
including protein partitioning to lipid domains, mechanisms of endo-
cytosis experienced by lipid domains and secretases, and pH-controlled
activation of amyloid precursor protein secretases in specific endocytotic
environments. Qutstanding questions on the essential role of cholesterol
in the amyloid cascade are identified for future studies.
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1. Alzheimer’s disease, Amyloid-3 protein, and the amyloid cascade

Plaques and neurofibrillary tangles in the brain tissue of Alzheimer’s disease (AD) patients
have been implicated in AD since initial observations in demented patients at the turn of the
20th century(86). These plaques were determined to be principally composed of Amyloid-g3
(ApB) protein, derived from cleavage of the amyloid precursor protein (APP). In 1991, it
was proposed that a biochemical cascade starting from APP and ultimately resulting in the
formation of these A plaques is responsible for the genesis of AD(200, 81, 80).

The amyloid cascade hypothesis was proposed when many key details leading to pro-
duction of AB plaques were unknown. Subsequently, the principal protein domains, cellular
compartments, and lipid domains involved in the production of AS have been identified.
ApB oligomers have since become widely accepted as the potential AS agent responsible
for neurogedeneration through thousands of peer-reviewed investigations(159). Despite ex-
tensive evidence in its favor, this hypothesis has faced controversy due to contradictory
results in clinical trials targeting A5 and the existence of evidence for a number of other
hypotheses. The most prominent of these hypotheses is the Tau Hypothesis, in which the
hyperphosphorylation of the Tau protein that makes up the microtubules of axons causes
the formation of disordered neurofibrillary tangles observed in AD patients(142). This
disrupts axon structure and thus the connection of neurons, directly leading to neurode-
generation. Other hypotheses include the Inflammation Hypothesis(137, 63), the Oxidative
Stress Hypothesis(37), the A3 membrane carpeting hypothesis, the pore hypothesis, and the
detergent hypothesis(244). These hypotheses, however, do not rule out the amyloid cascade
hypothesis, but may explain upstream or downstream events in the disease’s progression.
For example, hyperphosphorylation of Tau has also been directly connected to AS oligomers,
and it may be that the amyloid and Tau disease pathways are synergistic(25, 105).
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Figure 1

(A) All-atom representation of the amyloid precursor protein (APP) featuring structured domains
predicted by Membranome (entry 117) based on AlphaFold2(56). Secreted APP (sAPP) domain
produced from cleavage by [-secretase (BACE1L), the variable amyloid beta domain (Ag3), and the
intracellular domain visualized with bilayer ecto- and endo-plasmic domains indicated in pink and
cyan. (B) Cartoon representation of APP highlighting structured ectodomains 1 and 2, the
intrinsically disordered inhibitor domain, and the C99 peptide domain. Within the C99 domain is
the variable Af subdomain, pending 7y-secretase cleavage, as well as a transmembrane hinge at
Gr708G709 evidenced to significantly modulate AS production.

Cholesterol has received significant attention as a promoter of AS formation. Proposed
mechanisms for the action of cholesterol have largely focused on specific protein-cholesterol
interactions that stand to impact AfB-genesis or aggregation. However, at this time little is
known regarding the physiochemical mode of action of cholesterol in the amyloid cascade.
Cholesterol has been more generally implicated in the onset and progression of AD (espe-
cially late-onset AD). The broader discussion of cholesterol in AD falls beyond the scope of
this review but has been reviewed by others in the past(71).

In this review, we present an overview of the lipid liquid ordered phase induced by choles-
terol, lipid phase separation, protein partitioning to lipid domains, the principal proteins
involved in the amyloid cascade, the endocytosis of these proteins to subcellular compart-
ments, the modulation of function of these proteins by intracellular environment pH, and
the current evidence for and against direct C99-cholesterol interactions. In this context,
we provide evidence that cholesterol primarily acts as a modulator of AB generation not
through direct interactions with APP and its secretases, but indirectly through solvation of
the transmembrane helix and induction of the liquid ordered phase and the accompanying
sorting of proteins to particular cellular compartments in which APP processing occurs.

1.1. The Amyloid Precursor Protein and the amyloid cascade

The protein signaling cascade that results in the production of A begins with APP,
canonically a 770-residue protein known to perform many functions including cell-cell signal-
ing for synaptogenesis, regulation of copper levels, sphingomyelin and cholesterol homeosta-
sis, and promotion of extracellular matrix development(154). Residues 1-671 of APP mostly
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The role of Amyloid Precursor Protein in regulating cholesterol homeostasis

The role of cholesterol in the amyloid cascades should not be surprising given the evidence that APP
is involved in regulating cholesterol biosynthesis and homeostasis. Pierrot et al. showed that moderate
expression of APP in rat cortical neurons decreases cholesterol biosynthesis and negatively impacts choles-
terol homeostasis, while the opposite effects were observed with significant decreases in APP expression
(180). Recently, Mesa et al. further observed cellular defects during the differentiation and maturation
of APP-knockout human induced pluripotent stem cells to human induced Neurons, but such defects were
remedied through significant increases in cholesterol supply and membrane cholesterol content (146). Mon-
tesinos et al. propose that C99, the membrane-bound product of APP [-site cleavage by BACEL, acts
as a lipid-sensing peptide for delivering cholesterol from the plasma membrane to the endoplasmic reticu-
lum, forming detergent-resistant, lipid-raft-like, mitochondria-associated endoplasmic reticulum membrane
domains (149). Normally, esterification of cholesterol in the endoplasmic reticulum enables the dissolution
of these lipid rafts and cholesterol homeostasis; however, when C99 levels increase, lipid-raft formation is
attenuated, resulting in an increase in BACE] cleavage of APP (149). The discussion of how APP regulates
cholesterol transport and homeostasis lies beyond the scope of this review, but it’s important to recognize
the significant cross-talk between cholesterol regulatory pathways and the amyloid cascade.

consist of intrinsically disordered domains separating three spectroscopically-resolved struc-

tured domains, ectodomain 1 (E1) in residues 28-189(45, 88), a serine protease inhibitor
domain in residues 280-354(211), and ectodomain 2 (E2) in residues 374-584(46, 191), and
a single-pass transmembrane (TM) domain in residues 699-724 (Figure 1)(41). The TM
domain contains the sequence of Af42 in residues 672 to 713. APP homodimerization is

shown to be primarily driven by E1-E1 domain association, dependent on both copper

and heparin binding(45, 12), and the E1-E1 dimer conformation switches in response to

pH(69). APP is canonically processed near the TM domain by two separate secretases, a-

or [-secretase, each from the a disintegrin and metalloproteinase (ADAM) and beta-site

APP cleaving enzyme (BACE) sheddase protein families and predominantly performed by
ADAM10(120, 182) and BACE1(30, 259), respectively. While alternative APP processing
can occur in ectodomain(7), endodomain(160), and A domain(113) residues, the potential

roles of these proteolysis reactions in AD genesis remain unclear. The endodomain of APP,

residues 725-770, bind with several proteins such as G protein GO(76), adaptor proteins
Fe65(195), X11(260), mDab1(172), and the kinase Jip1(198). Additionally, Y757ENPT Y762
are evidenced to be responsible for clathrin-mediated endocytosis. Aside from the role of

clathrin binding in the endocytotic pathway of APP, which we review in section 4, the role

of intracellular protein interactions involving the endodomain remain mysterious.

