Machine Learning for Preconditioning Elliptic Equations in Porous
Microstructures: A Path to Error Control

Kangan Li, Sabit Mahmood Khan, Yashar Mehmani

Energy and Mineral Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Elliptic equations on complex porous microstructures govern the flow of fluids inside subsurface rocks in underground
CO; and H; storage, and the transport of heat and solute within electrochemical devices like batteries and fuel cells.
The algebraic systems arising from the discretization of these equations are often prohibitively large and must be
solved via iterative (e.g., Krylov) methods, for which effective preconditioning is key to ensure rapid convergence. In
recent work, the authors proposed a scalable two-level preconditioner whose performance was superior to existing al-
gebraic multigrid variants for pore-scale problems. The preconditioner was based on the pore-level multiscale method
(PLMM) and consisted of a coarse preconditioner, Mg, and a fine smoother, M. Similar two-level preconditioners
based on the multiscale finite element/volume and variational multiscale methods also exist for solving continuum-
scale PDEs in porous media. The most expensive step in building such two-level preconditioners is computing Mg, for
which many numerical bases on a set of subdomains must be calculated to yield a prolongation matrix. Here, we show
that machine learning (ML) can dramatically reduce this cost. Moreover, by embedding ML within a preconditioning
framework, we enable the rarity of estimating and controlling ML errors to any desired level. We systematically probe
the ML-built preconditioner in solving the Poisson and linear-elasticity equations over complex 2D/3D geometries and
show that it performs comparably to its solver-built counterpart. Implications and future extensions are discussed.

Keywords: Porous media, Pore scale, Multiscale method, Machine learning, Preconditioning, Elliptic equations

1. Introduction

In the context of porous media physics, elliptic equations describe the flow of fluids, transport of heat and solute
through the intricate void space, and mechanical deformation of the solid matrix. Understanding and controlling these
processes is important to the high-precision engineering of geologic CO, sequestration [1], underground H, storage
[2], geothermal energy extraction [3], and the optimal design and operation of fuel cells [4] and electrolyzers [5] for
energy storage and conversion. Prior to solving such PDEs, the microscale geometry of a porous sample is mapped
experimentally via, e.g., an X-ray uCT scanner [6, 7]. The acquired image is then passed as input to a pore-scale model
that discretizes and solves the PDE. The highest fidelity among pore-scale models are direct numerical simulation
(DNS) techniques, e.g., the finite element (FEM), finite volume (FVM), and finite difference (FDM) methods [8].
Here, we focus on scalar- and vector-valued PDEs relevant to heat conduction and elastic deformation, respectively.

Given the need to analyze statistically representative, thus large, samples, the size of the linear(ized) systems
obtained from discretizing the above PDEs is often enormous. This, in turn, demands iterative (e.g., Krylov) methods
for solving such systems, whose rapid convergence hinges upon the availability of effective preconditioners [9]. One
very successful preconditioner is the algebraic multigrid (AMG) method [10], and its many variants (e.g., [11]).
Viewed as a solver, AMG operates by reducing the original system, Ax = b, to a smaller coarse system, A°x‘ = b,
that is faster to solve. The coarse solution, x¢, is then interpolated (or prolongated) onto the original fine grid to yield
an approximate solution, ¥. Errors in ¥ are dominated by high-frequency modes, which are further attenuated with a

*Corresponding author: Yashar Mehmani. Email: yzm5192@psu.edu
Email addresses: kb15610@psu.edu (Kangan Li), skk6071@psu.edu (Sabit Mahmood Khan), yzm5192@psu.edu (Yashar Mehmani)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering May 6, 2024

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

smoother (e.g., ILU(k), Gauss-Seidel). The foregoing is a rwo-level outline of AMG that consists of a fine and a coarse
system/grid. Incorporating additional levels is straightforward by repeating these steps in nested fashion. Viewed as a
preconditioner for accelerating Krylov solvers, AMG consists of two parts: (1) a coarse preconditioner, Mg, used to
build and solve the coarse system, and (2) a fine smoother, My, used to attenuate high-frequency errors. While both
are important, AMG’s success depends critically on the quality of the coarsened matrix A® and vector b°.

The coarsening requires a prolongation, P, and a restriction, R, matrix that allow accurate mapping to/from the fine
and coarse vector spaces. These matrices are used to yield A° =P (RAP)"!R and b =R b [9]. Computing R is often
cheap, since it is either taken as the transpose of P, if A is symmetric as in FEM [10], or built trivially out of 0 and 1
entries to enable certain row-sum operations, if A originates from FVM [12]. The critical and costly step corresponds
to building P. An accurate P consists of columns, called bases, whose span contains a very close approximation to
x. Given AMG is a black-box preconditioner, its P is not always optimal, leading to subpar performance [13]. This
has spurred the development of more physics/geometry-informed preconditioners [14—18] based on two-level solvers
such as multiscale finite element (MSFE) [19, 20], multiscale finite volume (MsFV) [21, 22], and mixed mortar finite
element [23, 24]. The columns of P in such methods are obtained by solving local problems on small subdomains,
subject to carefully crafted closure boundary conditions (BCs). Despite their superior performance, these multiscale
preconditioners are designed for PDEs describing continuum-scale (or Darcy) physics of porous media.

Recently, the authors have proposed a two-level preconditioner [25, 26] based on the pore-level multiscale method
(PLMM) [27, 28] for elliptic equations arising from linear-elastic mechanics at the pore scale. A similar preconditioner
was later formulated for saddle-point systems associated with the Stokes flow equation [29]. The preconditioners were
shown to exhibit far superior performance to AMG in solving pore-scale problems. PLMM itself is a two-level solver
that was first developed for single-phase flow [30] and later extended to two-phase flow [31], compressible flow [32],
and elastic deformation of intact/fractured porous media [27, 28, 33]. It consists of four main steps: (1) decompose
the domain into subdomains by cutting it at geometric constrictions using the watershed segmentation algorithm [34];
(2) compute local basis functions on each subdomain subject to closure BCs; (3) solve a coarse problem that imposes
flux continuity across all subdomain interfaces; and (4) iterate to improve the accuracy of the closure BCs, and thereby
that of the solution. The preconditioner by [27, 28], referred to hereafter as M, interprets the above steps in a purely
algebraic fashion, and much like AMG, consists of a coarse, Mg, and fine, My, preconditioner. Computing Mg, or
equivalently its prolongation matrix P, is the most expensive step in building M as it requires calculating multiple
basis functions per subdomain. A similar upfront cost is incurred by all two-level preconditioners discussed above.

Our goal is to accelerate the construction of Mg in the PLMM preconditioner, M, via supervised machine learning
(ML). Specifically, we propose a convolutional encoder-decoder neural network, based on the U-Net [35] and ResNet
[36] architectures, that accepts the geometry of a subdomain as input (in the form of a small image) and yields the
basis functions defined on it as output. The bases are then assembled into the columns of the prolongation matrix P for
Mg. While our quest may seem esoteric and specific to PLMM, it is not, and has wide ranging implications. Existing
literature on ML for solving PDEs in porous media [37] is encumbered by two fundamental drawbacks: (1) Effective
mechanisms for estimating and controlling prediction errors are lacking [38]. ML outputs must either be accepted at
face value, or trusted based on empiricism or criteria that determine whether a sample is in- or out-of-distribution; (2)
Training is performed on whole (non-decomposed) domains, often in the form of large, geometrically complex 2D/3D
images [39—43]. Compared to the roughly convex subdomains obtained from watershed segmentation herein, training
on whole domains is less desirable because: (a) the statistical space of whole-domain microstructures is much larger,
thus demanding more training data; (b) labeled data for whole domains are scarcer, requiring large X-ray images and
costly DNS simulations. By contrast, one whole domain yields hundreds of subdomains (i.e., data) when decomposed,
that can be rapidly processed via DNS; (c) ML algorithms for whole domains do not generalize well to BCs beyond
which they are trained, while basis functions can be assembled in any combination to enforce arbitrary BCs.

In this work, we address these drawbacks. By tasking our ML algorithm to build a coarse preconditioner, Mg,
and pairing it with a smoother, we enable error estimation and control. Moreover, by training on semi-convex sub-
domains, we ensure the algorithm is less data hungry, that data generation is easier, and arbitrary BCs can be flexibly
imposed. The ML algorithm’s outputs are also in a sense reusable, because basis functions built for linear PDEs, such
as small-strain elasticity, can be used to solve (linearized forms of) nonlinear PDEs, such as finite-strain deformation
and plasticity [44]. We systematically probe the ML algorithm in building coarse preconditioners for the Poisson and
linear-elasticity equations defined on complex 2D/3D porous geometries. Compared to purely solver-built precondi-
tioners, the cost of building Mg is dramatically reduced while the convergence rate of the Krylov solver is minimally

2

70

71

72

73

74

75

76

77

78

79

80

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

degraded. We also demonstrate that if trained on simple disk/sphere packs, the ML algorithm is transferable to more
complex geometries (e.g., sandstone, bone) without additional training.

In closing, we remark that two other attempts [45, 46] at using ML to accelerate the construction of basis functions
for elliptic equations have been made: one in the context of MsFV, and another in the context of an MsFV variant called
MsRSB [47]. However, given their focus lies in uncertainty quantification at the Darcy scale, both treat scalar-valued
PDE:s (i.e., the pressure equation) on subdomains that are square shaped. Neither address error control, vector-valued
equations, or how to handle arbitrary pore-scale geometries, all specific aims of the present work.

The paper is organized as follows: Section 2 describes the PDEs to be solved on porous microstructures. Section 3
briefly reviews the PLMM preconditioner consisting of Mg and My. We discuss the ML architecture for building Mg
in Section 4. Sections 5 and 6 present a series of 2D/3D numerical tests to probe the ML-enhanced preconditioner. In
Section 7, we discuss the implications of the results and future directions. Section 8 concludes the paper.

2. Problem description

We target two PDEs with our ML-assisted preconditioning described later: (1) scalar-valued Poisson equation, and
(2) vector-valued linear-elasticity equation. Consider a porous domain Q c R” with Lipschitz boundary 6Q, where D
is the number of spatial dimensions. Such a domain is represented here by a pore-scale image (e.g., X-ray uCT) as
shown in Fig.la (gray means solid). The boundary 0 consists of the void-solid interface, I'", and the external surface
(or bounding box) of the domain, I'**. Another way to partition dQ is into Dirichlet, ', and Neumann, I, segments
such that 9Q=TY UT" and I'¥ N T”" =0 hold. We assume I"'” cI"", implying a stress-/flux-free fluid-solid interface.
The Poisson equation reads as follows:

-Au=f, on Q (1a)
u=uy;, onl? (1b)
Vu-n=t,, onI” (1c)

where we seek the scalar solution u, subject to the known source term £, the prescribed function value u, on I'?, and
the prescribed flux #, on I'"". The vector n denotes the outward-pointing unit normal on I'™”.
The linear-elasticity equation is given by:

-V-ow)=f, onQ (2a)
u=u;, onl? (2b)
ocwn=t,, onI” (2¢)

where we seek the vector solution u, subject to the body force f, the prescribed displacement u,; on I'Y, and the
prescribed traction ¢, on I'". The Cauchy stress tensor o is related to the displacement field u via:

ow)=C: &) 3)

where s(u)=V*u=1/2 (Vu + VuT) is the strain tensor and C=[GC;] the fourth-order stiffness tensor. The symbol V*
denotes the symmetric gradient operator and the superscript T denotes transposition. For an isotropic material, C is:

Ciju = 661 + pu(0ixdj + 610 jx) 4
where A and u are Lamé parameters. Substituting Eq.4 into Eq.3 yields:
o) = Atr(e(u)I + 2u eu) (®)]

where tr(g) represents the trace of €.
In this work, Eqs.1 and 2 are discretized with a Galerkin finite element method (FEM) over a Cartesian mesh
that conforms to, or is an integer fraction of, the image pixels comprising Q. In other words, elements are rectangu-

