

# Machine Learning for Preconditioning Elliptic Equations in Porous Microstructures: A Path to Error Control

Kangan Li, Sabit Mahmood Khan, Yashar Mehmani

*Energy and Mineral Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802*

---

## Abstract

Elliptic equations on complex porous microstructures govern the flow of fluids inside subsurface rocks in underground CO<sub>2</sub> and H<sub>2</sub> storage, and the transport of heat and solute within electrochemical devices like batteries and fuel cells. The algebraic systems arising from the discretization of these equations are often prohibitively large and must be solved via iterative (e.g., Krylov) methods, for which effective preconditioning is key to ensure rapid convergence. In recent work, the authors proposed a scalable two-level preconditioner whose performance was superior to existing algebraic multigrid variants for pore-scale problems. The preconditioner was based on the pore-level multiscale method (PLMM) and consisted of a coarse preconditioner, M<sub>G</sub>, and a fine smoother, M<sub>L</sub>. Similar two-level preconditioners based on the multiscale finite element/volume and variational multiscale methods also exist for solving continuum-scale PDEs in porous media. The most expensive step in building such two-level preconditioners is computing M<sub>G</sub>, for which many numerical bases on a set of subdomains must be calculated to yield a prolongation matrix. Here, we show that machine learning (ML) can dramatically reduce this cost. Moreover, by embedding ML within a preconditioning framework, we enable the rarity of estimating and controlling ML errors to any desired level. We systematically probe the ML-built preconditioner in solving the Poisson and linear-elasticity equations over complex 2D/3D geometries and show that it performs comparably to its solver-built counterpart. Implications and future extensions are discussed.

**Keywords:** Porous media, Pore scale, Multiscale method, Machine learning, Preconditioning, Elliptic equations

---

## 1. Introduction

In the context of porous media physics, elliptic equations describe the flow of fluids, transport of heat and solute through the intricate void space, and mechanical deformation of the solid matrix. Understanding and controlling these processes is important to the high-precision engineering of geologic CO<sub>2</sub> sequestration [1], underground H<sub>2</sub> storage [2], geothermal energy extraction [3], and the optimal design and operation of fuel cells [4] and electrolyzers [5] for energy storage and conversion. Prior to solving such PDEs, the microscale geometry of a porous sample is mapped experimentally via, e.g., an X-ray  $\mu$ CT scanner [6, 7]. The acquired image is then passed as input to a *pore-scale model* that discretizes and solves the PDE. The highest fidelity among pore-scale models are direct numerical simulation (DNS) techniques, e.g., the finite element (FEM), finite volume (FVM), and finite difference (FDM) methods [8]. Here, we focus on scalar- and vector-valued PDEs relevant to heat conduction and elastic deformation, respectively.

Given the need to analyze statistically representative, thus large, samples, the size of the linear(ized) systems obtained from discretizing the above PDEs is often enormous. This, in turn, demands iterative (e.g., Krylov) methods for solving such systems, whose rapid convergence hinges upon the availability of effective preconditioners [9]. One very successful preconditioner is the algebraic multigrid (AMG) method [10], and its many variants (e.g., [11]). Viewed as a solver, AMG operates by reducing the original system,  $Ax = b$ , to a smaller coarse system,  $A^c x^c = b^c$ , that is faster to solve. The coarse solution,  $x^c$ , is then interpolated (or prolongated) onto the original fine grid to yield an approximate solution,  $\tilde{x}$ . Errors in  $\tilde{x}$  are dominated by high-frequency modes, which are further attenuated with a

---

\*Corresponding author: Yashar Mehmani. Email: yzm5192@psu.edu

Email addresses: kb15610@psu.edu (Kangan Li), skk6071@psu.edu (Sabit Mahmood Khan), yzm5192@psu.edu (Yashar Mehmani)

18 smoother (e.g.,  $ILU(k)$ , Gauss-Seidel). The foregoing is a *two-level* outline of AMG that consists of a *fine* and a *coarse* 19 system/grid. Incorporating additional levels is straightforward by repeating these steps in nested fashion. Viewed as a 20 preconditioner for accelerating Krylov solvers, AMG consists of two parts: (1) a coarse preconditioner,  $M_G$ , used to 21 build and solve the coarse system, and (2) a fine smoother,  $M_L$ , used to attenuate high-frequency errors. While both 22 are important, AMG's success depends critically on the quality of the coarsened matrix  $A^c$  and vector  $b^c$ .

23 The coarsening requires a prolongation,  $P$ , and a restriction,  $R$ , matrix that allow accurate mapping to/from the fine 24 and coarse vector spaces. These matrices are used to yield  $A^c = P(RA)^{-1}R$  and  $b^c = Rb$  [9]. Computing  $R$  is often 25 cheap, since it is either taken as the transpose of  $P$ , if  $A$  is symmetric as in FEM [10], or built trivially out of 0 and 1 26 entries to enable certain row-sum operations, if  $A$  originates from FVM [12]. The critical and costly step corresponds 27 to building  $P$ . An accurate  $P$  consists of columns, called *bases*, whose span contains a very close approximation to 28  $x$ . Given AMG is a black-box preconditioner, its  $P$  is not always optimal, leading to subpar performance [13]. This 29 has spurred the development of more physics/geometry-informed preconditioners [14–18] based on two-level solvers 30 such as multiscale finite element (MsFE) [19, 20], multiscale finite volume (MsFV) [21, 22], and mixed mortar finite 31 element [23, 24]. The columns of  $P$  in such methods are obtained by solving local problems on small subdomains, 32 subject to carefully crafted closure boundary conditions (BCs). Despite their superior performance, these multiscale 33 preconditioners are designed for PDEs describing continuum-scale (or Darcy) physics of porous media.

34 Recently, the authors have proposed a two-level preconditioner [25, 26] based on the pore-level multiscale method 35 (PLMM) [27, 28] for elliptic equations arising from linear-elastic mechanics at the pore scale. A similar preconditioner 36 was later formulated for saddle-point systems associated with the Stokes flow equation [29]. The preconditioners were 37 shown to exhibit far superior performance to AMG in solving pore-scale problems. PLMM itself is a two-level solver 38 that was first developed for single-phase flow [30] and later extended to two-phase flow [31], compressible flow [32], 39 and elastic deformation of intact/fractured porous media [27, 28, 33]. It consists of four main steps: (1) decompose 40 the domain into subdomains by cutting it at geometric constrictions using the watershed segmentation algorithm [34]; 41 (2) compute local basis functions on each subdomain subject to closure BCs; (3) solve a coarse problem that imposes 42 flux continuity across all subdomain interfaces; and (4) iterate to improve the accuracy of the closure BCs, and thereby 43 that of the solution. The preconditioner by [27, 28], referred to hereafter as  $M$ , interprets the above steps in a purely 44 algebraic fashion, and much like AMG, consists of a coarse,  $M_G$ , and fine,  $M_L$ , preconditioner. Computing  $M_G$ , or 45 equivalently its prolongation matrix  $P$ , is the most expensive step in building  $M$  as it requires calculating multiple 46 basis functions per subdomain. A similar upfront cost is incurred by *all* two-level preconditioners discussed above.

47 Our goal is to accelerate the construction of  $M_G$  in the PLMM preconditioner,  $M$ , via supervised machine learning 48 (ML). Specifically, we propose a convolutional encoder-decoder neural network, based on the U-Net [35] and ResNet 49 [36] architectures, that accepts the geometry of a subdomain as input (in the form of a small image) and yields the 50 basis functions defined on it as output. The bases are then assembled into the columns of the prolongation matrix  $P$  for 51  $M_G$ . While our quest may seem esoteric and specific to PLMM, it is not, and has wide ranging implications. Existing 52 literature on ML for solving PDEs in porous media [37] is encumbered by two fundamental drawbacks: (1) Effective 53 mechanisms for estimating and controlling prediction errors are lacking [38]. ML outputs must either be accepted at 54 face value, or trusted based on empiricism or criteria that determine whether a sample is in- or out-of-distribution; (2) 55 Training is performed on *whole* (non-decomposed) domains, often in the form of large, geometrically complex 2D/3D 56 images [39–43]. Compared to the roughly convex subdomains obtained from watershed segmentation herein, training 57 on whole domains is less desirable because: (a) the statistical space of whole-domain microstructures is much larger, 58 thus demanding more training data; (b) labeled data for whole domains are scarcer, requiring large X-ray images and 59 costly DNS simulations. By contrast, one whole domain yields hundreds of subdomains (i.e., data) when decomposed, 60 that can be rapidly processed via DNS; (c) ML algorithms for whole domains do not generalize well to BCs beyond 61 which they are trained, while basis functions can be assembled in any combination to enforce arbitrary BCs.

62 In this work, we address these drawbacks. By tasking our ML algorithm to build a coarse preconditioner,  $M_G$ , 63 and pairing it with a smoother, we *enable error estimation and control*. Moreover, by training on semi-convex sub- 64 domains, we ensure the algorithm is less data hungry, that data generation is easier, and arbitrary BCs can be flexibly 65 imposed. The ML algorithm's outputs are also in a sense *reusable*, because basis functions built for linear PDEs, such 66 as small-strain elasticity, can be used to solve (linearized forms of) nonlinear PDEs, such as finite-strain deformation 67 and plasticity [44]. We systematically probe the ML algorithm in building coarse preconditioners for the Poisson and 68 linear-elasticity equations defined on complex 2D/3D porous geometries. Compared to purely solver-built preconditioners, 69 the cost of building  $M_G$  is dramatically reduced while the convergence rate of the Krylov solver is minimally

70 degraded. We also demonstrate that if trained on simple disk/sphere packs, the ML algorithm is transferable to more  
 71 complex geometries (e.g., sandstone, bone) without additional training.

72 In closing, we remark that two other attempts [45, 46] at using ML to accelerate the construction of basis functions  
 73 for elliptic equations have been made: one in the context of MsFV, and another in the context of an MsFV variant called  
 74 MsRSB [47]. However, given their focus lies in uncertainty quantification at the Darcy scale, both treat scalar-valued  
 75 PDEs (i.e., the pressure equation) on subdomains that are square shaped. Neither address error control, vector-valued  
 76 equations, or how to handle arbitrary pore-scale geometries, all specific aims of the present work.

77 The paper is organized as follows: Section 2 describes the PDEs to be solved on porous microstructures. Section 3  
 78 briefly reviews the PLMM preconditioner consisting of  $M_G$  and  $M_L$ . We discuss the ML architecture for building  $M_G$   
 79 in Section 4. Sections 5 and 6 present a series of 2D/3D numerical tests to probe the ML-enhanced preconditioner. In  
 80 Section 7, we discuss the implications of the results and future directions. Section 8 concludes the paper.

## 81 2. Problem description

82 We target two PDEs with our ML-assisted preconditioning described later: (1) scalar-valued Poisson equation, and  
 83 (2) vector-valued linear-elasticity equation. Consider a porous domain  $\Omega \subset \mathbb{R}^D$  with Lipschitz boundary  $\partial\Omega$ , where  $D$   
 84 is the number of spatial dimensions. Such a domain is represented here by a pore-scale image (e.g., X-ray  $\mu$ CT) as  
 85 shown in Fig.1a (gray means solid). The boundary  $\partial\Omega$  consists of the void-solid interface,  $\Gamma^w$ , and the external surface  
 86 (or bounding box) of the domain,  $\Gamma^{ex}$ . Another way to partition  $\partial\Omega$  is into Dirichlet,  $\Gamma^d$ , and Neumann,  $\Gamma^n$ , segments  
 87 such that  $\partial\Omega = \Gamma^d \cup \Gamma^n$  and  $\Gamma^d \cap \Gamma^n = \emptyset$  hold. We assume  $\Gamma^w \subset \Gamma^n$ , implying a stress-/flux-free fluid-solid interface.

88 The Poisson equation reads as follows:

$$-\Delta u = f, \quad \text{on } \Omega \quad (1a)$$

$$u = u_d, \quad \text{on } \Gamma^d \quad (1b)$$

$$\nabla u \cdot \mathbf{n} = t_n, \quad \text{on } \Gamma^n \quad (1c)$$

89 where we seek the scalar solution  $u$ , subject to the known source term  $f$ , the prescribed function value  $u_d$  on  $\Gamma^d$ , and  
 90 the prescribed flux  $t_n$  on  $\Gamma^n$ . The vector  $\mathbf{n}$  denotes the outward-pointing unit normal on  $\Gamma^n$ .

91 The linear-elasticity equation is given by:

$$-\nabla \cdot \boldsymbol{\sigma}(\mathbf{u}) = \mathbf{f}, \quad \text{on } \Omega \quad (2a)$$

$$\mathbf{u} = \mathbf{u}_d, \quad \text{on } \Gamma^d \quad (2b)$$

$$\boldsymbol{\sigma}(\mathbf{u})\mathbf{n} = \mathbf{t}_n, \quad \text{on } \Gamma^n \quad (2c)$$

92 where we seek the vector solution  $\mathbf{u}$ , subject to the body force  $\mathbf{f}$ , the prescribed displacement  $\mathbf{u}_d$  on  $\Gamma^d$ , and the  
 93 prescribed traction  $\mathbf{t}_n$  on  $\Gamma^n$ . The Cauchy stress tensor  $\boldsymbol{\sigma}$  is related to the displacement field  $\mathbf{u}$  via:

$$\boldsymbol{\sigma}(\mathbf{u}) = \mathbf{C} : \boldsymbol{\varepsilon}(\mathbf{u}) \quad (3)$$

94 where  $\boldsymbol{\varepsilon}(\mathbf{u}) = \nabla^s \mathbf{u} = 1/2 (\nabla \mathbf{u} + \nabla \mathbf{u}^\top)$  is the strain tensor and  $\mathbf{C} = [\mathbf{C}_{ijkl}]$  the fourth-order stiffness tensor. The symbol  $\nabla^s$   
 95 denotes the symmetric gradient operator and the superscript  $\top$  denotes transposition. For an isotropic material,  $\mathbf{C}$  is:

$$\mathbf{C}_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \quad (4)$$

96 where  $\lambda$  and  $\mu$  are Lamé parameters. Substituting Eq.4 into Eq.3 yields:

$$\boldsymbol{\sigma}(\mathbf{u}) = \lambda \text{tr}(\boldsymbol{\varepsilon}(\mathbf{u})) \mathbf{I} + 2\mu \boldsymbol{\varepsilon}(\mathbf{u}) \quad (5)$$

97 where  $\text{tr}(\boldsymbol{\varepsilon})$  represents the trace of  $\boldsymbol{\varepsilon}$ .

98 In this work, Eqs.1 and 2 are discretized with a Galerkin finite element method (FEM) over a Cartesian mesh  
 99 that conforms to, or is an integer fraction of, the image pixels comprising  $\Omega$ . In other words, elements are rectangu-

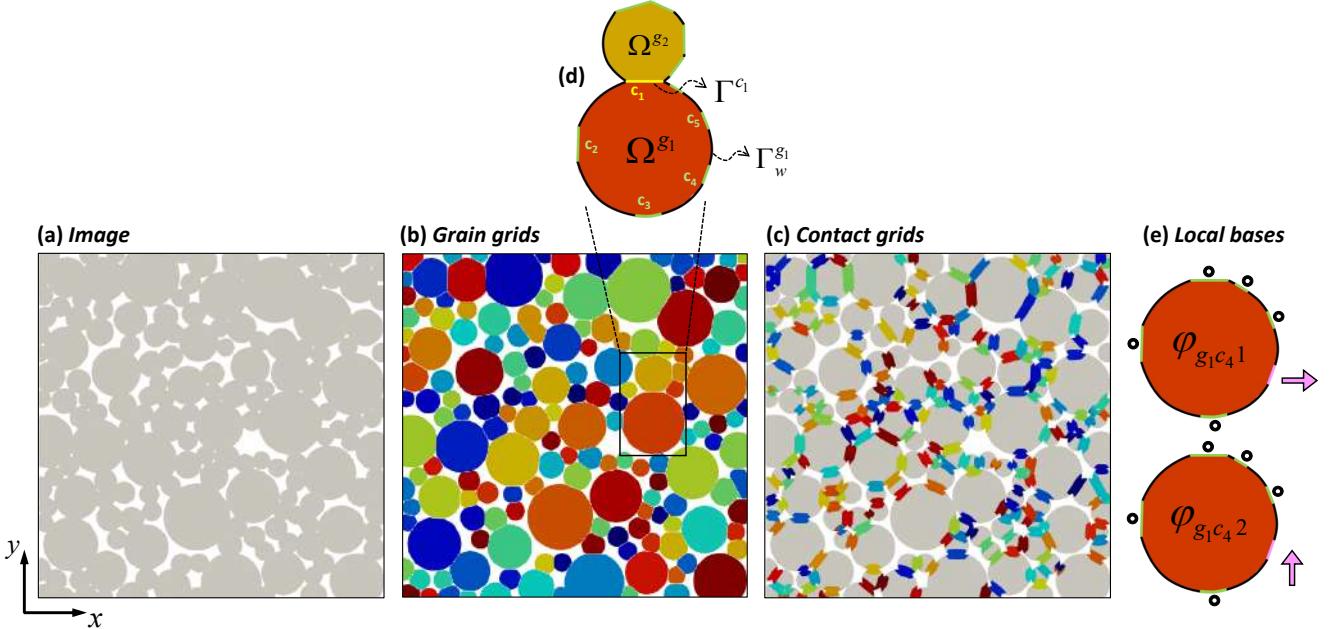


Figure 1: Schematic of a pore-scale image, its decomposition into grain grids, and contact grids. (a) The image consists of a solid phase  $\Omega$  (gray) and a void space (white). The solid is where the PDEs in Eqs. 1 and 2 are solved. (b)  $\Omega$  is decomposed into grain grids  $\Omega^{g_i}$  (randomly colored). (c) Contact grids  $\Omega^{c_j}$  cover a thin region around each contact interface,  $\Gamma^{c_j}$ , shared between adjacent grain grids. (d) An interface  $\Gamma^{c_1}$  (yellow) between two grain grids  $\Omega^{g_1}$  and  $\Omega^{g_2}$  is highlighted. (e) Two basis functions associated with  $\Omega^{g_1}$  and  $\Gamma^{c_4}$  are shown for the linear elasticity PDE. Black circles denote homogeneous Dirichlet BCs, and arrows are Dirichlet BCs of unit magnitude along the coordinate axes.

100 lar/cuboid and FEM shape functions are bilinear/trilinear in 2D/3D. This yields the following linear system:

$$\hat{\mathbf{A}}\hat{\mathbf{x}} = \hat{\mathbf{b}} \quad (6)$$

101 where  $\hat{\mathbf{A}}$  is the coefficient matrix,  $\hat{\mathbf{b}}$  is the right-hand side (RHS) vector, and  $\hat{\mathbf{x}}$  the unknown vector of FEM nodal values  
102 corresponding to  $u$  in Eq. 1 or  $\mathbf{u}$  in Eq. 2. Solving Eq. 6 on typical domain sizes of interest is computationally expensive,  
103 especially when  $\Omega$  is large and geometrically complex. This can even lead state-of-the-art algebraic multigrid (AMG)  
104 [10] solvers to converge slowly [25, 26]. Below, we first review the highly effective PLMM preconditioner,  $\mathbf{M}$ , for  
105 such problems that accelerates the convergence of Krylov solvers. We then describe how machine learning (ML) can  
106 be used to accelerate a key computational bottleneck in building  $\mathbf{M}$  (i.e.,  $\mathbf{M}_G$ ). Neither  $\mathbf{M}$  nor its hybridization with  
107 ML are limited to FEM or Cartesian grids, as they apply to other solvers (e.g., FVM) and unstructured grids.

### 108 3. Multiscale preconditioner based on PLMM

109 We briefly review the multiscale preconditioner,  $\mathbf{M}$ , based on PLMM [26]. Section 3.1 outlines the overall structure  
110 of  $\mathbf{M}$ , consisting of a global (or coarse) preconditioner,  $\mathbf{M}_G$ , and a smoother,  $\mathbf{M}_L$ . We then describe the domain  
111 decomposition that is central to constructing both  $\mathbf{M}_G$  and  $\mathbf{M}_L$ . Section 3.3 details the various building blocks of  $\mathbf{M}_G$ ,  
112 which is the target of our acceleration via machine learning. In Section 3.4, we only summarize a few essential points  
113 about  $\mathbf{M}_L$ , as the details are not central to this work. We supplement this with references for the interested reader.

