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Abstract

Elliptic equations on complex porous microstructures govern the flow of fluids inside subsurface rocks in underground
CO2 and H2 storage, and the transport of heat and solute within electrochemical devices like batteries and fuel cells.
The algebraic systems arising from the discretization of these equations are often prohibitively large and must be
solved via iterative (e.g., Krylov) methods, for which effective preconditioning is key to ensure rapid convergence. In
recent work, the authors proposed a scalable two-level preconditioner whose performance was superior to existing al-
gebraic multigrid variants for pore-scale problems. The preconditioner was based on the pore-level multiscale method
(PLMM) and consisted of a coarse preconditioner, MG, and a fine smoother, ML. Similar two-level preconditioners
based on the multiscale finite element/volume and variational multiscale methods also exist for solving continuum-
scale PDEs in porous media. The most expensive step in building such two-level preconditioners is computing MG, for
which many numerical bases on a set of subdomains must be calculated to yield a prolongation matrix. Here, we show
that machine learning (ML) can dramatically reduce this cost. Moreover, by embedding ML within a preconditioning
framework, we enable the rarity of estimating and controlling ML errors to any desired level. We systematically probe
the ML-built preconditioner in solving the Poisson and linear-elasticity equations over complex 2D/3D geometries and
show that it performs comparably to its solver-built counterpart. Implications and future extensions are discussed.
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1. Introduction1

In the context of porous media physics, elliptic equations describe the flow of fluids, transport of heat and solute2

through the intricate void space, and mechanical deformation of the solid matrix. Understanding and controlling these3

processes is important to the high-precision engineering of geologic CO2 sequestration [1], underground H2 storage4

[2], geothermal energy extraction [3], and the optimal design and operation of fuel cells [4] and electrolyzers [5] for5

energy storage and conversion. Prior to solving such PDEs, the microscale geometry of a porous sample is mapped6

experimentally via, e.g., an X-ray µCT scanner [6, 7]. The acquired image is then passed as input to a pore-scale model7

that discretizes and solves the PDE. The highest fidelity among pore-scale models are direct numerical simulation8

(DNS) techniques, e.g., the finite element (FEM), finite volume (FVM), and finite difference (FDM) methods [8].9

Here, we focus on scalar- and vector-valued PDEs relevant to heat conduction and elastic deformation, respectively.10

Given the need to analyze statistically representative, thus large, samples, the size of the linear(ized) systems11

obtained from discretizing the above PDEs is often enormous. This, in turn, demands iterative (e.g., Krylov) methods12

for solving such systems, whose rapid convergence hinges upon the availability of effective preconditioners [9]. One13

very successful preconditioner is the algebraic multigrid (AMG) method [10], and its many variants (e.g., [11]).14

Viewed as a solver, AMG operates by reducing the original system, Ax = b, to a smaller coarse system, Acxc = bc,15

that is faster to solve. The coarse solution, xc, is then interpolated (or prolongated) onto the original fine grid to yield16

an approximate solution, x̃. Errors in x̃ are dominated by high-frequency modes, which are further attenuated with a17
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smoother (e.g., ILU(k), Gauss-Seidel). The foregoing is a two-level outline of AMG that consists of a fine and a coarse18

system/grid. Incorporating additional levels is straightforward by repeating these steps in nested fashion. Viewed as a19

preconditioner for accelerating Krylov solvers, AMG consists of two parts: (1) a coarse preconditioner, MG, used to20

build and solve the coarse system, and (2) a fine smoother, ML, used to attenuate high-frequency errors. While both21

are important, AMG’s success depends critically on the quality of the coarsened matrix Ac and vector bc.22

The coarsening requires a prolongation, P, and a restriction, R, matrix that allow accurate mapping to/from the fine23

and coarse vector spaces. These matrices are used to yield Ac = P (RAP)−1R and bc =R b [9]. Computing R is often24

cheap, since it is either taken as the transpose of P, if A is symmetric as in FEM [10], or built trivially out of 0 and 125

entries to enable certain row-sum operations, if A originates from FVM [12]. The critical and costly step corresponds26

to building P. An accurate P consists of columns, called bases, whose span contains a very close approximation to27

x. Given AMG is a black-box preconditioner, its P is not always optimal, leading to subpar performance [13]. This28

has spurred the development of more physics/geometry-informed preconditioners [14–18] based on two-level solvers29

such as multiscale finite element (MsFE) [19, 20], multiscale finite volume (MsFV) [21, 22], and mixed mortar finite30

element [23, 24]. The columns of P in such methods are obtained by solving local problems on small subdomains,31

subject to carefully crafted closure boundary conditions (BCs). Despite their superior performance, these multiscale32

preconditioners are designed for PDEs describing continuum-scale (or Darcy) physics of porous media.33

