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Abstract

The landscape of high performance computing (HPC) has witnessed exponential growth in processor diversity, architectural
complexity, and performance scalability. With an ever-increasing demand for faster and more efficient computing solutions
to address an array of scientific, engineering, and societal challenges, the selection of processors for specific applications
becomes paramount. Achieving optimal performance requires a deep understanding of how diverse processors interact with
diverse workloads, making benchmarking a fundamental practice in the field of HPC. Here, we present preliminary results
observed over such benchmarks and applications and a comparison of Intel Sapphire Rapids and Skylake-X, AMD Milan,
and Fujitsu A64FX processors in terms of runtime performance, memory bandwidth utilization, and energy consumption.
The examples focus specifically on the Sapphire Rapids processor with and without high-bandwidth memory (HBM). An
additional case study reports the performance gains from using Intel’s Advanced Matrix Extensions (AMX) instructions, and
how they along with HBM can be leveraged to accelerate Al workloads. These initial results aim to give a rough comparison
of the processors rather than a detailed analysis and should prove timely and relevant for researchers who may be interested

in using Sapphire Rapids for their scientific workloads.

Keywords Benchmarking - Performance - Energy usage - Intel Sapphire rapids - Fujitsu A64FX - AMD Milan - Intel

Skylake - HBM - AMX - TMUL

Introduction

This paper presents our preliminary work of benchmarking
and comparing performance on different processors with a
special focus on the Sapphire Rapids’ (SPR) [1] and their
HBM feature, which promises a performance boost for mem-
ory bandwidth-limited applications. An early study using the
SPR architecture reported more than 8.5x faster runtimes for
multi-physics codes relative to Intel’s Broadwell architecture
when utilizing high bandwidth memory [2]. The paper inves-
tigated the runtime of two different hydrodynamics applica-
tions on Intel Broadwell, as well as on SPR with and without
HBM. Another study examined bandwidth limitations in the
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SPR processor and concluded that the lack of sufficient con-
currency in the cores of the processor affects bandwidth and
explains why the peak is never achieved when using HBM
[3]. Wang et al. [4] explored the effects of HBM on several
benchmarks and applications, finding that many scientific
applications benefit from it. [5] analyzed the performance
of AMD Genoa and Intel Sapphire Rapids CPUs and com-
pared them to older CPU models. The authors used the HPL,
HPCC, and NAS parallel benchmarks, as well as LAMMPS,
GROMACS, and NWChem for the comparison. The paper
concludes that the Intel Sapphire Rapids as well as the AMD
Genoa CPUs provide a significant performance boost of 20%
to 50% compared to older AMD and Intel CPUs. [6] inves-
tigated the SPEChpc 2021 benchmark suite, in MPI-only
mode, on Intel Ice Lake and Sapphire Rapids and analyzed
the performance in terms of runtime and power/energy.

In this work, we extend the previous studies by studying a
different set of benchmarks and applications and comparing
the performance on a diverse set of architectures, i.e. Fujitsu
A64FX, Intel Skylake, and AMD Milan. The latest AMD
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model is not included in the study due to the unavailability
for experimentation or analysis within the research environ-
ment. All benchmarks and applications were compiled with
full optimizations for each architecture. Selected instances
were chosen to juxtapose Intel Sapphire Rapids with NVID-
IA’s Grace-Grace and Grace-Hopper superchips [7].

We also share the observed performance gains from using
the new AMX instruction set extension to the AVX 512
ISA. SPR is the first chip to implement the tiling instruc-
tions. These tiling instructions are run on an accelerator, a
tile matrix multiply unit (TMUL). This TMUL unit oper-
ates on data stored in separate 2-D registers representing a
tile. [8] shows improved inference performance of BERT, a
Deep Learning model, by applying quantization and opera-
tor fusion on top of Intel’s AMX features. Their results are
comparable to NVIDIA’s T4 GPU for smaller batch sizes. In
our case study, we report the performance of multiple input
problems for the convolution operator and see how different
types of memory and hardware support for input data types
affect these results.

The results presented here are a first step and will be
extended in the future. This paper is laid out in the fol-
lowing manner. We discuss the benchmarking protocol,
micro-benchmark applications, and three science applica-
tions in Section “Materials and Methods”. The next sec-
tion discusses the observed performance for the aforemen-
tioned benchmarks and compares it to other systems. We
also include an investigation on how changing various BIOS
settings affects the performance and energy consumption of
a selected application. This analysis was initially necessary
to choose settings that kept the power consumption within
data center limits while not decreasing the performance of
the nodes. Finally, we discuss our key observations.