100

101

102

103

104

105

106

107

108

109

110

AR

12

13

114

115

L

(a) Image (e) Local bases

(b) Grain grids

g i o

(]

X

Figure 1: Schematic of a pore-scale image, its decomposition into grain grids, and contact grids. (a) The image consists of a solid phase Q (gray)
and a void space (white). The solid is where the PDEs in Eqs.1 and 2 are solved. (b) Q is decomposed into grain grids Q8 (randomly colored).
(c) Contact grids Q% cover a thin region around each contact interface, I'“/, shared between adjacent grain grids. (d) An interface I'! (yellow)
between two grain grids Q8! and Q82 is highlighted. (e) Two basis functions associated with Q8! and I'“4 are shown for the linear elasticity PDE.
Black circles denote homogeneous Dirichlet BCs, and arrows are Dirichlet BCs of unit magnitude along the coordinate axes.

lar/cuboid and FEM shape functions are bilinear/trilinear in 2D/3D. This yields the following linear system:
Ai=b (6)

where A is the coeflicient matrix, bis the right-hand side (RHS) vector, and % the unknown vector of FEM nodal values
corresponding to u in Eq.1 or u in Eq.2. Solving Eq.6 on typical domain sizes of interest is computationally expensive,
especially when Q is large and geometrically complex. This can even lead state-of-the-art algebraic multigrid (AMG)
[10] solvers to converge slowly [25, 26]. Below, we first review the highly effective PLMM preconditioner, M, for
such problems that accelerates the convergence of Krylov solvers. We then describe how machine learning (ML) can
be used to accelerate a key computational bottleneck in building M (i.e., Mg). Neither M nor its hybridization with
ML are limited to FEM or Cartesian grids, as they apply to other solvers (e.g., FVM) and unstructured grids.

3. Multiscale preconditioner based on PLMM

We briefly review the multiscale preconditioner, M, based on PLMM [26]. Section 3.1 outlines the overall structure
of M, consisting of a global (or coarse) preconditioner, Mg, and a smoother, M;. We then describe the domain
decomposition that is central to constructing both Mg and My.. Section 3.3 details the various building blocks of Mg,
which is the target of our acceleration via machine learning. In Section 3.4, we only summarize a few essential points
about M, as the details are not central to this work. We supplement this with references for the interested reader.

3.1. Overall structure

The PLMM preconditioner, M, is formulated as follows:

M ! =Mg'+ M. "0 - AMg™) (7

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

where the global preconditioner Mg attenuates low-frequency errors, and the smoother M, removes high-frequency
errors. Eq.7 is a multiplicative combination, where Mg is applied first, and My next. The smoother itself is written as:

Nyt i—1
M ! = ZM;l]_[(I—AM,—I) 8)
i=1

4
j=1

representing a multiplicative application of a base smoother, M;, in ny repeated stages. For the Mg formulated in
Section 3.3, the best performance is observed when M; is chosen compatibly as an additive Schwarz preconditioner
called the contact-grain smoother, or Mcg [26]. While other, black-box smoothers like Gauss-Seidel (Mgs) and
incomplete LU-factorization (M y) are possible, they either converge more slowly (often tenfold) or lead to the
occasional stagnation of the Krylov solver. We therefore opt for M;=Mcg in this work. We also note that a symmetric
combination of Mg and My is possible [26], allowing M to be used in symmetric solvers like conjugate gradient.

3.2. Domain decomposition

To construct Mg and My, Q is first decomposed into N¢ non-overlapping subdomains, Q8:, referred to as grain
grids. For this, a modified watershed segmentation algorithm proposed by [27] is applied to the image representing €.
Fig.1b shows an example of such a decomposition for the pore-scale image in Fig.1a, where grain grids are depicted
by the randomly colored regions. The interfaces shared between adjacent grain grids, [/, are called contact interfaces
and one is illustrated in Fig.1d. Watershed segmentation is a morphological operation in image analysis [6, 34] whose
key feature is that Q8 corresponds to a local enlargement of Q, and I'/ to a local constriction.

In addition to Q$/, we construct a complementary set of N¢ subdomains, Q%, called contact grids. Each contact
grid covers an interface, I'**, plus a thin region around it. Fig.1c provides a visual schematic. To build Q%, succes-
sive morphological dilations, an operation in image analysis [48], of the pixels comprising I"** are performed. The
thickness of Q% is proportional to the number of such dilations and can be adjusted by the user. Typically, a width of
~12 pixels (6 per contact side) is sufficient. Notice that the union of contact grids does not cover Q (i.e., Q# U Q%).
Contact grids are only used by M, and their function is to remove high-frequency errors that tend to concentrate near
I after every application of Mg. We note that contact grids in the PLMM preconditioner are allowed to overlap
with each other, which is conceptually simpler and computationally more advantageous than the original geometric
(non-algebraic) formulation of PLMM [27], wherein such grids had to be merged (see [26] for a discussion).

3.3. Global preconditioner
The global (or coarse) preconditioner Mg is defined as follows:

Mg' = P(RAP)'R ©)

A 5 A AT
where P and R are the effective prolongation and effective restriction matrices, respectively.! Here, we set R=P and
formulate P as the multiplication of three matrices:

P = wQP (10)

We refer to W as the permutation matrix, to Q as the reduction matrix, and to P as the (reduced) prolongation matrix.
Below, we describe the procedure for constructing each one, while referring the reader to [26] for further details.

Permutation (W). The permutation matrix, W, is square and consists of only 0 and 1 entries. Its function is to
shuffle the columns of any matrix it right-multiplies. Hence, it is unitary, i.e., WWT = 1. The shuffling is done in
accordance with the domain decomposition in Section 3.2, such that the fine-grid entries associated with each grain
grid Q8i, and each contact interface [/, are grouped together. Applying W to the linear system in Eq.6 yields:

WIAWWT: =W'h = Ax=b (11a)
—— S~
A X b

!Following the terminology introduced in [26], we use the term effective to distinguish P from the prolongation matrix P introduced below.

5

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

where the permuted A, b, and x have the following block structures:

AL A b x*
A= [A§ A b= be X = v (11b)
&1 c — Ci .
Ag] e (@) Ag = [Agj]NLf.xNg b8 = [bgi]Nf X
A=l . AL = (A]y b= [(11c)
2 c — Ci N:x1
o - Aglzx NIxNJ Ac= [Acf]N‘c/XNf-)

The super/subscripts g; and c; specify the entries/blocks that belong to either Q8 or I'/, respectively. N';. and NZ} are
the number of fine-scale unknowns associated with Q8 and I'/, respectively, and N; =3 NZ; and NZ =2 Ngj. Recall
N$ is the total number of grain grids. The matrix Aj is square and block-diagonal, with square blocks Ay:, while
AS and Aj are thin and rectangular. Moreover, Al = (Ag;)T and Af_',. = (A;{)T hold because of the self-adjoint nature
of the PDEs in Egs.1a and 2a and our choice to use Galerkin FEM to discretize them. Building W is trivial, thus cheap.

Reduction matrix (Q). The reduction matrix, Q, is square and consists of only 0 and 1 entries. Its function is to
perform a column-sum, when right-multiplying a matrix, over all entries associated with each contact interface I"“/.
For the linear-elasticity PDE, this summation is done on a per coordinate-direction basis. Hence, Q is expressed as:

1 O
o

Loxw
| N .
Q: g XINVg QO: .. 1¢ = . (12)
O QO . o .
0 1 NI xNe Lixw N xw

where N = N°w, with w =1 for Eq.1 and w =D for Eq.2. Recall N¢ is the total number of contact interfaces. The
parameter w represents the number of degrees of freedom per fine grid (here, FEM node). Notice Q is block-diagonal,
with its (1,1)-block an identity matrix and its (2,2)-block a block-diagonal matrix Q° itself. Each block of Q°, namely
19, consists of a series of vertically concatenated identity matrices of dimension wxw. A symmetric application of Q
to the permuted system in Eq.11a yields the reduced system below:

Ax=b, x= Qxpy = QTAQXM = QTb = Amvxy = by (13a)
where Ay possesses the following block structure:

ég = [‘égj]N{.’xNg
Af = [Af}]Nngg (13b)

AS Af}
AS = [Aﬁ;]Nngg

Anm = [Ag A¢

The overbared blocks have smaller dimensions compared to those in Eq.11c (note Nf is replaced by N?). The appli-
cation of Q in Eq.13a simultaneously imposes an (integrated) flux balance across all I'“/ and a localization assumption
that u or u are uniform along each I'/, both inherent to PLMM [26]. Building Q is trivial, thus cheap.

Prolongation matrix (P). The prolongation matrix, P, is tall and skinny with columns that define a coarse space
wherein a close approximation to the solution, x,;, of the reduced system in Eq.13a exists. Each column of P is
comprised of local solutions of the PDEs in Eqs.1 or 2 on one/two grain grids. Thus, P is sparse. It is built as follows:

pzl pgl cee pgl Cgl O
2 2 . 2 82
B C P Py, 0 DPn c
Pz[l O} B=1. . . C= : (14a)
(N]+N2)X(NI+N#) : : : .
m 8m m m
Py Py Podyine 0 et NgxN

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

The basis matrix, B, and correction matrix, C, are comprised of the following vectors:

c¥ = (A" (14b)
s _ —(A)'ASR e, gi € GY cj = [kjw] (140)
k 0, g ¢ GY ¢ =Tkjw]
e, =1[0,---,0,1,0, --- ’O]T{fxl (14d)
k—1,k, k+1

where p;' is referred to as a basis vector, and ¢®' as a correction vector, both defined on the grain grid Q. In Eq.14a,
we have used n = N? and m = N¥ for brevity. The unit vector e; contains 1 in its k¥ entry, with k corresponding to
the contact interface with index ¢;j=[k/w]. The set G contains the indices of the only two grain grids that share I'*/.
According to Eq.14c, p is non-zero only if Q8 shares an interface I'/ with another grain grid. Thus, B is sparse and
only two of the basis vectors in each column of it are non-zero. Finally, the contraction matrix, R/, is defined as:

Ci ACi c . Loxw if i=j
RO = AL AL AG | o A= e DT (15)
) WXN; ! Oupxew 1if i # J

Left-multiplying a N?X 1 vector defined on all contact interfaces (e.g., ex) by R¢ restricts it to a wX 1 vector on I'.

Building the prologation matrix P, outlined above is fully parallelizable, as it involves the calculation of 2N?
decoupled basis vectors and N8 decoupled correction vectors on non-overlapping subdomains (i.e., grain grids). Even
so, computing P is the most computationally expensive step in constructing Mg via Eq.10 because it involves the
repeated solution of Eq.1 or Eq.2 over each grain grid subject to different BCs. Since most c#' are zero herein, because
the source terms f and f in Eqs.1-2 are set to zero (¢% #0 only if Q% intersects the global boundary I'**), the cost of
building P is dominated by that of building B in Eq.14a. In Section 4, we propose a machine learning (ML) algorithm
that significantly accelerates the construction of B, and thereby that of Mg.

3.4. Local smoother

The high-frequency errors that remain after applying Mg tend to concentrate near contact interfaces. The compat-
ible contact-grain smother Mcg, proposed by [26], specifically targets these errors by applying two additive schwarz
preconditioners in immediate succession:

Mcg = M7+ M, 1 - AM;) (16)

The first, called the contact-grid smoother M, wipes out all errors within each contact grid (i.e., a small neighborhood
around each contact interface), and the second, called the grain-grid smoother M, removes all errors inside each grain
grid. Notice the multiplicative composition of M, and M, in Eq.16 resembles Eq.7. M, and M, take the standard
algebraic forms common to all additive Schwarz preconditioners [9] below:

N8
-1 _ 8i M8 ARSN-1RS -1 _ G i ARSG-1RY
_ZlEf(RfAEf) RY ., M; _ZEf(R AES)'RY (17)
The matrices R® and E¥ restrict and extend, respectively, any vector they left-multiply to/from Q8 and Q. Similarly,

RZ’ and Ej(restrict and extend to/from Q¢ and Q. In an iterative solver, applying M, entails solving N® decoupled
systems on grain grids, and applying M entails solving N* decoupled systems on contact grids; all fully parallelizable.

