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Abstract
The landscape of high performance computing (HPC) has witnessed exponential growth in processor diversity, architectural 
complexity, and performance scalability. With an ever-increasing demand for faster and more efficient computing solutions 
to address an array of scientific, engineering, and societal challenges, the selection of processors for specific applications 
becomes paramount. Achieving optimal performance requires a deep understanding of how diverse processors interact with 
diverse workloads, making benchmarking a fundamental practice in the field of HPC. Here, we present preliminary results 
observed over such benchmarks and applications and a comparison of Intel Sapphire Rapids and Skylake-X, AMD Milan, 
and Fujitsu A64FX processors in terms of runtime performance, memory bandwidth utilization, and energy consumption. 
The examples focus specifically on the Sapphire Rapids processor with and without high-bandwidth memory (HBM). An 
additional case study reports the performance gains from using Intel’s Advanced Matrix Extensions (AMX) instructions, and 
how they along with HBM can be leveraged to accelerate AI workloads. These initial results aim to give a rough comparison 
of the processors rather than a detailed analysis and should prove timely and relevant for researchers who may be interested 
in using Sapphire Rapids for their scientific workloads.

Keywords  Benchmarking · Performance · Energy usage · Intel Sapphire rapids · Fujitsu A64FX · AMD Milan · Intel 
Skylake · HBM · AMX · TMUL

Introduction

This paper presents our preliminary work of benchmarking 
and comparing performance on different processors with a 
special focus on the Sapphire Rapids’ (SPR) [1] and their 
HBM feature, which promises a performance boost for mem-
ory bandwidth-limited applications. An early study using the 
SPR architecture reported more than 8.5x faster runtimes for 
multi-physics codes relative to Intel’s Broadwell architecture 
when utilizing high bandwidth memory [2]. The paper inves-
tigated the runtime of two different hydrodynamics applica-
tions on Intel Broadwell, as well as on SPR with and without 
HBM. Another study examined bandwidth limitations in the 

SPR processor and concluded that the lack of sufficient con-
currency in the cores of the processor affects bandwidth and 
explains why the peak is never achieved when using HBM 
[3]. Wang et al. [4] explored the effects of HBM on several 
benchmarks and applications, finding that many scientific 
applications benefit from it. [5] analyzed the performance 
of AMD Genoa and Intel Sapphire Rapids CPUs and com-
pared them to older CPU models. The authors used the HPL, 
HPCC, and NAS parallel benchmarks, as well as LAMMPS, 
GROMACS, and NWChem for the comparison. The paper 
concludes that the Intel Sapphire Rapids as well as the AMD 
Genoa CPUs provide a significant performance boost of 20% 
to 50% compared to older AMD and Intel CPUs. [6] inves-
tigated the SPEChpc 2021 benchmark suite, in MPI-only 
mode, on Intel Ice Lake and Sapphire Rapids and analyzed 
the performance in terms of runtime and power/energy.

In this work, we extend the previous studies by studying a 
different set of benchmarks and applications and comparing 
the performance on a diverse set of architectures, i.e. Fujitsu 
A64FX, Intel Skylake, and AMD Milan. The latest AMD 
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model is not included in the study due to the unavailability 
for experimentation or analysis within the research environ-
ment. All benchmarks and applications were compiled with 
full optimizations for each architecture. Selected instances 
were chosen to juxtapose Intel Sapphire Rapids with NVID-
IA’s Grace-Grace and Grace-Hopper superchips [7].

We also share the observed performance gains from using 
the new AMX instruction set extension to the AVX 512 
ISA. SPR is the first chip to implement the tiling instruc-
tions. These tiling instructions are run on an accelerator, a 
tile matrix multiply unit (TMUL). This TMUL unit oper-
ates on data stored in separate 2-D registers representing a 
tile. [8] shows improved inference performance of BERT, a 
Deep Learning model, by applying quantization and opera-
tor fusion on top of Intel’s AMX features. Their results are 
comparable to NVIDIA’s T4 GPU for smaller batch sizes. In 
our case study, we report the performance of multiple input 
problems for the convolution operator and see how different 
types of memory and hardware support for input data types 
affect these results.