Table 1 Studied systems

Materials and Methods

Benchmarking protocol: The systems evaluated in this
benchmark analysis are listed in Table 1. The used compil-
ers, MPIs, as well as processor-specific flags can be found
in the appendix. Typically, each application or micro-
benchmark was executed five to ten times on each system,
and mean values were reported. HBM on the SPR nodes
was configured in Flat Mode with Sub-NUMA Clustering
4 (SNC4). In this configuration, memory is spread across
16 NUMA regions, with regions 0—7 containing cores,
and all (0-15) with both DDRS and HBM. To preferen-
tially utilize HBM over DDR5 memory where possible, the
tested applications and micro-benchmarks were run with
numactl -preferred-many=8-15, unless specified
otherwise. This setup was shown in our tests to produce
the same performance as binding applications to specific
numa nodes while being less cumbersome to execute.
Hereafter, SPR-HBM denotes runs on the SPR processor
wherein HBM was preferentially utilized, while SPR-DDR
signifies runs with default memory configurations. Energy
consumption was measured using each system’s ipmitool
[9].

The analyzed metrics are:

Runtime: The runtime, or time to solution, is often the
primary concern of users as it is the limiter for discovery
or publication deadlines. It can be a good assessor of how
scalable the combination of software and hardware is.

Energy consumption: This is primarily most important
to system managers who seek to minimize overall energy
consumption. But increasingly this information is passed
to users to inform climate-conscious actions.

Processor Cores Clock speed (GHz) Memory (GB)

Intel® Xeon® CPU Max 9468 96 2.6 256 DDRS + 128 HBM

(“Sapphire Rapids’)

Fujitsu A64FX-FX700 48 1.8 32 HBM

AMD EPYC 7643 96 32 256 DDR4

(‘Milan’)

Intel® Xeon® Gold 6148 40 24 192 DDR4

(‘Skylake’)

Processor NUMA Infinband Vector Instructions
Regions Network

Intel® Xeon® CPU Max 9468 16 NDR (400 Gbit/s) AVX512, Intel DL Boost,

(‘Sapphire Rapids’) AMX extensions

Fujitsu A64FX-FX700 HDR (100 Gbit/s) SVE instructions

AMD EPYC 7643 8 HDR (100 Gbit/s) AVX2 instructions

(‘Milan’)

Intel® Xeon® Gold 6148 2 FDR (56 Gbit/s) AVX512 instructions

(“Skylake’)
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Efficiency: This metric is mainly interesting to system
managers, who are seeking good overall system throughput
and cost-efficient utilization.

Peak power consumption: The metric alone does not
deliver a lot of useful information, but for a given perfor-
mance/efficiency/or other target it can inform system design
and is a key constraint in peak performance.

For selected benchmarks, results on Graviton3 CPUs and
NVIDIA A100 GPUs are included, as those results are avail-
able from a previous study, [10].

Benchmarks

Several smaller benchmarks are investigated to test multi-
ple attributes of the systems. They are listed and described
below:

DAXPY and simple memory copy were used to analyze
the bandwidth memory on SPR with and without HBM.

STREAM - We compile the standard source code for
all processors except for A64FX, where a tuned version of
STREAM is publicly available. The array size is chosen such
that at least half of the available node memory is in use. The
benchmark is run on all architectures at full subscription.

The HPCC (HPC Challenge) benchmark [11] combines
multiple benchmarks. Here we are reporting on three of
them: High Performance LINPACK (HPL), Matrix-Matrix
multiplication and Fast Fourier Transform (FFT). LINPACK
solves a linear system of equations using all cores in parallel.
The performance is measured in Giga Floating Point Opera-
tions Per Second (GFLOPS) and corresponds to the perfor-
mance of the application on all allocated compute resources.
We also report GFLOPS/Core, which are the total GFLOPS
divided by the number of cores.