4. Building the global preconditioner via machine learning

We propose a machine learning architecture, modified after ResUnet in [49], that yields the basis vectors, pi’ ,In
Eq.14c at a much lower computational cost than solving them directly with a numerical solver. From Eq.14c and our
discussions in Section 3.3, recall that for every contact interface I'“/, two sets of basis vectors are computed: one on

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

each of the two grain grids flanking I". Each set consists of w basis vectors, where w =1 for Poisson and w = D for
elasticity. This means that on every grain grid Q8 #C8 X w basis vectors must be built, where #C%' is the number of
contact interfaces intersecting 9Q8. Our ML algorithm aims to accelerate such repeated calculations on Q8.

4.1. Curating labeled training data

The inputs and outputs of the proposed ML algorithm consist of small images with dimensions 64 x 64 in 2D,
and 48 x 48 x 48 in 3D. These images contain the geometry of each grain grid and any fields defined on them, as
exemplified by Fig.2 for the grain grid Q$' with three contact interfaces I'', I'?, and I'>. The outside of Q$' is colored
gray. The small image sizes of the subdomain, unlike whole-domain images required by other ML algorithms in the
literature (e.g., [39]), ensure that training is rapid and the overhead in computer memory stays low. To capture a grain
grid’s geometry inside the above-prescribed dimensions, we first circumscribe the grain grid by its minimal bounding
box, then crop it out of the pore-scale domain’s original image. If this box is smaller/larger than the prescribed image
dimensions, as it is almost always the case, we up/downsample it to match the required size. Upsampling is straightfor-
ward, as it involves cutting a pixel into sub-pixels then copying the pixel’s value onto the sub-pixels. Downsampling
requires mapping pixel values to those of a coarsened image, for which we use bi/trilinear interpolation.

Smoothed tag

r N
1

08

g0.6

0.4

0.2
[}

Figure 2: Example of a 2D subdomain (i.e., grain grid) image and its corresponding input features passed to the ML algorithm. The grain grid
Q81 consists of three contact interfaces I'“1, I'2, and I'“3. The smoothed tags are computed via Eq.18. From left to right, they correspond to basis
vectors with BCs: ()u=1lonT"andu =00onT2UT3; 2Q)u=1onT2andu=00onT' UTS;and B)u=1onT andu =0on It UT2,

Subdomain image

Before detailing the input feature required by the ML algorithm, let us first focus on what output we seek from it.
Consider the Poisson problem defined on Q8! in Fig.2. There are a total of three basis vectors we need to compute,
corresponding to local BCs: (Du=1onI andu =0onT*UT; 2QJu=1onT“?andu =0on I UT*; and (3)
u=1onT% and u = 0on "' UT*2. Similarly for the 2D elasticity problem, there are six basis vectors in total, two per
interface. For example, the two bases associated with I'“! correspond to local BCs: (1) u=(1,0) on I'“* and u = (0,0)
onI2UI; 2Q)u=(0,1)onT and u = (0,0) on I'> UT*. The other four bases associated with I'“> and I'* follow in
a similar vein. We do not demand the ML algorithm to produce all basis vectors defined on Q8 at once, but one at a
time. This requires the input to not be a mere binary image of 8, but tagged in some fashion to specify which basis
vector of which interface we desire. This motivates us to now turn our attention to describing the input feature.

A naive approach to crafting the input is to take each subdomain’s image and assign integer labels to the various
pixel types, e.g., interior of Q8 interface with non-zero BC, and interfaces with zero BCs. Unfortunately, this ap-
proach, as we have found, does not work because it leads to very slow (even non-convergent) training; also observed
by [39]. Instead, we design a smooth input image with pixel values corresponding to a distance map defined by:

d(x,To)

dx) = T + dwT))

(18)

where I'; is the interface at which a non-zero Dirichlet BC is imposed, and I'y is the union of all other interfaces
where the BCs are zero. For example, for the Poisson basis vector that corresponds to u = 1 on I’ and u = 0 on
I2ur“ in Fig.2, we have I'y =I'“' and 'y =" UT'*. The d(x, 1) and d(x,I"}) are Euclidean distances from the pixel
position x to the closest pixel on I'y and I'j, respectively. Fig.2 illustrates all three input features, hereafter referred
to as smoothed tags, corresponding to the three basis vectors of the Poisson problem defined on Q$'. Notice for the
Poisson equation, both the ML input and output are either 64 X 64 images in 2D, or 48 x 48 X 48 images in 3D.

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Inputs

-)/
x >
3 Output
x
-
©°
B
- L |
® ©
I < -3 % % 2
*
~ N X X S ® |o |~
X ° = & x A= xS
- X - X < -
x N x|
=+) X 9 © L) =
< © X 9 - < =t
M X & X o |x 64 %64 x1
x < () o0 X -
3 2 3%
i X
=+
©°
Residual Block | Residual Block Il

Convolution (3 x 3)
Stride (1 x 1)

Convolution (3 x 3)
Stride (2 X 2)

CU"V"'W“U" (1x1) Convolution (1 x 1) Transposition Block Multiplication Block
Stride (1 x 1) Stride (2 X 2)

Convolution (3 X 3) Convolution (3 X 3) l
Stride (1 x 1) Stride (1 x 1) [Transposed Convolution (2x 2)

o

7 4
leakyRelu/tanh leakyRelu/tanh Residual Block | X
\ J l J

Figure 3: Proposed ML architecture, resembling a residual U-Net [49]. The top row shows the overall structure, which consists of encoder layers
(gray and blue) and decoder layers (orange and green) connected by skip connections (black arrows). Each layer is a convolutional block with
internal skip connections, as detailed by the sketches in the bottom row. The layers consist of Residual Blocks I and II, Transposition Blocks, and
one Multiplication Block. The inputs to the ML algorithm are the image and smoothed tag of a subdomain (i.e., grain grid), and the output is the
corresponding basis vector. The image is used (red arrow) by the Multiplication Block to filter out artifacts outside the subdomain’s boundary.

For the elasticity problem, there are D bases associated with an interface, each a vector-valued function. Hence,
the ML output is a 64 X 64 x D image in 2D, and a 48 X 48 x 48 x D image in 3D, with the last dimension containing
the D components of the basis vector’s displacement field. To compute the D bases associated with each interface,
we train D separate ML algorithms, one for each coordinate direction. For example, for the 2D subdomain Q8! in
Fig.2, two architectures are trained. When applied to I'“!, both accept the associated smoothed tag (second image from
the left in Fig.2) as input. The first architecture outputs the basis associated with the local BCs u =(1,0) on I'“* and
u = (0,0) on ' U T, while the second outputs the basis associated withu=(0,1) onI'“ and u = (0,0) on I'> UT%.

To curate training data, we generate random disk packs in 2D and random sphere packs in 3D; like the one shown
in Fig.1a. Each domain is decomposed via the watershed-based algorithm described in Section 3.2 into subdomains.
After cropping and resizing the subdomain images, per the up/downsampling procedure already discussed, we com-
pute smoothed tags via Eq.18 for all bases of each subdomain. We next compute the basis vectors themselves using
a FEM solver on the cropped (but unresized) subdomain images, then resize them to match the dimensions of the
smoothed tags. The smoothed tags and basis vectors are paired to form a labeled dataset. In computing the bases for
the elasticity problem, we set the Lamé parameters to A = 8.3 GPa and u = 44.3 GPa, corresponding to a-quartz [50].
Later we demonstrate the generalizability of the trained ML algorithms, not only to subdomain geometries other than
those of disk/sphere packs, but also other stiffness tensors. The datasets for Poisson and elasticity consist, separately,
of 8,000 data points, each a triplet of a binary image, smoothed tag, and a basis vector. The binary image assigns 1 to
pixels belonging to the subdomain, and O to all other pixels. But if downscaled, this image becomes grayscale with
pixels along the subdomain’s boundary assuming values between 0 and 1. Finally, we randomly split the dataset into
5,600 for training, 1,600 for validation (to tune hyperparameters and prevent overfitting), and 800 for testing.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

4.2. Machine learning architecture

Fig.3 illustrates the ML architecture we train to predict the basis vector (output) corresponding to a given smoothed
tag and subdomain image (inputs). For the elasticity problem, D such algorithms are trained separately to predict the D
basis vectors associated with each smoothed tag (or contact interface). The architecture in Fig.3 resembles a residual
U-Net [49], consisting of several encoder layers (gray and blue) and decoder layers (orange and green) linked by skip
connections (black arrows). Each layer is a convolutional block with internal skip connections, as sketched in Fig.3.
The layers consist of Residual Blocks I and II, Transposition Blocks, and a Multiplication Block. The input subdomain
image is used (red arrow) by the Multiplication Block to filter out artifacts outside the subdomain’s boundary. The
activation function used in Residual Blocks I and II is 1eakyRelu for the Poisson problem, but tanh for the elasticity
problem. The latter is selected because the displacement variable u in elasticity can assume both negative and positive
values in a basis vector, whereas the Poisson variable u is guaranteed to be always positive. Fig.3 also annotates the
size of the convolutional stencils, their stride lengths, and each layer’s input/output dimensions.

We define the loss functions of the Poisson, L,, and elasticity, L., problems as follows:

1 & 1 &
Lp = N ;(ytrue - ypred)2 + apN ;(Aypred + f)2 (193-)
1 & 1 &
_ 2 2
L= Z](v ~Ypred) + ey ;(V T Wprea +) (19b)

where the first term measures the data mismatch between the true (i.e., solver-computed) and predicted (i.e., ML-
computed) basis vectors. The second term is the physics mismatch, or norm of the PDE’s residual, in the predicted
basis vectors. The weights «,, and «, control the relative importance of the data- versus physics-based losses. We
implemented the ML architecture in Fig.3 using MATLAB’s Deep Learning Toolbox and trained it on a machine with
an NVIDIA GeForce GTX 1660 Super graphics card. The batch size was set to 40, learning rate to 107>, and training
was allowed to progress for 200 epochs. Early stoppage was used as the mechanism to prevent overfitting.

4.3. Enforcing partition of unity on bases

The basis vectors defined on a subdomain, Q% , must satisfy an important constraint: partition of unity. For the
Poisson equation, this means that if we sum all the bases on Q% the result must be an all-ones function:

D, eh=1 (20)

For emphasis and notational simplicity, we have used gpfj., instead of pi", in Eq.20 to denote the basis vector associated
with grain grid Q% and contact interface I'“/. The set C% contains the indices of all interfaces intersecting 0€2%:.
For elasticity, this equation takes the form:

D=l 1)

Ve, eCsi

where we have again used the simpler notations (pfj. . and <p§j.y (and <p§j.z in 3D) to denote the D basis vectors associated
with Q¢ and T'’. Here, 1, is a D X 1 constant vector field with 1 for its @" component and 0 for its other compo-
nents. We have found that if Eqs.20 and 21 are not enforced explicitly on the ML-predicted basis vectors, during a
postprocessing step, the performance of the ML-preconditioned Krylov solver in Section 6 deteriorates greatly.

To impose Eq.20, we simply divide (in pointwise fashion) each ML-predicted basis by the sum of all bases on Q5.
To impose Eq.21, we first divide the d" component of each ML-predicted basis by the sum all the d-components of
all the bases on Q$i. This ensures the normalized d-components of all bases sum to one. Next, we normalize the other
(# d) components by subtracting their arithmetic mean over all the bases from that of each individual basis (also in
pointwise fashion). This ensures that the non-d-components of the normalized bases sum to zero.