#### 114 3.1. Overall structure

115 The PLMM preconditioner,  $\mathbf{M}$ , is formulated as follows:

$$\mathbf{M}^{-1} = \mathbf{M}_G^{-1} + \mathbf{M}_L^{-1}(\mathbf{I} - \hat{\mathbf{A}}\mathbf{M}_G^{-1}) \quad (7)$$

116 where the global preconditioner  $M_G$  attenuates low-frequency errors, and the smoother  $M_L$  removes high-frequency  
 117 errors. Eq.7 is a multiplicative combination, where  $M_G$  is applied first, and  $M_L$  next. The smoother itself is written as:

$$M_L^{-1} = \sum_{i=1}^{n_{st}} M_l^{-1} \prod_{j=1}^{i-1} (I - \hat{A}M_l^{-1}) \quad (8)$$

118 representing a multiplicative application of a *base smoother*,  $M_l$ , in  $n_{st}$  repeated stages. For the  $M_G$  formulated in  
 119 Section 3.3, the best performance is observed when  $M_l$  is chosen compatibly as an additive Schwarz preconditioner  
 120 called the *contact-grain* smoother, or  $M_{CG}$  [26]. While other, black-box smoothers like Gauss-Seidel ( $M_{GS}$ ) and  
 121 incomplete LU-factorization ( $M_{ILU}$ ) are possible, they either converge more slowly (often tenfold) or lead to the  
 122 occasional stagnation of the Krylov solver. We therefore opt for  $M_l=M_{CG}$  in this work. We also note that a symmetric  
 123 combination of  $M_G$  and  $M_L$  is possible [26], allowing  $M$  to be used in symmetric solvers like conjugate gradient.

### 124 3.2. Domain decomposition

125 To construct  $M_G$  and  $M_L$ ,  $\Omega$  is first decomposed into  $N^g$  non-overlapping subdomains,  $\Omega^{g_i}$ , referred to as *grain*  
 126 *grids*. For this, a modified watershed segmentation algorithm proposed by [27] is applied to the image representing  $\Omega$ .  
 127 Fig.1b shows an example of such a decomposition for the pore-scale image in Fig.1a, where grain grids are depicted  
 128 by the randomly colored regions. The interfaces shared between adjacent grain grids,  $\Gamma^{c_j}$ , are called *contact interfaces*  
 129 and one is illustrated in Fig.1d. Watershed segmentation is a morphological operation in image analysis [6, 34] whose  
 130 key feature is that  $\Omega^{g_i}$  corresponds to a local enlargement of  $\Omega$ , and  $\Gamma^{c_j}$  to a local constriction.

131 In addition to  $\Omega^{g_i}$ , we construct a complementary set of  $N^\zeta$  subdomains,  $\Omega^{\zeta_k}$ , called *contact grids*. Each contact  
 132 grid covers an interface,  $\Gamma^{c_k}$ , plus a thin region around it. Fig.1c provides a visual schematic. To build  $\Omega^{\zeta_k}$ , successive  
 133 morphological dilations, an operation in image analysis [48], of the pixels comprising  $\Gamma^{c_k}$  are performed. The  
 134 thickness of  $\Omega^{\zeta_k}$  is proportional to the number of such dilations and can be adjusted by the user. Typically, a width of  
 135 ~12 pixels (6 per contact side) is sufficient. Notice that the union of contact grids does not cover  $\Omega$  (i.e.,  $\Omega \neq \cup_k \Omega^{\zeta_k}$ ).  
 136 Contact grids are only used by  $M_L$ , and their function is to remove high-frequency errors that tend to concentrate near  
 137  $\Gamma^{c_j}$  after every application of  $M_G$ . We note that contact grids in the PLMM preconditioner are allowed to overlap  
 138 with each other, which is conceptually simpler and computationally more advantageous than the original geometric  
 139 (non-algebraic) formulation of PLMM [27], wherein such grids had to be merged (see [26] for a discussion).

### 140 3.3. Global preconditioner

141 The global (or coarse) preconditioner  $M_G$  is defined as follows:

$$M_G^{-1} = \hat{P}(\hat{R}\hat{A}\hat{P})^{-1}\hat{R} \quad (9)$$

142 where  $\hat{P}$  and  $\hat{R}$  are the *effective prolongation* and *effective restriction* matrices, respectively.<sup>1</sup> Here, we set  $\hat{R} = \hat{P}^\top$  and  
 143 formulate  $\hat{P}$  as the multiplication of three matrices:

$$\hat{P} = WQP \quad (10)$$

144 We refer to  $W$  as the *permutation matrix*, to  $Q$  as the *reduction matrix*, and to  $P$  as the (reduced) *prolongation matrix*.  
 145 Below, we describe the procedure for constructing each one, while referring the reader to [26] for further details.

146 **Permutation ( $W$ ).** The permutation matrix,  $W$ , is square and consists of only 0 and 1 entries. Its function is to  
 147 shuffle the columns of any matrix it right-multiplies. Hence, it is unitary, i.e.,  $WW^\top = I$ . The shuffling is done in  
 148 accordance with the domain decomposition in Section 3.2, such that the fine-grid entries associated with each grain  
 149 grid  $\Omega^{g_i}$ , and each contact interface  $\Gamma^{c_j}$ , are grouped together. Applying  $W$  to the linear system in Eq.6 yields:

$$\underbrace{W^\top \hat{A} W}_{A} \underbrace{W^\top \hat{x}}_{x} = \underbrace{W^\top \hat{b}}_{b} \quad \Rightarrow \quad Ax = b \quad (11a)$$

<sup>1</sup>Following the terminology introduced in [26], we use the term *effective* to distinguish  $\hat{P}$  from the prolongation matrix  $P$  introduced below.

151 where the permuted  $A$ ,  $b$ , and  $x$  have the following block structures:

$$A = \begin{bmatrix} A_g^g & A_c^g \\ A_g^c & A_c^c \end{bmatrix} \quad b = \begin{bmatrix} b^g \\ b^c \end{bmatrix} \quad x = \begin{bmatrix} x^g \\ x^c \end{bmatrix} \quad (11b)$$

$$152 \quad A_g^g = \begin{bmatrix} A_{g_1}^{g_1} & \cdots & O \\ \vdots & \ddots & \vdots \\ O & \cdots & A_{g_{N_g}}^{g_{N_g}} \end{bmatrix}_{N_g^f \times N_g^f} \quad \begin{aligned} A_g^c &= [A_{g_j}^{c_i}]_{N_c^f \times N_g^f} \\ A_c^g &= [A_{c_j}^{g_i}]_{N_g^f \times N_c^f} \\ A_c^c &= [A_{c_j}^{c_i}]_{N_c^f \times N_c^f} \end{aligned} \quad \begin{aligned} b^g &= [b^{g_i}]_{N_g^f \times 1} \\ b^c &= [b^{c_i}]_{N_c^f \times 1} \end{aligned} \quad (11c)$$

153 The super/subscripts  $g_i$  and  $c_j$  specify the entries/blocks that belong to either  $\Omega^{g_i}$  or  $\Gamma^{c_j}$ , respectively.  $N_{g_i}^f$  and  $N_{c_j}^f$  are  
154 the number of fine-scale unknowns associated with  $\Omega^{g_i}$  and  $\Gamma^{c_j}$ , respectively, and  $N_g^f = \sum_i N_{g_i}^f$  and  $N_c^f = \sum_j N_{c_j}^f$ . Recall  
155  $N^g$  is the total number of grain grids. The matrix  $A_g^g$  is square and block-diagonal, with square blocks  $A_{g_i}^{g_i}$ , while  
156  $A_c^g$  and  $A_g^c$  are thin and rectangular. Moreover,  $A_c^g = (A_g^g)^\top$  and  $A_{c_j}^{g_i} = (A_{g_i}^{g_j})^\top$  hold because of the self-adjoint nature  
157 of the PDEs in Eqs.1a and 2a and our choice to use Galerkin FEM to discretize them. Building  $W$  is trivial, thus cheap.

158 **Reduction matrix (Q).** The reduction matrix,  $Q$ , is square and consists of only 0 and 1 entries. Its function is to  
159 perform a column-sum, when right-multiplying a matrix, over all entries associated with each contact interface  $\Gamma^{c_j}$ .  
160 For the linear-elasticity PDE, this summation is done on a per coordinate-direction basis. Hence,  $Q$  is expressed as:

$$161 \quad Q = \begin{bmatrix} I_{N_g^f \times N_g^f} & O \\ O & Q^o \end{bmatrix} \quad Q^o = \begin{bmatrix} \mathbf{1}^{c_1} & & O \\ & \ddots & \\ O & & \mathbf{1}^{c_N} \end{bmatrix}_{N_c^f \times N_c^o} \quad \mathbf{1}^{c_i} = \begin{bmatrix} I_{\omega \times \omega} \\ \vdots \\ I_{\omega \times \omega} \end{bmatrix}_{N_{c_i}^f \times \omega} \quad (12)$$

162 where  $N_c^o = N^c \omega$ , with  $\omega = 1$  for Eq.1 and  $\omega = D$  for Eq.2. Recall  $N^c$  is the total number of contact interfaces. The  
163 parameter  $\omega$  represents the number of degrees of freedom per fine grid (here, FEM node). Notice  $Q$  is block-diagonal,  
164 with its (1,1)-block an identity matrix and its (2,2)-block a block-diagonal matrix  $Q^o$  itself. Each block of  $Q^o$ , namely  
165  $\mathbf{1}^{c_i}$ , consists of a series of vertically concatenated identity matrices of dimension  $\omega \times \omega$ . A symmetric application of  $Q$   
166 to the permuted system in Eq.11a yields the reduced system below:

$$Ax = b, \quad x \simeq Qx_M \quad \Rightarrow \quad Q^\top A Q x_M = Q^\top b \quad \Rightarrow \quad A_M x_M = b_M \quad (13a)$$

167 where  $A_M$  possesses the following block structure:

$$168 \quad A_M = \begin{bmatrix} A_g^g & \bar{A}_c^g \\ \bar{A}_g^c & \bar{A}_c^c \end{bmatrix} \quad \begin{aligned} \bar{A}_g^c &= [\bar{A}_{g_j}^{c_i}]_{N_c^o \times N_g^f} \\ \bar{A}_c^g &= [\bar{A}_{c_j}^{g_i}]_{N_g^f \times N_c^o} \\ \bar{A}_c^c &= [\bar{A}_{c_j}^{c_i}]_{N_c^o \times N_c^o} \end{aligned} \quad (13b)$$

169 The overbared blocks have smaller dimensions compared to those in Eq.11c (note  $N_g^f$  is replaced by  $N_c^o$ ). The application  
170 of  $Q$  in Eq.13a simultaneously imposes an (integrated) flux balance across all  $\Gamma^{c_j}$  and a localization assumption  
171 that  $u$  or  $\mathbf{u}$  are uniform along each  $\Gamma^{c_j}$ , both inherent to PLMM [26]. Building  $Q$  is trivial, thus cheap.

172 **Prolongation matrix (P).** The prolongation matrix,  $P$ , is tall and skinny with columns that define a coarse space  
173 wherein a close approximation to the solution,  $x_M$ , of the reduced system in Eq.13a exists. Each column of  $P$  is  
174 comprised of local solutions of the PDEs in Eqs.1 or 2 on one/two grain grids. Thus,  $P$  is sparse. It is built as follows:

$$175 \quad P = \begin{bmatrix} B & C \\ I & O \end{bmatrix}_{(N_g^f + N_c^o) \times (N_c^o + N^g)} \quad B = \begin{bmatrix} p_1^{g_1} & p_2^{g_1} & \cdots & p_n^{g_1} \\ p_1^{g_2} & p_2^{g_2} & \cdots & p_n^{g_2} \\ \vdots & \vdots & \ddots & \vdots \\ p_1^{g_m} & p_2^{g_m} & \cdots & p_n^{g_m} \end{bmatrix}_{N_g^f \times N_c^o} \quad C = \begin{bmatrix} c^{g_1} & & & O \\ & c^{g_2} & & \\ & & \ddots & \\ O & & & c^{g_m} \end{bmatrix}_{N_g^f \times N^g} \quad (14a)$$

176 The *basis matrix*,  $B$ , and *correction matrix*,  $C$ , are comprised of the following vectors:

$$c^{g_i} = (A_{g_i}^{g_i})^{-1} b^{g_i} \quad (14b)$$

$$p_k^{g_i} = \begin{cases} -(A_{g_i}^{g_i})^{-1} \bar{A}_{c_j}^{g_i} R_c^{c_j} e_k, & g_i \in G^{c_j} \quad c_j = \lceil k/\omega \rceil \\ O, & g_i \notin G^{c_j} \quad c_j = \lceil k/\omega \rceil \end{cases} \quad (14c)$$

$$e_k = [0, \dots, \underbrace{0, 1, 0, \dots, 0}_{k-1, k, k+1}]_{N_c^o \times 1}^\top \quad (14d)$$

177 where  $p_k^{g_i}$  is referred to as a *basis vector*, and  $c^{g_i}$  as a *correction vector*, both defined on the grain grid  $\Omega^{g_i}$ . In Eq.14a,  
178 we have used  $n = N_c^o$  and  $m = N^g$  for brevity. The unit vector  $e_k$  contains 1 in its  $k^{\text{th}}$  entry, with  $k$  corresponding to  
179 the contact interface with index  $c_j = \lceil k/\omega \rceil$ . The set  $G^{c_j}$  contains the indices of the only two grain grids that share  $\Gamma^{c_j}$ .  
180 According to Eq.14c,  $p_k^{g_i}$  is non-zero only if  $\Omega^{g_i}$  shares an interface  $\Gamma^{c_j}$  with another grain grid. Thus,  $B$  is sparse and  
181 only two of the basis vectors in each column of it are non-zero. Finally, the *contraction matrix*,  $R_c^{c_j}$ , is defined as:

$$R_c^{c_j} = [\Delta_{c_1}^{c_j}, \Delta_{c_2}^{c_j}, \dots, \Delta_{c_{N_c^o}}^{c_j}]_{\omega \times N_c^o} \quad \Delta_{c_j}^{c_i} = \begin{cases} I_{\omega \times \omega} & \text{if } i = j \\ O_{\omega \times \omega} & \text{if } i \neq j \end{cases} \quad (15)$$

182 Left-multiplying a  $N_c^o \times 1$  vector defined on all contact interfaces (e.g.,  $e_k$ ) by  $R_c^{c_j}$  restricts it to a  $\omega \times 1$  vector on  $\Gamma^{c_j}$ .

183 Building the prolongation matrix  $P$ , outlined above is fully parallelizable, as it involves the calculation of  $2N_c^o$   
184 decoupled basis vectors and  $N^g$  decoupled correction vectors on non-overlapping subdomains (i.e., grain grids). Even  
185 so, computing  $P$  is the most computationally expensive step in constructing  $M_G$  via Eq.10 because it involves the  
186 repeated solution of Eq.1 or Eq.2 over each grain grid subject to different BCs. Since most  $c^{g_i}$  are zero herein, because  
187 the source terms  $f$  and  $\hat{f}$  in Eqs.1-2 are set to zero ( $c^{g_i} \neq 0$  only if  $\Omega^{g_i}$  intersects the global boundary  $\Gamma^{ex}$ ), the cost of  
188 building  $P$  is dominated by that of building  $B$  in Eq.14a. In Section 4, we propose a machine learning (ML) algorithm  
189 that significantly accelerates the construction of  $B$ , and thereby that of  $M_G$ .

### 190 3.4. Local smoother

191 The high-frequency errors that remain after applying  $M_G$  tend to concentrate near contact interfaces. The compatible  
192 *contact-grain* smother  $M_{CG}$ , proposed by [26], specifically targets these errors by applying two additive schwarz  
193 preconditioners in immediate succession:

$$M_{CG}^{-1} = M_\zeta^{-1} + M_g^{-1}(I - \hat{A}M_\zeta^{-1}) \quad (16)$$

194 The first, called the *contact-grid* smoother  $M_\zeta$ , wipes out all errors within each contact grid (i.e., a small neighborhood  
195 around each contact interface), and the second, called the *grain-grid* smoother  $M_g$ , removes all errors inside each grain  
196 grid. Notice the multiplicative composition of  $M_\zeta$  and  $M_g$  in Eq.16 resembles Eq.7.  $M_g$  and  $M_\zeta$  take the standard  
197 algebraic forms common to all additive Schwarz preconditioners [9] below:

$$M_g^{-1} = \sum_{i=1}^{N^g} E_f^{g_i} (R_f^{g_i} \hat{A} E_f^{g_i})^{-1} R_f^{g_i}, \quad M_\zeta^{-1} = \sum_{i=1}^{N^\zeta} E_f^{\zeta_i} (R_f^{\zeta_i} \hat{A} E_f^{\zeta_i})^{-1} R_f^{\zeta_i} \quad (17)$$

198 The matrices  $R_f^{g_i}$  and  $E_f^{g_i}$  restrict and extend, respectively, any vector they left-multiply to/from  $\Omega^{g_i}$  and  $\Omega$ . Similarly,  
199  $R_f^{\zeta_i}$  and  $E_f^{\zeta_i}$  restrict and extend to/from  $\Omega^{\zeta_i}$  and  $\Omega$ . In an iterative solver, applying  $M_g$  entails solving  $N^g$  decoupled  
200 systems on grain grids, and applying  $M_\zeta$  entails solving  $N^\zeta$  decoupled systems on contact grids; all fully parallelizable.

## 201 4. Building the global preconditioner via machine learning

202 We propose a machine learning architecture, modified after ResUnet in [49], that yields the basis vectors,  $p_k^{g_i}$ , in  
203 Eq.14c at a much lower computational cost than solving them directly with a numerical solver. From Eq.14c and our  
204 discussions in Section 3.3, recall that for every contact interface  $\Gamma^{c_j}$ , two sets of basis vectors are computed: one on

205 each of the two grain grids flanking  $\Gamma^{c_j}$ . Each set consists of  $\omega$  basis vectors, where  $\omega=1$  for Poisson and  $\omega=D$  for  
 206 elasticity. This means that on every grain grid  $\Omega^{g_i}$ ,  $\#C^{g_i} \times \omega$  basis vectors must be built, where  $\#C^{g_i}$  is the number of  
 207 contact interfaces intersecting  $\partial\Omega^{g_i}$ . Our ML algorithm aims to accelerate such repeated calculations on  $\Omega^{g_i}$ .

208 *4.1. Curating labeled training data*

209 The inputs and outputs of the proposed ML algorithm consist of small *images* with dimensions  $64 \times 64$  in 2D,  
 210 and  $48 \times 48 \times 48$  in 3D. These images contain the geometry of each grain grid and any fields defined on them, as  
 211 exemplified by Fig.2 for the grain grid  $\Omega^{g_1}$  with three contact interfaces  $\Gamma^{c_1}$ ,  $\Gamma^{c_2}$ , and  $\Gamma^{c_3}$ . The outside of  $\Omega^{g_1}$  is colored  
 212 gray. The small image sizes of the subdomain, unlike whole-domain images required by other ML algorithms in the  
 213 literature (e.g., [39]), ensure that training is rapid and the overhead in computer memory stays low. To capture a grain  
 214 grid's geometry inside the above-prescribed dimensions, we first circumscribe the grain grid by its minimal bounding  
 215 box, then crop it out of the pore-scale domain's original image. If this box is smaller/larger than the prescribed image  
 216 dimensions, as it is almost always the case, we up/downsample it to match the required size. Upsampling is straightfor-  
 217 ward, as it involves cutting a pixel into sub-pixels then copying the pixel's value onto the sub-pixels. Downsampling  
 218 requires mapping pixel values to those of a coarsened image, for which we use bi/trilinear interpolation.