The HPCG (The High-Performance Conjugate Gradi-
ents) benchmark is an alternative to the HPL benchmark
(used in HPCC) and utilizes methods and patterns commonly
used in many PDE solvers [12]. Unlike HPCC, HPCG does
not rely on external libraries but requires vendors to opti-
mize their own version of HPCG. Thus, for x86 machines,
we used the Intel version of HPCG, and for the A64FX the
version from Cray.

oneAPI Deep Neural Network Library or oneDNN, a
part of oneAPI, is an open-source library providing opti-
mized deep learning primitives for CPUs and GPUs. Many
deep learning frameworks like PyTorch, and TensorFlow
use oneDNN as a backend for accelerated computing on
CPUs. oneDNN has the capability to detect the underly-
ing instruction set architecture and uses Just-In-time (JIT)
code generation to deploy optimized kernels at runtime.
In this study, we explore the performance of new features
included in the SPR processors, namely Advanced Matrix
Extensions, and compare them to the best dispatch in
Skylake-X and A64FX processors for the same problem,

inputs, and run configuration. To prevent any unfair disad-
vantages in our study, we do not include the AMD Milan
processor since it does not have special 512-bit vector pro-
cessing elements.

Applications

Scientific applications are investigated to allow for a better
understanding if, and how, the SPR with and without HBM
can benefit real-life applications.

GROMACS is a software package for the simulation of
biomolecular systems like proteins, membranes, DNA, and
RNA [13]. It calculates how atoms move over time under a
classical physics approximation by solving Ordinary Dif-
ferential Equations based on Newton’s second law. Three
systems, consisting of 82K, 200K, and 1.2M atoms, were
used as benchmark [14].

OpenFOAM is a library and a collection of appli-
cations for the numerical solution of Partial Differ-
ential Equations [15]. The test case is a calculation
of incompressible airflow around a motorcycle and
is based on a test included in the OpenFOAM suite
(incompressible\simpleFoam\motorBike). We
have increased the initial grid in each direction 2, 4 and 6
times to increase resolution and problem size. The grid is
further refined around the obstacle, and the Navier—Stokes
equations are solved on an unstructured grid. The result-
ing mesh consists of 2 M, 11 M, and 35 M cells. Total
wall time was used as a performance metric (i.e., smaller
= better).

ROMS, Regional Ocean Modeling System [16, 17], is an
ocean model widely used in the scientific community. It is
a free-surface, terrain-following, primitive equations ocean
model. The test case we use for this work simulates the flow
around the west Antarctic Peninsula [18]. ROMS was picked
as a test application because it is an important local applica-
tion with performance characteristics representative of other
structured grid codes.

HPCC, HPGC, GROMACS, and OpenFOAM were exe-
cuted on all cores of a single node (96 cores) using MPI for
parallel execution.

The input parameters and automation procedures (batch
job submission and monitoring, output parsing) for HPCC,
HPCG, GROMACS, and OpenFOAM were adopted from
the XDMoD application kernel module [10, 19].

Results

Here we focus on the runtime, memory bandwidth, as well
as on energy consumption.
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Table 2 Benchmarks: o | strean | Metrx Multipication LINPACK FFT
STREAM, HPCC(DGEMM, CPU/System s
Linpack and FFT) 8 | TRIAD. GB/s | Griops | GrLops/ core|  GrLops |57 O GrLops orLops/co
ARM Fujitsu A64FX 48| 838.96| 11978 41.2 +0.2[F 1177 +19 | 245[0 24.4 £0.9 0.51
Intel Skylake 40[0  149.51|7 1559 39.0 + 8.1l ] 981 +109| 2455[F] 33.4 +2.4 0.84
AMD Milan 96|11 333.54|C 2775| 28.9 +0.9F 1493 +16 | 15.6|[] 42.6 £1.0 0.44
Intel Sapphire Rapids 96| 38831 4787 49.9 +2.7[l 2211 +182[ 23.0[lE129.0 £15.1 1.34
Intel Sapphire Rapids HBM 96| 1360.54| I 5392|  56.2 £ 4.2].2862 £ 36 || 29.8|Wid43.1 £24.4 1.49
1500 - Threads Distribution Table 3 Performance in HPCG Benchmark
— Close 2 HPCG
CPU/System s
® - Spread 4 S| Griops |GFLOPS
o 1000 - Confi i /Core
o onfiguration ARM Fujitsu A64FX 48| 164.4 2.8 134
% SPR DDR Intel Skylake 40|01 36.4 +0.3| 0.91
E — SPRHBM .- AMD Milan 96|71 53.0 £ 2.0[ | 0.55
S 500- . Intel Sapphire Rapids DDR 96| 183.6 +1.1| 0.87
m Intel Sapphire Rapids HBM 96(N197.5 +2.1| 2.06
0- Table 4 benchDNN: input problems
0 25 50 75 100 Problem number Problem
Threads