10

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

31

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

4.4. Smoothing machine learned bases

The ML-predicted bases tend to be dominated by high-frequency errors that exhibit a checkerboard-like pattern
(shown later in Figs.5-6). While in Section 6 we report that such errors have negligible impact on the overall cost of the
Krylov solver, we propose an iterative strategy to arbitrarily improve the accuracy of ML-predicted bases, and thereby
the ML-built Mg, if so desired. The approach requires performing a small number of iterations with a Gauss-Seidel
(or any other) smoother that rapidly attenuates high-frequency errors. The lower-triangular matrix used to perform the
local Gauss-Seidel iterations on Q¢ is derived directly by restricting the global matrix A in the linear system Eq.6 onto
Q8. Each smoothing iteration is cheap and equivalent to a non-trainable convolution layer appended to the end of the
ML architecture in Fig.3 (see [51]). Since the accuracy of the ML-predicted basis vectors varies across subdomains,
one can ensure quality control by adapting the number of smoothing iterations such that the relative error:

_ TR = (IRl

22
IRl @2)

ML

satisfies a desired tolerance, Tyy.. Ry and R; are local residuals on Q8 at the 0™ and i smoothing steps. The smaller
a tolerance we impose on Ey, the more iterations are required, and the more costly the basis calculations become.

5. Problem set

To test the performance of the ML-built two-level preconditioner, M, in solving the Poisson and elasticity prob-
lems, we consider the 2D and 3D porous microstructures shown in Fig.4. They consist of a 2D disk pack (P2D), a 2D
sandstone (S2D) [52], a 3D sphere pack (P3D), and a 3D bone specimen (BONE) [53]. Each domain is decomposed
into grain grids and contact grids via the watershed segmentation algorithm described in Section 3.2, and they are
illustrated by the randomly colored regions in Fig.4. Table 1 further summarizes each domain’s image size, physical
dimensions, number of FEM elements and nodes, number of grain grids N¥, and number of contact grids N¢.

With reference to Fig.4, we impose the following BCs on the domains. For the Poisson equation in 2D, we set u=2
on the left (x=0) and u =0 on the right (x=L,) side of each domain. In 3D, we set u=2 and u=0 on the top (z=L;)
and bottom (z = 0) sides, respectively. All lateral boundaries in 2D/3D are flux-free (i.e., homogeneous Neumann).
For the elasticity equation in 2D, u = (—1,0) and u = (0, 0) are set on the left and right boundaries, respectively. In
3D, u = (0,0, 0) is imposed on the top side and u = (0,0, —1) on the bottom side. All lateral boundaries in 2D/3D are
stress-free. The Lamé parameters of all domains are A=8.3 GPa and u=44.3 GPa, same as those used to train the ML
algorithms in Section 4. In Appendix C, we demonstrate the algorithms’ transferability to other stiffnesses.

We solve the linear system, Eq.6, associated with the Poisson and elasticity problems for each domain with a
right-preconditioned GMRES solver. The preconditioners probed herein are: (1) the two-level PLMM preconditioner
M, whose coarse preconditioner Mg is built by a numerical solver; (2) the same two-level preconditioner M, except
whose coarse preconditioner Mg is built by the trained ML algorithms of Section 4; and as benchmark, (3) an AMG
preconditioner [54] constructed entirely by a numerical solver. To distinguish between preconditioners (1) and (2),
we refer to them hereafter as Mgor, and My, respectively. As discussed in Section 3.1, Mgor, and My, require a
local smoother, for which we use Eq.8 with the base smoother M;=M¢g and number of smoothing stages ngy = 1;
following recommendations in [26]. Unlike Mg and My, the AMG preconditioner is multilevel, with the number
of levels (>2) determined automatically and summarized in Appendix A. Per custom, one pre- and one post-smoothing
operation is performed in AMG via Gauss-Seidel per level. We declare GMRES to have “converged” if the normalized
residual satisfies [JA% — B||/||b]l < 10~ or the number of iterations reaches 500. All simulations are run in series.

Table 1: Geometric and fine/coarse-grid properties of the domains in Fig.4, used to test the ML-built preconditioner proposed.

Image pixels |Domain size (mm)| FEM elements FEM nodes |Grain grids (N¢) | Contact grids (N%)
P2D | 4,000x 4,000 40x40 12,750,317 12,866,447 480 688
S2D | 4,000x4,000 40x40 12,704,770 12,775,648 227 383
P3D | 150x150x300 1.5%1.5%x3 3,971,225 4,506,890 581 1,040
BONE| 150x150x300 1.5x1.5%3 4,677,385 5,102,232 319 1,255

11

Domain Grain grids Contact grids

P2D

S2D

P3D

BONE

Figure 4: Porous geometries used to test the ML-accelerated multiscale preconditioner for the Poisson and elasticity equations. From top to bottom,
they include a 2D disk pack (P2D), a 2D sandstone (S2D), a 3D sphere pack (P3D), and a 3D bone specimen (BONE). From left to right, each
domain’s geometry and corresponding grain grids and contact grids are illustrated. The last two are obtained from the decomposition algorithm
described in Section 3.2 and are depicted as randomly colored regions.

12

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

6. Results

We present results in two parts. In Section 6.1, we probe the accuracy of the trained ML algorithms in constructing
basis vectors on subdomains. Since the algorithms in Section 4 are trained on disk/sphere packs, we consider both
in-distribution (unseen disk/sphere packs) and out-of-distribution (S2D and BONE) subdomains. For the elasticity
problem only, we also probe the transferrability of the ML algorithm to Poisson’s ratios different from that used
during training (i.e., v#0.08). Next in Section 6.2, we compare the convergence rates and wall-clock times (WCT) of
the Mgor, MM, and AMG preconditioners applied within GMRES in solving the Poisson and elasticity equations.

6.1. Basis vectors built by machine learning
6.1.1. In-distribution subdomains

Using the notation introduced in Section 4.3 for the basis vectors (i.e., (pcj. and (pf"_ ; With d€{x,y,z}), Figs.5 and 6
compare basis vectors predicted by the trained ML algorithms against those obtained from a numerical solver for the
Poisson and elasticity problems, respectively. The associated subdomain images and smoothed tags are also shown,
which are chosen from the testing dataset (i.e., unseen samples) defined in Section 4.1. The ML bases are in good
agreement with those from the solver, save for high-frequency, checkerboard error patterns that appear to be typical
of convolutional neural networks (see [45]). The ML algorithms were trained while setting @, =a, =0 in Eq.19.

8i

!
r N

Subdomain image Smoothed tag Solver basis ML basis

@ M YV

Figure 5: Schematic of a subdomain image, one of its smoothed tags, and the corresponding in-distribution basis vector for the Poisson problem.
Two basis vectors are shown, one computed using a numerical solver and another predicted by the trained ML algorithm. The basis is denoted by
<p§;, instead of pi", to emphasize that it corresponds to the grain grid Q8 and interface I'°/. Given the annotations in Fig.2, i=1 and j=" here.

8i &i
(oc,x (00 lv

7D

r N

Al r
Xx-component y-component X-component y-component

LY

ML basis

0.8

0.6 1 X
0.4 -0.03 . .
02 -0.09 : s .
0 -0.15

Figure 6: Schematic of a subdomain image, one of its smoothed tags, and the two corresponding in-distribution basis vectors for the Elasticity
problem. The bottom row shows basis vectors computed using a numerical solver, and the top row bases predicted by the trained ML algorithms.
Notice two basis vectors are associated with each interface, denoted by w‘fj.x and w‘fj.y, instead of pii , to emphasize they correspond to the grain grid
Qi interface I/, and a non-zero Dirichlet BC imposed along the x or y coordinate direction. gof; , and (,of?;.y are output by separate ML algorithms.

Subdomain image

4

Smoothed tag
—
~ Solver basis
| .

13

Poisson: ('
J

Elasticity: (7
J

Elasticity: §0;gfy
J

0.35 0.35 0.35
0.25 0.25 0.25
w > > >
£ 2 | 5 s
© 2015 20.15- | £0.15-
= = = = ‘
0.05 0.05 0.0 H
111 — ||| [
0 0.05 0.1 0.15 0.2 0 0.1 0.2 03 0 0.1 0.2 0.3
Ly Error Ly Error Ly Error
0.35 0.35 0.35
0.25 0.25 0.25
P) >
- 3 = = il
" - o |-
Q2015 £0.15 20.15-
= = =
0.05 0.05 H" 0.05 H
Sl ol | T
0 0.05 0.1 0.15 0.2 0 0.1 0.2 0.3 0 0.1 0.2 0.3
L> Error Lo Error Lo Error

Figure 7: PDFs of Ly-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of 2D
disk packs. The top row shows training errors, and the bottom row testing errors. Most errors are <5% for Poisson and <10% for elasticity.

Poisson: (pf’
J

Elasticity: (05
J

Elasticity: (Pf_i ¥
J

Elasticity: ¢fiz
J

0.25 0.15 0.15 0.15
02r g 0.12 - 0.12 0.12 7‘1
w0 > >, > f =000 [l
£ 8 0.15 g 0.09 g 0.09 g 0.09
c 2 3] 3
® g g g g
E £ ol £0.06 ‘) £0.06 - £o06
0.05 0.03 { | 0.03 0.03 ’ H
L
ot = MH M —Hﬂmﬂmw - ’ m'ﬂ’lhnr .
0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Ly Error Ly Error Ly Error Ly Error
0.25 0.15 0.15 0.15
02- |l 0.12- 0.12 0.12 4
> > 20,00 1 >
Eb g 0.15 g 0.09 g 0.09 g 0.09
£ 5 5] b5} 5
s 3 3 3 3
5 F g g g
& £ o1 £0.06 £0.06 £0.06
0.0 0.03 1l 0.03 0.03
{ I I H‘I-H\Hﬂ—uuu-4¢:, P I H\nﬂﬁz,(#,m
0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Ly Error Ly Error Ly Error Ly Error

Figure 8: PDFs of Ly-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of 3D
sphere packs. The top row shows training errors, and the bottom row testing errors. Most errors are <5% for Poisson and <20% for elasticity.

344

To quantify the L,-errors between the ML- and solver-computed basis vectors, we define:

1 1/2
E)z(- _f ”Xml —)(solver||2dQ / Sllpgg,'”)(solver Il
1Qsi] Josi

14

(23)

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

where y is a placeholder for either « in Poisson or u in elasticity. y,; and ysoner denote the solver- and ML-predicted
basis vectors, respectively. The PDFs of L,-errors so obtained for all subdomains in the training and testing datasets are
shown in Figs.7-8 for the Poisson and elasticity problems. Fig.7 corresponds to basis vectors defined on subdomains
of 2D disk packs, whereas Fig.8 corresponds to basis vectors on subdomains of 3D sphere packs. Given that training
and testing datasets both consist of disk/sphere-pack subdomains, Figs.7-8 constitute in-distribution errors.

We see that testing errors for unseen samples are comparable to the training errors, largely <5% for the 2D Poisson
and <10% for the 2D elasticity problem. In 3D, testing errors are <5% for Poisson and <20% for elasticity. The higher
3D errors are likely due to the fact that even though an equal number of data points (i.e., 5,600) were used to train
both ML algorithms in 2D and 3D, each 3D subdomain has on average a larger number of contact interfaces, hence
basis vectors. Therefore, the 3D training set covers a smaller range of variability in subdomain geometries than the
2D set. Augmenting the training set in the future could reduce the 2D and 3D testing errors further. Finally, recall the
ML algorithms in Figs.5-8 were trained in a purely data-driven fashion, with a, =, =0 in the loss functions given by
Eq.19. In Appendix B, we set @, = 1 and 10 for the Poisson equation and show that including the PDE’s residual in
the loss function neither improves training speed nor the accuracy of the predicted bases in any significant way.