1.2. Enzymatic cleavage of APP and the biogenesis of A3

ADAMI0 performs “a-cleavage” on APP at residue 687, producing secreted APP «
(sAPP«) and the 83-residue TM protein C83 from the remaining 83 C-terminal fragment
of APP. C83 does not contain residues 1-16 of A, and thus cleavage of APP by ADAM10
ends the amyloid pathway. Instead, C83 proceeds along the complementary pathway (Fig-
ure 2.A)(115). BACEIL performs “g-cleavage” of APP at residue 672, producing secreted
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Figure 2

(A) Amyloidogenic and non-amyloidogenic APP processing pathways. (B) The first step in the
biogenesis of AS is implied to occur in liquid ordered lipid raft domains (blue, saturated lipid
tails) is the cleavage of APP by [(-secretase (BACEL) to produce C99. This amyloidogenic
cleavage of APP occurs primarily in early endosomes and accounts for 10% of APP processing.
(C) Non-amyloidogenic cleavage of APP by a-secretase (ADAM10) accounts for 90% of all APP
processing(240). It primarily occurs in the plasma membrane, implied to occur in liquid
disordered domains (red, unsaturated lipid tails)

producing C83.

APP S (sAPPpS) and the 99-residue TM protein C99. C99 contains the AS sequence start-
ing from residue 1, whose juxtamembrane and C-terminal helices have been resolved via
NMR (Figure 2.B)(10, 98, 215). Alternatively, BACEL can perform “g’-cleavage” of APP
at residue 682, producing secreted APPS’ (sAPPS’) and the TM protein C89(53). Like
with C83, C89 is processed by -secretase along the non-amyloidogenic pathway.

C99 is encapsulated by the multi-pass transmembrane protein complex ~y-secretase,
which performs a multi-step cleavage to produce AB(228). ~-secretase is composed of
the transmembrane proteins presenilin 1 (PS1), presenilin enhancer 2 (PEN-2), anterior
pharynx-defective 1A (APH-1A) transmembrane proteins. Additionally, it includes the
single transmembrane helix and the ectodomain from nicastrin (NCT)(2). Residues D257
and D385 (TM helices 6 and 7) of PS1 catalyze the proteolysis of the C99 transmembrane
domain (TMD) every 3- or 4-residues up the sequence until release of the product AfS.
This process starts at the membrane-cytoplasm interface at residue 48 or 49, which are
the C-terminal end of the C99 TMD. AfS ranging from 49 to 33 residues in length can be
produced from this cleavage, although Af40 is the predominant product, at approximately
50%, in CHO cells(224). The produced Af can terminate the amyloid cascade through
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the formation of fibrils and oligomers in either the intra- or extracellular space (Figure
3). A structure of cross-linked C83-v-secretase complex was recently solved by cryo-EM
spectroscopy, elucidating an anti-parallel 8-sheet formed by a S-strand induced in APP
residues V721 MLKK725 (C99 residues VsoMLKKs54) interacting with two -strands induced
in the PS1 intracellular loop region connecting the C- and N-terminal domains of TM he-
lices 6 and 7, suggesting that A3 cleavage is performed at the helix-strand interface residues
T719L720V721 (099 residues T48L49V50)(263).

These proteins have multiple other known functions aside from proteolysis of APP.
ADAMI10 is known to proteolyze not only C99, but many other proteins(119), and mouse
knockout experiments have shown that ADAMIO0 is required for cell viability(108). A no-
table example of critically-important proteins processed by ADAMI0 is the Notch pro-
tein, which plays essential roles in signaling for cell differentiation, proliferation, and
apoptosis(117). BACEL is known to be particularly important for healthy axon myelina-
tion, potentially causing various mental disorders. However, BACE1 knockout mice remain
viable and can reproduce(230, 132). -~-secretase is also known to be essential in many
functions, acting as an enzyme for over 90 protein substrates, among which is Notch(252).
Similarly to ADAMI10, v-secretase PS1 domain knockout mice are not viable(206). The
many and diverse critically important functions of these proteins have made the develop-
ment of drugs, aiming to prevent the progression of AD by modulating of AS production a
challenging task(171).

Familial Alzheimer’s disease (FAD) mutations, which cause early-onset AD (onset at
under 65 years of age), occur in APP, PS1, and presinilin 2 (PS2), a homologue of PS1(15).
Mutations in ADAMI10 can attenuate APP processing and may contribute to late-onset
AD(233). It is not yet known if there are BACE1 mutations that influence AD genesis
and progression(227). Within APP, most FAD mutations appear in the C99 domain near
the BACEL cleavage site, the E1 copper binding site (important for copper reduction),
the ADAMI10 cleavage site, and the v-secretase cleavage site(170, 22). Many FAD mu-
tations also appear in the PS1 domain of ~-secretase. However, though these mutations
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are distributed across various regions within PS1 such that it is difficult to elucidate the
biophysical mechanism by which they modulate AS production(193).

Mutations to APP in the C99 domain can influence trafficking of APP to different
subcellular compartments, ultimately impacting the propensities for a- or S-cleavage(129).
The propensity of APP, ADAM10, BACE1, and ~-secretase for localization to subcellular
compartments of distinct lipid domain composition and pH are of central importance to
determining the products of these biochemical cascades.

2. Effect of the membrane on C99 structure and homodimer stability

The transmembrane domain of C99 features the sequence GagxxxGs3xxxGs7GagxxxAgs
which includes multiple Gxxx[G/A] glycine zipper motifs. Within the C99 GxxxG repeat
motif lies a “GG hinge” at G37Gss in the TMD, initially identified by molecular dynamics
(MD) simulations(148) and confirmed by NMR and EPR experiments(10, 155), which is con-
jectured to be important to processing by y-secretase (Figure 1)(177). Hydrogen-deuterium
exchange studies also observed side chain(177) and alpha helix(33) hydrogen bonds to be
substantially weaker near the GG hinge, suggesting the amide bonds are readily available
for ~y-cleavage.