Fig. 1 Memory copy routines showing memory bandwidth patterns

Benchmarks

Memory bandwidth. STREAM TRIAD demonstrates the
sustained HBM bandwidth of SPR being 1,360.5 GB/s,
which is 3.5 times higher than DDR bandwidth on the
same node (Table 2, STREAM Column). This is consistent
with the results obtained by Wang et al. [4]. We also stud-
ied the bandwidth versus the number of threads and their
distribution using the memory copy benchmark (Fig. 1).
Impressively, increasing the number of threads up to full
subscription on a node improves the memory bandwidth
utilization almost linearly with HBM, while in DDR mode,
the bandwidth saturates quickly. The cumulative single-node
memory copy bandwidth on SPR was more than 4.2x higher
for SPR-HBM than for SPR-DDR (Fig. 1). Similarly, using
the spread thread distribution configuration consistently
outperformed c1lose thread placement except at the highest
number of threads tested.

The HPCC benchmark utilizes BLAS and FFT libraries,
often used in scientific applications. Matrix-matrix multi-
plication (DGEMM) is one of the few practical calculations
capable of approaching theoretical FLOPS, in part due to
memory-efficient algorithms, which significantly reduce
the memory bandwidth requirements. As can be seen from
Table 2 (matrix multiplication column), SPR demonstrates
the highest per core and per node performance with HBM
bringing an additional 13% improvement. In the LIN-
PACK test, the memory bandwidth requirements are higher
and HBM systems (A64FX and SPR-HBM) show better
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mb256ic64ih560c2560h56kh1phOn
mb256ic64ih560c640h56kh1phOn
mb256ic128ih28oc1280h28kh3phin
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performance (Table 2, LINPACK column). SPR-DDR has
a similar per-core performance to the Intel Skylake-X CPU,
and HBM brings an additional 29% improvement making
SPR-HBM the fastest per core and per node system. FFT
exhibits even higher memory bandwidth requirements than
LINPACK and DGEMM and systems with faster memory
show better performance (Table 2, FFT column). SPR shows
the fastest per core and per node results with HBM respon-
sible for an 11% improvement.

The HPCG benchmark reflects the performance of many
PDE solvers. SPR-DDR exhibits similar performance to pre-
vious generations. Turning on HBM brings an impressive
2.4x increase in performance (Table 3).

oneDNN is publicly available via GitHub, and we
chose the latest release v3.2 for this work. To benchmark,
we compare the performance of the convolution driver
with benchdnn, a benchmarking harness provided by
oneDNN. We selected 10 sample inputs as mentioned in
Table 4 for the convolution driver. The naming convention
follows a descriptor-size combination. Here mb stands for



SN Computer Science (2024) 5:623

Page50f11 623

mini batch size; ic and ih stand for input channel and height
respectively; oc and oh stand for output channel and height
respectively; kh, sh and ph stand for kernel, stride, and pad-
ding heights respectively. For example, mb256ic64ih560c-
2560h56kh1phOn will mean that we have a mini batch size
of 256, 64 input channels, input height 56, output channel
256, output height 56, kernel height 1, and padding height O.
Next, we selected 3 input configurations to test, i.e., the input
data type to the operator. We test with signed and unsigned
8-bit integers (important for inference), 32-bit floating point
inputs, and lastly BrainFloat-16 (BF16) data types (both
important for training as well as inference). The low preci-
sion data types are chosen since SPR has native support for
them and they can leverage the TMUL accelerator via AMX
instructions.

For the SPR chips, we utilize numactl to map memory
regions explicitly to those nodes that have HBM and DDR
corresponding to the CPUs used for running the bench-
mark. This helps us understand how HBM plays a role in
the observed performance. Each associated data type has a
CPU dispatch control (except for A64FX), which can control
the ISA to be used. Here we select the default, which is the
best available for the input configurations. This is described
in Table 5.

We see the performance difference between the convolu-
tion operator with the same inputs on all 3 architectures that
have a 512-bit vector length implementation. In Fig. 2, while
running the samples in forward mode with 32-bit floating
point data types typically used during training, we see that
SPR-HBM is up to 1.7x and 3.5x faster than Skylake-X and
A64FX. Improvements with respect to Skylake-X for this
problem show the general benefits of running on newer Intel
hardware as the same dispatch (AVX512_CORE) for jit'd
kernels is used in both cases.