6.1.2. Out-of-distribution subdomains

A key question we wish to answer here is whether the trained ML algorithms in Section 4 on disk/sphere packs also
apply to subdomains of other, out-of-distribution, geometries without having to be retrained? Figs.9 and 10 suggest
the answer is yes. Comparing the ML- and solver-built basis vectors for the Poisson and elasticity problems on two
subdomains of the S2D domain shows very good agreement. Figs.11-12 also depict the PDFs of L,-errors, obtained

8i
¢C
J
r Al
Subdomain image Smoothed tag Solver basis ML basis

Figure 9: Schematic of a subdomain image, one of its smoothed tags, and the corresponding out-of-distribution basis vector for the Poisson problem.
Two basis vectors are shown, one computed using a numerical solver and another predicted by the trained ML algorithm.

8i &
(0(: X (05' J’J’
r Al r N

X-component y-component X-component y-component
0.6

\ 1
04
-0.08 -0.08
e 0.2
\ e o \ ’
X

0.8
Figure 10: Schematic of a subdomain image, one of its smoothed tags, and the two corresponding out-of-distribution basis vectors for the Elasticity
problem. The bottom row shows basis vectors computed using a numerical solver, and the top row bases predicted by the trained ML algorithms.

ML basis

Subdomain image

4

Smoothed tag
—
~ Solver basis

15

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Poisson: (Dfi Elasticity: gof"x Elasticity: (ch "
J J J

0.2 0,25 0,25
0.2 0.2
0.15
) 5015 5015
EROR 2 3
|- o - o - o
2 & &
= = 0l - = 0l
0.05
0.05 | 0.05
! I LT ’ ‘ I
0 0.1 0.2 3 0 0.2 0.4 .6 0 0.2 0.4 .6
La Errar Lo Error Lo Error

Figure 11: PDFs of L,-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of the
S2D domain. Most of these out-of-distribution errors are <10% for Poisson and <20% for elasticity.

. & P 8i . s 8i P 8i
Poisson: (. Elasticity: 0. Elasticity: @0, Elasticity: (0.,
J J” J J
0.2 025 0.25 0.25
02 02 02
0.15 r
Iy 20.15 20.15 20.15
= 1=} 1=} 1=}
Q o Q Q
3, 0.1) 3 =
g g g g
£ & 0.1 & 0.1 = 0.1
0.05
’ 0.05 0.05 0.0 ‘
Il ﬂH\ - | J { B ... ‘ B
[04 05 0 02 0.4 0.6 0 02 0.4 0.6 0 02 0.4 0.6
L Fuol Ly Error Ly Error Ly Error

Figure 12: PDFs of Ly-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of the
BONE domain. Most of these out-of-distribution errors are <20% for Poisson and <20% for elasticity.

via Eq.23, for all the ML-built basis vectors of the Poisson and elasticity equations on S2D and BONE subdomains.

These out-of-distribution errors are slightly larger than the in-distribution errors (computed on the testing dataset)
in Figs.7-8, often by a factor of ~2. Specifically, errors are <10% for Poisson and <20% for elasticity in S2D, and
<20% for Poisson and <20% for elasticity in BONE. Considering no representative subdomains of either geometry
were included in the training dataset, the accuracy of the ML algorithms is encouraging. Finally, recall that the ML-
algorithms for the elasticity problem used in Figs.6 and 7-8 were trained in Section 4 on data that assumed a single
Poisson’s ratio of v =0.08; corresponding to @-quartz. In Appendix C, we demonstrate these trained algorithms also
apply to other values of v without having to retrain them, with most L,-errors <20%. In the next section, we assess
the performance of the coarse preconditioner, Mg, built from the above ML-predicted basis vectors.

6.2. Two-level preconditioners built by machine learning

6.2.1. Accuracy of the first-pass solution

The coarse preconditioner, Mg, outlined in Section 3.3 can be used to obtain an approximate solution via £, =
MG*IB. We call £, the first-pass solution and compute it with Mg’s constructed by: (1) a numerical solver (Mg soL);
(2) the trained ML algorithms of Section 4 with no smoothing iterations performed on the basis vectors (Mg mr, Tmr =
o0); and (3) the trained ML algorithms of Section 4 with smoothing iterations performed on the basis vectors (Mg mr,
TmL < 00). In (3), iterations are performed until Eyy < Ty in Eq.22, where Ty is a user-defined tolerance. The Mg
in (2) can thus be viewed as corresponding to T, = oo, which we adopt hereafter to mean “no basis smoothing.”

Figs.13-15 compare the first-pass solutions obtained from the above Mg’s against the exact solution. Fig.13 shows
the spatial distributions of u in the Poisson equation for all domains, where a very good agreement between all first-
pass solutions and the exact solution is seen. Specifically, the u from ML with T, = co is impressively accurate.
Fig.14 shows the spatial distributions of u = (u,, u,) in the elasticity equation for the 2D domains, P2D and S2D.

16

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

The 3D domains, P3D and BONE, are shown in Fig.15, where only the axial u; and radial (u? + u2)'/? displacements
of u = (uy,uy,u;) are illustrated for brevity. Once again, very good agreement between the first-pass and exact
solutions are observed, however this time only in the axial direction (i.e., u, in 2D, and u, in 3D). In the lateral/radial
directions, the displacement component from Mg mp. with Ty, = oo agrees rather poorly with that of the exact solution.
Performing basis smoothing iterations in Mg mp, with Ty = 1073 improves the accuracy of lateral/radial component
and brings it close to that of Mg soL. However, notice the first-pass solution from Mg sor, incurs some errors itself, to
which the first-pass solution from Mgy can only asymptote to in the limit 7', — O, but never surpass.

Table 2 lists the relative L,-errors of the first-pass solutions of the Poisson and elasticity equations computed via
Mg sor and Mg mp. with Ty, = oo, 1, 1072, 107, and 107 on all the domains. The errors are expressed as percentages
and computed via Eq.23, except with QS replaced by Q. First, notice that even without basis smoothing (7', = o),
the Mgy approximation has a very low error (<1% in 2D and <5% in 3D) and comparable to that of Mg soL-
This renders the first-pass solution of Mgy With Ty, = oo useful in a wide range applications where tolerance for
error is moderate-to-high (e.g., subsurface engineering). Second, Table 2 suggests that basis smoothing iterations do
not necessarily improve the accuracy of ML-predicted first-pass solutions unless a very large number is performed.
Specifically, we see improvement for Ty = 10~ where Mg mr and Mgor, have identical accuracy. But as mentioned
earlier, such a small Ty, comes at a very high cost and is not recommended. In the next section, we show that despite
the negligible impact on first-pass solutions, basis smoothing noticeably improves convergence in Krylov solvers.

Table 2: Ly-errors (%) for the first-pass solutions of the Poisson and elasticity problems obtained from a single application of the coarse precondi-
tioner Mg built via a numerical solver (Mg sor) and ML algorithm (Mg mr.) with different basis-smoothing tolerances (Emr, < 7wy, in Eq.22).

Mgsor | Mome, Tme = | Mg, Tme = 1 [Momr, Tve = 1072 [Mgme, Tve = 107 [Mgmr, Twe = 107

P2D 0.01 0.05 0.04 0.07 0.12 0.01

Poisson S2D 0.03 0.09 0.07 0.10 0.20 0.03
P3D 1.08 1.69 1.41 2.34 2.31 1.08

BONE 2.74 3.09 2.84 2.84 2.80 2.74

P2D 0.27 0.45 0.44 0.41 0.37 0.31

Elasticity S2D 0.09 0.31 0.27 0.42 0.49 0.09
P3D 3.34 5.15 4.67 4.37 3.77 3.35

BONE 1.95 6.28 4.42 2.90 2.30 1.95

6.2.2. Convergence rate of the Krylov solver

Fig.16 plots the normalized residual (IIA)% - BII / IIBII) versus the number of GMRES iterations preconditioned by
AMG, Moy, and My with Ty = o0, 1072, and 107 for the Poisson and elasticity equations defined on the P2D, S2D,
P3D and BONE domains. Recall Mgor, and My, are obtained by combining the coarse preconditioners Mg sor. and
Mg m from the previous section with the contact-grain smoother defined in Section 3.4 using Eq.7 (i.e., ML=Mcg).
Three key observations stand out: (1) The convergence rate of My, with Ty = oo is almost indistinguishable from
MgoL in the Poisson problem, and only slightly slower than Mgoy in the elasticity problem. This is good news, as it
indicates the ML-built Mg is as good as the solver-built one. Therefore, we recommend Ty = oo due to its lower cost;
(2) As T\ — 0, the convergence rate of My, improves noticeably and eventually asymptotes to that of Mggp. Recall
this is contrary to Table 2, where reducing Ty, had a negligible impact on the first-pass solutions, except at very small
Tve; (3) In all cases, GMRES preconditioned by Msor. or My, converges much faster than AMG, especially in the
elasticity problem. We remark that the checkerboard errors in the ML-predicted bases (Fig.10) minimally affect the
convergence rate of GMRES preconditioned by My, with Ty = o0, because such high-frequency errors are wiped out
by the smoother Mg integrated into Myy,. We next discuss the wall-clock times (WCTs) of the above simulations.

6.2.3. Computational cost

Figs.17 and 18 depict the wall-clock times (WCTs) in seconds associated with building the coarse preconditioner
Mg and solving the linear system via GMRES to satisfy A% - BII / IIi)II <107 for the Poisson and elasticity equations,
respectively, defined on all the domains. The total cost, including that of setting up the smoother in Mgor, and My,
is also shown. The smoother setup involves performing an LU decomposition of all local systems in Eq.17 defined on
Q¢ and Q%. All WCTs are plotted versus the tolerance (Tyy) used for basis smoothing iterations in the building of

17

422

423

424

425

426

427

428

429

P2D

S2D

P3D

BONE

Mg Tve =@ Mg T =10 y Exact solution

Figure 13: Comparison of the spatial distributions of « in the Poisson equation obtained from a single application of the coarse preconditioner, Mg,
against the exact solution over the P2D, S2D, P3D and BONE domains. The preconditioner Mg is computed via a numerical solver (Mg sor.), and
the trained ML algorithm of Section 4 (Mg M) with (Tyz = 1073) and without (777 = c0) local smoothing of the basis vectors.

Mg mL- Since the costs of Mgor, and AMG do not depend on Ty, they are depicted by the horizontal lines. In Fig.18
for the elasticity problem, AMG did not converge within 500 iterations (except for BONE). Therefore, the WCTs
were extrapolated linearly based on the observed convergence rates, and distinguished by the dashed green lines.

We make the following observations: (1) In all cases, the cost of building Mgy with Ty, = oo (almost identical
to Ty, = 1) is much lower than Mg sor.. For the Poisson problem, the speedup is a factor of 4.1 in P2D, 4.0 in S2D, 5.7
in P3D, and 1.6 in BONE, and for the elasticity problem, the speedup is a factor of 6.0 in P2D, 5.9 in S2D, 9.1 in P3D,
and 3.1 in BONE; (2) As Twy is reduced, the cost of building Mg w1 increases, while the solver cost decreases. In the
Poisson problem, the decrease in solver cost is negligible and the absolute cost is comparable to Mgor.. Hence, the total

18

08

04

0.0

P2D

S2D

430

431

432

433

434

435

436

437

Exact solution

Figure 14: Comparison of the spatial distributions of u, and u, in the elasticity equation obtained from a single application of the coarse precondi-
tioner, Mg, against the exact solution over the P2D and S2D domains. The preconditioner Mg is computed via a numerical solver (Mg sor.), and
the trained ML algorithm of Section 4 (Mg mr.) with (T = 1073) and without (T'psz, = o0) local smoothing of the basis vectors.

cost (right column in Fig.17) increases monotonically as Ty — 0, implying Mgy, with Ty, = oo is recommended
for preconditioning GMRES. In the elasticity problem, the decrease in solver cost as Ty — 0 is more noticeable,
which causes the total cost to remain roughly flat as Ty is varied (except for BONE, where the profile is U-shaped;
although the y-axis range is narrow). Since Ty plays a minor role in the total cost, we still recommend Mg mr
with Ty = oo for the elasticity problem; (3) Comparing the total costs of Mgor and My, with Ty, = oo, we see
only moderate speedup (less than x1.5) with My, over MgoL in the Poisson problem, and almost no speedup in the
elasticity problem. This is because once the build-time of Mg is reduced by ML, the total cost is dominated by the
solve-time of GMRES; especially in the elasticity problem. Another way to frame this is: error control does not come

19

438

439

440

441

442

443

444

445

Exact solution

Mg mu Th = @

00

-0.2

[=]
o
o
—0.10
008
006
0.04
002
00
00
02
04
06
0.8
10
w
2
o
@ 006
-~ 004
002

0.