At the C-terminal end of the TMD, residues A42, T43, V44, 145, V46, T48, L52, and
K53 all feature several mutations found in AD(250). Some mutations to these residues
decrease the propensity for homodimerization(258), and enhance Af4s production(55). A
“lysine anchor” formed by the triple repeat Ks3Ks54Ks5 is evidenced to register at the C-
terminal end of the TMD membrane surface(121). While these key sequences have been
used in analyzing the structure of C99, much work remains to be done to identify the
roles of specific residues in the initiation and termination of processive cleavage of C99 by
~-secretase and the resulting AS isoform distribution.

Identification of the GxxxG motif

This sequence motif appears in the transmembrane alpha helical domain of GlycophorinA (GpA),
I73 TLII77FGVMg1 AGVIgs GTILggLISY93GI, and has principally been used as a reductive model for un-
derstanding transmembrane helix-helix association since discovery the of its reversible homodimerization
via SDS PAGE assays by Furthmayr and Marchesi(74). Engleman and coworkers found that subdomain
dimerization characterized via SDS PAGE was significantly reduced by the substitution of residues L75,
176, G79, G83, V84, and T87(124). Subsequently, they found that a poly-Leu model maintaining only
the LIxxGVxxGVxxT motif was sufficient for homodimerization(125). Conformational characterization of
the GpA homodimer was elucidated for GpA in micelles(134) and bilayers(212), quantifying the presence
of characteristic glycine “grooves” along the alpha helical face which provide specific sites for alpha helix
dimerization and a right-handed superhelix(231). The GxxxG motif was later found to appear in abundance
in membrane protein sequences(194, 201). The glycine alpha carbon was later found to stabilize the trans-
membrane structure by serving as a hydrogen bond donor(202, 153), and that alanine serves as a next-best
substitution in the GxxxG motif(4). The GxxxG motif and the predominant right-handed superhelical
structure stabilized by this motif have become a fundamental unit of transmembrane protein structural
characterization and design(150, 106, 136).
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2.1. Changes in membrane thickness, curvature, and phase affect APP C99
domain structure and dimerization

Thickening of the membrane reduces the relative amount of AfB42 and A 43 produced while
leading to an overall increase in v-secretase activity(89, 251). Additionally, increasing the
membrane curvature is found to increase the magnitude of fluctuation of the GG hinge and
the overall tilt of the TMD(59). It is likely that the magnitude of fluctuations in the hinge
may enhance Af42 and A3 production(10).

It has further been noted that the membrane thickness can preferentially stabilize and
environmentally select specific C99 dimer conformations(57, 58, 128, 246). Beyond the hinge
lies another glycine zipper motif, GzsxxxA42, often found in TM dimers(4), important
for C99 homodimerization(8). The GxxxG repeat motif appears to facilitate C99 dimer
formation in thicker membranes while the competing GxxxA motif supports dimers most
often observed in thinner membranes and micelles(13).

2.2. Effect of membrane on C99 monomer, homodimer, and potential role in
A3 production

The competition between C99 homodimerization and C99 monomer cleavage by y-secretase
plays an important role in AS genesis. The single-pass transmembrane protein binding site
in 7y-secretase is evidenced to only accommodate monomeric proteins, such that C99 must
be monomeric to be cleaved to produce AB(252). Song et al. used EPR experiments to
determine the dissociation constant of the dimer in 3/1 16:0-18:1 PC/16:0-18:1 PG (3/1
POPC/POPG) vesicles to be 0.47 £ 0.15 mol% (-3.2 kcal/mol), a weak propensity for
homodimerization(215). NMR spectra of C99 in micelles of the single-tail 14:0 Lyso PG
(LMPG) and bicelles with 7:0 PC (DHPC) detergent performed at lipid/detergent ratios
(¢) below 1 have been found to be nearly indistinguishable(10, 13, 216). It may be that past
NMR characterizations of full-length C99 in DHPC bicelles are not wholly representative
of C99 structure in lipid bilayers.

Caldwell et al. characterized DHPC bicelles with ¢ < 1.0 using small-angle X-ray and
neutron scattering, fluorescence anisotropy, and MD simulation, finding ¢ < 0.5 bicelles to be
spheroidal (micellar) in shape, due to mixing of DHPC with other lipids(31). Additionally,
Piai et al. demonstrated that reducing g below 0.7 manifests substantial changes to NMR,
spectra as q decreases(179). To address this, recent solution phase bicelle experiments have
been performed using n-dodecyl-8-melibioside (DDMB) detergent to successfully solubilize
C99 in a variety of lipid compositions including both 14:0 PC (DMPC):egg sphingomyelin
(eSM):cholesterol (Chol) (4:2:1) and POPC bicelles(98). These DDMB bicelles were ob-
served to achieve the ideal bicellar disk shape via SAXS and Cryo-EM.

DDMB bicelles were confirmed to solubilize a distribution primarily composed of C99
monomers, a significant population of C99 homodimers, and rarely-observed C99 ho-
motrimers. A particularly notable result is that residues 3, 4, and 64-74 were observed
to be mobile but inaccessible to both hydrophilic and hydrophobic paramagnetic probes.
Overall, the results are suggestive of a C99 homodimer primarily stabilized by a com-
plex ensemble of conformations in which extramembrane domains form transient secondary
structures that can occlude paramagnetic probes from interactions with peptide backbones.

Following this work, we have recently published explicit solvent simulations of the full-
length C99 homodimer and monomer in POPC sampled using generalized Replica Exchange
with Solute Tempering MD(166). We observed that the extramembrane domains of the
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homodimer, including the AS subdomain K16 LVFFAED23 and the C-terminal juxtamem-
brane subdomain Y57 TSIHg1, form metastable inter-protein S-strands that are otherwise
intrinsically disordered in the monomer. These homodimer-induced extramembrane sec-
ondary structure elements apparently cooperatively stabilize the homodimer GxxxG inter-
face. Further experimental and simulation studies are required to fully understand the role
of sequence and membrane environment, including phase separation into lipid domains, in
defining the C99 monomer-dimer equilibrium.