We also bring special focus to forward mode runs with
the BrainFloat-16 data type commonly used on GPUs. Fig-
ure 3 shows the performance gains from using BF16 data
type compared with other architectures. A64FX is omitted
because the JIT kernels do not have a BF16 implementation.

Table 5 benchDNN: best CPU dispatch available

Architecture Mode Datatype  Best CPU dispatch
A64FX FWD_B  {p32 SVE-512
FWD_B  bfl6 -
FWD_I int8 SVE-512
Skylake-X FWD_B  {p32 AVX512_CORE
FWD_B  bfl6 AVX512_CORE
FWD_I int8 AVX512_CORE
Sapphire Rapids FWD_B  {p32 AVXS512_CORE
FWD_B  bfl6 AVX512_CORE_AMX
FWD_I int8 AVX512_CORE_AMX

Datatype FP32

—_
S
o

A64FX
L Skylake
SPR-HBM
| SPR-DDR s

Runtime [ms]
& 8 8 8 8

n
o

o

1 2 3 4 5 6 7 8 9 10
Problem Number [-]

Fig.2 FWD_B mode (forward mode with bias) used in training with
32-bit floating point input and output

Comparing to results obtained by SPR-HBM in fp32 mode,
we see speedup ranging from 1.79x - 9.2x. This result is
crucial as bf16 data type can be used for mix-precision train-
ing available in Deep Learning frameworks and can accel-
erate workloads on CPU architectures with native support.
Skylake-X suffers from massive performance degradation
even compared to fp32 mode because of the lack of intrin-
sic support for BF16 instructions. Additional details can be
found in the Appendix.

Lastly, we show the performance of the same inputs in
forward mode for inference with 8-bit integer data types in
Fig. 4. We see speedups of up to 16.1x with the SPR proces-
sor over Skylake-X and up to 17.5x speedup over A64FX
when using SPR-HBM. There are also general benefits of
using HBM vs DDR on the SPR processor with speedups

Datatype BF16
250 : . .

Skylake
SPR-HBM | pm
200 | SPR-DDR |

—_
(4]
o

Runtime [ms]
2

50

1 2 3 4 5 6 7 8 9 10
Problem Number [-]

Fig.3 FWD_B mode (forward mode with bias) with 16-bit Brain-
Float data type for input and output
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Datatype INT8
40

AB4FX

Skylake
SPR-HBM s
- SPR-DDR s

251

35+

30

Runtime [ms]

1 2 gt gar Gren grar et gie (9
Problem Number [-]

Fig.4 FWD_I mode (forward pass in inference) with 8-bit integer
data type input and output

of up to 2x. However, there are some cases across all fig-
ures where there was no speedup and insignificant loss in
performance.

Applications

All our benchmarks show significant improvement over the
previous CPU generation, with HBM bringing a significant
performance boost for some applications. We therefore
wanted to determine if improvements in core libraries and
system capabilities will translate to real-world applications.

GROMACS and other Molecular Dynamics applications
are responsible for a significant portion of HPC system uti-
lization. SPR performs the fastest among pure CPU systems

(Table 6). However, the use of HBM does not have a sig-
nificant effect on the performance across the tested problem
sizes. For small MEM systems (82k atoms), the SPR CPU
is 2.5 times faster than the Milan CPU, but for larger sys-
tems (RIB, 2 M atoms, and PEP 12 M atoms), SPR is only
31-37% faster. We speculate that due to the smaller size of
the MEM system, it fits mostly within CPU

caches, allowing more efficient utilization of AVX-512
instructions. This results in a single SPR node performance
for MEM being only 15% slower than the NVIDIA A100
GPU performance. For larger problems, SPR is 40-50%
slower than A100 (for a more extensive comparison to
modern GPUs, see [7]). Another notable point is that the
old Skylake CPU still has strong per-core performance,
and multi-node execution can alleviate lower core per-node
count.