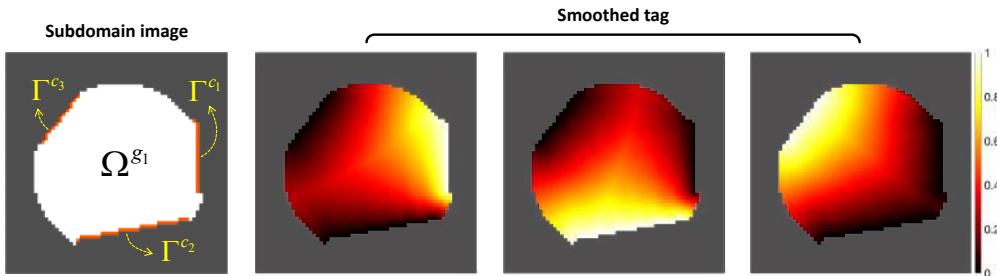


Figure 2: Example of a 2D subdomain (i.e., grain grid) image and its corresponding input features passed to the ML algorithm. The grain grid  $\Omega^{g_1}$  consists of three contact interfaces  $\Gamma^{c_1}$ ,  $\Gamma^{c_2}$ , and  $\Gamma^{c_3}$ . The smoothed tags are computed via Eq.18. From left to right, they correspond to basis vectors with BCs: (1)  $u = 1$  on  $\Gamma^{c_1}$  and  $u = 0$  on  $\Gamma^{c_2} \cup \Gamma^{c_3}$ ; (2)  $u = 1$  on  $\Gamma^{c_2}$  and  $u = 0$  on  $\Gamma^{c_1} \cup \Gamma^{c_3}$ ; and (3)  $u = 1$  on  $\Gamma^{c_3}$  and  $u = 0$  on  $\Gamma^{c_1} \cup \Gamma^{c_2}$ .

219 Before detailing the input feature required by the ML algorithm, let us first focus on what *output* we seek from it.  
 220 Consider the Poisson problem defined on  $\Omega^{g_1}$  in Fig.2. There are a total of three basis vectors we need to compute,  
 221 corresponding to local BCs: (1)  $u = 1$  on  $\Gamma^{c_1}$  and  $u = 0$  on  $\Gamma^{c_2} \cup \Gamma^{c_3}$ ; (2)  $u = 1$  on  $\Gamma^{c_2}$  and  $u = 0$  on  $\Gamma^{c_1} \cup \Gamma^{c_3}$ ; and (3)  
 222  $u = 1$  on  $\Gamma^{c_3}$  and  $u = 0$  on  $\Gamma^{c_1} \cup \Gamma^{c_2}$ . Similarly for the 2D elasticity problem, there are six basis vectors in total, two per  
 223 interface. For example, the two bases associated with  $\Gamma^{c_1}$  correspond to local BCs: (1)  $\mathbf{u} = (1, 0)$  on  $\Gamma^{c_1}$  and  $\mathbf{u} = (0, 0)$   
 224 on  $\Gamma^{c_2} \cup \Gamma^{c_3}$ ; (2)  $\mathbf{u} = (0, 1)$  on  $\Gamma^{c_1}$  and  $\mathbf{u} = (0, 0)$  on  $\Gamma^{c_2} \cup \Gamma^{c_3}$ . The other four bases associated with  $\Gamma^{c_2}$  and  $\Gamma^{c_3}$  follow in  
 225 a similar vein. We do not demand the ML algorithm to produce all basis vectors defined on  $\Omega^{g_i}$  at once, but one at a  
 226 time. This requires the input to not be a mere binary image of  $\Omega^{g_i}$ , but *tagged* in some fashion to specify which basis  
 227 vector of which interface we desire. This motivates us to now turn our attention to describing the input feature.

228 A naïve approach to crafting the input is to take each subdomain's image and assign integer labels to the various  
 229 pixel types, e.g., interior of  $\Omega^{g_i}$ , interface with non-zero BC, and interfaces with zero BCs. Unfortunately, this ap-  
 230 proach, as we have found, does not work because it leads to very slow (even non-convergent) training; also observed  
 231 by [39]. Instead, we design a smooth input image with pixel values corresponding to a distance map defined by:

$$d(\mathbf{x}) = \frac{d(\mathbf{x}, \Gamma_0)}{d(\mathbf{x}, \Gamma_0) + d(\mathbf{x}, \Gamma_1)} \quad (18)$$

232 where  $\Gamma_1$  is the interface at which a non-zero Dirichlet BC is imposed, and  $\Gamma_0$  is the union of all other interfaces  
 233 where the BCs are zero. For example, for the Poisson basis vector that corresponds to  $u = 1$  on  $\Gamma^{c_1}$  and  $u = 0$  on  
 234  $\Gamma^{c_2} \cup \Gamma^{c_3}$  in Fig.2, we have  $\Gamma_1 = \Gamma^{c_1}$  and  $\Gamma_0 = \Gamma^{c_2} \cup \Gamma^{c_3}$ . The  $d(\mathbf{x}, \Gamma_0)$  and  $d(\mathbf{x}, \Gamma_1)$  are Euclidean distances from the pixel  
 235 position  $\mathbf{x}$  to the closest pixel on  $\Gamma_0$  and  $\Gamma_1$ , respectively. Fig.2 illustrates all three input features, hereafter referred  
 236 to as *smoothed tags*, corresponding to the three basis vectors of the Poisson problem defined on  $\Omega^{g_1}$ . Notice for the  
 237 Poisson equation, both the ML input and output are either  $64 \times 64$  images in 2D, or  $48 \times 48 \times 48$  images in 3D.

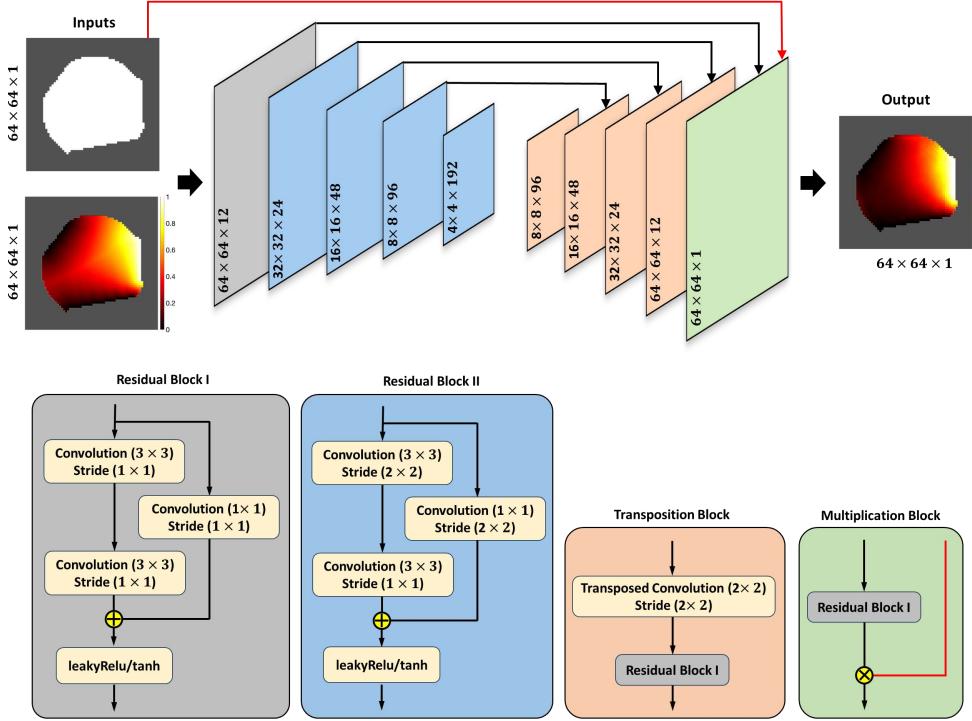


Figure 3: Proposed ML architecture, resembling a residual U-Net [49]. The top row shows the overall structure, which consists of encoder layers (gray and blue) and decoder layers (orange and green) connected by skip connections (black arrows). Each layer is a convolutional block with internal skip connections, as detailed by the sketches in the bottom row. The layers consist of Residual Blocks I and II, Transposition Blocks, and one Multiplication Block. The inputs to the ML algorithm are the image and smoothed tag of a subdomain (i.e., grain grid), and the output is the corresponding basis vector. The image is used (red arrow) by the Multiplication Block to filter out artifacts outside the subdomain's boundary.

238 For the elasticity problem, there are  $D$  bases associated with an interface, each a vector-valued function. Hence,  
 239 the ML output is a  $64 \times 64 \times D$  image in 2D, and a  $48 \times 48 \times 48 \times D$  image in 3D, with the last dimension containing  
 240 the  $D$  components of the basis vector's displacement field. To compute the  $D$  bases associated with each interface,  
 241 we train  $D$  separate ML algorithms, one for each coordinate direction. For example, for the 2D subdomain  $\Omega^{c_1}$  in  
 242 Fig.2, two architectures are trained. When applied to  $\Gamma^{c_1}$ , both accept the associated smoothed tag (second image from  
 243 the left in Fig.2) as input. The first architecture outputs the basis associated with the local BCs  $\mathbf{u} = (1, 0)$  on  $\Gamma^{c_1}$  and  
 244  $\mathbf{u} = (0, 0)$  on  $\Gamma^{c_2} \cup \Gamma^{c_3}$ , while the second outputs the basis associated with  $\mathbf{u} = (0, 1)$  on  $\Gamma^{c_1}$  and  $\mathbf{u} = (0, 0)$  on  $\Gamma^{c_2} \cup \Gamma^{c_3}$ .

245 To curate training data, we generate random disk packs in 2D and random sphere packs in 3D; like the one shown  
 246 in Fig.1a. Each domain is decomposed via the watershed-based algorithm described in Section 3.2 into subdomains.  
 247 After cropping and resizing the subdomain images, per the up/downsampling procedure already discussed, we com-  
 248 pute smoothed tags via Eq.18 for all bases of each subdomain. We next compute the basis vectors themselves using  
 249 a FEM solver on the cropped (but unresized) subdomain images, then resize them to match the dimensions of the  
 250 smoothed tags. The smoothed tags and basis vectors are paired to form a labeled dataset. In computing the bases for  
 251 the elasticity problem, we set the Lamé parameters to  $\lambda = 8.3$  GPa and  $\mu = 44.3$  GPa, corresponding to  $\alpha$ -quartz [50].  
 252 Later we demonstrate the generalizability of the trained ML algorithms, not only to subdomain geometries other than  
 253 those of disk/sphere packs, but also other stiffness tensors. The datasets for Poisson and elasticity consist, separately,  
 254 of 8,000 data points, each a triplet of a binary image, smoothed tag, and a basis vector. The binary image assigns 1 to  
 255 pixels belonging to the subdomain, and 0 to all other pixels. But if downscaled, this image becomes grayscale with  
 256 pixels along the subdomain's boundary assuming values between 0 and 1. Finally, we randomly split the dataset into  
 257 5,600 for training, 1,600 for validation (to tune hyperparameters and prevent overfitting), and 800 for testing.

258 **4.2. Machine learning architecture**

259 Fig.3 illustrates the ML architecture we train to predict the basis vector (output) corresponding to a given smoothed  
 260 tag and subdomain image (inputs). For the elasticity problem,  $D$  such algorithms are trained separately to predict the  $D$   
 261 basis vectors associated with each smoothed tag (or contact interface). The architecture in Fig.3 resembles a residual  
 262 U-Net [49], consisting of several encoder layers (gray and blue) and decoder layers (orange and green) linked by skip  
 263 connections (black arrows). Each layer is a convolutional block with internal skip connections, as sketched in Fig.3.  
 264 The layers consist of Residual Blocks I and II, Transposition Blocks, and a Multiplication Block. The input subdomain  
 265 image is used (red arrow) by the Multiplication Block to filter out artifacts outside the subdomain's boundary. The  
 266 activation function used in Residual Blocks I and II is `leakyRelu` for the Poisson problem, but `tanh` for the elasticity  
 267 problem. The latter is selected because the displacement variable  $\mathbf{u}$  in elasticity can assume both negative and positive  
 268 values in a basis vector, whereas the Poisson variable  $u$  is guaranteed to be always positive. Fig.3 also annotates the  
 269 size of the convolutional stencils, their stride lengths, and each layer's input/output dimensions.

270 We define the loss functions of the Poisson,  $L_p$ , and elasticity,  $L_e$ , problems as follows:

$$L_p = \frac{1}{N} \sum_{i=1}^N (y_{true} - y_{pred})^2 + \alpha_p \frac{1}{N} \sum_{i=1}^N (\Delta y_{pred} + f)^2 \quad (19a)$$

$$L_e = \frac{1}{N} \sum_{i=1}^N (y_{true} - y_{pred})^2 + \alpha_e \frac{1}{N} \sum_{i=1}^N (\nabla \cdot \sigma(y)_{pred} + f)^2 \quad (19b)$$

271 where the first term measures the *data mismatch* between the true (i.e., solver-computed) and predicted (i.e., ML-  
 272 computed) basis vectors. The second term is the *physics mismatch*, or norm of the PDE's residual, in the predicted  
 273 basis vectors. The weights  $\alpha_p$  and  $\alpha_e$  control the relative importance of the data- versus physics-based losses. We  
 274 implemented the ML architecture in Fig.3 using MATLAB's Deep Learning Toolbox and trained it on a machine with  
 275 an NVIDIA GeForce GTX 1660 Super graphics card. The batch size was set to 40, learning rate to  $10^{-5}$ , and training  
 276 was allowed to progress for 200 epochs. Early stoppage was used as the mechanism to prevent overfitting.

277 **4.3. Enforcing partition of unity on bases**

278 The basis vectors defined on a subdomain,  $\Omega^{g_i}$ , must satisfy an important constraint: *partition of unity*. For the  
 279 Poisson equation, this means that if we sum all the bases on  $\Omega^{g_i}$ , the result must be an all-ones function:

$$\sum_{\forall c_j \in C^{g_i}} \varphi_{c_j}^{g_i} = 1 \quad (20)$$

280 For emphasis and notational simplicity, we have used  $\varphi_{c_j}^{g_i}$ , instead of  $p_k^{g_i}$ , in Eq.20 to denote the basis vector associated  
 281 with grain grid  $\Omega^{g_i}$  and contact interface  $\Gamma^{c_j}$ . The set  $C^{g_i}$  contains the indices of all interfaces intersecting  $\partial\Omega^{g_i}$ .

282 For elasticity, this equation takes the form:

$$\sum_{\forall c_j \in C^{g_i}} \varphi_{c_j d}^{g_i} = \mathbf{1}_d \quad (21)$$

283 where we have again used the simpler notations  $\varphi_{c_j x}^{g_i}$  and  $\varphi_{c_j y}^{g_i}$  (and  $\varphi_{c_j z}^{g_i}$  in 3D) to denote the  $D$  basis vectors associated  
 284 with  $\Omega^{g_i}$  and  $\Gamma^{c_j}$ . Here,  $\mathbf{1}_d$  is a  $D \times 1$  constant vector field with 1 for its  $d^{\text{th}}$  component and 0 for its other components.  
 285 We have found that if Eqs.20 and 21 are not enforced explicitly on the ML-predicted basis vectors, during a  
 286 postprocessing step, the performance of the ML-preconditioned Krylov solver in Section 6 deteriorates greatly.

287 To impose Eq.20, we simply divide (in pointwise fashion) each ML-predicted basis by the sum of all bases on  $\Omega^{g_i}$ .  
 288 To impose Eq.21, we first divide the  $d^{\text{th}}$  component of each ML-predicted basis by the sum all the  $d$ -components of  
 289 all the bases on  $\Omega^{g_i}$ . This ensures the normalized  $d$ -components of all bases sum to one. Next, we normalize the other  
 290 ( $\neq d$ ) components by subtracting their arithmetic mean over all the bases from that of each individual basis (also in  
 291 pointwise fashion). This ensures that the non- $d$ -components of the normalized bases sum to zero.

292 **4.4. Smoothing machine learned bases**

293 The ML-predicted bases tend to be dominated by high-frequency errors that exhibit a checkerboard-like pattern  
 294 (shown later in Figs.5-6). While in Section 6 we report that such errors have negligible impact on the overall cost of the  
 295 Krylov solver, we propose an iterative strategy to arbitrarily improve the accuracy of ML-predicted bases, and thereby  
 296 the ML-built  $M_G$ , if so desired. The approach requires performing a small number of iterations with a Gauss-Seidel  
 297 (or any other) smoother that rapidly attenuates high-frequency errors. The lower-triangular matrix used to perform the  
 298 local Gauss-Seidel iterations on  $\Omega^{g_i}$  is derived directly by restricting the global matrix  $\hat{A}$  in the linear system Eq.6 onto  
 299  $\Omega^{g_i}$ . Each smoothing iteration is cheap and equivalent to a non-trainable convolution layer appended to the end of the  
 300 ML architecture in Fig.3 (see [51]). Since the accuracy of the ML-predicted basis vectors varies across subdomains,  
 301 one can ensure quality control by adapting the number of smoothing iterations such that the relative error:

$$E_{ML} = \frac{||R_i|| - ||R_{i-1}||}{||R_0||} \quad (22)$$

302 satisfies a desired tolerance,  $T_{ML}$ .  $R_0$  and  $R_i$  are local residuals on  $\Omega^{g_i}$  at the 0<sup>th</sup> and  $i^{\text{th}}$  smoothing steps. The smaller  
 303 a tolerance we impose on  $E_{ML}$ , the more iterations are required, and the more costly the basis calculations become.

304 **5. Problem set**

305 To test the performance of the ML-built two-level preconditioner,  $M$ , in solving the Poisson and elasticity prob-  
 306 lems, we consider the 2D and 3D porous microstructures shown in Fig.4. They consist of a 2D disk pack (P2D), a 2D  
 307 sandstone (S2D) [52], a 3D sphere pack (P3D), and a 3D bone specimen (BONE) [53]. Each domain is decomposed  
 308 into grain grids and contact grids via the watershed segmentation algorithm described in Section 3.2, and they are  
 309 illustrated by the randomly colored regions in Fig.4. Table 1 further summarizes each domain's image size, physical  
 310 dimensions, number of FEM elements and nodes, number of grain grids  $N^g$ , and number of contact grids  $N^c$ .

311 With reference to Fig.4, we impose the following BCs on the domains. For the Poisson equation in 2D, we set  $u=2$   
 312 on the left ( $x=0$ ) and  $u=0$  on the right ( $x=L_x$ ) side of each domain. In 3D, we set  $u=2$  and  $u=0$  on the top ( $z=L_z$ )  
 313 and bottom ( $z=0$ ) sides, respectively. All lateral boundaries in 2D/3D are flux-free (i.e., homogeneous Neumann).  
 314 For the elasticity equation in 2D,  $\mathbf{u}=(-1, 0)$  and  $\mathbf{u}=(0, 0)$  are set on the left and right boundaries, respectively. In  
 315 3D,  $\mathbf{u}=(0, 0, 0)$  is imposed on the top side and  $\mathbf{u}=(0, 0, -1)$  on the bottom side. All lateral boundaries in 2D/3D are  
 316 stress-free. The Lamé parameters of all domains are  $\lambda=8.3$  GPa and  $\mu=44.3$  GPa, same as those used to train the ML  
 317 algorithms in Section 4. In Appendix C, we demonstrate the algorithms' transferability to other stiffnesses.

318 We solve the linear system, Eq.6, associated with the Poisson and elasticity problems for each domain with a  
 319 right-preconditioned GMRES solver. The preconditioners probed herein are: (1) the two-level PLMM preconditioner  
 320  $M$ , whose coarse preconditioner  $M_G$  is built by a numerical solver; (2) the same two-level preconditioner  $M$ , except  
 321 whose coarse preconditioner  $M_G$  is built by the trained ML algorithms of Section 4; and as benchmark, (3) an AMG  
 322 preconditioner [54] constructed entirely by a numerical solver. To distinguish between preconditioners (1) and (2),  
 323 we refer to them hereafter as  $M_{SOL}$  and  $M_{ML}$ , respectively. As discussed in Section 3.1,  $M_{SOL}$  and  $M_{ML}$  require a  
 324 local smoother, for which we use Eq.8 with the base smoother  $M_l=M_{CG}$  and number of smoothing stages  $n_{st}=1$ ;  
 325 following recommendations in [26]. Unlike  $M_{SOL}$  and  $M_{ML}$ , the AMG preconditioner is multilevel, with the number  
 326 of levels ( $>2$ ) determined automatically and summarized in Appendix A. Per custom, one pre- and one post-smoothing  
 327 operation is performed in AMG via Gauss-Seidel per level. We declare GMRES to have “converged” if the normalized  
 328 residual satisfies  $\|\hat{A}\hat{x} - \hat{b}\|/\|\hat{b}\| < 10^{-9}$  or the number of iterations reaches 500. All simulations are run in *series*.