The results presented here are a first step and will be 
extended in the future. This paper is laid out in the fol-
lowing manner. We discuss the benchmarking protocol, 
micro-benchmark applications, and three science applica-
tions in Section “Materials and Methods”. The next sec-
tion discusses the observed performance for the aforemen-
tioned benchmarks and compares it to other systems. We 
also include an investigation on how changing various BIOS 
settings affects the performance and energy consumption of 
a selected application. This analysis was initially necessary 
to choose settings that kept the power consumption within 
data center limits while not decreasing the performance of 
the nodes. Finally, we discuss our key observations.

Materials and Methods

Benchmarking protocol: The systems evaluated in this 
benchmark analysis are listed in Table 1. The used compil-
ers, MPIs, as well as processor-specific flags can be found 
in the appendix. Typically, each application or micro-
benchmark was executed five to ten times on each system, 
and mean values were reported. HBM on the SPR nodes 
was configured in Flat Mode with Sub-NUMA Clustering 
4 (SNC4). In this configuration, memory is spread across 
16 NUMA regions, with regions 0–7 containing cores, 
and all (0–15) with both DDR5 and HBM. To preferen-
tially utilize HBM over DDR5 memory where possible, the 
tested applications and micro-benchmarks were run with 
numactl –preferred-many=8–15, unless specified 
otherwise. This setup was shown in our tests to produce 
the same performance as binding applications to specific 
numa nodes while being less cumbersome to execute. 
Hereafter, SPR-HBM denotes runs on the SPR processor 
wherein HBM was preferentially utilized, while SPR-DDR 
signifies runs with default memory configurations. Energy 
consumption was measured using each system’s ipmitool 
[9].

The analyzed metrics are:
Runtime: The runtime, or time to solution, is often the 

primary concern of users as it is the limiter for discovery 
or publication deadlines. It can be a good assessor of how 
scalable the combination of software and hardware is.

Energy consumption: This is primarily most important 
to system managers who seek to minimize overall energy 
consumption. But increasingly this information is passed 
to users to inform climate-conscious actions.

Table 1   Studied systems

Processor Cores Clock speed (GHz) Memory (GB)

Intel® Xeon® CPU Max 9468
(‘Sapphire Rapids’)

96 2.6 256 DDR5 + 128 HBM

Fujitsu A64FX-FX700 48 1.8 32 HBM
AMD EPYC 7643
(‘Milan’)

96 3.2 256 DDR4

Intel® Xeon® Gold 6148
(‘Skylake’)

40 2.4 192 DDR4

 Processor NUMA
Regions

Infinband
Network

Vector Instructions

Intel® Xeon® CPU Max 9468
(‘Sapphire Rapids’)

16 NDR (400 Gbit/s) AVX512, Intel DL Boost,
AMX extensions

Fujitsu A64FX-FX700 4 HDR (100 Gbit/s) SVE instructions
AMD EPYC 7643
(‘Milan’)

8 HDR (100 Gbit/s) AVX2 instructions

Intel® Xeon® Gold 6148
(‘Skylake’)

2 FDR (56 Gbit/s) AVX512 instructions
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Efficiency: This metric is mainly interesting to system 
managers, who are seeking good overall system throughput 
and cost-efficient utilization.

Peak power consumption: The metric alone does not 
deliver a lot of useful information, but for a given perfor-
mance/efficiency/or other target it can inform system design 
and is a key constraint in peak performance.

For selected benchmarks, results on Graviton3 CPUs and 
NVIDIA A100 GPUs are included, as those results are avail-
able from a previous study, [10].

Benchmarks

Several smaller benchmarks are investigated to test multi-
ple attributes of the systems. They are listed and described 
below:

DAXPY and simple memory copy were used to analyze 
the bandwidth memory on SPR with and without HBM.

STREAM - We compile the standard source code for 
all processors except for A64FX, where a tuned version of 
STREAM is publicly available. The array size is chosen such 
that at least half of the available node memory is in use. The 
benchmark is run on all architectures at full subscription.