Figure 15: Comparison of the spatial distributions of u; and u,,= u + u) in the elasticity equation obtained from a single application of the
coarse preconditioner, Mg, against the exact solution on the P3D and BONE domains. The preconditioner Mg is computed via a numerical solver
(Mg soL), and the trained ML algorithm of Section 4 (Mg mr.) with (a7 =107 3) and without (77 = o) local smoothing of the basis vectors.

for free. If only a first-pass solution is desired (no GMRES iterations), ML can save time, but not if errors are to be
reduced. Incidentally, a first-pass solution via Mg mi, with Ty, = oo is comparable in CPU-time (but lower in memory
footprint) to predictions from existing ML algorithms trained on whole domains (discussed in Section 7.1). We note
the build-times of Mg mr in Figs.17-18 include pre-processing costs associated with preparing the ML-input features
(e.g., up/downscaling, smoothed tags via Eq.18) often excluded from prediction costs reported in the literature.
Finally, (4) in all cases except the Poisson problems defined on the P3D and BONE domains, the total cost of
AMG is higher than both Mgor. and My, with Ty = co. The exceptions are largely due to AMG’s fast build-time.
For the elasticity problem, however, AMG’s total cost is one to two orders of magnitude higher than either Mgor, and

20

Poisson

Elasticity

|42 — b|/[b]

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

P2D S2D P3D BONE

0 0 0 0
10 10 10
1 -MsorL
+Mpyp, T = 00
) <My, Ty = 1072 2 2 2
10 My, T =104 10 1 o
+~AMG _— — -
= = =
=10 =10* =10
| | |
< < <
—10° — 10'5 —10°
10°% 108 108
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 0 5 10 15 20
Iterations Iterations Iterations Iterations
10°
102
L =10*
S :
‘“A”‘"-i-A-‘. e «
e b
:“t_A_*;‘ —10°
108
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400
Iterations Iterations Iterations Iterations

Figure 16: Normalized residual versus number of GMRES iterations preconditioned by AMG, Msor., and My, with Ty, = oo, 1072, and 10~* for
the Poisson and elasticity problems on the P2D, S2D, P3D and BONE domains. T, =co means no basis-smoothing iterations are performed.

M. In much larger 3D domains than those of Fig.4, where subdomains consist of many more grids, we expect a
clearer advantage of My, with Ty, = o0 over Mgor, or AMG within GMRES. Moreover, the use of a cheaper smoother
in series, like ILU(0), or parallelizing Mcg would reduce cost further. These claims remains to be substantiated.

7. Discussion

7.1. Approximate solutions with machine learning

In Section 3.3, we outlined a coarse preconditioner, Mg, based on the pore-level multiscale method (PLMM) that
was proposed by [25, 26] for solving elliptic PDEs like the Poisson and elasticity Eqs.1 and 2. One can use Mg
to obtain very accurate approximate, or first-pass, solutions to the discretized system A% = b via Xaprx = Mall;. In
Section 4, we proceeded to show how the construction of Mg, requiring the computation of multiple basis functions
on each subdomain, can be significantly accelerated by training ML algorithms. The latter were trained on a set of
precomputed basis vectors defined on small, cropped images from larger, whole domains. The results in Section 6.2.1
demonstrated that first-pass solutions obtained from such a ML-built coarse preconditioner, Mg mr., have comparable
accuracy to those obtained from a solver-built one, Mg soL. Despite slightly larger errors in the tangential compo-
nent of displacement in the elasticity problem with respect to the axial loading direction, the overall accuracy (<1%
errors for 2D and <5% for 3D) and performance (x2-6 speedup for Poisson and x3-9 for elasticity) of Mgy, were
impressive. Basis smoothing was deemed unnecessary to obtain such predictions (i.e., Ty = oo is sufficient).

Notice the approach of using ML to build basis functions on smaller subdomains, packaged in the form of a pro-
longation matrix P (Eq.14), is more advantageous than training ML algorithms on whole domains. As reasoned in
Section 1, data curation is cheaper as 10>~* subdomains can be obtained from decomposing one whole domain, train-
ing is faster because the overhead on computer memory is low, and the ML algorithm is simpler and less data hungry
because the statistical space of possible subdomain geometries is much smaller than that of whole domains (e.g., sub-
domains are convex and devoid of holes or cavities). As stated in Section 6.2.3, the CPU-time (not memory footprint)

21

25

500

Cost of building Mg Cost of solver

Total cost

468

469

470

700 700
AMG
—Msor,
My
500 500
) =z = -
8 6 3} 3)
o =300 = 300 =
400
————————
100 100
10 w0t 10t 1w? 1w 1’ 105 10t 10?107 1w 10° 10° 10t 10?10?10 10°
T T, Tw
600
900 1200
500
700 1000
o 2400 o
a - = =
Q 5s00 B 5 800
v = Z 300 =
300 [SN AR - 600
200 \\v%.\‘
100 \\'ﬂ_‘ 400
0% 10* 10?10?10 1w 10° 10t w? w? ot 10 10?® 10% 107 10?10 10°
T T, Tar
130
900
2000
120
700 1800
a f :":no f
2 s B £ 1200
a = = =
300 100 800
— 400
100 90
0% 10t 10t w? 1w 1° 105 10t 10 10?1 1 10° 10" 107 10?7 10" 10°
T T Tr
700 1400,
320
500 1000 '\'\0\—.
—_ ,.\240.—4‘\‘\.\.\‘ —_
w e = z
2 0 3] 3]
Q =300 = = 600
@ 160
100 200
80 i
1% 10t 10?10?10 10° 10 10% 107 10?10t 10° 10 10 100 10?2 10! 10

T, T

Figure 17: Wall-clock times (WCTs) in seconds associated with building the coarse preconditioner Mg (left column) and solving the linear system
via GMRES to satisfy A% = Bl /1151l < 107° (middle column) for the Poisson equation defined on all the domains. The total cost, including that of
building the smoother in Mgor. and My, is shown in the right column. All WCTs are plotted versus the tolerance (7ym1.) used for basis smoothing
iterations in the building of Mg mr. Notice the costs of Msor, and AMG do not depend on T, and are thus depicted by horizontal lines.

associated with predicting (not training) first-pass solutions via Mgy with Ty, = 0o is comparable to those of existing
ML algorithms trained on whole domains. The seemingly higher than expected WCTs for building Mgy (Tve =1) in
Figs.17-18 are because they include pre-processing costs of the ML-input features (e.g., up/downsampling, smoothed

22

Cost of building Mg Cost of solver Total cost
1600
CAMG
=Mdard|l || [EElSlsssstoriiT o e i mebecreiamhoal el
M
1200 = 10° 10°
=z = z
[~ -
8 C 800 B 5
= B]g“ gIG4
400 ’/‘_,/0—/ ,_._.,//O—/.
10° 10°
0% 10* 10?10?10t 10° 10wt o10? 1w w0 1 1% 10t 10?102 w0t 1w
T Thr, T
2400
1800 10° 10°
= = z
o - Pt =
2 5w 5 . g,
w = =10 Z 10
600 *,_./'_./“0 W
*\—o——‘ 10° 160
0% 0% 10?1?10t 1 105 w0t 10?1?10 T T S T/ N (1 S [V
Tt Tt T
3 4
16 410 i 5 %10
) T N R T S) [£ = e e e R P
=z = z
Q B =4 I
m o° 510 53
o = = =

P) ¥
10 w0t w0t 10?1 0% 10t 10?10?10t 10 10° 10t 10?10?10 10
T T T
17 ¥10° «10*
50004 %
4000 13
- - ,;‘.I.()
w - ~ -
W =300 A =
s ° 3} 3]
a = z £
2000 1.4
5 \
1000 s —
1
5 4 3 2 1 (i} ! 5 4 3
1% 10* 107 10?10t 10 0% 1wt 1wt 10 1! 1 10° 10 10?102 et
T T T

Figure 18: Wall-clock times (WCTs) in seconds associated with building the coarse preconditioner Mg (left column) and solving the linear system
via GMRES to satisfy ||A% — bl| / |b|| < 10~ (middle column) for the elasticity equation defined on all the domains. The total cost, including that of
building the smoother, is shown in the right column. All WCTs are plotted against the tolerance (7'mr.) used for basis smoothing iterations in the

building of Mg mr. Notice the costs of Msor, and AMG do not depend on Ty, and are thus depicted by horizontal lines.

471
472

473

23

tag via Eq.18), often excluded from prediction costs in the literature. A final benefit of the approach herein is that by
using a finite-volume restriction matrix, instead of the Galerkin R =PT in Eq.9, one could impose global flux/stress
conservation across all grain grids and contact interfaces. Future work will probe such a restriction matrix by [26].

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

7.2. Controlling the errors of machine learning

In addition to reducing the build-time of Mg via ML, we also succeeded in controlling the ML algorithms’ errors.
The latter, however, had interesting implications. Our approach consisted of two measures. First, local smoothing
iterations were performed on each ML-predicted basis to reduce its high-frequency errors, up to tolerance Ty, prior
to building Mg mr,. We concluded this to be superfluous and recommended Mg yp. be built with no basis smoothing
(i.e., Ty = o0). This is because the accuracy and performance of Mgy is already very good, and reducing T,
only increases cost. Moreover, even at the limit Ty — 0, Mgmw is only as good as Mg sor, which itself incurs
high-frequency errors. Our second, and more important, measure was to pair Mgy with a smoother My, for which
we picked the compatible Mcg recommended by [26] and introduced in Section 3.4. Still adhering to Ty, = oo, the
convergence rate of GMRES preconditioned by My, (combining Mg M With Mcg) is comparable to Mgor, (combin-
ing Mg v with Mcg) in the Poisson problem, but lower by up to X2 in the Elasticity problem. Reducing Ty, reduces
the cost of GMRES for the elasticity problem, but increases the build-time of Mg mp. Overall, the total cost of My,
consisting of building Mg mr, setting up Mcg, and solving GMRES is comparable or only slightly lower than Mgop.

This could have several contributors: (1) Once the build-time of Mg is reduced, the remaining WCT is dominated
by GMRES, especially for the elasticity problem. This is likely because we demand such a low tolerance for error (=
1079). A larger tolerance would result almost certainly in better speedups for My, over Mgor, as is the case for the
first-pass solutions via Mg v with Ty, = o0; (2) The setup cost of Mg, included in the total WCTSs of My, and Msoy.,
is rather high, as it consists of LU decompositions performed on local systems defined on the grain and contact grids.
Building Mg in parallel, or using a cheaper smoother in series (e.g., ILU(0)) would have reduced the total WCT, but
by an equal amount for both My, and Mgor; (3) The ML algorithms of Section 4 could have benefited from longer
training, given the errors are still decreasing after 200 epochs in Fig.B.1, albeit slowly. This could have resulted in
lower GMRES cost, thus smaller total WCT, especially in the elasticity problem; and (4) ML algorithms, particularly
of the “deep convolutional” kind, are not as cheap as celebrated. Each layer entails a matrix-vector multiplication, and
the deeper the network, the more multiplications are required. This is not unlike iterations in a linear solver, and if the
goal is to beat a rapidly converging preconditioner like Mgor, there is a limit to a network’s depth. Despite said issues,
My (and Mgy) outperforms AMG by x10'~2 in the elasticity, but not the more well-trodden Poisson, problem.