Table 1: Geometric and fine/coarse-grid properties of the domains in Fig.4, used to test the ML-built preconditioner proposed.

|      | Image pixels | Domain size (mm) | FEM elements | FEM nodes  | Grain grids ( $N^g$ ) | Contact grids ( $N^c$ ) |
|------|--------------|------------------|--------------|------------|-----------------------|-------------------------|
| P2D  | 4,000× 4,000 | 40×40            | 12,750,317   | 12,866,447 | 480                   | 688                     |
| S2D  | 4,000×4,000  | 40×40            | 12,704,770   | 12,775,648 | 227                   | 383                     |
| P3D  | 150×150×300  | 1.5×1.5×3        | 3,971,225    | 4,506,890  | 581                   | 1,040                   |
| BONE | 150×150×300  | 1.5×1.5×3        | 4,677,385    | 5,102,232  | 319                   | 1,255                   |

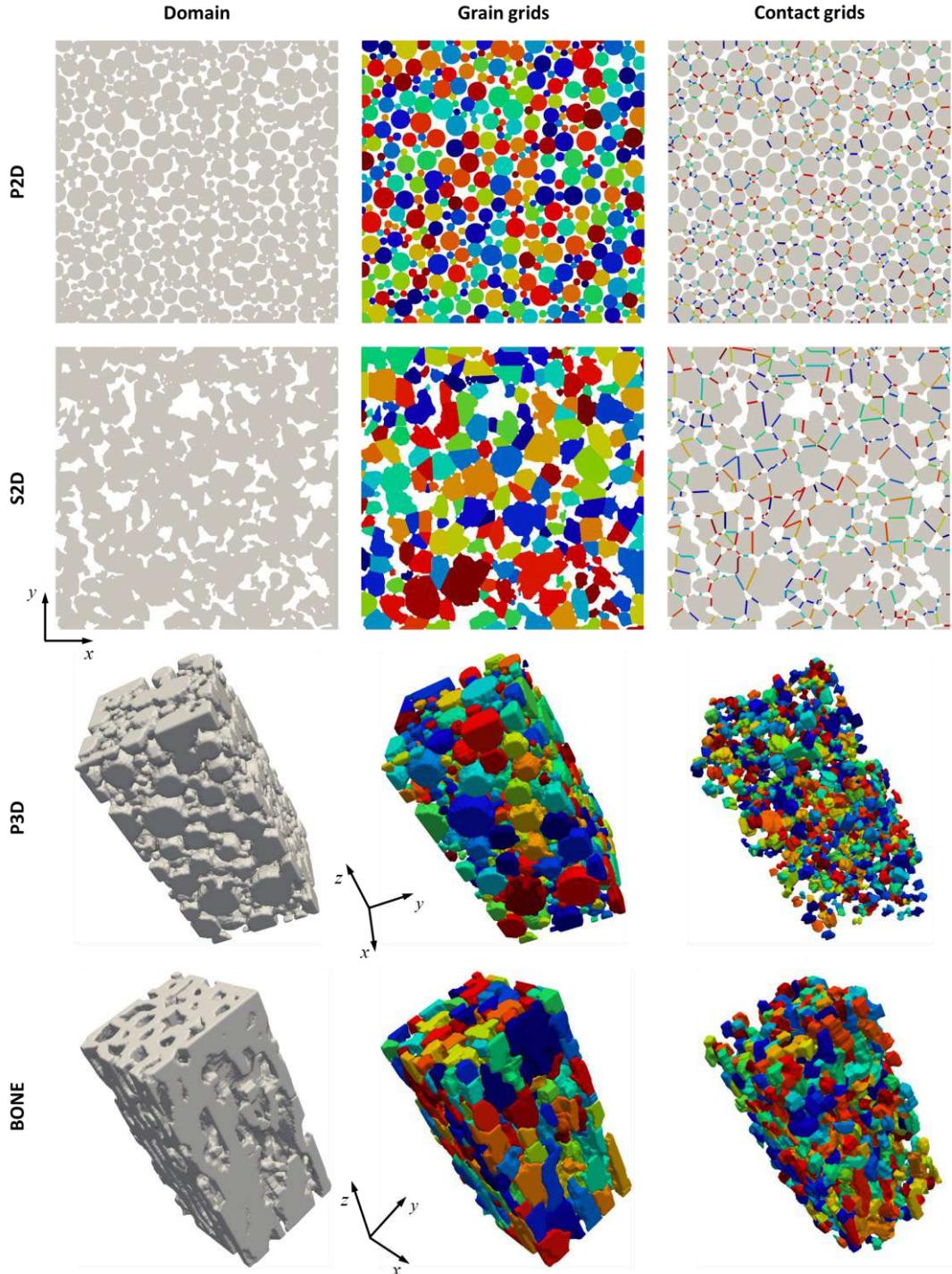


Figure 4: Porous geometries used to test the ML-accelerated multiscale preconditioner for the Poisson and elasticity equations. From top to bottom, they include a 2D disk pack (P2D), a 2D sandstone (S2D), a 3D sphere pack (P3D), and a 3D bone specimen (BONE). From left to right, each domain's geometry and corresponding grain grids and contact grids are illustrated. The last two are obtained from the decomposition algorithm described in Section 3.2 and are depicted as randomly colored regions.

329 **6. Results**

330 We present results in two parts. In Section 6.1, we probe the accuracy of the trained ML algorithms in constructing  
 331 basis vectors on subdomains. Since the algorithms in Section 4 are trained on disk/sphere packs, we consider both  
 332 in-distribution (unseen disk/sphere packs) and out-of-distribution (S2D and BONE) subdomains. For the elasticity  
 333 problem only, we also probe the transferrability of the ML algorithm to Poisson’s ratios different from that used  
 334 during training (i.e.,  $\nu \neq 0.08$ ). Next in Section 6.2, we compare the convergence rates and wall-clock times (WCT) of  
 335 the  $M_{\text{SOL}}$ ,  $M_{\text{ML}}$ , and AMG preconditioners applied within GMRES in solving the Poisson and elasticity equations.

336 *6.1. Basis vectors built by machine learning*

337 *6.1.1. In-distribution subdomains*

338 Using the notation introduced in Section 4.3 for the basis vectors (i.e.,  $\varphi_{c_j}^{g_i}$  and  $\varphi_{c_jd}^{g_i}$  with  $d \in \{x, y, z\}$ ), Figs.5 and 6  
 339 compare basis vectors predicted by the trained ML algorithms against those obtained from a numerical solver for the  
 340 Poisson and elasticity problems, respectively. The associated subdomain images and smoothed tags are also shown,  
 341 which are chosen from the testing dataset (i.e., unseen samples) defined in Section 4.1. The ML bases are in good  
 342 agreement with those from the solver, save for high-frequency, checkerboard error patterns that appear to be typical  
 343 of convolutional neural networks (see [45]). The ML algorithms were trained while setting  $\alpha_p = \alpha_e = 0$  in Eq.19.

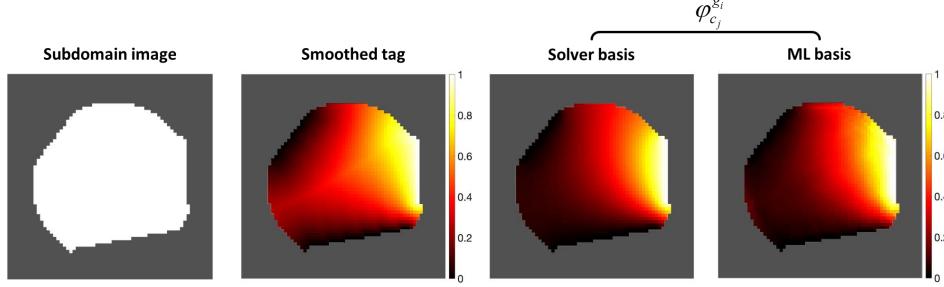


Figure 5: Schematic of a subdomain image, one of its smoothed tags, and the corresponding in-distribution basis vector for the Poisson problem. Two basis vectors are shown, one computed using a numerical solver and another predicted by the trained ML algorithm. The basis is denoted by  $\varphi_{c_j}^{g_i}$ , instead of  $p_k^{g_i}$ , to emphasize that it corresponds to the grain grid  $\Omega^{g_i}$  and interface  $\Gamma^{c_j}$ . Given the annotations in Fig.2,  $i=1$  and  $j=1$  here.

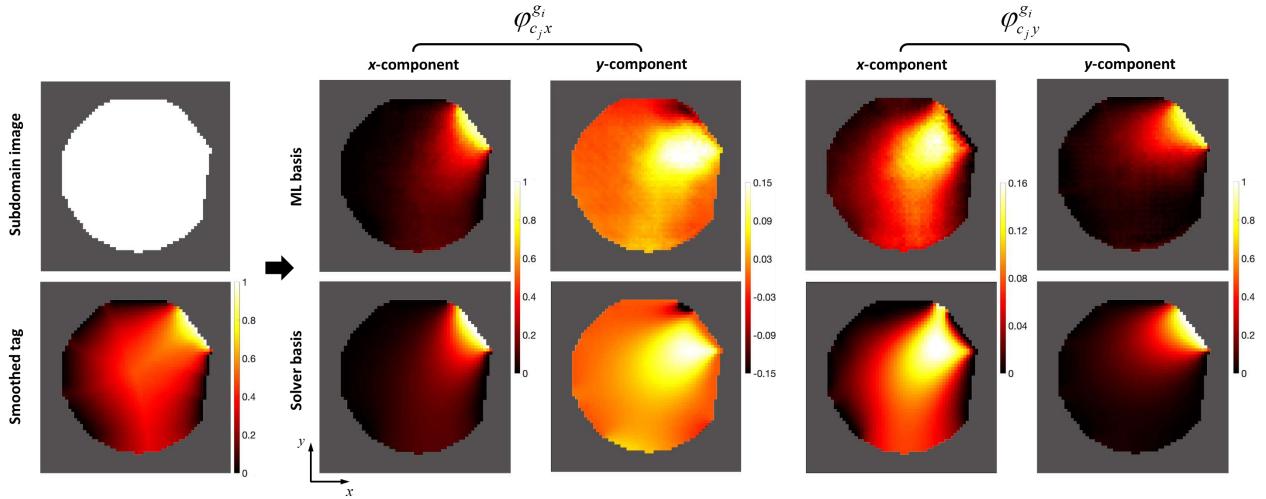


Figure 6: Schematic of a subdomain image, one of its smoothed tags, and the two corresponding in-distribution basis vectors for the Elasticity problem. The bottom row shows basis vectors computed using a numerical solver, and the top row bases predicted by the trained ML algorithms. Notice two basis vectors are associated with each interface, denoted by  $\varphi_{c_jx}^{g_i}$  and  $\varphi_{c_jy}^{g_i}$ , instead of  $p_k^{g_i}$ , to emphasize they correspond to the grain grid  $\Omega^{g_i}$ , interface  $\Gamma^{c_j}$ , and a non-zero Dirichlet BC imposed along the  $x$  or  $y$  coordinate direction.  $\varphi_{c_jx}^{g_i}$  and  $\varphi_{c_jy}^{g_i}$  are output by separate ML algorithms.

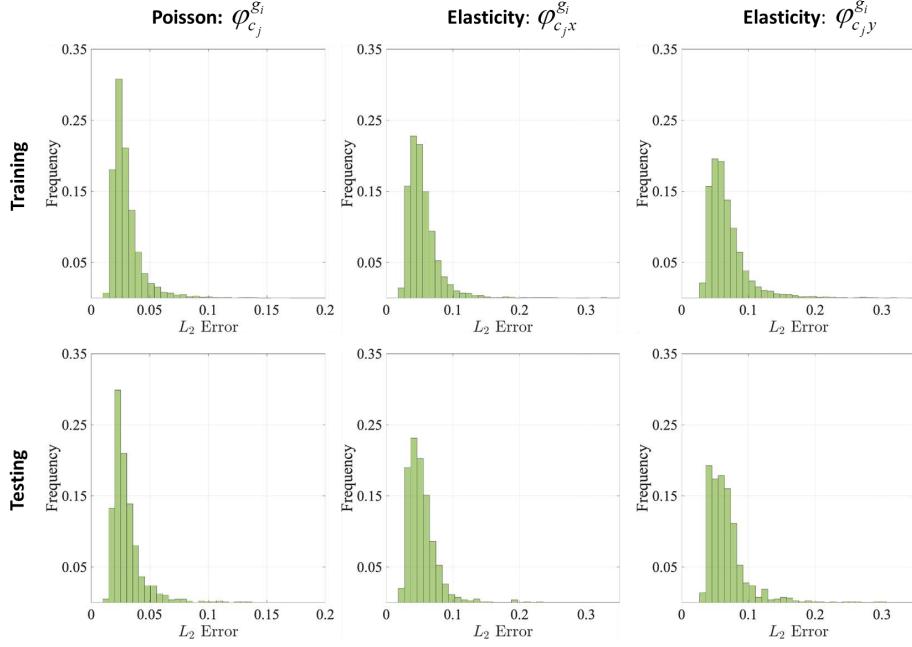


Figure 7: PDFs of  $L_2$ -errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of 2D disk packs. The top row shows training errors, and the bottom row testing errors. Most errors are <5% for Poisson and <10% for elasticity.

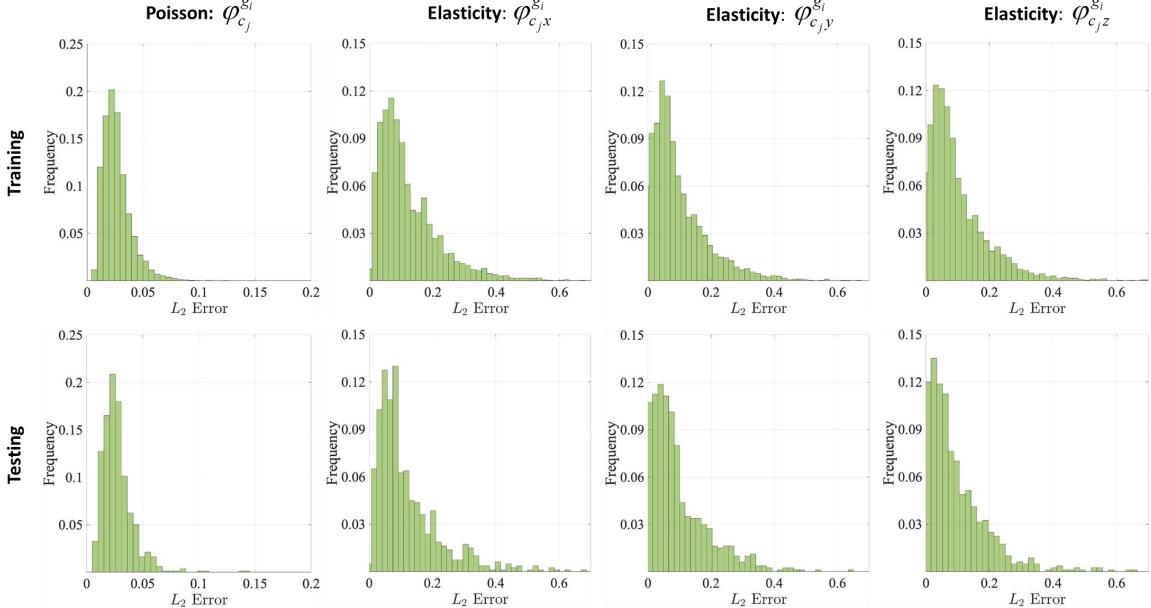


Figure 8: PDFs of  $L_2$ -errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of 3D sphere packs. The top row shows training errors, and the bottom row testing errors. Most errors are <5% for Poisson and <20% for elasticity.

To quantify the  $L_2$ -errors between the ML- and solver-computed basis vectors, we define:

$$E_2^\chi = \left( \frac{1}{|\Omega^{g_i}|} \int_{\Omega^{g_i}} \|\chi_{ml} - \chi_{solver}\|^2 d\Omega \right)^{1/2} / \sup_{\Omega^{g_i}} \|\chi_{solver}\| \quad (23)$$

345 where  $\chi$  is a placeholder for either  $u$  in Poisson or  $\mathbf{u}$  in elasticity.  $\chi_{ml}$  and  $\chi_{solver}$  denote the solver- and ML-predicted  
 346 basis vectors, respectively. The PDFs of  $L_2$ -errors so obtained for all subdomains in the training and testing datasets are  
 347 shown in Figs.7-8 for the Poisson and elasticity problems. Fig.7 corresponds to basis vectors defined on subdomains  
 348 of 2D disk packs, whereas Fig.8 corresponds to basis vectors on subdomains of 3D sphere packs. Given that training  
 349 and testing datasets both consist of disk/sphere-pack subdomains, Figs.7-8 constitute *in-distribution* errors.

350 We see that testing errors for unseen samples are comparable to the training errors, largely <5% for the 2D Poisson  
 351 and <10% for the 2D elasticity problem. In 3D, testing errors are <5% for Poisson and <20% for elasticity. The higher  
 352 3D errors are likely due to the fact that even though an equal number of data points (i.e., 5,600) were used to train  
 353 both ML algorithms in 2D and 3D, each 3D subdomain has on average a larger number of contact interfaces, hence  
 354 basis vectors. Therefore, the 3D training set covers a smaller range of variability in subdomain geometries than the  
 355 2D set. Augmenting the training set in the future could reduce the 2D and 3D testing errors further. Finally, recall the  
 356 ML algorithms in Figs.5-8 were trained in a purely data-driven fashion, with  $\alpha_p = \alpha_e = 0$  in the loss functions given by  
 357 Eq.19. In Appendix B, we set  $\alpha_p = 1$  and 10 for the Poisson equation and show that including the PDE's residual in  
 358 the loss function neither improves training speed nor the accuracy of the predicted bases in any significant way.

### 359 6.1.2. Out-of-distribution subdomains

360 A key question we wish to answer here is whether the trained ML algorithms in Section 4 on disk/sphere packs also  
 361 apply to subdomains of other, *out-of-distribution*, geometries without having to be retrained? Figs.9 and 10 suggest  
 362 the answer is *yes*. Comparing the ML- and solver-built basis vectors for the Poisson and elasticity problems on two  
 363 subdomains of the S2D domain shows very good agreement. Figs.11-12 also depict the PDFs of  $L_2$ -errors, obtained

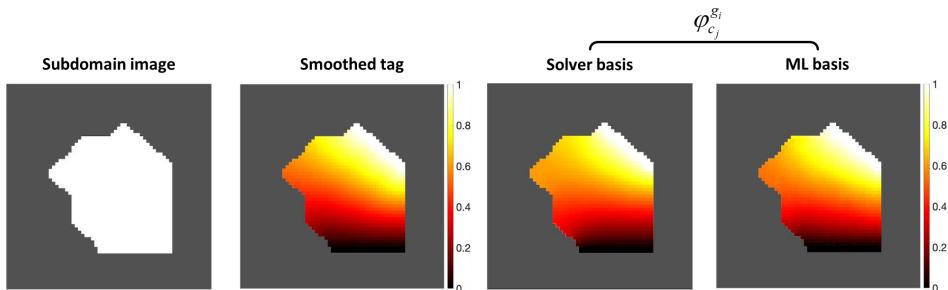


Figure 9: Schematic of a subdomain image, one of its smoothed tags, and the corresponding out-of-distribution basis vector for the Poisson problem. Two basis vectors are shown, one computed using a numerical solver and another predicted by the trained ML algorithm.