The HPCC (HPC Challenge) benchmark [11] combines 
multiple benchmarks. Here we are reporting on three of 
them: High Performance LINPACK (HPL), Matrix-Matrix 
multiplication and Fast Fourier Transform (FFT). LINPACK 
solves a linear system of equations using all cores in parallel. 
The performance is measured in Giga Floating Point Opera-
tions Per Second (GFLOPS) and corresponds to the perfor-
mance of the application on all allocated compute resources. 
We also report GFLOPS/Core, which are the total GFLOPS 
divided by the number of cores.

The HPCG (The High-Performance Conjugate Gradi-
ents) benchmark is an alternative to the HPL benchmark 
(used in HPCC) and utilizes methods and patterns commonly 
used in many PDE solvers [12]. Unlike HPCC, HPCG does 
not rely on external libraries but requires vendors to opti-
mize their own version of HPCG. Thus, for x86 machines, 
we used the Intel version of HPCG, and for the A64FX the 
version from Cray.

oneAPI Deep Neural Network Library or oneDNN, a 
part of oneAPI, is an open-source library providing opti-
mized deep learning primitives for CPUs and GPUs. Many 
deep learning frameworks like PyTorch, and TensorFlow 
use oneDNN as a backend for accelerated computing on 
CPUs. oneDNN has the capability to detect the underly-
ing instruction set architecture and uses Just-In-time (JIT) 
code generation to deploy optimized kernels at runtime. 
In this study, we explore the performance of new features 
included in the SPR processors, namely Advanced Matrix 
Extensions, and compare them to the best dispatch in 
Skylake-X and A64FX processors for the same problem, 

inputs, and run configuration. To prevent any unfair disad-
vantages in our study, we do not include the AMD Milan 
processor since it does not have special 512-bit vector pro-
cessing elements.

Applications

Scientific applications are investigated to allow for a better 
understanding if, and how, the SPR with and without HBM 
can benefit real-life applications.

GROMACS is a software package for the simulation of 
biomolecular systems like proteins, membranes, DNA, and 
RNA [13]. It calculates how atoms move over time under a 
classical physics approximation by solving Ordinary Dif-
ferential Equations based on Newton’s second law. Three 
systems, consisting of 82K, 200K, and 1.2M atoms, were 
used as benchmark [14].

OpenFOAM is a library and a collection of appli-
cations for the numerical solution of Partial Differ-
ential Equations [15]. The test case is a calculation 
of incompressible airf low around a motorcycle and 
is based on a test included in the OpenFOAM suite 
(incompressible\simpleFoam\ motorBike). We 
have increased the initial grid in each direction 2, 4 and 6 
times to increase resolution and problem size. The grid is 
further refined around the obstacle, and the Navier–Stokes 
equations are solved on an unstructured grid. The result-
ing mesh consists of 2 M, 11 M, and 35 M cells. Total 
wall time was used as a performance metric (i.e., smaller 
= better).

ROMS, Regional Ocean Modeling System [16, 17], is an 
ocean model widely used in the scientific community. It is 
a free-surface, terrain-following, primitive equations ocean 
model. The test case we use for this work simulates the flow 
around the west Antarctic Peninsula [18]. ROMS was picked 
as a test application because it is an important local applica-
tion with performance characteristics representative of other 
structured grid codes.

HPCC, HPGC, GROMACS, and OpenFOAM were exe-
cuted on all cores of a single node (96 cores) using MPI for 
parallel execution.

The input parameters and automation procedures (batch 
job submission and monitoring, output parsing) for HPCC, 
HPCG, GROMACS, and OpenFOAM were adopted from 
the XDMoD application kernel module [10, 19].

Results

Here we focus on the runtime, memory bandwidth, as well 
as on energy consumption.
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Benchmarks

Memory bandwidth. STREAM TRIAD demonstrates the 
sustained HBM bandwidth of SPR being 1,360.5 GB/s, 
which is 3.5 times higher than DDR bandwidth on the 
same node (Table 2, STREAM Column). This is consistent 
with the results obtained by Wang et al. [4]. We also stud-
ied the bandwidth versus the number of threads and their 
distribution using the memory copy benchmark (Fig. 1). 
Impressively, increasing the number of threads up to full 
subscription on a node improves the memory bandwidth 
utilization almost linearly with HBM, while in DDR mode, 
the bandwidth saturates quickly. The cumulative single-node 
memory copy bandwidth on SPR was more than 4.2x higher 
for SPR-HBM than for SPR-DDR (Fig. 1). Similarly, using 
the spread thread distribution configuration consistently 
outperformed close thread placement except at the highest 
number of threads tested.