OpenFOAM tests demonstrate an increased performance
of SPR for larger problems compared to previous Intel and
AMD CPUs (Table 7). For the smallest problem, which
has 2 M cells, SPR performs similarly to Milan, with little
effect from HBM. For the larger problems (11 M and 35 M
cells), SPR is 25% faster than Milan. An additional 21-25%
improvement can be achieved by using HBM. Interestingly,
HBM has no significant effect on the meshing step. Most of
the performance improvement comes from the solving part.
This is most likely due to intensive memory allocation/deal-
location during the meshing process where DDR and HBM
perform similarly.

ROMS - The benchmark results in terms of runtime,
scaling, and energy consumption are shown in Fig. 5.
On SPR, HBM is nearly 2 times faster than using DDR
(Fig. 5a). The performance of Skylake and SPR-DDR
is very similar. A64FX shows poor performance when

Table 6 Performance for Simulation Speed, Energy Efficiency,
GROMACS. GPU performance ns/day ns/kWh Power, W
is given for comparison, see MEM, 82K Atoms
[10] for more details. The ARM Fujitsu AG4FX 4glll  22.8 +0.3(10) 9.1 +0.4 (10) 105 +5 (10)
GPU systems had four and two Intel Skylake 0[] 514 1.2(10) 8.8 £0.4(9) 245 9 (9)
GPUs but only one was used. AMID Milan 96|l ] 813 £11.2(10)
The power measurements also Intel Sapphire Rapids DDR 96| 20306 + 4.8 (22) 9.6 £0.4(11) 853 £35 (11)
include idle GPUs Intel Sapphire Rapids HBM 96| 206/1 £5.2 (10) 9.5 0.4 (10) 859 32 (10)
Intel IceLake/NVIDIA A100 64|00 242.6
Intel IceLake/NVIDIA A100 54l 236.5 +10.8 (11) 13.9 £ 0.8 (11) 707 £ 9 (11)
RIB, 2M Atoms
Intel Skylake 40|71 4.8 £0.01(8) 0.86/ + 0.02 (7) 230 £5(7)
AMD Milan 96| 10.1 +£0.21 (20)
Intel Sapphire Rapids DDR 96| 13.88 +0.05 (10) 0.58 +0.01 (10) 997 +17 (10)
Intel Sapphire Rapids HBM 96| 14.49 +0.05 (10) 0,62 +0.01 (10) 972 +8(10)
Intel IceLake/NVIDIA A100 64|0 21.41
PEP, 12M Atoms
AMD Milan 96] | 0.9 £0.01(20)
Intel Sapphire Rapids DDR 96[_11.18 £0.01 (12) 0.049 +0.002 (12) 1008 + 39 (12)
Intel Sapphire Rapids HBM 96| | 1.2 £0.02(10) 0.053| + 8e-04 (10) 953 +7(10)
Intel IceLake/NVIDIA A100 64(F 2.42
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Table 7 Performance in Run time, seconds, (smaller better)
0 FOAM licati CPU/System Cores - -
pen application Total | Meshing | Solving Power, W Energy, Wh
motorBikeD, 1.9M Cells
Intel Skylake 40|00 386 +3(4) [ 118 +3(4) +4(4) | 343+20(4)) 404 +1.7(4)
AMD Milan 96(l 234 +33(4) (B 111 +21(4) [I] 83 +6(4)
Intel Sapphire Rapids DDR 96(l 254 +19 (10)[F0 130+ 12 (10) [] 83 +5(10)| 867 +42(2)] 78.75.4(2)
Intel Sapphire Rapids HBM 96(0 244 +14 (10)[F 129 + 10 (10) [E] 72 +4(10)
motorBikeQ, 11M Cells
Intel Skylake 40(l2367 + 94 (5) [ 688 + 88 (5) +21(5)| 391 +5(5) (F260.7 +14.3 (5)
AMD Milan 96| 1406 +35(4) [ 429 +54 (4) | 898 +50 (4)| 620 +26 (4)| 245.8 + 8.8 (4)
Intel Sapphire Rapids DDR 96(l 1071 67 (6) [IF 407 +51(6) [ 1588 +22(6)| 976 22 (6)|l 293.2 +20.5 (6)
Intel Sapphire Rapids HBM 96[ ] 846 +40(6) |=_B79 +37(6) ] 386 +12(6)| 962 +21 (6)[[ 2287 +11.1(6)
motorBikeX6, 35M Cells
Intel Sapphire Rapids DDR 96(73207| + 119 (5) +119(5) +16 (5)| 1003 + 15 (5)[[.897.5 + 45.6 (5)
Intel Sapphire Rapids HBM 962379 + 91 (5) [IF1019 + 86 (5) [F1211 +24(5)] 974 13 (5)[11646.7 £ 30.8 (5)
. . 9 1 N .
A64FX 3
Skylake 9 A
ilan c . A
100 |- il
SPRDDR —e— c \.\A__’_,___A
SPRHBM —a— o v
: g T
< ° 5
£ \ =
£ . <
S~
E \.__‘_. -8
5 A\ T=xe o
a 2
—— A [s)
5
Q
E
10 , . = X . .
100 7000 é 0.1 100 1000
Number of Cores [-] Number of Cores [-]
(a) Runtime vs number of cores. (b) Runtime ratio (one node / n nodes)
8000 . , . . . . ‘
*
7000 L
=
= 6000 |
C
2 5000 | A |
Q.
£
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C
o
O 3000 | /
>
> o &
@ 2000 | / /
T
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(c) Energy consumption per simulation vs
number of cores.