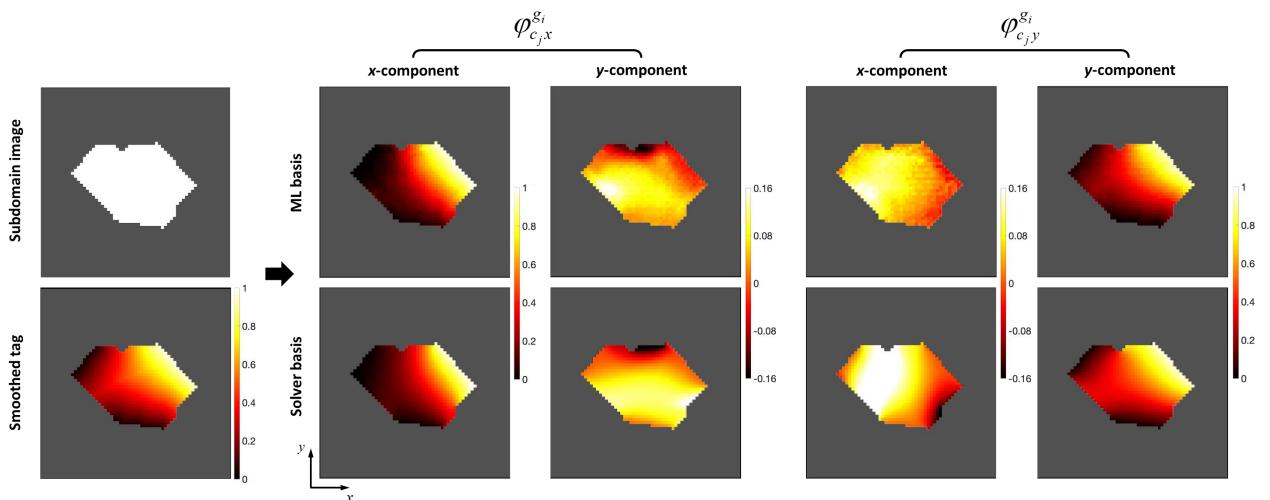


Figure 10: Schematic of a subdomain image, one of its smoothed tags, and the two corresponding out-of-distribution basis vectors for the Elasticity problem. The bottom row shows basis vectors computed using a numerical solver, and the top row bases predicted by the trained ML algorithms.

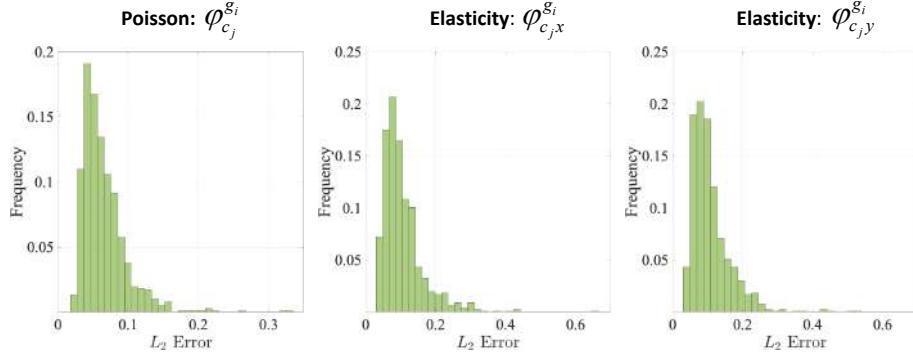


Figure 11: PDFs of  $L_2$ -errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of the S2D domain. Most of these out-of-distribution errors are  $<10\%$  for Poisson and  $<20\%$  for elasticity.

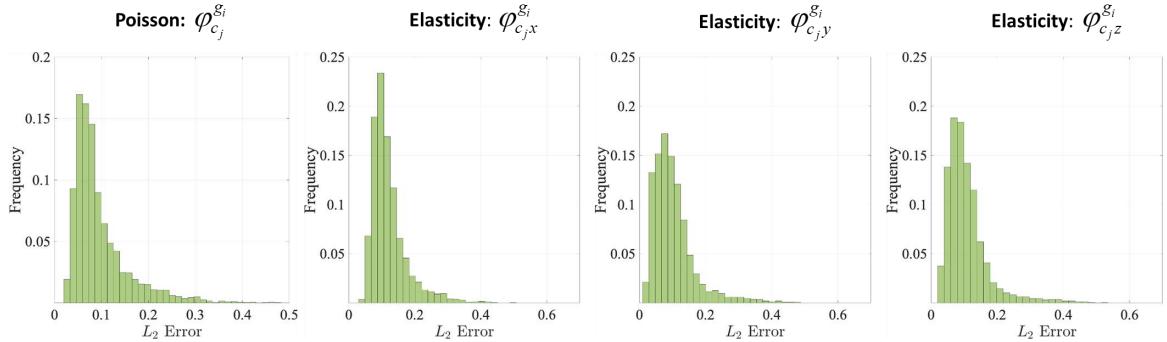


Figure 12: PDFs of  $L_2$ -errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of the BONE domain. Most of these out-of-distribution errors are  $<20\%$  for Poisson and  $<20\%$  for elasticity.

364 via Eq.23, for all the ML-built basis vectors of the Poisson and elasticity equations on S2D and BONE subdomains.

365 These out-of-distribution errors are slightly larger than the in-distribution errors (computed on the testing dataset)  
366 in Figs.7-8, often by a factor of  $\sim 2$ . Specifically, errors are  $<10\%$  for Poisson and  $<20\%$  for elasticity in S2D, and  
367  $<20\%$  for Poisson and  $<20\%$  for elasticity in BONE. Considering no representative subdomains of either geometry  
368 were included in the training dataset, the accuracy of the ML algorithms is encouraging. Finally, recall that the ML-  
369 algorithms for the elasticity problem used in Figs.6 and 7-8 were trained in Section 4 on data that assumed a single  
370 Poisson's ratio of  $\nu = 0.08$ ; corresponding to  $\alpha$ -quartz. In Appendix C, we demonstrate these trained algorithms also  
371 apply to other values of  $\nu$  without having to retrain them, with most  $L_2$ -errors  $<20\%$ . In the next section, we assess  
372 the performance of the coarse preconditioner,  $M_G$ , built from the above ML-predicted basis vectors.

### 373 6.2. Two-level preconditioners built by machine learning

#### 374 6.2.1. Accuracy of the first-pass solution

375 The coarse preconditioner,  $M_G$ , outlined in Section 3.3 can be used to obtain an approximate solution via  $\hat{x}_{aprx} =$   
376  $M_G^{-1}\hat{b}$ . We call  $\hat{x}_{aprx}$  the *first-pass* solution and compute it with  $M_G$ 's constructed by: (1) a numerical solver ( $M_{G,SOL}$ );  
377 (2) the trained ML algorithms of Section 4 with *no* smoothing iterations performed on the basis vectors ( $M_{G,ML}$ ,  $T_{ML} =$   
378  $\infty$ ); and (3) the trained ML algorithms of Section 4 *with* smoothing iterations performed on the basis vectors ( $M_{G,ML}$ ,  
379  $T_{ML} < \infty$ ). In (3), iterations are performed until  $E_{ML} < T_{ML}$  in Eq.22, where  $T_{ML}$  is a user-defined tolerance. The  $M_G$   
380 in (2) can thus be viewed as corresponding to  $T_{ML} = \infty$ , which we adopt hereafter to mean "no basis smoothing."

381 Figs.13-15 compare the first-pass solutions obtained from the above  $M_G$ 's against the exact solution. Fig.13 shows  
382 the spatial distributions of  $u$  in the Poisson equation for all domains, where a very good agreement between all first-  
383 pass solutions and the exact solution is seen. Specifically, the  $u$  from ML with  $T_{ML} = \infty$  is impressively accurate.  
384 Fig.14 shows the spatial distributions of  $\mathbf{u} = (u_x, u_y)$  in the elasticity equation for the 2D domains, P2D and S2D.

385 The 3D domains, P3D and BONE, are shown in Fig.15, where only the axial  $u_z$  and radial  $(u_x^2 + u_y^2)^{1/2}$  displacements  
 386 of  $\mathbf{u} = (u_x, u_y, u_z)$  are illustrated for brevity. Once again, very good agreement between the first-pass and exact  
 387 solutions are observed, however this time *only in the axial direction* (i.e.,  $u_x$  in 2D, and  $u_z$  in 3D). In the lateral/radial  
 388 directions, the displacement component from  $\mathbf{M}_{G,ML}$  with  $T_{ML} = \infty$  agrees rather poorly with that of the exact solution.  
 389 Performing basis smoothing iterations in  $\mathbf{M}_{G,ML}$  with  $T_{ML} = 10^{-5}$  improves the accuracy of lateral/radial component  
 390 and brings it close to that of  $\mathbf{M}_{G,SOL}$ . However, notice the first-pass solution from  $\mathbf{M}_{G,SOL}$  incurs some errors itself, to  
 391 which the first-pass solution from  $\mathbf{M}_{G,ML}$  can only asymptote to in the limit  $T_{ML} \rightarrow 0$ , but never surpass.

392 Table 2 lists the relative  $L_2$ -errors of the first-pass solutions of the Poisson and elasticity equations computed via  
 393  $\mathbf{M}_{G,SOL}$  and  $\mathbf{M}_{G,ML}$  with  $T_{ML} = \infty, 1, 10^{-2}, 10^{-4}$ , and  $10^{-9}$  on all the domains. The errors are expressed as percentages  
 394 and computed via Eq.23, except with  $\Omega^{g_i}$  replaced by  $\Omega$ . First, notice that even without basis smoothing ( $T_{ML} = \infty$ ),  
 395 the  $\mathbf{M}_{G,ML}$  approximation has a very low error (<1% in 2D and <5% in 3D) and comparable to that of  $\mathbf{M}_{G,SOL}$ .  
 396 This renders the first-pass solution of  $\mathbf{M}_{G,ML}$  with  $T_{ML} = \infty$  useful in a wide range applications where tolerance for  
 397 error is moderate-to-high (e.g., subsurface engineering). Second, Table 2 suggests that basis smoothing iterations do  
 398 not necessarily improve the accuracy of ML-predicted first-pass solutions unless a very large number is performed.  
 399 Specifically, we see improvement for  $T_{ML} = 10^{-9}$  where  $\mathbf{M}_{G,ML}$  and  $\mathbf{M}_{SOL}$  have identical accuracy. But as mentioned  
 400 earlier, such a small  $T_{ML}$  comes at a very high cost and is not recommended. In the next section, we show that despite  
 401 the negligible impact on first-pass solutions, basis smoothing noticeably improves convergence in Krylov solvers.

Table 2:  $L_2$ -errors (%) for the first-pass solutions of the Poisson and elasticity problems obtained from a single application of the coarse preconditioner  $\mathbf{M}_G$  built via a numerical solver ( $\mathbf{M}_{G,SOL}$ ) and ML algorithm ( $\mathbf{M}_{G,ML}$ ) with different basis-smoothing tolerances ( $E_{ML} < T_{ML}$  in Eq.22).

|            |      | $\mathbf{M}_{G,SOL}$ | $\mathbf{M}_{G,ML}, T_{ML} = \infty$ | $\mathbf{M}_{G,ML}, T_{ML} = 1$ | $\mathbf{M}_{G,ML}, T_{ML} = 10^{-2}$ | $\mathbf{M}_{G,ML}, T_{ML} = 10^{-4}$ | $\mathbf{M}_{G,ML}, T_{ML} = 10^{-9}$ |
|------------|------|----------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Poisson    | P2D  | 0.01                 | 0.05                                 | 0.04                            | 0.07                                  | 0.12                                  | 0.01                                  |
|            | S2D  | 0.03                 | 0.09                                 | 0.07                            | 0.10                                  | 0.20                                  | 0.03                                  |
|            | P3D  | 1.08                 | 1.69                                 | 1.41                            | 2.34                                  | 2.31                                  | 1.08                                  |
|            | BONE | 2.74                 | 3.09                                 | 2.84                            | 2.84                                  | 2.80                                  | 2.74                                  |
| Elasticity | P2D  | 0.27                 | 0.45                                 | 0.44                            | 0.41                                  | 0.37                                  | 0.31                                  |
|            | S2D  | 0.09                 | 0.31                                 | 0.27                            | 0.42                                  | 0.49                                  | 0.09                                  |
|            | P3D  | 3.34                 | 5.15                                 | 4.67                            | 4.37                                  | 3.77                                  | 3.35                                  |
|            | BONE | 1.95                 | 6.28                                 | 4.42                            | 2.90                                  | 2.30                                  | 1.95                                  |

#### 402 6.2.2. Convergence rate of the Krylov solver

403 Fig.16 plots the normalized residual ( $\|\hat{\mathbf{A}}\hat{\mathbf{x}} - \hat{\mathbf{b}}\| / \|\hat{\mathbf{b}}\|$ ) versus the number of GMRES iterations preconditioned by  
 404 AMG,  $\mathbf{M}_{SOL}$ , and  $\mathbf{M}_{ML}$  with  $T_{ML} = \infty, 10^{-2}$ , and  $10^{-4}$  for the Poisson and elasticity equations defined on the P2D, S2D,  
 405 P3D and BONE domains. Recall  $\mathbf{M}_{SOL}$  and  $\mathbf{M}_{ML}$  are obtained by combining the coarse preconditioners  $\mathbf{M}_{G,SOL}$  and  
 406  $\mathbf{M}_{G,ML}$  from the previous section with the contact-grain smoother defined in Section 3.4 using Eq.7 (i.e.,  $\mathbf{M}_L = \mathbf{M}_{CG}$ ).  
 407 Three key observations stand out: (1) The convergence rate of  $\mathbf{M}_{ML}$  with  $T_{ML} = \infty$  is almost indistinguishable from  
 408  $\mathbf{M}_{SOL}$  in the Poisson problem, and only slightly slower than  $\mathbf{M}_{SOL}$  in the elasticity problem. This is good news, as it  
 409 indicates the ML-built  $\mathbf{M}_G$  is as good as the solver-built one. Therefore, we recommend  $T_{ML} = \infty$  due to its lower cost;  
 410 (2) As  $T_{ML} \rightarrow 0$ , the convergence rate of  $\mathbf{M}_{ML}$  improves noticeably and eventually asymptotes to that of  $\mathbf{M}_{SOL}$ . Recall  
 411 this is contrary to Table 2, where reducing  $T_{ML}$  had a negligible impact on the first-pass solutions, except at very small  
 412  $T_{ML}$ ; (3) In all cases, GMRES preconditioned by  $\mathbf{M}_{SOL}$  or  $\mathbf{M}_{ML}$  converges much faster than AMG, especially in the  
 413 elasticity problem. We remark that the checkerboard errors in the ML-predicted bases (Fig.10) minimally affect the  
 414 convergence rate of GMRES preconditioned by  $\mathbf{M}_{ML}$  with  $T_{ML} = \infty$ , because such high-frequency errors are wiped out  
 415 by the smoother  $\mathbf{M}_{CG}$  integrated into  $\mathbf{M}_{ML}$ . We next discuss the wall-clock times (WCTs) of the above simulations.

#### 416 6.2.3. Computational cost

417 Figs.17 and 18 depict the wall-clock times (WCTs) in seconds associated with building the coarse preconditioner  
 418  $\mathbf{M}_G$  and solving the linear system via GMRES to satisfy  $\|\hat{\mathbf{A}}\hat{\mathbf{x}} - \hat{\mathbf{b}}\| / \|\hat{\mathbf{b}}\| < 10^{-9}$  for the Poisson and elasticity equations,  
 419 respectively, defined on all the domains. The total cost, including that of setting up the smoother in  $\mathbf{M}_{SOL}$  and  $\mathbf{M}_{ML}$ ,  
 420 is also shown. The smoother setup involves performing an LU decomposition of all local systems in Eq.17 defined on  
 421  $\Omega^{g_i}$  and  $\Omega^{\zeta_k}$ . All WCTs are plotted versus the tolerance ( $T_{ML}$ ) used for basis smoothing iterations in the building of

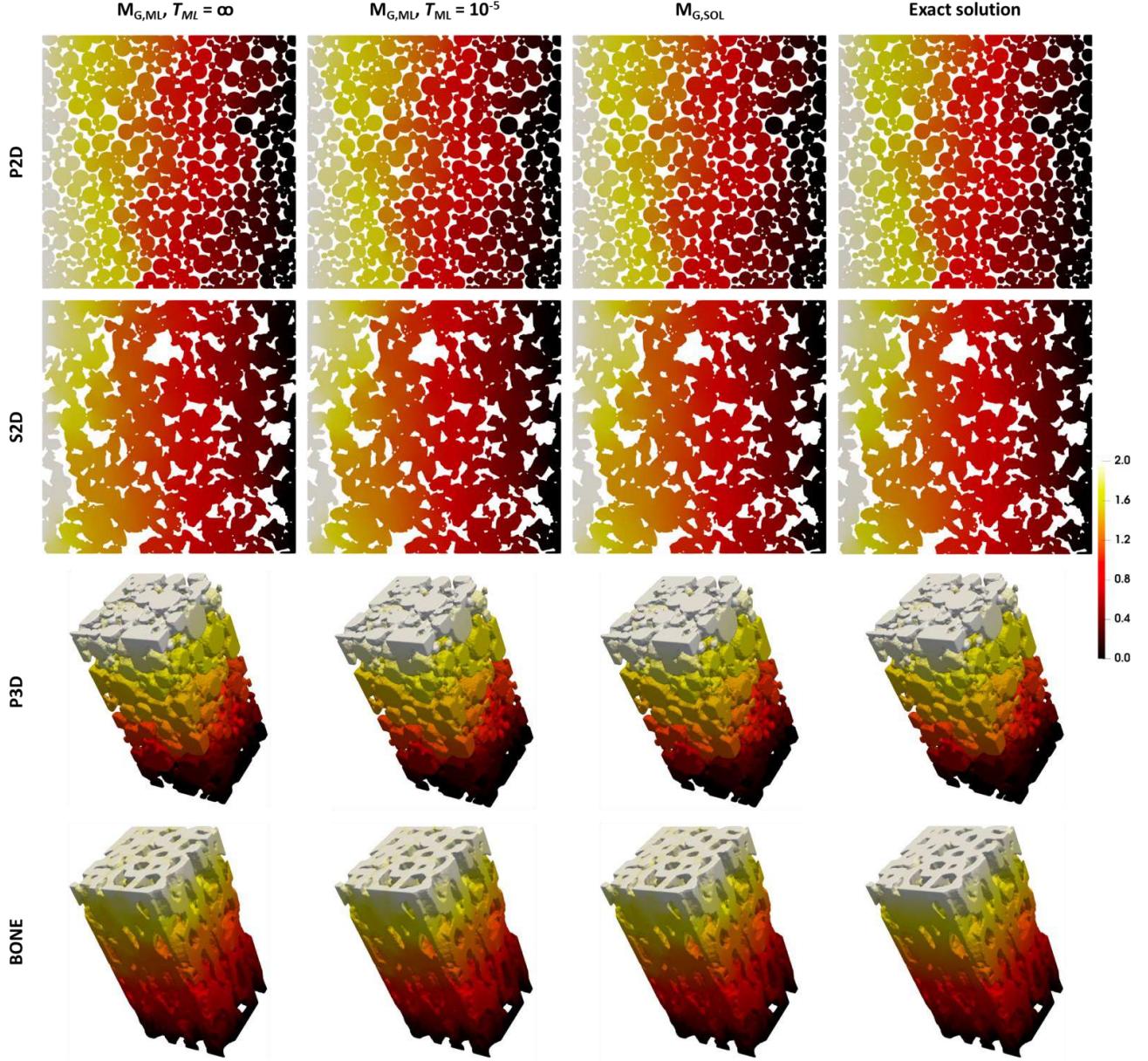


Figure 13: Comparison of the spatial distributions of  $u$  in the Poisson equation obtained from a single application of the coarse preconditioner,  $M_G$ , against the exact solution over the P2D, S2D, P3D and BONE domains. The preconditioner  $M_G$  is computed via a numerical solver ( $M_{G,SOL}$ ), and the trained ML algorithm of Section 4 ( $M_{G,ML}$ ) with ( $T_{ML} = 10^{-5}$ ) and without ( $T_{ML} = \infty$ ) local smoothing of the basis vectors.

422  $M_{G,ML}$ . Since the costs of  $M_{SOL}$  and AMG do not depend on  $T_{ML}$ , they are depicted by the horizontal lines. In Fig.18  
 423 for the elasticity problem, AMG did not converge within 500 iterations (except for BONE). Therefore, the WCTs  
 424 were extrapolated linearly based on the observed convergence rates, and distinguished by the dashed green lines.