The HPCC benchmark utilizes BLAS and FFT libraries, 
often used in scientific applications. Matrix-matrix multi-
plication (DGEMM) is one of the few practical calculations 
capable of approaching theoretical FLOPS, in part due to 
memory-efficient algorithms, which significantly reduce 
the memory bandwidth requirements. As can be seen from 
Table 2 (matrix multiplication column), SPR demonstrates 
the highest per core and per node performance with HBM 
bringing an additional 13% improvement. In the LIN-
PACK test, the memory bandwidth requirements are higher 
and HBM systems (A64FX and SPR-HBM) show better 

performance (Table 2, LINPACK column). SPR-DDR has 
a similar per-core performance to the Intel Skylake-X CPU, 
and HBM brings an additional 29% improvement making 
SPR-HBM the fastest per core and per node system. FFT 
exhibits even higher memory bandwidth requirements than 
LINPACK and DGEMM and systems with faster memory 
show better performance (Table 2, FFT column). SPR shows 
the fastest per core and per node results with HBM respon-
sible for an 11% improvement.

The HPCG benchmark reflects the performance of many 
PDE solvers. SPR-DDR exhibits similar performance to pre-
vious generations. Turning on HBM brings an impressive 
2.4x increase in performance (Table 3).

oneDNN is publicly available via GitHub, and we 
chose the latest release v3.2 for this work. To benchmark, 
we compare the performance of the convolution driver 
with benchdnn, a benchmarking harness provided by 
oneDNN. We selected 10 sample inputs as mentioned in 
Table 4 for the convolution driver. The naming convention 
follows a descriptor-size combination. Here mb stands for 

Table 2   Benchmarks: 
STREAM, HPCC(DGEMM, 
Linpack and FFT)

Fig. 1   Memory copy routines showing memory bandwidth patterns

Table 3   Performance in HPCG Benchmark

Table 4   benchDNN: input problems

Problem number Problem

1 mb256ic64ih56oc256oh56kh1ph0n
2 mb256ic64ih56oc64oh56kh1ph0n
3 mb256ic128ih28oc128oh28kh3ph1n
4 mb256ic128ih28oc512oh28kh1ph0n
5 mb256ic256ih14oc256oh14kh3ph1n
6 mb256ic1024ih14oc256oh14kh1ph0n
7 mb256ic512ih7oc512oh7kh3ph1n
8 mb256ic2048ih7oc512oh7kh1ph0n
9 mb256ic256ih56oc128oh56kh1ph0n
10 mb256ic512ih14oc512oh7kh3sh2ph1n
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mini batch size; ic and ih stand for input channel and height 
respectively; oc and oh stand for output channel and height 
respectively; kh, sh and ph stand for kernel, stride, and pad-
ding heights respectively. For example, mb256ic64ih56oc-
256oh56kh1ph0n will mean that we have a mini batch size 
of 256, 64 input channels, input height 56, output channel 
256, output height 56, kernel height 1, and padding height 0. 
Next, we selected 3 input configurations to test, i.e., the input 
data type to the operator. We test with signed and unsigned 
8-bit integers (important for inference), 32-bit floating point 
inputs, and lastly BrainFloat-16 (BF16) data types (both 
important for training as well as inference). The low preci-
sion data types are chosen since SPR has native support for 
them and they can leverage the TMUL accelerator via AMX 
instructions.

For the SPR chips, we utilize numactl to map memory 
regions explicitly to those nodes that have HBM and DDR 
corresponding to the CPUs used for running the bench-
mark. This helps us understand how HBM plays a role in 
the observed performance. Each associated data type has a 
CPU dispatch control (except for A64FX), which can control 
the ISA to be used. Here we select the default, which is the 
best available for the input configurations. This is described 
in Table 5.