We highlight that controlling and estimating prediction errors is not free of cost. ML algorithms are often used
to perform blind predictions, whose error bounds are guaranteed empirically and statistically at best (i.e., based on
a testing set). While appropriate for applications like uncertainty quantification, for deterministic predictions, error
bounds lack. What this work suggests is that some combination of ML with a physics-solver is needed to fill this gap,
which involves corrective iterations. The iterations increase cost, but also confidence in the results. If the merit of
an algorithm were placed solely on the swiftness of its output, then the first-pass solution via Mgy and Ty, = o
accomplishes what most methods can with fewer data and shorter training time (see Section 7.1). But if added merit
were placed on the reliability of said outputs, as we think one should, then our approach offers a path forward.

7.3. Transferability across geometries and material properties

A pleasantly surprising observation, also made by others (e.g., [40]), is that the ML algorithm trained in Section
4 on disk/sphere packs also applies to other subdomain geometries. Moreover, in the elasticity problem, training was
performed by assuming a Poisson’s ratio of ¥v=0.08 and yet, the ML algorithm predicts with reasonable accuracy bases
for v=0.4 and 0.45. Notice one need not probe a second elastic modulus, like A or y, in addition to v. This is because
once v is fixed, the other moduli can be matched by simply scaling the ML-predicted bases. In Section 6.1, basis
errors nearly doubled when the ML algorithms were tested on out-of-distribution geometries or v. But those errors
were still <20% and resulted in high-quality first-pass solutions, as listed in Table 2, and rapid GMRES convergence,
as shown in Figs.16 and C.4. This hints at the promising outlook that pre-training a library of ML algorithms for
different grain shapes, material properties, and even PDEs can be readily applied to, or minimally transfer-trained
on new problems. The latter may even be done on-the-fly, while solving a time-dependent or many-query problem
relevant to optimization or uncertainty quantification with respect to variability in the porous microstructure.

7.4. Other machine learning methods and architectures

In Appendix B, we included the L,-norm of the PDE residual in the loss function as specified by Eq.19. This
is similar to physics-informed neural networks (PINNs) [38, 55, 56], wherein a PDE’s residual and BCs are “softly

24

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

imposed” through the loss function; as opposed to a “hard imposition” via non-trainable layers. The weights ¢, and @,
in Eq.19 control the emphasis on the PDE mismatch over the data mismatch. Figs.B.1-B.2 show that the impact of the
PDE mismatch is negligible on both the training speed and predictive accuracy of the ML algorithms. Ultimately, an
ideal algorithm is one that incurs low errors, including those with high-frequency mode, eliminating the need for basis
smoothing iterations altogether (Section 4.4). While improving the architecture in Fig.3, by perhaps appending non-
trainable layers to it, is one option [57], adopting whole new emerging architectures such as graph neural networks
(GNNs) [58, 59] or neural operators [60, 61] is another. Irrespective of the approach, however, close attention must
be paid to the spectral properties of the errors in the basis functions produced by such ML algorithms.

8. Conclusion

We have presented an approach for using machine learning (ML) to build two-level preconditioners for efficiently
solving elliptic equations on complex porous geometries via iterative solvers. While the preconditioner is based on the
pore-level multiscale method (PLMM), the proposed approach applies to others based on domain decomposition or
multigrid techniques. The PLMM preconditioner consists of a coarse preconditioner Mg and a smoother My . We use
ML to accelerate the construction of Mg only, as the U-Net architecture employed herein incurs high-frequency errors
itself that are in need of smoothing. The overall framework can be viewed as: (1) a way to remove a major bottleneck
in building multiscale preconditioners; or (2) a robust mechanism to equip ML with error control capabilities.

The proposed ML algorithms take cropped subdomain images as inputs and yield basis functions that satisfy a
PDE locally as outputs, which are then used to assemble a prolongation matrix for Mg. The training of ML algorithms
on small subdomains is more advantageous than on whole domains because data generation is cheaper, the statistical
space of data is smaller, training is faster and requires less memory, and basis functions can be assembled in arbitrary
ways to satisfy any BCs or reused to solve similar (e.g., linearized, perturbed) PDEs. We tested the ML-built Mg mL
in solving the Poisson and linear-elasticity equations on challenging 2D/3D geometries and compared its performance
against the solver-built Mg sor. and AMG. We showed that Mg i, can be used in standalone fashion to obtain approx-
imate, or first-pass, solutions (without iterations) at a very low cost and almost the same accuracy as Mg sor, which is
useful in many practical applications (e.g., subsurface engineering). Moreover, when applied within GMRES, Mg mr
performed on par or slightly worse than Mg soL, indicating its high quality as a preconditioner. However, the total cost
saved with Mgy was not significant, because once the build-time of Mg had been reduced, the solver-time domi-
nated given our very low tolerance imposed on GMRES (i.e., 10~%). Increasing this tolerance, or applying ML to much
larger 3D domains, is expected to render cost savings more apparent. Finally, both Mgy and Mg sor. performed far
better than AMG in the elasticity problem, but worse in the more well-trodden Poisson problem.

Future work on other ML architectures like neural operators or graph neural networks, with special attention to er-
ror spectra, are promising areas of research. While all computations here were in series, Mg ML is fully parallelizable.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-2145222.
We acknowledge the Institute for Computational and Data Sciences (ICDS) at Penn State University for access to
computational resources. We also thank Amelie Sas at KU Leuven, Belgium, for providing the bone image in Fig.4.
Appendix A. Coarsening details of the AMG preconditioner

Table A.1 summarizes the number of coarsening levels and the coarsest matrix achieved by the AMG precondi-
tioner applied to the Poisson and elasticity problems defined on the P2D, S2D, P3D, and BONE domains.

Appendix B. Impact of physics-informed loss functions on basis vectors
In Section 6.1, we probed the basis vectors constructed by ML algorithms trained with @, = @, =0 in Eq.19. In

other words, the loss functions were uninformed by the PDEs’ residuals and training was purely data-driven. Here,

25

565

566

567

568

569

570

571

572

573

574

Table A.1: Summary of the number of coarsening levels and the size of the coarsest matrix achieved in the AMG preconditioner when applied to

the Poisson and elasticity problems defined on the P2D, S2D, P3D and BONE domains.

P2D S2D P3D BONE

Poisson No. levels 8 8 8 8
Coarsest matrix 280%280 242x242 30%x30 22x22

Elasticity No. levels , 8 8 8 8
Coarsest matrix 428%x428 361x361 50%50 37x37

we set @, = 1 and 10 while training the ML algorithm of the Poisson equation. The higher «,, is, the more physics-
informed the loss function becomes. Our goal is to assess whether the training speed and/or the algorithm’s testing
accuracy are improved by increasing ;. Fig.B.1 illustrates the training loss versus the number of training epochs for
a,=0, 1, and 10. When «, =0, the training loss stagnates up to epoch 50, then drops rapidly afterwards. Increasing
@, to 1 or 10 has minimal impact on this stagnation period, reducing it only slightly to epoch 35.

As for the L,-errors, Fig.B.2 shows errors corresponding to the predicted basis vectors of the P2D domain. We see
a, = 0 and 1 yield basis vectors with similar accuracy, while «, = 10 is slightly worse. More precisely, the percentage
of subdomains with errors below 0.05 are 86.1%, 86.5% and 81.9% for a, = 0, 1, and 10, respectively. While clearer
benefits may be observed from including PDE residuals within loss functions in training larger ML architectures over
many more epochs, for the cases studied herein, we do not observe such benefits.

Training loss

10

10

100
Epoch

150

200

Figure B.1: Training loss versus number of training epochs for @, = 0, 1, and 10 in the loss function of the Poisson equation (Eq.19). The higher
@, is, the more physics-informed the loss function becomes. The a;, = 0 case corresponds to purely data-driven training. A moving average, with

a window size of 100 points, was used to dampen the significant oscillations observed in the training losses.

Frequency

015

a1

0.05

| .
0.1
Ls Error

0 0.05

0.15

02

0.15

1

Frequency

0.05

0.2 0

[L
0.05 0.1
Ls Error

.15

02

0.15

01

Frequency

0.05

[Tl

0.05

0.2 0

0.1 .15
Ls Error

0.2

Figure B.2: PDFs of L,-errors associated with the ML-predicted basis vectors for the Poisson problem defined on subdomains of the P2D domain
(they constitute unseen data). Three ML algorithms are trained with @, = 0, 1, and 10 in their loss functions defined by Eq.19.

26

575

576

577

578

579

580

581

582

583

584

585

586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

Appendix C. Transferability to different Poisson ratios of the elasticity problem

In Section 4, we trained ML algorithms for the elasticity equation assuming a single Poisson’s ratio of v =0.08,

corresponding to a-quartz. Here, we determine whether these algorithms apply to other v without having to retrain
them. Specifically, we consider v = 0.4 and 0.45 and predict all basis vectors associated with the subdomains of the
P2D and S2D domains. Fig.C.3 shows the PDFs of the L,-errors for these bases, computed via Eq.23, where we see
they are roughly twice as large for v =0.4 and 0.45 than v =0.08, but still mostly <20%. Fig.C.4 further shows the
convergence rate of GMRES preconditioned by My, whose coarse preconditioner Mg mr. is built by the predicted
basis vectors above. In other words, Mg mv is built using the ML algorithms of Section 4, which assume v=0.08, and
then applied to solve the elasticity problem defined on P2D and S2D with Poisson’s ratios v=0.08, 0.4, and 0.45. We
see the convergence rate is minimally affected by varying v, implying the ML algorithms of Section 4 are transferable
to other mechanical properties. In Fig.C.4, no local smoothing of basis vectors was employed (i.e., Tz =00).

References

(1]
[2]

[3]
[4]
[5]

[6]

(7]

[8]

[9]
[10]
(11]
[12]
[13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]
[22]
(23]

(24]

Stefan Bachu. Co2 storage in geological media: Role, means, status and barriers to deployment. Progress in energy and combustion science,
34(2):254-273, 2008.

Angela Goodman Hanson, Barbara Kutchko, Greg Lackey, Djuna Gulliver, Brian R Strazisar, Kara A Tinker, Foad Haeri, Ruishu Wright,
Nicolas Huerta, Seunghwan Baek, et al. Subsurface hydrogen and natural gas storage: State of knowledge and research recommendations
report. 2022.

Enrico Barbier. Geothermal energy technology and current status: an overview. Renewable and sustainable energy reviews, 6(1-2):3-65,
2002.

Martin Andersson, SB Beale, M Espinoza, Z Wu, and W Lehnert. A review of cell-scale multiphase flow modeling, including water manage-
ment, in polymer electrolyte fuel cells. Applied Energy, 180:757-778, 2016.

Jason K Lee, ChungHyuk Lee, Kieran F Fahy, Pascal J Kim, Kevin Krause, Jacob M LaManna, Elias Baltic, David L Jacobson, Daniel S
Hussey, and Aimy Bazylak. Accelerating bubble detachment in porous transport layers with patterned through-pores. ACS Applied Energy
Materials, 3(10):9676-9684, 2020.

Dorthe Wildenschild and Adrian P Sheppard. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in
subsurface porous medium systems. Advances in Water Resources, 51:217-246, 2013.

Veerle Cnudde and Matthieu Nicolaas Boone. High-resolution x-ray computed tomography in geosciences: A review of the current technol-
ogy and applications. Earth-Science Reviews, 123:1-17, 2013.

Paul Meakin and Alexandre M Tartakovsky. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured
and porous media. Reviews of Geophysics, 47(3), 2009.

Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

John W Ruge and Klaus Stiiben. Algebraic multigrid. In Multigrid methods, pages 73-130. SIAM, 1987.