425 We make the following observations: (1) In all cases, the cost of building  $M_{G,ML}$  with  $T_{ML} = \infty$  (almost identical  
 426 to  $T_{ML} = 1$ ) is much lower than  $M_{G,SOL}$ . For the Poisson problem, the speedup is a factor of 4.1 in P2D, 4.0 in S2D, 5.7  
 427 in P3D, and 1.6 in BONE, and for the elasticity problem, the speedup is a factor of 6.0 in P2D, 5.9 in S2D, 9.1 in P3D,  
 428 and 3.1 in BONE; (2) As  $T_{ML}$  is reduced, the cost of building  $M_{G,ML}$  increases, while the solver cost decreases. In the  
 429 Poisson problem, the decrease in solver cost is negligible and the absolute cost is comparable to  $M_{SOL}$ . Hence, the total

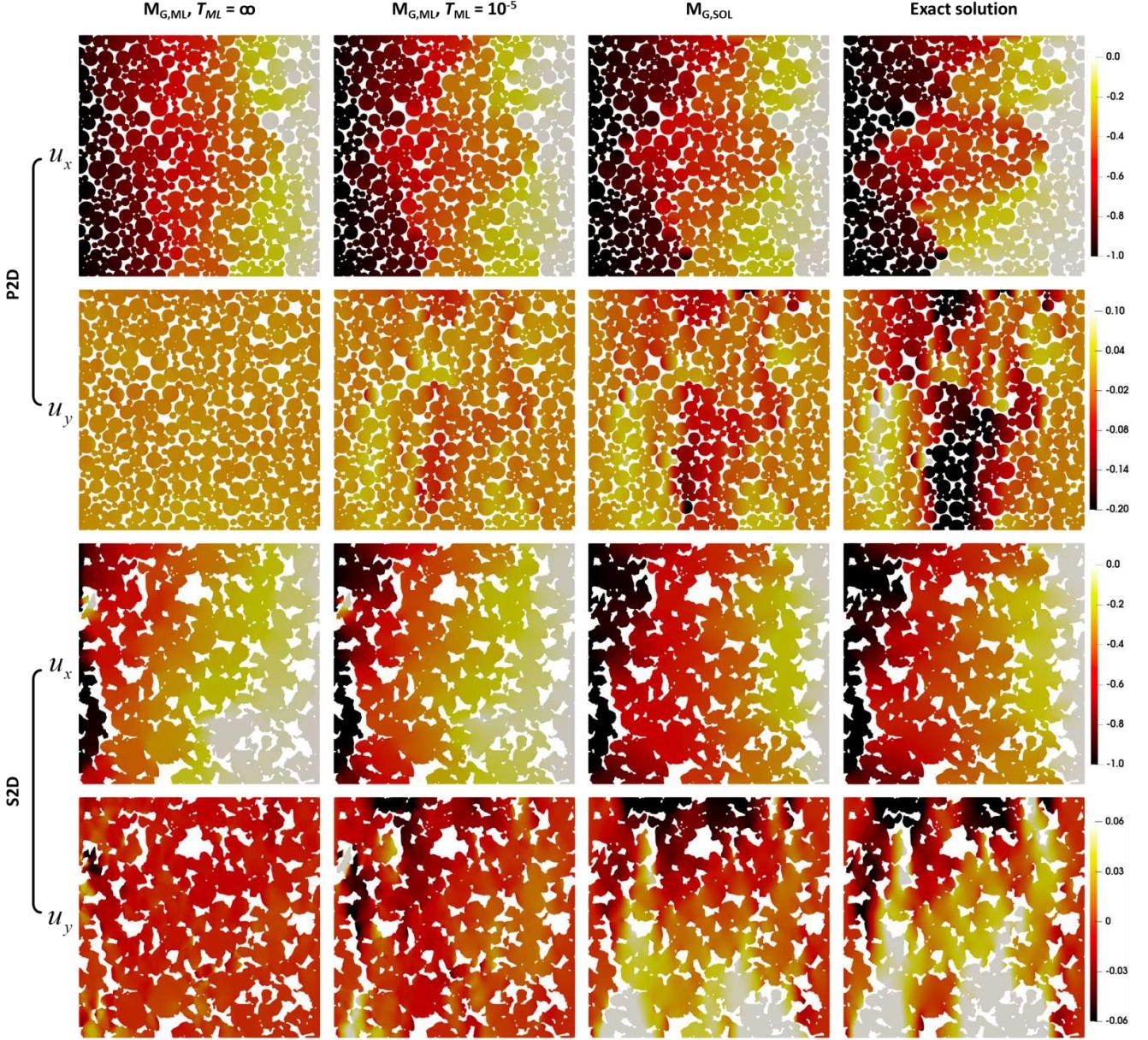


Figure 14: Comparison of the spatial distributions of  $u_x$  and  $u_y$  in the elasticity equation obtained from a single application of the coarse preconditioner,  $M_G$ , against the exact solution over the P2D and S2D domains. The preconditioner  $M_G$  is computed via a numerical solver ( $M_{G,SOL}$ ), and the trained ML algorithm of Section 4 ( $M_{G,ML}$ ) with ( $T_{ML} = 10^{-5}$ ) and without ( $T_{ML} = \infty$ ) local smoothing of the basis vectors.

cost (right column in Fig.17) increases monotonically as  $T_{ML} \rightarrow 0$ , implying  $M_{G,ML}$  with  $T_{ML} = \infty$  is recommended for preconditioning GMRES. In the elasticity problem, the decrease in solver cost as  $T_{ML} \rightarrow 0$  is more noticeable, which causes the total cost to remain roughly flat as  $T_{ML}$  is varied (except for BONE, where the profile is U-shaped; although the y-axis range is narrow). Since  $T_{ML}$  plays a minor role in the total cost, we still recommend  $M_{G,ML}$  with  $T_{ML} = \infty$  for the elasticity problem; (3) Comparing the total costs of  $M_{SOL}$  and  $M_{ML}$  with  $T_{ML} = \infty$ , we see only moderate speedup (less than  $\times 1.5$ ) with  $M_{ML}$  over  $M_{SOL}$  in the Poisson problem, and almost no speedup in the elasticity problem. This is because once the build-time of  $M_G$  is reduced by ML, the total cost is dominated by the solve-time of GMRES; especially in the elasticity problem. Another way to frame this is: *error control does not come*

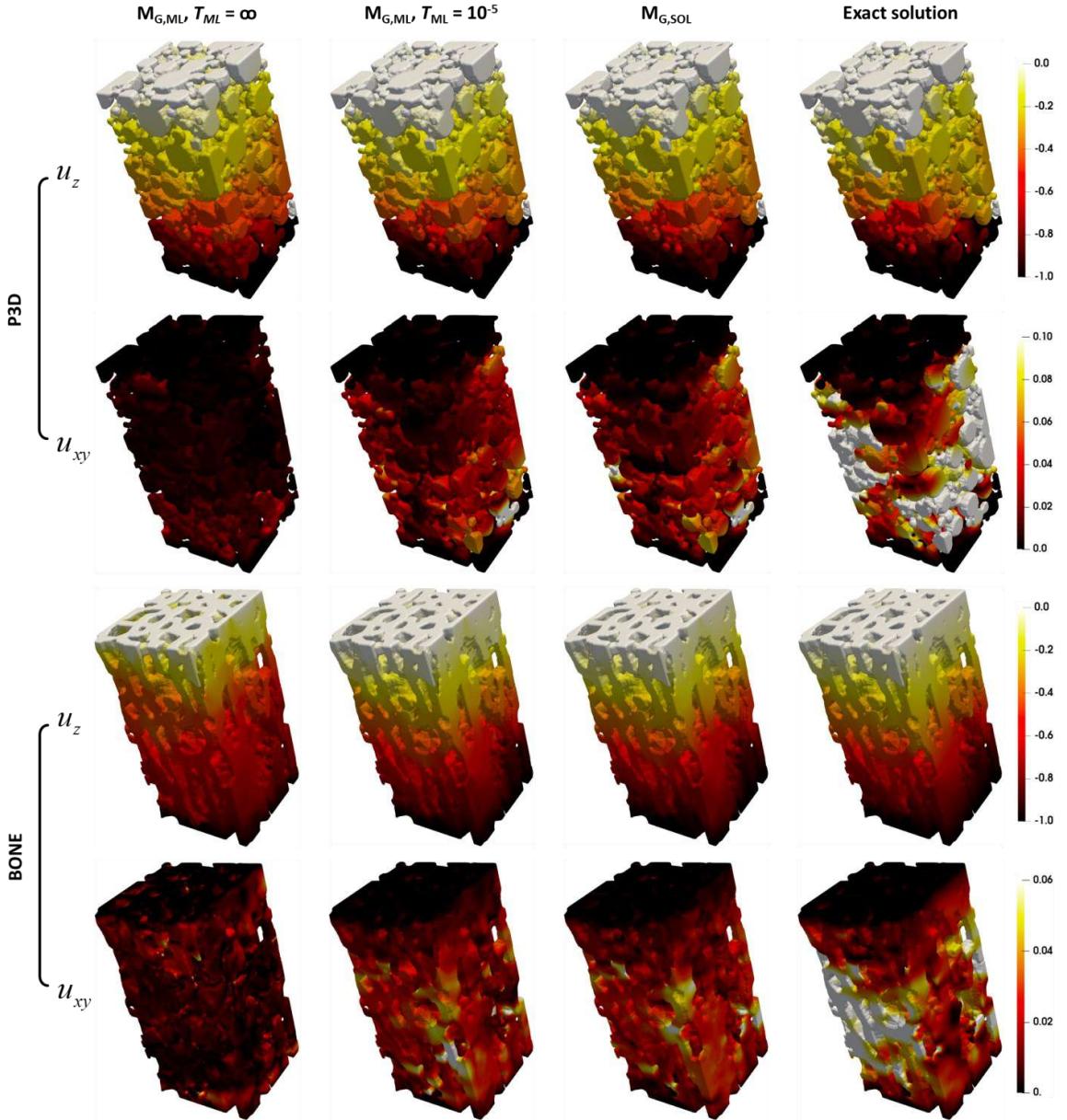


Figure 15: Comparison of the spatial distributions of  $u_z$  and  $u_{xy} = \sqrt{u_x^2 + u_y^2}$  in the elasticity equation obtained from a single application of the coarse preconditioner,  $M_G$ , against the exact solution on the P3D and BONE domains. The preconditioner  $M_G$  is computed via a numerical solver ( $M_G,SOL$ ), and the trained ML algorithm of Section 4 ( $M_G,ML$ ) with ( $T_{ML} = 10^{-5}$ ) and without ( $T_{ML} = \infty$ ) local smoothing of the basis vectors.

438 *for free.* If only a first-pass solution is desired (no GMRES iterations), ML can save time, but not if errors are to be  
 439 reduced. Incidentally, a first-pass solution via  $M_G,ML$  with  $T_{ML} = \infty$  is comparable in CPU-time (but lower in memory  
 440 footprint) to predictions from existing ML algorithms trained on whole domains (discussed in Section 7.1). We note  
 441 the build-times of  $M_G,ML$  in Figs.17-18 include pre-processing costs associated with preparing the ML-input features  
 442 (e.g., up/downscaling, smoothed tags via Eq.18) often excluded from prediction costs reported in the literature.

443 Finally, (4) in all cases except the Poisson problems defined on the P3D and BONE domains, the total cost of  
 444 AMG is higher than both  $M_{SOL}$  and  $M_{ML}$  with  $T_{ML} = \infty$ . The exceptions are largely due to AMG's fast build-time.  
 445 For the elasticity problem, however, AMG's total cost is one to two orders of magnitude higher than either  $M_{SOL}$  and

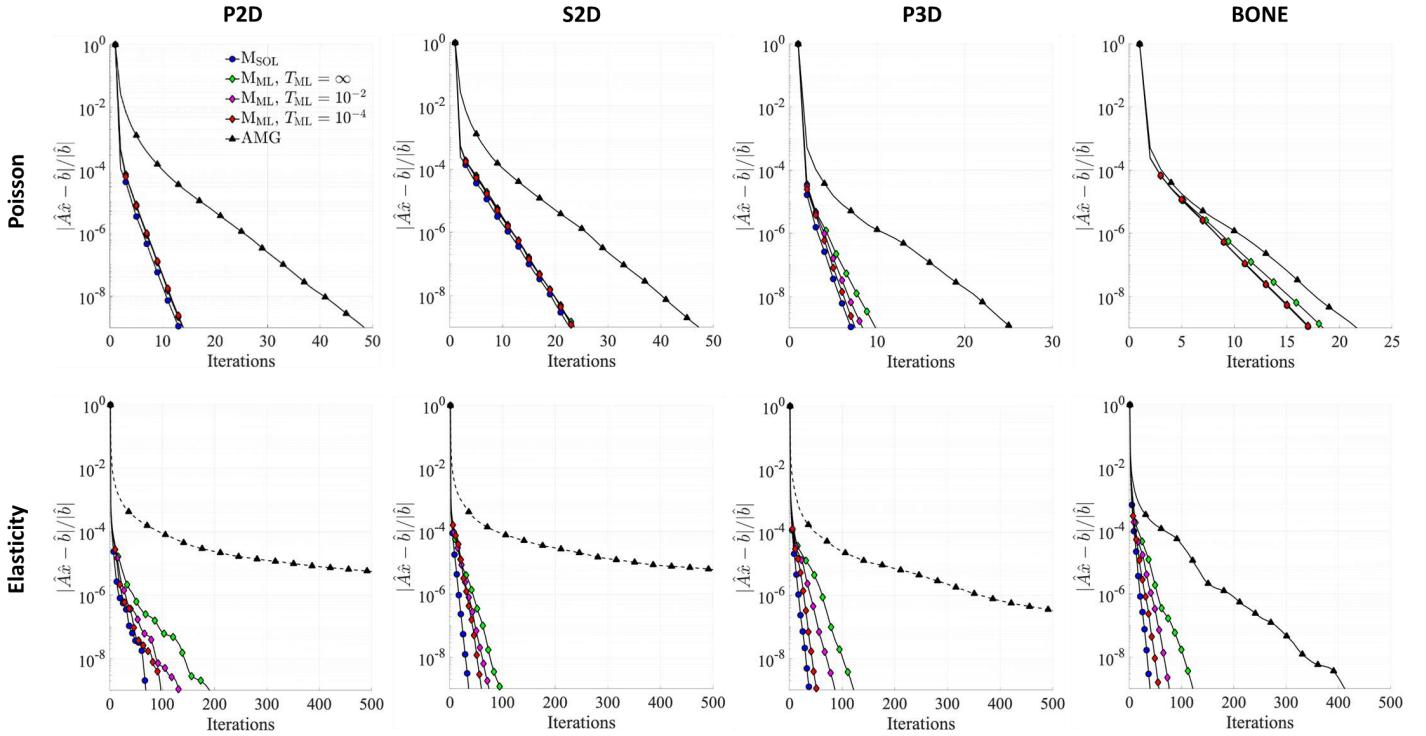


Figure 16: Normalized residual versus number of GMRES iterations preconditioned by AMG,  $M_{\text{SOL}}$ , and  $M_{\text{ML}}$  with  $T_{\text{ML}} = \infty$ ,  $10^{-2}$ , and  $10^{-4}$  for the Poisson and elasticity problems on the P2D, S2D, P3D and BONE domains.  $T_{\text{ML}} = \infty$  means no basis-smoothing iterations are performed.

446  $M_{\text{ML}}$ . In much larger 3D domains than those of Fig.4, where subdomains consist of many more grids, we expect a  
447 clearer advantage of  $M_{\text{ML}}$  with  $T_{\text{ML}} = \infty$  over  $M_{\text{SOL}}$  or AMG within GMRES. Moreover, the use of a cheaper smoother  
448 in series, like ILU(0), or parallelizing  $M_{\text{CG}}$  would reduce cost further. These claims remains to be substantiated.

## 449 7. Discussion

### 450 7.1. Approximate solutions with machine learning

451 In Section 3.3, we outlined a coarse preconditioner,  $M_G$ , based on the pore-level multiscale method (PLMM) that  
452 was proposed by [25, 26] for solving elliptic PDEs like the Poisson and elasticity Eqs.1 and 2. One can use  $M_G$   
453 to obtain very accurate approximate, or *first-pass*, solutions to the discretized system  $\hat{A}\hat{x} = \hat{b}$  via  $x_{\text{aprx}} = M_G^{-1}\hat{b}$ . In  
454 Section 4, we proceeded to show how the construction of  $M_G$ , requiring the computation of multiple basis functions  
455 on each subdomain, can be significantly accelerated by training ML algorithms. The latter were trained on a set of  
456 precomputed basis vectors defined on small, cropped images from larger, whole domains. The results in Section 6.2.1  
457 demonstrated that first-pass solutions obtained from such a ML-built coarse preconditioner,  $M_{G,\text{ML}}$ , have comparable  
458 accuracy to those obtained from a solver-built one,  $M_{G,\text{SOL}}$ . Despite slightly larger errors in the tangential component  
459 of displacement in the elasticity problem with respect to the axial loading direction, the overall accuracy (<1%  
460 errors for 2D and <5% for 3D) and performance ( $\times 2\text{-}6$  speedup for Poisson and  $\times 3\text{-}9$  for elasticity) of  $M_{G,\text{ML}}$  were  
461 impressive. Basis smoothing was deemed unnecessary to obtain such predictions (i.e.,  $T_{\text{ML}} = \infty$  is sufficient).

462 Notice the approach of using ML to build basis functions on smaller subdomains, packaged in the form of a pro-  
463 longation matrix  $P$  (Eq.14), is more advantageous than training ML algorithms on whole domains. As reasoned in  
464 Section 1, data curation is cheaper as  $10^{2\text{-}3}$  subdomains can be obtained from decomposing one whole domain, train-  
465 ing is faster because the overhead on computer memory is low, and the ML algorithm is simpler and less data hungry  
466 because the statistical space of possible subdomain geometries is much smaller than that of whole domains (e.g., sub-  
467 domains are convex and devoid of holes or cavities). As stated in Section 6.2.3, the CPU-time (not memory footprint)

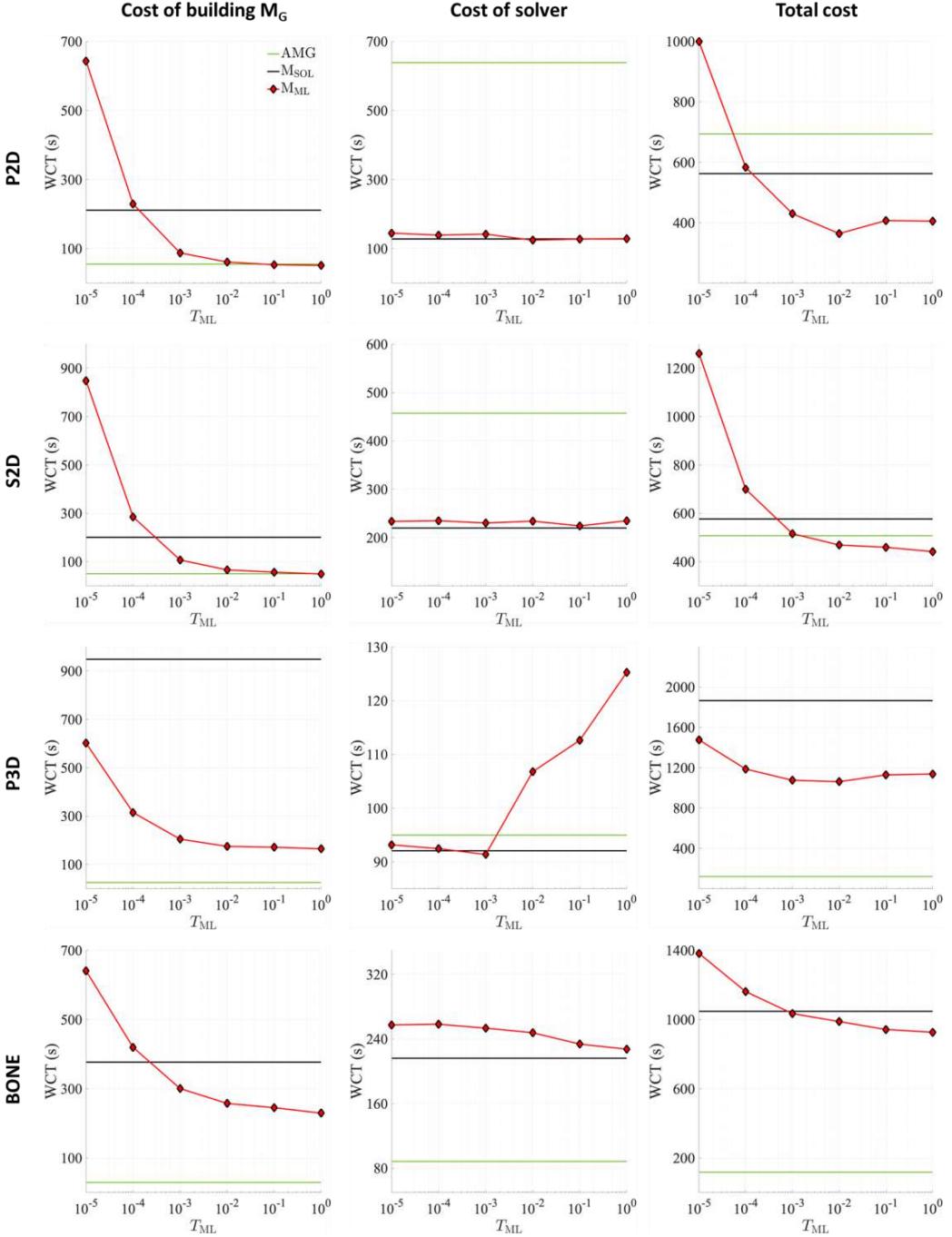


Figure 17: Wall-clock times (WCTs) in seconds associated with building the coarse preconditioner  $M_G$  (left column) and solving the linear system via GMRES to satisfy  $\|\hat{A}\hat{x} - \hat{b}\| / \|\hat{b}\| < 10^{-9}$  (middle column) for the Poisson equation defined on all the domains. The total cost, including that of building the smoother in  $M_{\text{SOL}}$  and  $M_{\text{ML}}$ , is shown in the right column. All WCTs are plotted versus the tolerance ( $T_{\text{ML}}$ ) used for basis smoothing iterations in the building of  $M_{G,\text{ML}}$ . Notice the costs of  $M_{\text{SOL}}$  and AMG do not depend on  $T_{\text{ML}}$  and are thus depicted by horizontal lines.