We see the performance difference between the convolu-
tion operator with the same inputs on all 3 architectures that 
have a 512-bit vector length implementation. In Fig. 2, while 
running the samples in forward mode with 32-bit floating 
point data types typically used during training, we see that 
SPR-HBM is up to 1.7x and 3.5x faster than Skylake-X and 
A64FX. Improvements with respect to Skylake-X for this 
problem show the general benefits of running on newer Intel 
hardware as the same dispatch (AVX512_CORE) for jit’d 
kernels is used in both cases.

We also bring special focus to forward mode runs with 
the BrainFloat-16 data type commonly used on GPUs. Fig-
ure 3 shows the performance gains from using BF16 data 
type compared with other architectures. A64FX is omitted 
because the JIT kernels do not have a BF16 implementation. 

Comparing to results obtained by SPR-HBM in fp32 mode, 
we see speedup ranging from 1.79x - 9.2x. This result is 
crucial as bf16 data type can be used for mix-precision train-
ing available in Deep Learning frameworks and can accel-
erate workloads on CPU architectures with native support. 
Skylake-X suffers from massive performance degradation 
even compared to fp32 mode because of the lack of intrin-
sic support for BF16 instructions. Additional details can be 
found in the Appendix.

Lastly, we show the performance of the same inputs in 
forward mode for inference with 8-bit integer data types in 
Fig. 4. We see speedups of up to 16.1x with the SPR proces-
sor over Skylake-X and up to 17.5x speedup over A64FX 
when using SPR-HBM. There are also general benefits of 
using HBM vs DDR on the SPR processor with speedups 

Table 5   benchDNN: best CPU dispatch available

Architecture Mode Data type Best CPU dispatch

A64FX FWD_B fp32 SVE-512
FWD_B bf16 –
FWD_I int8 SVE-512

Skylake-X FWD_B fp32 AVX512_CORE
FWD_B bf16 AVX512_CORE
FWD_I int8 AVX512_CORE

Sapphire Rapids FWD_B fp32 AVX512_CORE
FWD_B bf16 AVX512_CORE_AMX
FWD_I int8 AVX512_CORE_AMX

Fig. 2   FWD_B mode (forward mode with bias) used in training with 
32-bit floating point input and output

Fig. 3   FWD_B mode (forward mode with bias) with 16-bit Brain-
Float data type for input and output
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of up to 2x. However, there are some cases across all fig-
ures where there was no speedup and insignificant loss in 
performance.

Applications

All our benchmarks show significant improvement over the 
previous CPU generation, with HBM bringing a significant 
performance boost for some applications. We therefore 
wanted to determine if improvements in core libraries and 
system capabilities will translate to real-world applications.

GROMACS and other Molecular Dynamics applications 
are responsible for a significant portion of HPC system uti-
lization. SPR performs the fastest among pure CPU systems 

(Table 6). However, the use of HBM does not have a sig-
nificant effect on the performance across the tested problem 
sizes. For small MEM systems (82k atoms), the SPR CPU 
is 2.5 times faster than the Milan CPU, but for larger sys-
tems (RIB, 2 M atoms, and PEP 12 M atoms), SPR is only 
31–37% faster. We speculate that due to the smaller size of 
the MEM system, it fits mostly within CPU

caches, allowing more efficient utilization of AVX-512 
instructions. This results in a single SPR node performance 
for MEM being only 15% slower than the NVIDIA A100 
GPU performance. For larger problems, SPR is 40–50% 
slower than A100 (for a more extensive comparison to 
modern GPUs, see [7]). Another notable point is that the 
old Skylake CPU still has strong per-core performance, 
and multi-node execution can alleviate lower core per-node 
count.

OpenFOAM tests demonstrate an increased performance 
of SPR for larger problems compared to previous Intel and 
AMD CPUs (Table 7). For the smallest problem, which 
has 2 M cells, SPR performs similarly to Milan, with little 
effect from HBM. For the larger problems (11 M and 35 M 
cells), SPR is 25% faster than Milan. An additional 21–25% 
improvement can be achieved by using HBM. Interestingly, 
HBM has no significant effect on the meshing step. Most of 
the performance improvement comes from the solving part. 
This is most likely due to intensive memory allocation/deal-
location during the meshing process where DDR and HBM 
perform similarly.