Yvan Notay. An aggregation-based algebraic multigrid method. Electronic transactions on numerical analysis, 37(6):123-146, 2010.

Hui Zhou and Hamdi A Tchelepi. Operator-based multiscale method for compressible flow. SPE Journal, 13(02):267-273, 2008.

TH Sandve, E Keilegavlen, and JM Nordbotten. Physics-based preconditioners for flow in fractured porous media. Water Resources Research,
50(2):1357-1373, 2014.

Nicola Castelletto, Hadi Hajibeygi, and Hamdi A Tchelepi. Multiscale finite-element method for linear elastic geomechanics. Journal of
Computational Physics, 331:337-356, 2017.

Fanxiang Xu, Hadi Hajibeygi, and Lambertus J Sluys. Multiscale extended finite element method for deformable fractured porous media.
Journal of Computational Physics, 436:110287, 2021.

Hui Zhou and Hamdi A Tchelepi. Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models. SPE Journal, 17
(02):523-539, 2012.

Yixuan Wang, Hadi Hajibeygi, and Hamdi A Tchelepi. Algebraic multiscale solver for flow in heterogeneous porous media. Journal of
Computational Physics, 259:284-303, 2014.

Todd Arbogast and Hailong Xiao. Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems. Computer
Methods in Applied Mechanics and Engineering, 292:221-242, 2015.

Ivo Babuska and John E Osborn. Generalized finite element methods: their performance and their relation to mixed methods. SIAM Journal
on Numerical Analysis, 20(3):510-536, 1983.

Thomas Y Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal
of computational physics, 134(1):169-189, 1997.

Patrick Jenny, SH Lee, and Hamdi A Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. Journal
of Computational Physics, 187(1):47-67, 2003.

Hadi Hajibeygi, Giuseppe Bonfigli, Marc Andre Hesse, and Patrick Jenny. Iterative multiscale finite-volume method. Journal of
Computational Physics, 227(19):8604-8621, 2008.

Christine Bernardi, Y Maday, and A T Patera. A new nonconforming approach to domain decomposition: the mortar element method.
Nonlinear partial equations and their applications, 1994.

Todd Arbogast, Lawrence C Cowsar, Mary F Wheeler, and Ivan Yotov. Mixed finite element methods on nonmatching multiblock grids.
SIAM Journal on Numerical Analysis, 37(4):1295-1315, 2000.

27

633
634
635
636
637
638
639
640
641
642

v=0.08 v=04 v=045

0.25 0.25 0.25
0.2 0.2 0.2
50.15 20.15 20.15
g 5 3 5
rPey g z z
8 g | 3
=01 =01 &0l
0.05 ‘ { 0.05 ‘ 0.0
: I
... M. I
[=] 0 0.1 0.2 0.3 0 0.1 02 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
E L, Error Lo Error L Error
0.25 0.25 0.25
0.2 02 02
20.15 20.15 20.15
\ & § g 5]
qo - 3 2
Gy g g g
£ 01 £ 01 £ o1
0.05 0.05 0.05
I . I HM_ L H ‘“\ I——
0 0. 0.3 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Ls Error L; Error Ly Error
0.25 0.25 0.25
0.2 0.2 0.2
Z0.15 £0.15 20.15
g B B 5
rPe = £
g 3 ‘ 3
£ o0 L £ o1 £ 01
0.05 0.05 ’ is 0.05 i
i
1 ““}n-lﬁ,,‘ [“ H‘:—‘ - ! IH i =
fa) 0 02 0.4 0.6 0 02 0.4 0.6 0 02 0.4 0.6
[Ly Error Ly Error Ly Error
7
0.25 0.25 025
0.2 0.2 0.2
20.15 20.15 Z0.15
\ & & 5 5
Py 3 z g
£ o £ o £ 0l
005 | 005 T ‘ 0.05 ‘
H Hl!\._ . e M.
0 02 04 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
L Error L> Error L, Error

Figure C.3: PDFs of L-errors associated with the ML-predicted basis vectors for the elasticity problem defined on subdomains of the P2D and
S2D domains with Poisson’s ratios v = 0.08, 0.4, and 0.45 (they constitute unseen data). The ML algorithms are the same as those trained in
Section 4 on data that assumed v = 0.08. In other words, the training set is uninformed by v = 0.4 and 0.45.

[25] Yashar Mehmani and Kangan Li. A multiscale preconditioner for microscale deformation of fractured porous media. Journal of Computational
Physics, 482:112061, 2023.

[26] Kangan Li and Yashar Mehmani. A multiscale preconditioner for crack evolution in porous microstructures: Accelerating phase-field meth-
ods. International Journal for Numerical Methods in Engineering, In Press, 2024.

[27] Yashar Mehmani, Nicola Castelletto, and Hamdi A Tchelepi. Multiscale formulation of frictional contact mechanics at the pore scale. Journal
of Computational Physics, 430:110092, 2021.

[28] Kangan Li and Yashar Mehmani. A pore-level multiscale method for the elastic deformation of fractured porous media. Journal of
Computational Physics, 483:112074, 2023.

[29] Yashar Mehmani and Kangan Li. Multiscale preconditioning of stokes flow in complex porous geometries. Journal of Computational Physics,
Under Review, 2024.

28

643
644
645
646
647
648
649
650
651

652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681

682
683
684

P2D S2D
10"

1 = (.08
1= (.4

2 412 = (.45 2
10 10~
=10 = 10
|
"0 10
1078 : 1078
3 —y
0 50 100 150 200 0 20 40 60 830 100
Iterations Iterations

Figure C.4: Normalized residual versus GMRES iterations for the linear system, Eq.6, of the elasticity problem defined on the P2D and S2D
domains with Poisson’s ratios v = 0.08, 0.4, or 0.45. GMRES is preconditioned by My, whose coarse preconditioner Mg is constructed using the
ML algorithms of Section 4, which assume v=0.08 for all subdomains in the training set. No basis smoothing is employed (T, = 00).

[30]
[31]
[32]
(33]
(34]

(35]

[36]
(371
(38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]

(48]
[49]

[50]

Yashar Mehmani and Hamdi A Tchelepi. Multiscale computation of pore-scale fluid dynamics: Single-phase flow. Journal of Computational
Physics, 375:1469-1487, 2018.

Yashar Mehmani and Hamdi A Tchelepi. Multiscale formulation of two-phase flow at the pore scale. Journal of Computational Physics, 389:
164-188, 2019.

Bo Guo, Yashar Mehmani, and Hamdi A Tchelepi. Multiscale formulation of pore-scale compressible darcy-stokes flow. Journal of
Computational Physics, 397:108849, 2019.

Sabit Mahmood Khan, Kangan Li, and Yashar Mehmani. Order reduction of fracture mechanics in porous microstructures: A multiscale
computing framework. Computer Methods in Applied Mechanics and Engineering, 420:116706, 2024.

Serge Beucher and Christian Lantuéjoul. Use of watersheds in contour detection. In International Workshop on Image Processing: Real-time
Edge and Motion Detection/Estimation, Rennes, France, 1979.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18, pages 234-241. Springer, 2015.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778, 2016.

Pejman Tahmasebi, Serveh Kamrava, Tao Bai, and Muhammad Sahimi. Machine learning in geo-and environmental sciences: From small to
large scale. Advances in Water Resources, 142:103619, 2020.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning.
Nature Reviews Physics, 3(6):422-440, 2021.

Javier E Santos, Duo Xu, Honggeun Jo, Christopher J Landry, Masa Prodanovié¢, and Michael J Pyrcz. Poreflow-net: A 3d convolutional
neural network to predict fluid flow through porous media. Advances in Water Resources, 138:103539, 2020.

Javier E Santos, Ying Yin, Honggeun Jo, Wen Pan, Qinjun Kang, Hari S Viswanathan, Masa Prodanovié, Michael J Pyrcz, and Nicholas
Lubbers. Computationally efficient multiscale neural networks applied to fluid flow in complex 3d porous media. Transport in porous media,
140(1):241-272, 2021.

Serveh Kamrava, Pejman Tahmasebi, and Muhammad Sahimi. Physics- and image-based prediction of fluid flow and transport in complex
porous membranes and materials by deep learning. Journal of Membrane Science, 622:119050, 2021.

Xu-Hui Zhou, James E McClure, Cheng Chen, and Heng Xiao. Neural network—based pore flow field prediction in porous media using super
resolution. Physical Review Fluids, 7(7):074302, 2022.

Ying Da Wang, Traiwit Chung, Ryan T Armstrong, and Peyman Mostaghimi. Ml-lbm: Predicting and accelerating steady state flow simulation
in porous media with convolutional neural networks. Transport in Porous Media, 138(1):49-75, 2021.

Eduardo A de Souza Neto, Djordje Peric, and David RJ Owen. Computational methods for plasticity: theory and applications. John Wiley &
Sons, 2011.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics, 394:56-81, 2019.

Govinda Anantha Padmanabha and Nicholas Zabaras. A bayesian multiscale deep learning framework for flows in random media. arXiv
preprint arXiv:2103.09056, 2021.

Olav Mgyner and Knut-Andreas Lie. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstruc-
tured grids. Journal of Computational Physics, 304:46-71, 2016.

Jean Serra. Introduction to mathematical morphology. Computer vision, graphics, and image processing, 35(3):283-305, 1986.

Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters,
15(5):749-753, 2018.

29

685
686
687
688
689
690
691

692
693
694
695
696
697
698
699
700
701

702
703
704
705
706

(51]
(52]
[53]
[54]
[55]
[56]
[57]
(58]
(591
[60]

[61]

Juncai He and Jinchao Xu. Mgnet: A unified framework of multigrid and convolutional neural network. Science china mathematics, 62:
1331-1354, 2019.

Steffen Berg, Ryan Armstrong, and Andreas Wiegmann. Gildehauser sandstone. http://www.digitalrocksportal.org/projects/
134, 2018.

Amelie Sas, Benedikt Helgason, Stephen J Ferguson, and G Harry van Lenthe. Mechanical and morphological characterization of pmma/bone
composites in human femoral heads. Journal of the Mechanical Behavior of Biomedical Materials, 115:104247, 2021.

Long Chen. (FEM: an integrated finite element methods package in MATLAB. Technical report, 2009. URL https://github.com/
lyc102/ifem.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i): Data-driven solutions of nonlinear
partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686—707, 2019.
Arvind T Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard physical constraints in neural network coarse-
graining of 3d turbulence. arXiv preprint arXiv:2002.00021, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. IEEE
transactions on neural networks, 20(1):61-80, 2008.

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid using graph neural networks. In
International Conference on Machine Learning, pages 6489-6499. PMLR, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar.
Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural
operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481, 2021.

30

http://www.digitalrocksportal.org/projects/134
http://www.digitalrocksportal.org/projects/134
http://www.digitalrocksportal.org/projects/134
https://github.com/lyc102/ifem
https://github.com/lyc102/ifem
https://github.com/lyc102/ifem

	Introduction
	Problem description
	Multiscale preconditioner based on PLMM
	Overall structure
	Domain decomposition
	Global preconditioner
	Local smoother

	Building the global preconditioner via machine learning
	Curating labeled training data
	Machine learning architecture
	Enforcing partition of unity on bases
	Smoothing machine learned bases

	Problem set
	Results
	Basis vectors built by machine learning
	In-distribution subdomains
	Out-of-distribution subdomains

	Two-level preconditioners built by machine learning
	Accuracy of the first-pass solution
	Convergence rate of the Krylov solver
	Computational cost

	Discussion
	Approximate solutions with machine learning
	Controlling the errors of machine learning
	Transferability across geometries and material properties
	Other machine learning methods and architectures

	Conclusion
	Coarsening details of the AMG preconditioner
	Impact of physics-informed loss functions on basis vectors
	Transferability to different Poisson ratios of the elasticity problem