468 associated with *predicting* (not training) first-pass solutions via  $M_{G,\text{ML}}$  with  $T_{\text{ML}} = \infty$  is comparable to those of existing  
 469 ML algorithms trained on whole domains. The seemingly higher than expected WCTs for building  $M_{G,\text{ML}}$  ( $T_{\text{ML}} = 1$ ) in  
 470 Figs.17-18 are because they include pre-processing costs of the ML-input features (e.g., up/downsampling, smoothed

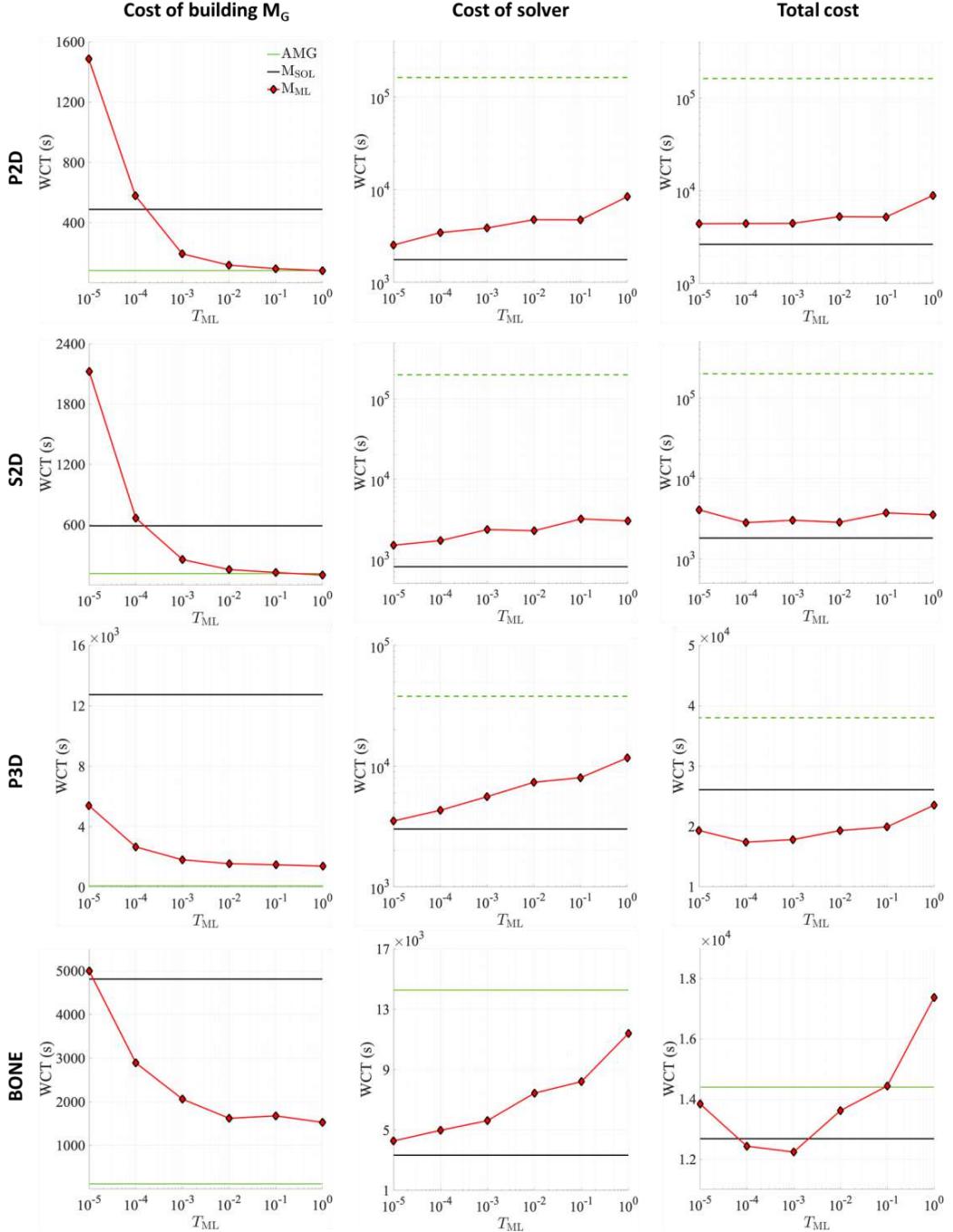


Figure 18: Wall-clock times (WCTs) in seconds associated with building the coarse preconditioner  $M_G$  (left column) and solving the linear system via GMRES to satisfy  $\|\hat{A}\hat{x} - \hat{b}\| / \|\hat{b}\| < 10^{-9}$  (middle column) for the elasticity equation defined on all the domains. The total cost, including that of building the smoother, is shown in the right column. All WCTs are plotted against the tolerance ( $T_{ML}$ ) used for basis smoothing iterations in the building of  $M_{G,ML}$ . Notice the costs of  $M_{SOL}$  and AMG do not depend on  $T_{ML}$  and are thus depicted by horizontal lines.

471 tag via Eq.18), often excluded from prediction costs in the literature. A final benefit of the approach herein is that by  
 472 using a finite-volume restriction matrix, instead of the Galerkin  $\hat{R} = \hat{P}^\top$  in Eq.9, one could impose global flux/stress  
 473 conservation across all grain grids and contact interfaces. Future work will probe such a restriction matrix by [26].

474 7.2. Controlling the errors of machine learning

475 In addition to reducing the build-time of  $M_G$  via ML, we also succeeded in controlling the ML algorithms' errors.  
476 The latter, however, had interesting implications. Our approach consisted of two measures. First, local smoothing  
477 iterations were performed on each ML-predicted basis to reduce its high-frequency errors, up to tolerance  $T_{ML}$ , prior  
478 to building  $M_{G,ML}$ . We concluded this to be superfluous and recommended  $M_{G,ML}$  be built with *no* basis smoothing  
479 (i.e.,  $T_{ML} = \infty$ ). This is because the accuracy and performance of  $M_{G,ML}$  is already very good, and reducing  $T_{ML}$   
480 only increases cost. Moreover, even at the limit  $T_{ML} \rightarrow 0$ ,  $M_{G,ML}$  is only as good as  $M_{G,SOL}$ , which itself incurs  
481 high-frequency errors. Our second, and more important, measure was to pair  $M_{G,ML}$  with a smoother  $M_L$ , for which  
482 we picked the compatible  $M_{CG}$  recommended by [26] and introduced in Section 3.4. Still adhering to  $T_{ML} = \infty$ , the  
483 convergence rate of GMRES preconditioned by  $M_{ML}$  (combining  $M_{G,ML}$  with  $M_{CG}$ ) is comparable to  $M_{SOL}$  (combin-  
484 ing  $M_{G,ML}$  with  $M_{CG}$ ) in the Poisson problem, but lower by up to  $\times 2$  in the Elasticity problem. Reducing  $T_{ML}$  reduces  
485 the cost of GMRES for the elasticity problem, but increases the build-time of  $M_{G,ML}$ . Overall, the total cost of  $M_{ML}$ ,  
486 consisting of building  $M_{G,ML}$ , setting up  $M_{CG}$ , and solving GMRES is comparable or only slightly lower than  $M_{SOL}$ .

487 This could have several contributors: (1) Once the build-time of  $M_G$  is reduced, the remaining WCT is dominated  
488 by GMRES, especially for the elasticity problem. This is likely because we demand such a low tolerance for error ( $=$   
489  $10^{-9}$ ). A larger tolerance would result almost certainly in better speedups for  $M_{ML}$  over  $M_{SOL}$ , as is the case for the  
490 first-pass solutions via  $M_{G,ML}$  with  $T_{ML} = \infty$ ; (2) The setup cost of  $M_{CG}$ , included in the total WCTs of  $M_{ML}$  and  $M_{SOL}$ ,  
491 is rather high, as it consists of LU decompositions performed on local systems defined on the grain and contact grids.  
492 Building  $M_{CG}$  in parallel, or using a cheaper smoother in series (e.g., ILU(0)) would have reduced the total WCT, but  
493 by an equal amount for both  $M_{ML}$  and  $M_{SOL}$ ; (3) The ML algorithms of Section 4 could have benefited from longer  
494 training, given the errors are still decreasing after 200 epochs in Fig.B.1, albeit slowly. This could have resulted in  
495 lower GMRES cost, thus smaller total WCT, especially in the elasticity problem; and (4) ML algorithms, particularly  
496 of the “deep convolutional” kind, are not as cheap as celebrated. Each layer entails a matrix-vector multiplication, and  
497 the deeper the network, the more multiplications are required. This is not unlike iterations in a linear solver, and if the  
498 goal is to beat a rapidly converging preconditioner like  $M_{SOL}$ , there is a limit to a network’s depth. Despite said issues,  
499  $M_{ML}$  (and  $M_{SOL}$ ) outperforms AMG by  $\times 10^{1-2}$  in the elasticity, but not the more well-trodden Poisson, problem.

500 We highlight that controlling and estimating prediction errors is not free of cost. ML algorithms are often used  
501 to perform blind predictions, whose error bounds are guaranteed empirically and statistically at best (i.e., based on  
502 a testing set). While appropriate for applications like uncertainty quantification, for deterministic predictions, error  
503 bounds lack. What this work suggests is that some combination of ML with a physics-solver is needed to fill this gap,  
504 which involves corrective iterations. The iterations increase cost, but also confidence in the results. If the merit of  
505 an algorithm were placed solely on the swiftness of its output, then the first-pass solution via  $M_{G,ML}$  and  $T_{ML} = \infty$   
506 accomplishes what most methods can with fewer data and shorter training time (see Section 7.1). But if added merit  
507 were placed on the reliability of said outputs, as we think one should, then our approach offers a path forward.

508 7.3. Transferability across geometries and material properties

509 A pleasantly surprising observation, also made by others (e.g., [40]), is that the ML algorithm trained in Section  
510 4 on disk/sphere packs also applies to other subdomain geometries. Moreover, in the elasticity problem, training was  
511 performed by assuming a Poisson’s ratio of  $\nu=0.08$  and yet, the ML algorithm predicts with reasonable accuracy bases  
512 for  $\nu=0.4$  and 0.45. Notice one need not probe a second elastic modulus, like  $\lambda$  or  $\mu$ , in addition to  $\nu$ . This is because  
513 once  $\nu$  is fixed, the other moduli can be matched by simply scaling the ML-predicted bases. In Section 6.1, basis  
514 errors nearly doubled when the ML algorithms were tested on out-of-distribution geometries or  $\nu$ . But those errors  
515 were still  $<20\%$  and resulted in high-quality first-pass solutions, as listed in Table 2, and rapid GMRES convergence,  
516 as shown in Figs.16 and C.4. This hints at the promising outlook that pre-training a library of ML algorithms for  
517 different grain shapes, material properties, and even PDEs can be readily applied to, or minimally transfer-trained  
518 on new problems. The latter may even be done on-the-fly, while solving a time-dependent or many-query problem  
519 relevant to optimization or uncertainty quantification with respect to variability in the porous microstructure.

520 7.4. Other machine learning methods and architectures

521 In Appendix B, we included the  $L_2$ -norm of the PDE residual in the loss function as specified by Eq.19. This  
522 is similar to physics-informed neural networks (PINNs) [38, 55, 56], wherein a PDE’s residual and BCs are “softly

523 imposed” through the loss function; as opposed to a “hard imposition” via non-trainable layers. The weights  $\alpha_a$  and  $\alpha_e$  in Eq.19 control the emphasis on the PDE mismatch over the data mismatch. Figs.B.1-B.2 show that the impact of the PDE mismatch is negligible on both the training speed and predictive accuracy of the ML algorithms. Ultimately, an ideal algorithm is one that incurs low errors, including those with high-frequency mode, eliminating the need for basis smoothing iterations altogether (Section 4.4). While improving the architecture in Fig.3, by perhaps appending non-trainable layers to it, is one option [57], adopting whole new emerging architectures such as graph neural networks (GNNs) [58, 59] or neural operators [60, 61] is another. Irrespective of the approach, however, close attention must be paid to the spectral properties of the errors in the basis functions produced by such ML algorithms.

## 531 8. Conclusion

532 We have presented an approach for using machine learning (ML) to build two-level preconditioners for efficiently 533 solving elliptic equations on complex porous geometries via iterative solvers. While the preconditioner is based on the 534 pore-level multiscale method (PLMM), the proposed approach applies to others based on domain decomposition or 535 multigrid techniques. The PLMM preconditioner consists of a coarse preconditioner  $M_G$  and a smoother  $M_L$ . We use 536 ML to accelerate the construction of  $M_G$  only, as the U-Net architecture employed herein incurs high-frequency errors 537 itself that are in need of smoothing. The overall framework can be viewed as: (1) *a way to remove a major bottleneck* 538 *in building multiscale preconditioners*; or (2) *a robust mechanism to equip ML with error control capabilities*.

539 The proposed ML algorithms take cropped subdomain images as inputs and yield basis functions that satisfy a 540 PDE locally as outputs, which are then used to assemble a prolongation matrix for  $M_G$ . The training of ML algorithms 541 on small subdomains is more advantageous than on whole domains because data generation is cheaper, the statistical 542 space of data is smaller, training is faster and requires less memory, and basis functions can be assembled in arbitrary 543 ways to satisfy any BCs or reused to solve similar (e.g., linearized, perturbed) PDEs. We tested the ML-built  $M_{G,ML}$  544 in solving the Poisson and linear-elasticity equations on challenging 2D/3D geometries and compared its performance 545 against the solver-built  $M_{G,SOL}$  and AMG. We showed that  $M_{G,ML}$  can be used in standalone fashion to obtain approx- 546 imate, or first-pass, solutions (without iterations) at a very low cost and almost the same accuracy as  $M_{G,SOL}$ , which is 547 useful in many practical applications (e.g., subsurface engineering). Moreover, when applied within GMRES,  $M_{G,ML}$  548 performed on par or slightly worse than  $M_{G,SOL}$ , indicating its high quality as a preconditioner. However, the *total cost* 549 saved with  $M_{G,ML}$  was not significant, because once the build-time of  $M_G$  had been reduced, the solver-time domi- 550 nated given our very low tolerance imposed on GMRES (i.e.,  $10^{-9}$ ). Increasing this tolerance, or applying ML to much 551 larger 3D domains, is expected to render cost savings more apparent. Finally, both  $M_{G,ML}$  and  $M_{G,SOL}$  performed far 552 better than AMG in the elasticity problem, but worse in the more well-trodden Poisson problem.

553 Future work on other ML architectures like neural operators or graph neural networks, with special attention to er- 554 ror spectra, are promising areas of research. While all computations here were in *series*,  $M_{G,ML}$  is fully parallelizable.

## 555 Acknowledgments

556 This material is based upon work supported by the National Science Foundation under Grant No. CMMI-2145222. 557 We acknowledge the Institute for Computational and Data Sciences (ICDS) at Penn State University for access to 558 computational resources. We also thank Amelie Sas at KU Leuven, Belgium, for providing the bone image in Fig.4.

## 559 Appendix A. Coarsening details of the AMG preconditioner

560 Table A.1 summarizes the number of coarsening levels and the coarsest matrix achieved by the AMG precondi- 561 tioner applied to the Poisson and elasticity problems defined on the P2D, S2D, P3D, and BONE domains.

## 562 Appendix B. Impact of physics-informed loss functions on basis vectors

563 In Section 6.1, we probed the basis vectors constructed by ML algorithms trained with  $\alpha_p = \alpha_e = 0$  in Eq.19. In 564 other words, the loss functions were uninformed by the PDEs’ residuals and training was purely data-driven. Here,

Table A.1: Summary of the number of coarsening levels and the size of the coarsest matrix achieved in the AMG preconditioner when applied to the Poisson and elasticity problems defined on the P2D, S2D, P3D and BONE domains.

|            |                 | P2D     | S2D     | P3D   | BONE  |
|------------|-----------------|---------|---------|-------|-------|
| Poisson    | No. levels      | 8       | 8       | 8     | 8     |
|            | Coarsest matrix | 280×280 | 242×242 | 30×30 | 22×22 |
| Elasticity | No. levels      | 8       | 8       | 8     | 8     |
|            | Coarsest matrix | 428×428 | 361×361 | 50×50 | 37×37 |

565 we set  $\alpha_p = 1$  and 10 while training the ML algorithm of the Poisson equation. The higher  $\alpha_p$  is, the more physics-  
566 informed the loss function becomes. Our goal is to assess whether the training speed and/or the algorithm's testing  
567 accuracy are improved by increasing  $\alpha_p$ . Fig.B.1 illustrates the training loss versus the number of training epochs for  
568  $\alpha_p = 0, 1$ , and 10. When  $\alpha_p = 0$ , the training loss stagnates up to epoch 50, then drops rapidly afterwards. Increasing  
569  $\alpha_p$  to 1 or 10 has minimal impact on this stagnation period, reducing it only slightly to epoch 35.

570 As for the  $L_2$ -errors, Fig.B.2 shows errors corresponding to the predicted basis vectors of the P2D domain. We see  
571  $\alpha_p = 0$  and 1 yield basis vectors with similar accuracy, while  $\alpha_p = 10$  is slightly worse. More precisely, the percentage  
572 of subdomains with errors below 0.05 are 86.1%, 86.5% and 81.9% for  $\alpha_p = 0, 1$ , and 10, respectively. While clearer  
573 benefits may be observed from including PDE residuals within loss functions in training larger ML architectures over  
574 many more epochs, for the cases studied herein, we do not observe such benefits.

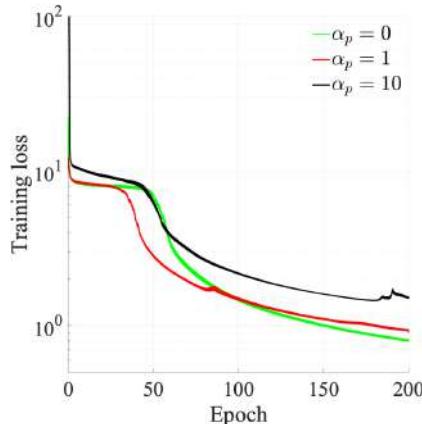


Figure B.1: Training loss versus number of training epochs for  $\alpha_p = 0, 1$ , and 10 in the loss function of the Poisson equation (Eq.19). The higher  $\alpha_p$  is, the more physics-informed the loss function becomes. The  $\alpha_p = 0$  case corresponds to purely data-driven training. A moving average, with a window size of 100 points, was used to dampen the significant oscillations observed in the training losses.