2.3. Cholesterol interactions with Amyloid Precursor Protein

Cholesterol has been proposed to modulate C99 conformation through a C99-cholesterol
complex. The C99-cholesterol complex was first suggested by Sanders and co-workers based
on observations of shifts in the 1H-15N 2D NMR spectra of C99 in the TMD as a function
of the concentration of cholesterol analogue 3-CholBIMALT in LMPG micelles(13, 14).
Subsequent experiments by Barrett et al. in DMPC:DHPC bicelles led to the proposal that
C99 binds to cholesterol via the GxxxG motif in the TMD(10), the same glycine zipper that
stabilizes C99 homodimers(148, 58, 101). It was further proposed that the binding site is
completed by formation of the C99 juxtamembrane helix.

Song et al. developed a phenomenological kinetic superequilibrium constant describing
competing dissociation constant between C99-C99 homodimer and C99-cholesterol com-
plexes with which the C99-cholesterol dissociation constant was found to be 2.7 + 0.3
mol% (-2.1 kcal/mol)(215). However, this C99-cholesterol dissociation constant is weaker
than typical protein backbone-water hydrogen bonds(70). APP and the C99 substrate
do not contain multiple transmembrane helices necessary to bind cholesterol, as found in
various other transmembrane proteins(139). Because of this weak estimated C99-Chol as-
sociation, extensive unbiased atomistic MD simulations have been used to investigate how
cholesterol interacts with and modulates monomeric C9916_55 structure at a variety of con-
centrations, juxtamembrane (JM) domain K16 LVFFAED23 protonation states, and in the
presence of FAD mutants in the JM domain(168). This recent simulation work suggests
that cholesterol modulates C99 structure via ordering the surrounding lipid bilayer envi-
ronment, and weakly interacts with C99 around the TMD with weak specificity, appearing
to act as a co-solvent rather than as a ligand.

This result makes sense in the context of the shift in chemical shifts initially observed
by Beel et al., from which cholesterol-responding residues were identified around all faces of
the TMD domain(13). Cholesterol is also evidenced to enhance the interaction of A with
the membrane surface. Using atomic force microscopy (AFM), Gao et al. and Kandel et
al. demonstrated that AS pores can be activated within cholesterol concentrations in which
phase separation is observed in a ternary mixture, and deactivated when the cholesterol
concentration increases to the point where phase separation disappears(75, 109). Fantini
et al. demonstrated that Chol:ganglioside (GM1) binary mixtures and Chol:GM1:POPC
ternary mixtures, which form the liquid ordered (L,) phase and Lo-liquid disordered (Laq)
phase separation (discussed in section 4.2), respectively, stabilize GM1 conformations which
form strong hydrogen bond interactions with A3, facilitating A3 aggregation on the mem-
brane surface(68, 99). Rather than through specific protein interactions with cholesterol,
cholesterol seems plays its role in controlling the amyloid cascade through ordering the lipid
environment (Figure 4). It may be that the L, phase is principally responsible for modifi-
cation to the behavior and conformation of APP, C99, and A that are often attributed to
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specific interactions with cholesterol. Investigative work on the role of lipid phase on APP
TMD and its secretases requires experiments or molecular simulation approaches that can
reliably capture atomistic details of cholesterol and protein in lipid bilayers.

There are interesting parallels between the discussion of the possible roles of choles-
terol in AB genesis and aggregation and that of the role of urea denaturant in protein
folding. Competing theories were developed to account for the mechanism of action of
urea in facilitating protein unfolding(192). The “direct action” theory posited that urea
changed the nature of the aqueous solution, rendering it less polar and thereby relatively
stabilizing the unfolded state of the protein(95, 247, 32). Conversely, the “indirect action”
theory proposed that urea directly competes for hydrogen bonding with backbone amide
and carbonyl groups, thereby stabilizing the unfolded state of the protein(118, 17, 48). It is
our view that “direct” mechanism best explains urea’s role in protein unfolding, while the
“indirect” mechanism best describes the role of cholesterol in AS genesis.

pH~7.4

Glyout

O o)) Ol

— —_— —_—
— —
Kd dimer Kdpart Kd,dimer

@ OO0

Ls Phase Lo Phase

Figure 4

In bulk-like environments of liquid disordered phase (red) APP transmembrane domain is
evidenced to form a relatively higher population of Gly-out homodimer(58) which can be
stabilized with metastable extra-membrane S-strands(166). In the neutral pH plasma membrane,
the JM domain K1¢LVFFAED23 a-helix is destabilized(165, 170). In raft-like environments of
liquid ordered phase (blue) APP transmembrane domain is evidenced to form a relatively higher
population of Gly-in homodimer, stabilizing the dimer with glycine zipper (white circles)

Ca -+ - C=0 hydrogen bonds. In the acidic endosomal membrane, the JM domain o-helix is
stabilized (98, 155).

3. Role of cholesterol and membrane in the amyloid cascade

The role of cholesterol in modulating the amyloid cascade has been the subject of much
speculation(36, 52). The onset of AD has long been correlated to enhanced levels of choles-
terol resulting from diet, genetic predisposition, or aging(210, 189, 188, 207, 183, 266, 257,
253). Enhancements to cellular cholesterol concentration are also observed to up-regulate
A synthesis(188, 140). There are many non-membrane enzymes which specifically bind to
cholesterol via a wide array of motifs. Most cholesterol-binding proteins perform oxidation,
hydroxylation, sulfonation, or esterification of the head group(127).

In the membrane, cholesterol has been observed to complex with multi-pass transmem-
brane proteins. Most proteins found to complex with cholesterol are G-protein coupled
receptors (GPCRs), which feature a cavity formed by the characteristic GPCR heptad of
transmembrane helices(139).
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3.1. Lipid rafts and protein partitioning to rafts is important to protein-protein
interactions

The intracellular steps in the amyloid cascade involve processing of APP by its secretases
in different cellular compartments: the plasma membrane (PM), early endosomes (EE),
late endosomes (LE), and the trans-golgi network (TGN)(34, 138, 40). Mutations and
post-translational modifications to these proteins are known to modify trafficking pathways
and thus the ultimate production of AS. The first potential compartment in which APP
may be processed is in the plasma membrane, in which ADAMI10 can cleave APP to abort
the process leading to the production of AB. The cellular compartments and trafficking
pathways involved in AS production are described in detail in section 4.

Protein-protein interactions are not only dictated by subcellular compartment localiza-
tion, but are also dictated by wether proteins laterally compartmentalize into dense, micro-
scopic domains defined by concentrations of cholesterol, sphingomyelins, and gangliosides
often called “lipid rafts”(209). Certain membrane proteins are evidenced to preferentially
partition into these cholesterol-rich domains from the bulk membrane, driven by sequence
and post-translational modifications(130). The existence and potential role of lipid rafts
has been the subject of controversy. While L, domains sharing properties characteristic
of lipid rafts have been observed in wvitro, raft domains have proven difficult to observe in
vivo owing to their nanoscopic size and limited lifetime. Nevertheless, there is a developing
consensus that lipid rafts persist in plasma membranes at the nanoscopic scale, identified
using FRET, fluorescence quenching, super-resolution diffusion, electron microscopy, and
single-molecule tracking(126).