Fig. 5 Results for running ROMS on different CPUs
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using low core counts, but outpaces the other CPUs when
increasing the number of used cores. On the A64FX nodes,
the code scales well, whereas this is not the case for other
processors. Especially on SPR, both HBM and DDR, and
Milan, the scaling is poor. The scaling was evaluated as
the ratio of runtime on a single node versus on multiple
nodes (Fig. 5b). The energy consumption is depicted in
Fig. 5c. SPR, having a peak power consumption of more
than 1000W, exhibits a substantial energy consumption,
especially for higher core counts. A64FX, with a peak
power consumption of around 120W, on the other hand, is
very energy-efficient. The energy efficiency of the A64FX
has also been indicated by the leadership of the Fugaku
supercomputer in the Green500 benchmark in 2019. Sum-
marized, ROMS showcases both positive and negative
aspects: the favorable performance gain from HBM and,
on the other hand, the hard fact that poor multi-node scal-
ing inevitably leads to poor energy efficiency.

Investigating the Effect of BIOS Changes

This section focuses on the effect of changes in the sys-
tem’s BIOS on performance and energy consumption. We
investigated two workload profiles: the default HPC profile
and our custom profiles (Table 8). The default HPC profile
prioritizes the performance and disables the CPU’s C-states.
The latter disables the ability of the CPU to go into a deeper
idle state. To figure out the energy savings and effects on
performance, we tested our custom profile setting where we
use balanced performance and allow up to C6 idle state.
This allows higher energy savings when the node is unused.
Our measurements show that the custom profile reduces the
idle power consumption from ~ 450 Watt to ~ 310 Watts.
The BIOS settings were tested on ROMS, GROMACS, and
OpenFOAM.

Four nodes were configured with each workload profile,
and the ROMS application was run 5 times for each con-
figuration on 1, 2, and 4 nodes. The results of runtime and
energy consumption are shown in Fig. 6.

Table 8 Differences in the HPC

Setting
and the custom profile

HPC Profile Custom Profile

Power Regulator

Min. Processor Idle Power Core C-state
Min. Processor idle power package C-state

Energy Performance Bias

Static high performance Dynamic power savings
No C-states Cé6
No C-states Package C6 Retention

Max Performance Balanced Performance

UPI Link Power Management Disabled Enabled
Uncore Frequency Shifting Maximum Auto
Collaborative Power Control Disabled Enabled
Energy-Efficient Turbo Disabled Enabled
Optimized Power Mode [Hidden Setting] Disabled Enabled
31 r ; ; " x . 1400
A HPC Profile —a—
30 Custom Profile 1300 | o
29| < 1200 |
28| =3
= 1100 |
€ o7l 5
= B 1000 |
— 26| S
g 2 900
= 25 b A, C A
o
c 800 |
3 241 (@]
o >
o 700}
23 L 5
22 1 5 oot
211 A 500
20 L - - - , - 400 L - , s - ‘
100 150 200 250 300 350 100 150 200 250 300 350

Number of Cores [-]

Number of Cores [-]

Fig. 6 Results of ROMS with different BIOS configurations. Left: Runtime in minutes vs number of cores, Right: energy consumption per simu-

lation vs number of cores
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Interestingly the runtime as well as the energy consump-
tion show a slight decrease under the custom profile, indicat-
ing that those settings have a measurable impact. The peak
power consumption decreased from 1150 to 1034 W when
using the custom BIOS profile.