ROMS - The benchmark results in terms of runtime, 
scaling, and energy consumption are shown in Fig. 5. 
On SPR, HBM is nearly 2 times faster than using DDR 
(Fig. 5a). The performance of Skylake and SPR-DDR 
is very similar. A64FX shows poor performance when 

Fig. 4   FWD_I mode (forward pass in inference) with 8-bit integer 
data type input and output

Table 6   Performance for 
GROMACS. GPU performance 
is given for comparison, see 
[10] for more details. The 
GPU systems had four and two 
GPUs but only one was used. 
The power measurements also 
include idle GPUs



SN Computer Science           (2024) 5:623 	 Page 7 of 11    623 

SN Computer Science

Table 7   Performance in 
OpenFOAM application

(a) Runtime vs number of cores. (b) Runtime ratio (one node / n nodes)

(c) Energy consumption per simulation vs
number of cores.

Fig. 5   Results for running ROMS on different CPUs
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using low core counts, but outpaces the other CPUs when 
increasing the number of used cores. On the A64FX nodes, 
the code scales well, whereas this is not the case for other 
processors. Especially on SPR, both HBM and DDR, and 
Milan, the scaling is poor. The scaling was evaluated as 
the ratio of runtime on a single node versus on multiple 
nodes (Fig. 5b). The energy consumption is depicted in 
Fig. 5c. SPR, having a peak power consumption of more 
than 1000W, exhibits a substantial energy consumption, 
especially for higher core counts. A64FX, with a peak 
power consumption of around 120W, on the other hand, is 
very energy-efficient. The energy efficiency of the A64FX 
has also been indicated by the leadership of the Fugaku 
supercomputer in the Green500 benchmark in 2019. Sum-
marized, ROMS showcases both positive and negative 
aspects: the favorable performance gain from HBM and, 
on the other hand, the hard fact that poor multi-node scal-
ing inevitably leads to poor energy efficiency.

Investigating the Effect of BIOS Changes

This section focuses on the effect of changes in the sys-
tem’s BIOS on performance and energy consumption. We 
investigated two workload profiles: the default HPC profile 
and our custom profiles (Table 8). The default HPC profile 
prioritizes the performance and disables the CPU’s C-states. 
The latter disables the ability of the CPU to go into a deeper 
idle state. To figure out the energy savings and effects on 
performance, we tested our custom profile setting where we 
use balanced performance and allow up to C6 idle state. 
This allows higher energy savings when the node is unused. 
Our measurements show that the custom profile reduces the 
idle power consumption from ∼ 450 Watt to ∼ 310 Watts. 
The BIOS settings were tested on ROMS, GROMACS, and 
OpenFOAM.

Four nodes were configured with each workload profile, 
and the ROMS application was run 5 times for each con-
figuration on 1, 2, and 4 nodes. The results of runtime and 
energy consumption are shown in Fig. 6.

Table 8   Differences in the HPC 
and the custom profile

Setting HPC Profile Custom Profile

Power Regulator Static high performance Dynamic power savings
Min. Processor Idle Power Core C-state No C-states C6
Min. Processor idle power package C-state No C-states Package C6 Retention
Energy Performance Bias Max Performance Balanced Performance
UPI Link Power Management Disabled Enabled
Uncore Frequency Shifting Maximum Auto
Collaborative Power Control Disabled Enabled
Energy-Efficient Turbo Disabled Enabled
Optimized Power Mode [Hidden Setting] Disabled Enabled

Fig. 6   Results of ROMS with different BIOS configurations. Left: Runtime in minutes vs number of cores, Right: energy consumption per simu-
lation vs number of cores
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Interestingly the runtime as well as the energy consump-
tion show a slight decrease under the custom profile, indicat-
ing that those settings have a measurable impact. The peak 
power consumption decreased from 1150 to 1034 W when 
using the custom BIOS profile.

GROMACS and OpenFOAM show a performance degra-
dation of 3% and 6%, respectively, when being run with the 
Custom BIOS. Still, for underutilized machines, the energy 
savings might outweigh performance degradation. Future 
work will investigate this in more detail.