3.2. Lipid phase is a sensitive function of cholesterol level and lipid tail
saturation

There is a rich literature of in vitro lipid bilayer experiments, simulations, and theory that
have elucidated the direct role played by cholesterol in inducing lipid raft formation through
the formation of the L, lipid bilayer phase from the L4 phase due to the co-localization and
condensation of saturated lipids and sphingomyelins with cholesterol.

In binary saturated lipid:cholesterol mixtures, the main lipid phase transition tempera-
ture (T ) from the gel (So) to Lg phase and bilayer to non-lamellar phase temperatures are

Identification of the liquid ordered phase

The condensing effect of cholesterol in lipid layers has been known for approximately 100 years, initially
observed in lipid monolayers on aqueous films(122). Quantitative characterization of lipid structure and
dynamics in solvated lipid bilayers has principally been achieved using residual quadripolar splitting of the
deuterium NMR power spectrum, used to determine the carbon-deuterium order parameters, as detailed by
Seelig(199). Brown and Seelig performed some of the first investigations of the effect of cholesterol on 16:0
PC (DPPC) phosphate group(28), followed by Smith and coworkers who quantified the ordering of slightly
shorter saturated lipid DMPC acyl chains in the presence of cholesterol(61). The first binary phase diagram
featuring the L, to Lq phase transition was determined by Vist and Davis using the carbon-deuterium order

parameter for binary mixtures of DPPC and cholesterol(245).
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broadened until the L, phase fully forms at about 20 mol% Chol, at which the S, is appar-
ently abolished. Detailed all-atom MD investigations have revealed that the L, phase is not
homogeneous, like Lg and S, phases, but instead features a coexistence of Lq and nanoscopic
So-like hexagonally-packed domains (Figure 5.A)(167, 169, 213, 102). The S, phase can be
abolished due to presence of cholesterol(87, 93, 100, 110, 147) or when saturated lipids are
in mixtures with unsaturated lipids(131, 178, 221, 254), which lower the Ty, of saturated
lipids. In multi-component lipid bilayers, as the local concentration of cholesterol complexes
with saturated lipids or sphingomyelin either through non-equilibrium equilibration or in a
critical fluctuation, the local L, phase domain is expected to be introduced as continuous
phase transition from L4 or S, phases, depending on the system temperature.

(A) (B)

A Non-lamellar phases

SN

TChoIesteroI 8

Liquid disordered (Ly ——  Liquid ordered (Lo) ~66 mol%

Cholesterol

| fense assane Gpgae Y e
R GonBs (s
: _Gam\m Lo lateral tail packing Do

Chol
Miscibility gap

0 mol% Cholesterol i 20 mol% <+— Unsaturated lipid % Saturated lipid —»

Figure 5

(A) Lipid phases and phase transitions exhibited for saturated lipid or sphingomyelin with
increasing local concentrations of cholesterol. L, lateral tail packing illustration is shown looking
down the membrane normal. (B) Phase diagram representative of many mixtures involving
saturated lipids or sphingomyelins, unsaturated lipids, and cholesterol at fixed temperature and
concentration in aqueous solution in the lipid bilayer phase displaying the miscibility gap where
phase separation is observed.

Over the past 20 years, many investigations have determined phase diagrams of ternary
mixtures of cholesterol with lipids at physiological temperatures(141). Multiple points
on phase diagrams of macroscopically-observable lipid bilayer phase separations resulting
from mixtures of cholesterol, unsaturated lipids, and saturated lipid/sphingomyelins have
been observed using fluorescence spectroscopy(69, 19, 24, 84, 91, 90, 103, 116, 162, 185,
219, 225, 232, 234, 236, 237, 238, 235), X-ray scattering(19, 38, 85, 176, 229, 261, 264),
atomic force microscopy(24, 43, 111, 264), NMR(185, 238, 235, 50, 239), interferometric
scattering(255), and Raman spectroscopy(5, 60), allowing us to achieve a general concept
of ternary lipid mixture phase diagrams. Generally, at physiological temperatures ternary
mixtures are observed to phase separate around equimolar, 1:1:1 molar concentrations of
saturated lipid, unsaturated lipid, and cholesterol, defining a miscibility gap region inside
the phase diagram in which systems are observed to form large, macroscopically-observed
phase separations in the system (Figure 5.B). At low (<10 mol%) and high (245 mol%)
cholesterol concentrations macroscopic phase separations disappear.
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Above about 66 mol% Chol, cholesterol crystallizes and can crash out of the
solution (100, 214), such that typical membranes can only accommodate up to 66 mol%(96,
173, 218, 249), though there are cellular membranes that can exceed this, such as the oc-
ular cell plasma membranes(26). X-ray scattering experiments have revealed that ~60 nm
diameter domains of pure cholesterol domains can coexist with domains of saturated and un-
saturated lipids at these high mol% cholesterol compositions(100, 264, 186, 265). Maze-like
arrangements of cholesterol interlaced with lipid tails(169, 147, 173) may also form at high
cholesterol concentrations due to propensity to form stable cholesterol homodimers(9, 64)
and the unfavorability of cholesterol-lipid hydrogen bonding(47). A critical point, at which
the system is unstable between phase separated and miscible states, appears at ~40-50
mol% cholesterol, approximately equimolar saturated and unsaturated lipid concentration,
and physiological temperature. Shaw et al. recently reviewed evidence for these critical
points and their potential functional role (204).

3.3. Strong cholesterol affinity for saturated lipids and sphingomyelins

The strong preference of cholesterol to associate with saturated lipids and sphingomyelins
over unsaturated lipids is another curious observation, and has led to speculations about the
role of lipid rafts as platforms for facilitating specific protein-cholesterol(77) and protein-
lipid(223) interactions. It is evidenced that there is a cholesterol Lo:Lq phase partitioning
of approximately 4:1 and 2:1 in 20 and 40 mol% cholesterol based on experiments in phase
separating DPPC:18:1 (A9-Cis) PC (DOPC) 1:1 mixtures including cholesterol. Supported
monolayer Raman microscopy experiments performed by Donaldson and Aguiar determined
Lo:La partitioning of cholesterol in 20, 33, and 50 mol% cholesterol at 3.9:1, 1.5:1, and
2.2:1, respectively(60). Similarly, Ma et al. determined cholesterol L,:Lg partitioning to
be 39.9, 3.63, 2.60, 2.17, and 2.13 at 10, 16, 20, 25, and 30 mol% cholesterol(133). The
variable partitioning of cholesterol between L, and L4 phases as a function of cholesterol
concentration manifests due to the apparently high affinity of cholesterol for small domains
of saturated lipids, and may allow for the formation of small L, domains even with minority
concentrations of cholesterol and saturated lipid in complex lipid bilayers. As such, even
in conditions for which a macroscopic phase separation is not observed, there may yet be
nanoscopic L, domains which may play a role in various biochemical processes.