GROMACS and OpenFOAM show a performance degra-
dation of 3% and 6%, respectively, when being run with the
Custom BIOS. Still, for underutilized machines, the energy
savings might outweigh performance degradation. Future
work will investigate this in more detail.

Discussion and Conclusion

In this work, we evaluated the new Intel SPR CPU with
optional HBM memory and AMX instructions. HBM holds
the promise of enhancing the performance of memory-
bound applications. Our results with multiple benchmarks
demonstrate promising performance improvements with the
new SPR (DDR mode). This is evident in the performance
improvement for ROMS, GROMACS, and OpenFOAM.

HBM brings a further and often substantial improvement
in the benchmarks (2.4 times in HPCG) and real applications
(almost doubling for ROMS and 21-25% for OpenFOAM).
However, some applications like GROMACS do not benefit
from the HBM featured in this processor.

The AMX extension to the Intel AVX512 ISA shows sig-
nificant speedups in our tests, positioning the SPR CPU as a

potential option for mix-precision deep-learning training and
inference workloads with appropriate data types.

In centers with diverse workloads, HBM-enabled SPR
nodes can offer significant performance enhancements for
specific applications such as ROMS. Adjusting the BIOS
profile can assist in maintaining low power consumption
without compromising performance. Future work will
involve further BIOS investigations with additional use
cases. Furthermore, we plan to extend our analysis of SPR
to encompass additional scientific applications and larger,
computationally more demanding test cases.

Appendix
See Tables 9, 10.

Performance Degradation of BF16 kernels
on Skylake-X Processor

As seen in Fig. 3, Skylake-X suffers from poor runtimes
when the input and output data type is set to BF16 because
this architecture does not possess intrinsic support for BF16
instructions and uses what is available i.e., AVX512_CORE
instructions that are aimed for single and double preci-
sion. We verified this behaviour by controlling the envi-
ronment variable ONEDNN_MAX_CPU_ISA via values
(AVX512_CORE, AVX512_CORE_BF16) on Skylake-X
and SPR and observing the JIT dump. Skylake-X cannot

Table 9 Compilers, MPIs, and
flags used for all presented
benchmarks and applications

Table 10 Additional flags used

for the STREAM benchmark

Processor

Compiler

MPI

CPU-specific flags

Intel® Xeon® CPU Max 9468

GCC12.1.0
Intel2023.2

OpenMPI4.1.5
InteIMPI2021.9

-march=sapphirerapids
-mtune=sapphirerapids
-xsapphirerapids

Fujitsu A64FX-FX700 Fujitsu4.8 FujitsuMPI -KSVE

AMD EPYC 7643 aocc4.0 OpenMPI4.1.5 -march=native

Intel® Xeon® Gold 6148 GCC12.1.0 OpenMPI4.1.5 -march=skylake -mtune=skylake
Intel2023.2 InteIMPI2021.9 -skylake

Amazon ARM Graviton3 GCC11.3.0 OpenMPI4.1.4 spack defaults

Nvidia A100 CUDA 12.0 N/A app defaults

Processor Compilation flags

Intel® Xeon® CPU Max 9468

Fujitsu A64FX-FX700
AMD EPYC 7643

Intel® Xeon® Gold 6148

-O3 -xsapphirerapids -ffreestanding -fiopenmp
-mcmodel=large -shared-intel -qopt-streaming-stores=always
-fno-builtin -qopt-zmm-usage=high

-Kfast,preex -Kopenmp -Kzfill -Kstriping=4

-O3 -ffreestanding -march=native -fopenmp

-mcmodel=large -fno-builtin -ffp-contract=fast -fnt-store

-03 -xCORE-AVX512 -ffreestanding -fiopenmp
-mcmodel=large -shared-intel -qopt-streaming-stores=always
-fno-builtin -qopt-zmm-usage=high
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take advantage of efficient instructions included in the BF16
extensions to AVX512 ISA, unlike SPR, and therefore uti-
lizes AVX512_CORE single precision instructions to "emu-
late" BF16 execution. BF16 extension instructions include
VCVTNE2PS2BF16, VCVTNEPS2BF16 and VDPBF16PS.
The first two instructions deal with converting SIMD regis-
ters with single precision values to BF16 and the latter deals
with performing SIMD dot-product on BF16 pairs. These
additional instructions are valuable since they reduce the
zmm register usage up to ten-fold for some input problems
on SPR.
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