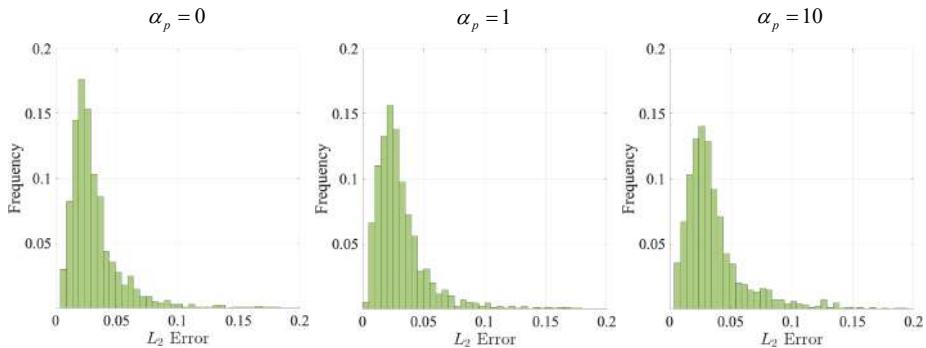


Figure B.2: PDFs of  $L_2$ -errors associated with the ML-predicted basis vectors for the Poisson problem defined on subdomains of the P2D domain (they constitute unseen data). Three ML algorithms are trained with  $\alpha_p = 0, 1$ , and 10 in their loss functions defined by Eq.19.

575 **Appendix C. Transferability to different Poisson ratios of the elasticity problem**

576 In Section 4, we trained ML algorithms for the elasticity equation assuming a single Poisson's ratio of  $\nu = 0.08$ ,  
 577 corresponding to  $\alpha$ -quartz. Here, we determine whether these algorithms apply to other  $\nu$  without having to retrain  
 578 them. Specifically, we consider  $\nu = 0.4$  and  $0.45$  and predict all basis vectors associated with the subdomains of the  
 579 P2D and S2D domains. Fig.C.3 shows the PDFs of the  $L_2$ -errors for these bases, computed via Eq.23, where we see  
 580 they are roughly twice as large for  $\nu = 0.4$  and  $0.45$  than  $\nu = 0.08$ , but still mostly <20%. Fig.C.4 further shows the  
 581 convergence rate of GMRES preconditioned by  $M_{ML}$ , whose coarse preconditioner  $M_{G,ML}$  is built by the predicted  
 582 basis vectors above. In other words,  $M_{G,ML}$  is built using the ML algorithms of Section 4, which assume  $\nu = 0.08$ , and  
 583 then applied to solve the elasticity problem defined on P2D and S2D with Poisson's ratios  $\nu = 0.08, 0.4$ , and  $0.45$ . We  
 584 see the convergence rate is minimally affected by varying  $\nu$ , implying the ML algorithms of Section 4 are transferable  
 585 to other mechanical properties. In Fig.C.4, no local smoothing of basis vectors was employed (i.e.,  $T_{ML} = \infty$ ).

586 **References**

- 587 [1] Stefan Bachu. Co<sub>2</sub> storage in geological media: Role, means, status and barriers to deployment. *Progress in energy and combustion science*,  
 588 34(2):254–273, 2008.
- 589 [2] Angela Goodman Hanson, Barbara Kutchko, Greg Lackey, Djuna Gulliver, Brian R Strazisar, Kara A Tinker, Foad Haeri, Ruishu Wright,  
 590 Nicolas Huerta, Seunghwan Baek, et al. Subsurface hydrogen and natural gas storage: State of knowledge and research recommendations  
 591 report. 2022.
- 592 [3] Enrico Barbier. Geothermal energy technology and current status: an overview. *Renewable and sustainable energy reviews*, 6(1-2):3–65,  
 593 2002.
- 594 [4] Martin Andersson, SB Beale, M Espinoza, Z Wu, and W Lehnert. A review of cell-scale multiphase flow modeling, including water manage-  
 595 ment, in polymer electrolyte fuel cells. *Applied Energy*, 180:757–778, 2016.
- 596 [5] Jason K Lee, ChungHyuk Lee, Kieran F Fahy, Pascal J Kim, Kevin Krause, Jacob M LaManna, Elias Baltic, David L Jacobson, Daniel S  
 597 Hussey, and Aimy Bazylak. Accelerating bubble detachment in porous transport layers with patterned through- pores. *ACS Applied Energy*  
 598 Materials, 3(10):9676–9684, 2020.
- 599 [6] Dorthe Wildenschild and Adrian P Sheppard. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in  
 600 subsurface porous medium systems. *Advances in Water Resources*, 51:217–246, 2013.
- 601 [7] Veerle Cnudde and Matthieu Nicolaas Boone. High-resolution x-ray computed tomography in geosciences: A review of the current technol-  
 602 ogy and applications. *Earth-Science Reviews*, 123:1–17, 2013.
- 603 [8] Paul Meakin and Alexandre M Tartakovsky. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured  
 604 and porous media. *Reviews of Geophysics*, 47(3), 2009.
- 605 [9] Yousef Saad. *Iterative methods for sparse linear systems*, volume 82. siam, 2003.
- 606 [10] John W Ruge and Klaus Stüben. Algebraic multigrid. In *Multigrid methods*, pages 73–130. SIAM, 1987.
- 607 [11] Yvan Notay. An aggregation-based algebraic multigrid method. *Electronic transactions on numerical analysis*, 37(6):123–146, 2010.
- 608 [12] Hui Zhou and Hamdi A Tchelepi. Operator-based multiscale method for compressible flow. *SPE Journal*, 13(02):267–273, 2008.
- 609 [13] TH Sandve, E Keilegavlen, and JM Nordbotten. Physics-based preconditioners for flow in fractured porous media. *Water Resources Research*,  
 610 50(2):1357–1373, 2014.
- 611 [14] Nicola Castelletto, Hadi Hajibeygi, and Hamdi A Tchelepi. Multiscale finite-element method for linear elastic geomechanics. *Journal of*  
 612 *Computational Physics*, 331:337–356, 2017.
- 613 [15] Fanxiang Xu, Hadi Hajibeygi, and Lambertus J Sluys. Multiscale extended finite element method for deformable fractured porous media.  
 614 *Journal of Computational Physics*, 436:110287, 2021.
- 615 [16] Hui Zhou and Hamdi A Tchelepi. Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models. *SPE Journal*, 17  
 616 (02):523–539, 2012.
- 617 [17] Yixuan Wang, Hadi Hajibeygi, and Hamdi A Tchelepi. Algebraic multiscale solver for flow in heterogeneous porous media. *Journal of*  
 618 *Computational Physics*, 259:284–303, 2014.
- 619 [18] Todd Arbogast and Hailong Xiao. Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems. *Computer*  
 620 *Methods in Applied Mechanics and Engineering*, 292:221–242, 2015.
- 621 [19] Ivo Babuška and John E Osborn. Generalized finite element methods: their performance and their relation to mixed methods. *SIAM Journal*  
 622 *on Numerical Analysis*, 20(3):510–536, 1983.
- 623 [20] Thomas Y Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. *Journal*  
 624 *of computational physics*, 134(1):169–189, 1997.
- 625 [21] Patrick Jenny, SH Lee, and Hamdi A Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. *Journal*  
 626 *of Computational Physics*, 187(1):47–67, 2003.
- 627 [22] Hadi Hajibeygi, Giuseppe Bonfigli, Marc Andre Hesse, and Patrick Jenny. Iterative multiscale finite-volume method. *Journal of*  
 628 *Computational Physics*, 227(19):8604–8621, 2008.
- 629 [23] Christine Bernardi, Y Maday, and A T Patera. A new nonconforming approach to domain decomposition: the mortar element method.  
 630 *Nonlinear partial equations and their applications*, 1994.
- 631 [24] Todd Arbogast, Lawrence C Cowsar, Mary F Wheeler, and Ivan Yotov. Mixed finite element methods on nonmatching multiblock grids.  
 632 *SIAM Journal on Numerical Analysis*, 37(4):1295–1315, 2000.

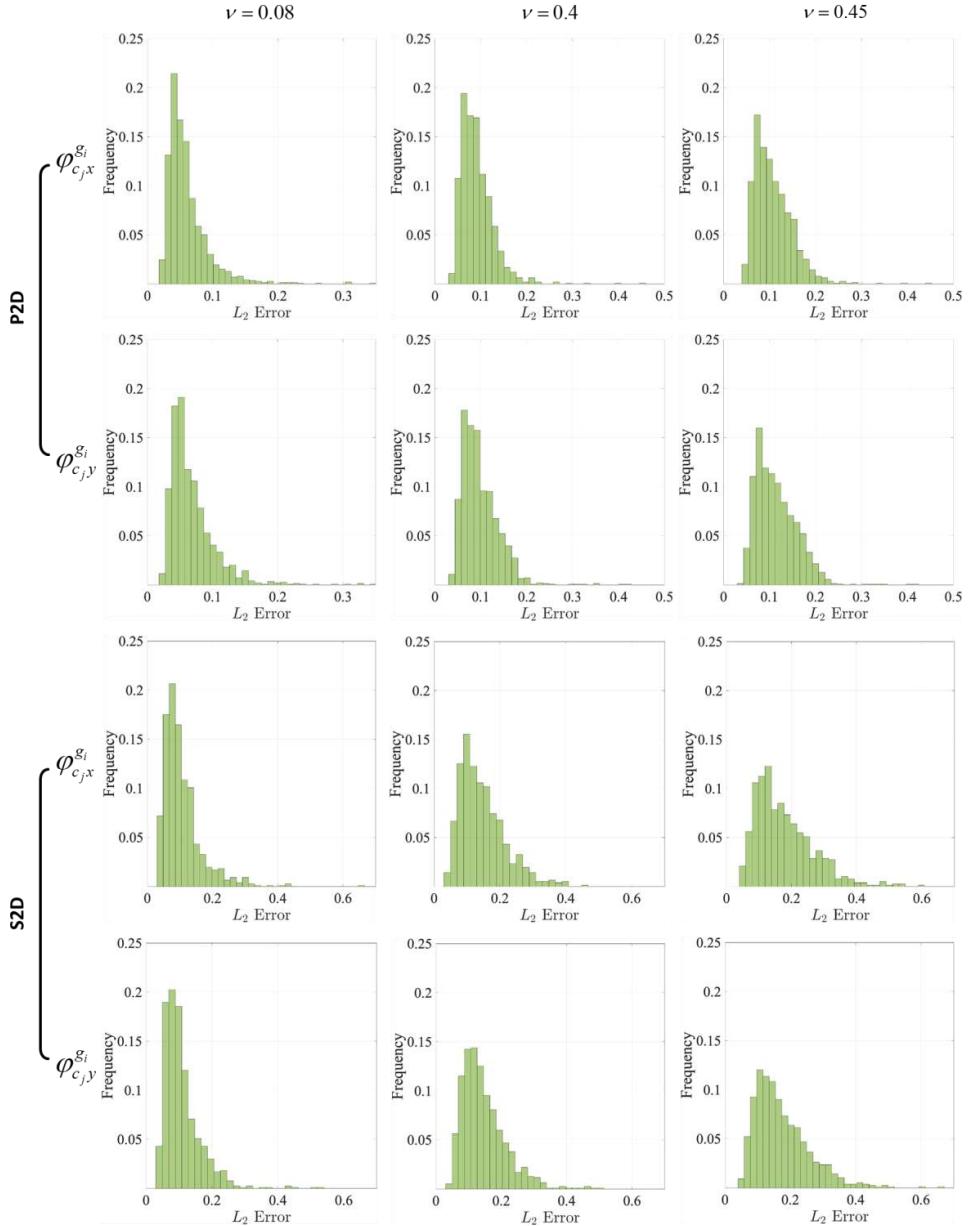


Figure C.3: PDFs of  $L_2$ -errors associated with the ML-predicted basis vectors for the elasticity problem defined on subdomains of the P2D and S2D domains with Poisson's ratios  $\nu = 0.08, 0.4$ , and  $0.45$  (they constitute unseen data). The ML algorithms are the same as those trained in Section 4 on data that assumed  $\nu = 0.08$ . In other words, the training set is uninformed by  $\nu = 0.4$  and  $0.45$ .

633 [25] Yashar Mehmami and Kangan Li. A multiscale preconditioner for microscale deformation of fractured porous media. *Journal of Computational*  
 634 *Physics*, 482:112061, 2023.

635 [26] Kangan Li and Yashar Mehmami. A multiscale preconditioner for crack evolution in porous microstructures: Accelerating phase-field meth-  
 636 ods. *International Journal for Numerical Methods in Engineering*, In Press, 2024.

637 [27] Yashar Mehmami, Nicola Castelletto, and Hamdi A Tchelepi. Multiscale formulation of frictional contact mechanics at the pore scale. *Journal*  
 638 *of Computational Physics*, 430:110092, 2021.

639 [28] Kangan Li and Yashar Mehmami. A pore-level multiscale method for the elastic deformation of fractured porous media. *Journal of*  
 640 *Computational Physics*, 483:112074, 2023.

641 [29] Yashar Mehmami and Kangan Li. Multiscale preconditioning of stokes flow in complex porous geometries. *Journal of Computational Physics*,  
 642 Under Review, 2024.

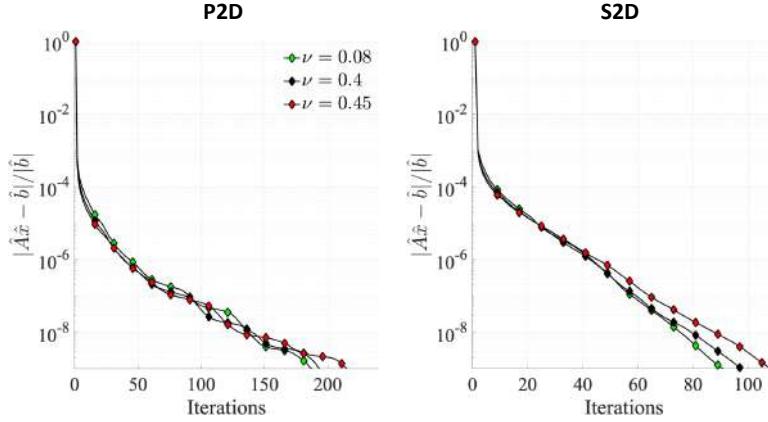


Figure C.4: Normalized residual versus GMRES iterations for the linear system, Eq.6, of the elasticity problem defined on the P2D and S2D domains with Poisson's ratios  $\nu = 0.08, 0.4$ , or  $0.45$ . GMRES is preconditioned by  $M_{ML}$ , whose coarse preconditioner  $M_G$  is constructed using the ML algorithms of Section 4, which assume  $\nu=0.08$  for all subdomains in the training set. No basis smoothing is employed ( $T_{ML}=\infty$ ).

643 [30] Yashar Mehmami and Hamdi A Tchelepi. Multiscale computation of pore-scale fluid dynamics: Single-phase flow. *Journal of Computational*  
644 *Physics*, 375:1469–1487, 2018.  
645 [31] Yashar Mehmami and Hamdi A Tchelepi. Multiscale formulation of two-phase flow at the pore scale. *Journal of Computational Physics*, 389:  
646 164–188, 2019.  
647 [32] Bo Guo, Yashar Mehmami, and Hamdi A Tchelepi. Multiscale formulation of pore-scale compressible darcy-stokes flow. *Journal of*  
648 *Computational Physics*, 397:108849, 2019.  
649 [33] Sabit Mahmood Khan, Kangan Li, and Yashar Mehmami. Order reduction of fracture mechanics in porous microstructures: A multiscale  
650 computing framework. *Computer Methods in Applied Mechanics and Engineering*, 420:116706, 2024.  
651 [34] Serge Beucher and Christian Lantuéjoul. Use of watersheds in contour detection. In *International Workshop on Image Processing: Real-time*  
652 *Edge and Motion Detection/Estimation*, Rennes, France, 1979.  
653 [35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *Medical*  
654 *Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9,*  
655 *2015, Proceedings, Part III 18*, pages 234–241. Springer, 2015.  
656 [36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE*  
657 *conference on computer vision and pattern recognition*, pages 770–778, 2016.  
658 [37] Pejman Tahmasebi, Serehv Kamrava, Tao Bai, and Muhammad Sahimi. Machine learning in geo-and environmental sciences: From small to  
659 large scale. *Advances in Water Resources*, 142:103619, 2020.  
660 [38] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning.  
661 *Nature Reviews Physics*, 3(6):422–440, 2021.  
662 [39] Javier E Santos, Duo Xu, Honggeun Jo, Christopher J Landry, Maša Prodanović, and Michael J Pyrcz. Poreflow-net: A 3d convolutional  
663 neural network to predict fluid flow through porous media. *Advances in Water Resources*, 138:103539, 2020.  
664 [40] Javier E Santos, Ying Yin, Honggeun Jo, Wen Pan, Qinjun Kang, Hari S Viswanathan, Maša Prodanović, Michael J Pyrcz, and Nicholas  
665 Lubbers. Computationally efficient multiscale neural networks applied to fluid flow in complex 3d porous media. *Transport in porous media*,  
666 140(1):241–272, 2021.  
667 [41] Serehv Kamrava, Pejman Tahmasebi, and Muhammad Sahimi. Physics- and image-based prediction of fluid flow and transport in complex  
668 porous membranes and materials by deep learning. *Journal of Membrane Science*, 622:119050, 2021.  
669 [42] Xu-Hui Zhou, James E McClure, Cheng Chen, and Heng Xiao. Neural network-based pore flow field prediction in porous media using super  
670 resolution. *Physical Review Fluids*, 7(7):074302, 2022.  
671 [43] Ying Da Wang, Traiwit Chung, Ryan T Armstrong, and Peyman Mostaghimi. MI-lbm: Predicting and accelerating steady state flow simulation  
672 in porous media with convolutional neural networks. *Transport in Porous Media*, 138(1):49–75, 2021.  
673 [44] Eduardo A de Souza Neto, Djordje Peric, and David RJ Owen. *Computational methods for plasticity: theory and applications*. John Wiley &  
674 Sons, 2011.  
675 [45] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained deep learning for high-dimensional  
676 surrogate modeling and uncertainty quantification without labeled data. *Journal of Computational Physics*, 394:56–81, 2019.  
677 [46] Govinda Anantha Padmanabha and Nicholas Zabaras. A bayesian multiscale deep learning framework for flows in random media. *arXiv*  
678 *preprint arXiv:2103.09056*, 2021.  
679 [47] Olav Møyner and Knut-Andreas Lie. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstruc-  
680 tured grids. *Journal of Computational Physics*, 304:46–71, 2016.  
681 [48] Jean Serra. Introduction to mathematical morphology. *Computer vision, graphics, and image processing*, 35(3):283–305, 1986.  
682 [49] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual u-net. *IEEE Geoscience and Remote Sensing Letters*,  
683 15(5):749–753, 2018.  
684 [50]

685 [51] Juncai He and Jinchao Xu. Mgnet: A unified framework of multigrid and convolutional neural network. *Science china mathematics*, 62:  
 686 1331–1354, 2019.

687 [52] Steffen Berg, Ryan Armstrong, and Andreas Wiegmann. Gildehauser sandstone. <http://www.digitalrocksportal.org/projects/134>, 2018.

688 [53] Amelie Sas, Benedikt Helgason, Stephen J Ferguson, and G Harry van Lenthe. Mechanical and morphological characterization of pmma/bone  
 689 composites in human femoral heads. *Journal of the Mechanical Behavior of Biomedical Materials*, 115:104247, 2021.

690 [54] Long Chen. *iFEM*: an integrated finite element methods package in MATLAB. Technical report, 2009. URL <https://github.com/lyc102/ifem>.

691 [55] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i): Data-driven solutions of nonlinear  
 692 partial differential equations. *arXiv preprint arXiv:1711.10561*, 2017.

693 [56] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving  
 694 forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707, 2019.

695 [57] Arvind T Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard physical constraints in neural network coarse-  
 696 graining of 3d turbulence. *arXiv preprint arXiv:2002.00021*, 2020.

697 [58] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE  
 698 transactions on neural networks*, 20(1):61–80, 2008.

699 [59] Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid using graph neural networks. In  
 700 International Conference on Machine Learning, pages 6489–6499. PMLR, 2020.

701 [60] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar.  
 702 Fourier neural operator for parametric partial differential equations. *arXiv preprint arXiv:2010.08895*, 2020.

703 [61] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural  
 704 operator: Learning maps between function spaces. *arXiv preprint arXiv:2108.08481*, 2021.