3.4. Phase separation and raft partitioning of proteins in the amyloid cascade

The structural and composition differences between the L, phase of lipid rafts and the Lqg
phase of the lipid bulk play a role in modulating protein structure and function. APP,
C99, ADAMI10, BACEL1, and ~-secretase are each suggested to preferentially partition into
different lipid domains. The cleavage of APP and C99 is believed to typically occur in
different cellular compartments and lipid domains for each complex. How and why these
proteins prefer to localize and interact in such environments requires understanding the
effect of these environments on protein structures.

Localization of proteins to membranes of the same subcellular compartment (discussed
in section 4) is necessary but not sufficient for the association of two proteins to facilitate
proteolysis. Within the same membrane, there can be a separation of lipids and proteins to
lipid rafts which further compartmentalize the spaces in which protein-protein associations
are likely to occur(217). There is general consensus in the literature that ~y-secretase and
BACE1 partition to lipid raft domains while APP and ADAMI10 partition to the non-raft
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membrane bulk, based on in vivo physiochemical analyses.

Increases in cholesterol concentration have been demonstrated to correlate with increases
in A production and enhancement of BACEL in lipid raft domains(62). Fabelo et al. and
Diaz et al. analyzed the physiochemical properties of early AD human brain samples and
found increases in lipid ordering and lipid raft formation caused by a relative decrease
in unsaturated lipid concentrations. They also found a significant positive correlation of
lipid viscosity with APP-BACE] interactions(67, 54). Using healthy human and rat brain
tissue samples, Hur et al. determined that -y-secretase is principally found in lipid rafts(97).
Barros et al. used using atomic force to observe that +-secretase preferentially partitions
to Lo domains, and that -secretase can facilitate L, domain growth(11).

Multiscale MD simulations of ~-secretase in a variety of membrane environments and
cholesterol concentrations found that cholesterol can bind to the multi-pass transmembrane
helices in a manner similar to that observed in GPCRs, and that the catalytic dyad of
~-secretase adopts a more active conformation in cholesterol-enriched bilayers(3).

Using endothelial cells, Reiss et al. demonstrated that an increase in unsaturated lipid
concentration enhanced ADAM-mediated substrate cleavage, implying larger Lq domain
bulk (reduction in L, domains) functionally enhances ADAM activity(190). In recent work,
we analyzed the effect of L, and Lq domains on the structure of BACE1 and ADAM10
transmembrane domains in simulations. Our results revealed a definite difference in the
character of the proteins in L, compared to L4 domains(1).

The propensity of APP, ADAM10, BACEL, and ~-secretase to partition to L, or Lgq do-
mains has been demonstrated to be a key determining factor in the kinetic processes leading
to AB production. APP, BACEL, and ~-secretase also undergo palmitoyl post-translational
modifications that can selectively enhance their enrichment in lipid raft domains, a phe-
nomenon which has been quantitatively characterized via fluorescence experiments to affect
the domain partitioning of proteins in general(130). We explore the role of palmitoylation
in Af genesis in the following subsection.

3.5. Role of palmitoylation on protein partitioning and association

S-Palmitoylation is a reversible lipidation in which a palmitoyltransferase attaches palmitate
to a cysteine residue via a thioester bond(104, 51). This post-translational modification can
have numerous effects on a protein, including its subcellular localization and trafficking, its
propensity to dimerize, and, particularly relevant to this review, its partitioning between L,
and Ly membrane domains(23). The role of palmitoylation in the amyloid cascades remains
an open and active area of study.

Palmitoylation of APP C186 and C187 in E1 domains is observed to partition APP to
lipid raft domains(20). These lipidation sites imply that the APP E1 domain inserts to the
lipid bilayer in addition to the TMD, causing for a major conformational rearrangement
of APP on the membrane surface. Changes to the structure, function, and protein-protein
interactions attributed to an insertion of the E1 palmitoylation site to bilayers remain
mysterious, but are correlated with the partitioning of palmitoylated APP into lipid raft
domains(21) (Figure 6). Enhancing partitioning to raft domains and homodimerization may
prevent APP processing by ADAM10 in the plasma membrane, enhancing the concentration
of APP that comes to be processed by BACE1 in EE. Fluorescence spectroscopy experiments
using cell-derived giant plasma membrane vesicles have demonstrated a strong preference
for partitioning C99 to Lgq domains in simple ternary phase separating membranes(35). This
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(A) Without palmitoylation, v-secretase, BACE1, and APP may partition to Ly domains, along
with ADAM10, which is not evidenced to be amenable to palmitoylation. (B) vy-secretase,
BACEL1, and APP are hypothesized to more likely partition to L, domains upon palmitoylation
(potential sites are labelled), which will cause conformational changes, particularly the association
of extramembrane residues near the palmitoylated site with the lipid surface.

suggests an essential role for more complex lipid mixtures or C99-protein interactions in
order to establish preferential partitioning of C99 to raft domains.

Palmitoylation of BACE1 may also play a role in A production. BACEL1 is known to
be S-palmitoylated at residues C474, C478, C482, and C485 in and near its transmembrane
domain(16, 243) (Figure 6). While experimental evidence agrees that the palmitoylation of
BACE] increases its affinity for lipid rafts, the effect of this on A formation is still debated.
Replacing the TMD and C-terminal domains of BACE1 with a glycosylphosphatidylinositol
(GPI) anchor was initially found to increase A8 and sAPP S production(44). However, it has
since been found that the GPI anchor leads to preferential BACE1 cleavage of APP at its 5-
site rather than its 3’-site, resulting in an increase in amyloidogenic A production without
affecting the overall APP-cleavage activity of BACE1(241). Further, while raft-localization
of palmitoylation-deficient cysteine to alanine BACE1l mutants is reduced compared to
wildtype BACE1 in neuroblastoma cells, the mutations do not affect $-site cleavage of APP
by BACE1 or amyloidogenic A8 production(243, 152). More recent work exploring the same
cysteine to alanine mutations in vivo, observed reduced raft localization of BACE1, cerebral
amyloid burden, and cognitive decline in transgenic mouse models compared to wildtype(6).