Discussion and Conclusion

In this work, we evaluated the new Intel SPR CPU with 
optional HBM memory and AMX instructions. HBM holds 
the promise of enhancing the performance of memory-
bound applications. Our results with multiple benchmarks 
demonstrate promising performance improvements with the 
new SPR (DDR mode). This is evident in the performance 
improvement for ROMS, GROMACS, and OpenFOAM.

HBM brings a further and often substantial improvement 
in the benchmarks (2.4 times in HPCG) and real applications 
(almost doubling for ROMS and 21–25% for OpenFOAM). 
However, some applications like GROMACS do not benefit 
from the HBM featured in this processor.

The AMX extension to the Intel AVX512 ISA shows sig-
nificant speedups in our tests, positioning the SPR CPU as a 

potential option for mix-precision deep-learning training and 
inference workloads with appropriate data types.

In centers with diverse workloads, HBM-enabled SPR 
nodes can offer significant performance enhancements for 
specific applications such as ROMS. Adjusting the BIOS 
profile can assist in maintaining low power consumption 
without compromising performance. Future work will 
involve further BIOS investigations with additional use 
cases. Furthermore, we plan to extend our analysis of SPR 
to encompass additional scientific applications and larger, 
computationally more demanding test cases.

Appendix

See Tables 9, 10. 

Performance Degradation of BF16 kernels 
on Skylake‑X Processor

As seen in Fig.  3, Skylake-X suffers from poor runtimes 
when the input and output data type is set to BF16 because 
this architecture does not possess intrinsic support for BF16 
instructions and uses what is available i.e., AVX512_CORE 
instructions that are aimed for single and double preci-
sion. We verified this behaviour by controlling the envi-
ronment variable ONEDNN_MAX_CPU_ISA via values 
(AVX512_CORE, AVX512_CORE_BF16) on Skylake-X 
and SPR and observing the JIT dump. Skylake-X cannot 

Table 9   Compilers, MPIs, and 
flags used for all presented 
benchmarks and applications

Processor Compiler MPI CPU-specific flags

Intel® Xeon® CPU Max 9468 GCC12.1.0
Intel2023.2

OpenMPI4.1.5
IntelMPI2021.9

-march=sapphirerapids 
-mtune=sapphirerapids

-xsapphirerapids
Fujitsu A64FX-FX700 Fujitsu4.8 FujitsuMPI -KSVE
AMD EPYC 7643 aocc4.0 OpenMPI4.1.5 -march=native
Intel® Xeon® Gold 6148 GCC12.1.0

Intel2023.2
OpenMPI4.1.5
IntelMPI2021.9

-march=skylake -mtune=skylake
-skylake

Amazon ARM Graviton3 GCC11.3.0 OpenMPI4.1.4 spack defaults
Nvidia A100 CUDA 12.0 N/A app defaults

Table 10   Additional flags used 
for the STREAM benchmark

Processor Compilation flags

Intel® Xeon® CPU Max 9468 -O3 -xsapphirerapids -ffreestanding -fiopenmp
-mcmodel=large -shared-intel -qopt-streaming-stores=always
-fno-builtin -qopt-zmm-usage=high

Fujitsu A64FX-FX700 -Kfast,preex -Kopenmp -Kzfill -Kstriping=4
AMD EPYC 7643 -O3 -ffreestanding -march=native -fopenmp

-mcmodel=large -fno-builtin -ffp-contract=fast -fnt-store
Intel® Xeon® Gold 6148 -O3 -xCORE-AVX512 -ffreestanding -fiopenmp

-mcmodel=large -shared-intel -qopt-streaming-stores=always
-fno-builtin -qopt-zmm-usage=high
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take advantage of efficient instructions included in the BF16 
extensions to AVX512 ISA, unlike SPR, and therefore uti-
lizes AVX512_CORE single precision instructions to "emu-
late" BF16 execution. BF16 extension instructions include 
VCVTNE2PS2BF16, VCVTNEPS2BF16 and VDPBF16PS. 
The first two instructions deal with converting SIMD regis-
ters with single precision values to BF16 and the latter deals 
with performing SIMD dot-product on BF16 pairs. These 
additional instructions are valuable since they reduce the 
zmm register usage up to ten-fold for some input problems 
on SPR.
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