The palmitoylation of other proteins involved, either directly or indirectly, with the
amyloid cascades may be important for AS production. The S-palmitoylation of v-secretase
at C689 of nicastrin and residues C182 and C245 of APH-1 has been identified as an
important factor for y-secretase stability and raft localization(39). However, overexpression
of non-palmitoylated nicastrin and APH-1 was not found to influence -secretase cleavage
of C99 or C89(39). It has also been shown that palmitoylation of flotillins, which regulate
the trafficking of APP and BACEL], is required for their membrane association(151, 157).

The interplay of palmitoylation of APP, the secretases, and other involved proteins is
inherently related to the discussion of the role of membrane phases and cholesterol on Af3
production. Indeed, the aforementioned studies have revealed the critical role of palmitoyla-
tion on the proteins’ partitioning; however, in many cases, the overall effect of palmitoylation
on AS production is still debated. Further research is necessary to settle this controversy
and understand how palmitoylation may be involved in AD development.
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4. Role of cellular trafficking and pH in the amyloid cascade

APP, BACE1, ADAMI10, and ~-secretase proteins mature from the endoplasmic reticulum
(ER) to the Golgi apparatus and are transported to the plasma membrane (PM) via secre-
tory vesicles along the constitutive secretory pathway(34, 138, 40). ADAM10 is particularly
enriched in the PM(175), where 90% of APP cleavage occurs(240), resulting in secretion
of SAPPa and production of C83(175). Endocytosis plays a critical role in the amyloido-
genic pathway. APP and BACEL are evidenced to be separated in the PM and encounter
each other in EE(49) via clathrin-mediated endocytosis (CME) and clathrin-independent
endocytosis (CIE).

CME is a rapid endocytotic process which principally involves the formation of triskelia
of clathrin protein that form a lattice, causing the membrane to bud and eventually pinch
off part of the PM, forming and releasing a vesicle which develops into an EE(27, 83).
ADAMI10 and APP are both found to bind to the clathrin-adaptor protein AP2 and other
adaptins which bind proteins in the membrane bulk for CME(259, 138, 161, 123, 29).

Phosphorylation of residues in the APP endodomain influences APP trafficking and
amyloidogenesis. Among the phosphorylatable residues T729, S730, T743, and Y757(163,
203), phosphorylation of S730 enhances APP trafficking to the Golgi apparatus and Ala
point mutation of T743 may enhance production of A340 and A342(72, 181, 197) and im-
pacts APP interaction with some enzymes(222). Y757 phosphorylation has been identified
to occur at higher propensity in AD patients and is suspected to prevent the interactions
of APP with adaptor proteins due to its inclusion in the Y757ENPTY762 motif(160, 181).

BACEL1 is evidenced to be endocytosed through CIE, though AP2 is evidenced to be
necessary for endocytotic recycling of BACE1(18). CIE occurs via binding with flotillin-
1(82, 107), or ARF6(196). Flotillins are integral membrane proteins that support the forma-
tion of lipid rafts and facilitate endocytosis(164). ARF6 endocytosis requires lipid domains
enriched in cholesterol, likely also forming lipid raft environments(156). As such, the parti-
tioning of APP and ADAMI10 to clathrin-containing bulk membrane phase and the BACE1
partitioning to environments with CIE-inducing proteins that are in lipid rafts is a likely
explanation for why APP is processed by ADAMI10 in the PM prior to endocytosis. Ulti-
mately, changes in the lipid environment and pH are required for activating secretases in
the amyloid cascade (Figure 7).

4.1. Endosomal environment pH activates BACE1 and ~-secretase, and
discourages APP homodimerization

The role of pH in Aj genesis and aggregation has received significant attention(114, 112,
256, 226). Unlike cytoplasmic and extracellular environments, endosomal compartments
are acidic(174). pH lowers from ~6.5 to 4 as endosomes develop from EE to LE to
lysosomes(94). Both BACE1 and ~-secretase are active over a range of pH spanned by
lysosomal environments and the PM. However, acidic subcellular environments are optimal
for BACEL and +-secretase activity. BACE1L and ~-secretase are evidenced to be most
active at pH 4.5(208, 78, 92, 65) and 6.5(145, 184, 79), respectively. BACEl and APP
have been visualized in HelLa cells and mouse neurons to be separate when trafficked to
the PM(73), implying that BACE1L only processes APP upon associating together in acidic
endosomal environments. Likewise, y-secretase has been visualized in mouse neurons in
vivo processing C99 in LE and lysosomes(135), and has been shown to be associated with
lipid rafts in endosomes of mouse neuroblastoma(242).
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Ilustration of subcellular compartments involved in the amyloid and complementary cascade
pathways. APP, a-secretase (ADAM10), and B-secretase (BACEL) are represented in purple,
blue, and red, respectively. AS is displayed in pink. The v-secretase complex nicastrin, PEN-2,
APH-1A, and presenilin 1 domains displayed in blue, pink, orange, and green, respectively. Lo
domains represented with blue, ordered saturated lipid tails and a higher concentration of
cholesterol, Ly domains represented with red, disordered unsaturated lipid tails and a lower
concentration of cholesterol.

The majority of AS is evidenced to reside in the cytosol(262) and lysosomes where Aj
may oligomerize(66). In addition to controlling activity of BACE1 and ~-secretase, lower
pH is observed to promote the formation of A8 oligomers(144) via protonation of E22(112),
which stabilizes the characteristic S-turn defined by hydrogen bonding between E22-K28.
This B-turn may serve as a nucleus for A3 aggregation(220). This observation suggests that
pH shock could play a role in the nucleation and growth of AS aggregates by stabilizing
aggregation prone N* states exhibiting this critical S-turn(256, 143, 158, 187).

In low pH environments APP El1 domains are evidenced to undergo a conforma-
tional switch which may be important for modulating their homodimer dissociation con-
stant and thus their availability for processing by ADAM10 and BACE1(88). Aside from
ectodomains, residues with moderate pKa values and FAD mutants featuring charged
residues are evidenced to play a significant role in determining the structure in the S-turn
prone KisLVFFAED23 subsequence of C99 and Af.

Monomeric A congeners including residues 1-28 have been demonstrated to form a-
helices in very low pH environments upon a neutralizing mutation such as the E22Q FAD
mutant using NMR(42). In C99 both low pH environments and E22Q D23N FAD mutants
were observed in MD simulations to stabilize the juxtamembrane domain a-helix in C99
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by neutralizing residues E22 and D23(168, 165). The stabilization of an a-helix in residues
22-28 precludes the formation of S-strands evidenced to be necessary to formation of stable
A oligomers and fibrils(159).

4.2. Role of pH and cholesterol-induced lipid phase on C99 structure and
kinetics

This brings us to our attempt to understand how pH, FAD mutants to the JM domain, and
cholesterol may make C99 available for processing by ~-secretase.

As discussed earlier, thickening lipid bilayers make the Gs7Gss hinge more rigid and
reduce the quantity of A produced by ~-cleavage(89, 251). However, 7-cleavage is be-
lieved to occur in thicker, liquid ordered domains. Barrett et al. suggested that cholesterol
may specifically bind to C99(10), however Song et al. characterized the C99-Chol dissoci-
ation constant as a mere -2.1 kcal/mol, and unbiased MD simulations of their association
demonstrated weak specificity for association of Chol around particular faces of the TMD
(215).

Additionally, 8- and 7-cleavage occur in low pH endosomal environments, where residues
E22 and D23 in the C99 JM domain have been estimated to be protonated, thus stabilizing
an a-helix in the JM domain(165), which seems to discourage formation of S-strands in the
extramembrane domain and Cca---O=C hydrogen bonds along the GxxxG zipper motif
which stabilize the C99 homodimer(166). Moreover, formation of L, domains by introduc-
tion of cholesterol into bilayers featuring saturated lipids has been demonstrated via MD
simulation to promote a-helical structure in C99(168).

We believe the C99 homodimer is thus destabilized in L, domains and at low pH, mak-
ing C99 (potentially also full APP) within the endosomal environment more available for
processing by - (and 3-) secretase. It seems that in the Ly phase at neutral pH C99 ho-
modimers are the most kinetically stable. But upon endocytosis to endosomal environments
at lower pH and potentially higher concentrations of saturated lipids and cholesterol, C99
(APP) may be partitioned into lipid raft domains with v (3) secretase, where the homod-
imer is less kinetically stable due to formation of the JM domain a-helix, and thus becomes
available for processing (Figure 4).

5. Conclusions and future perspectives

In this Perspective, we explore several basic questions framed in order to better understand
how lipid bilayers and cholesterol impact APP and A( genesis. The effect of varying choles-
terol concentrations on lipid phase separations and the associated complex phase behavior
is discussed. The effect of introducing the L, phase via addition of cholesterol and the im-
pact on the conformational ensemble of C99 is explored. The role of membrane structure,
including thickness of the lipid bilayer, on the conformational ensemble of full-length C99
is discussed. Recent findings from NMR experiments and large-scale simulations regarding
the nature of full-length C99 monomer and homodimer conformational ensembles are dis-
cussed. We summarize the known interplay of lipid phase separation, protein trafficking,
and pH in the amyloid cascade.

In this perspective, we have noted competing theories for the role of cholesterol in Aj
genesis. The “direct action” theory posits that cholesterol establishes specific complexes
with C99 that impact AS partitioning between lipid domains and cleavage by ~-secretase.
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A competing theory of “indirect interaction,” which has gained significant recent support,
suggests that cholesterol impacts lipid phase separation and domain formation, which in
turn impacts C99 structure, partitioning, and processing by secretases. In our view, the
“indirect” mechanism best describes the cholesterol’s mode of action in Af genesis.

Below we provide a summary of our current understanding and a list of future issues
that we feel are well-suited for study at this time, using a variety of computational and
experimental approaches described in this review.

SUMMARY POINTS

1. Observations of protein trafficking derived from in vivo studies of proteins in the
amyloid cascade imply that APP and ADAM10 partition to Lq domains and BACE1
and ~y-secretase partition to L, domains. Direct observation using fluorescence
probes has confirmed C99 strongly partitions Lq domains.

2. Cholesterol induces the formation of the L, phase in bilayers upon achieving suffi-
cient local concentrations in complex with saturated tail lipids. The modulation of
lipid raft formation by cholesterol appears to be the principal, indirect mechanism
by which cholesterol modulates the amyloid cascade.

3. Prior direct mechanisms for cholesterol modulation of protein structure via bind-
ing to membrane proteins, particularly binding to the single-pass transmembrane
domain of APP (C99), might instead be attributed to the formation of the L,
environment.

4. Endocytotic trafficking is not only a mechanism by which proteins are sorted in the
amyloid cascade. It is the principal determinant of when various stages of APP
cleavage occur due to the pH activation of secretases and conformational changes
in APP and C99.

5. Palmitoylation of APP, BACE1, and ~-secretase likely enhances the partitioning of
these proteins to L, domains. In addition, palmitoylation of BACEL is conjectured
to enhance production of Ap.

FUTURE ISSUES

1. The partitioning coefficient of ADAM10, and BACE1 between Lg and L, domains
has not been quantified in any membrane system. Measurement of these partition-
ing coefficients would enable the development of kinetic models of A production
through which the role of L, phase formation in A formation may be explored.

2. Understanding the impact of pH, which differs between plasma membrane and
endosomal environments, on the structure and function of APP, C99, ADAMI10,
BACE1O0, ~-secretase, and Af, and the encounter complex of all of these proteins,
remains an important topic for future research.

3. Palmitoylation is an important factor in determining the domain partitioning of
APP, BACEL, and 7-secretase. However, little is known regarding how palmitoyla-
tion impacts protein structure and partitioning between domains.

4. Cholesterol may modulate the structure, function, and cleavage of membrane pro-
teins, beyond those discussed in this review, indirectly through domain formation
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and protein partitioning. This may be particularly true for single-pass transmem-
brane proteins which lack cholesterol binding pockets, unlike the GPCRs for which
direct cholesterol binding has been observed.

5. Lipid rafts have mostly been investigated as domains of cholesterol, saturated lipids,
sphingomyelins, and gangliosides which facilitate protein-protein interactions. How-
ever, the role of protein concentration and partitioning coefficients in formation of
L, phase has received attention very recently(205, 248). Investigations of the effect
of protein on L, domain formation is of interest in general as well as in the specific
cases of APP, C99, ADAM10, BACEL, and ~y-secretase.

6. With the exception of CME facilitated by clathrin binding at the APP
Y757ENPTY 762 domain, the role of APP and C99 intracellular domain interac-
tions with various cytosolic proteins in amyloidogenesis remains mysterious. Fur-
ther characterization of the intracellular proteins that bind the APP intracellular
domain is necessary to complete our understanding of the amyloidogenic pathway
in relation to other biochemical processes.
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