Recently, the authors have proposed a two-level preconditioner [25, 26] based on the pore-level multiscale method34

(PLMM) [27, 28] for elliptic equations arising from linear-elastic mechanics at the pore scale. A similar preconditioner35

was later formulated for saddle-point systems associated with the Stokes flow equation [29]. The preconditioners were36

shown to exhibit far superior performance to AMG in solving pore-scale problems. PLMM itself is a two-level solver37

that was first developed for single-phase flow [30] and later extended to two-phase flow [31], compressible flow [32],38

and elastic deformation of intact/fractured porous media [27, 28, 33]. It consists of four main steps: (1) decompose39

the domain into subdomains by cutting it at geometric constrictions using the watershed segmentation algorithm [34];40

(2) compute local basis functions on each subdomain subject to closure BCs; (3) solve a coarse problem that imposes41

flux continuity across all subdomain interfaces; and (4) iterate to improve the accuracy of the closure BCs, and thereby42

that of the solution. The preconditioner by [27, 28], referred to hereafter as M, interprets the above steps in a purely43

algebraic fashion, and much like AMG, consists of a coarse, MG, and fine, ML, preconditioner. Computing MG, or44

equivalently its prolongation matrix P, is the most expensive step in building M as it requires calculating multiple45

basis functions per subdomain. A similar upfront cost is incurred by all two-level preconditioners discussed above.46

Our goal is to accelerate the construction of MG in the PLMM preconditioner, M, via supervised machine learning47

(ML). Specifically, we propose a convolutional encoder-decoder neural network, based on the U-Net [35] and ResNet48

[36] architectures, that accepts the geometry of a subdomain as input (in the form of a small image) and yields the49

basis functions defined on it as output. The bases are then assembled into the columns of the prolongation matrix P for50

MG. While our quest may seem esoteric and specific to PLMM, it is not, and has wide ranging implications. Existing51

literature on ML for solving PDEs in porous media [37] is encumbered by two fundamental drawbacks: (1) Effective52

mechanisms for estimating and controlling prediction errors are lacking [38]. ML outputs must either be accepted at53

face value, or trusted based on empiricism or criteria that determine whether a sample is in- or out-of-distribution; (2)54

Training is performed on whole (non-decomposed) domains, often in the form of large, geometrically complex 2D/3D55

images [39–43]. Compared to the roughly convex subdomains obtained from watershed segmentation herein, training56

on whole domains is less desirable because: (a) the statistical space of whole-domain microstructures is much larger,57

thus demanding more training data; (b) labeled data for whole domains are scarcer, requiring large X-ray images and58

costly DNS simulations. By contrast, one whole domain yields hundreds of subdomains (i.e., data) when decomposed,59

that can be rapidly processed via DNS; (c) ML algorithms for whole domains do not generalize well to BCs beyond60

which they are trained, while basis functions can be assembled in any combination to enforce arbitrary BCs.61

In this work, we address these drawbacks. By tasking our ML algorithm to build a coarse preconditioner, MG,62

and pairing it with a smoother, we enable error estimation and control. Moreover, by training on semi-convex sub-63

domains, we ensure the algorithm is less data hungry, that data generation is easier, and arbitrary BCs can be flexibly64

imposed. The ML algorithm’s outputs are also in a sense reusable, because basis functions built for linear PDEs, such65

as small-strain elasticity, can be used to solve (linearized forms of) nonlinear PDEs, such as finite-strain deformation66

and plasticity [44]. We systematically probe the ML algorithm in building coarse preconditioners for the Poisson and67

linear-elasticity equations defined on complex 2D/3D porous geometries. Compared to purely solver-built precondi-68

tioners, the cost of building MG is dramatically reduced while the convergence rate of the Krylov solver is minimally69
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degraded. We also demonstrate that if trained on simple disk/sphere packs, the ML algorithm is transferable to more70

complex geometries (e.g., sandstone, bone) without additional training.71

In closing, we remark that two other attempts [45, 46] at using ML to accelerate the construction of basis functions72

for elliptic equations have been made: one in the context of MsFV, and another in the context of an MsFV variant called73

MsRSB [47]. However, given their focus lies in uncertainty quantification at the Darcy scale, both treat scalar-valued74

PDEs (i.e., the pressure equation) on subdomains that are square shaped. Neither address error control, vector-valued75

equations, or how to handle arbitrary pore-scale geometries, all specific aims of the present work.76

The paper is organized as follows: Section 2 describes the PDEs to be solved on porous microstructures. Section 377

briefly reviews the PLMM preconditioner consisting of MG and ML. We discuss the ML architecture for building MG78

in Section 4. Sections 5 and 6 present a series of 2D/3D numerical tests to probe the ML-enhanced preconditioner. In79

Section 7, we discuss the implications of the results and future directions. Section 8 concludes the paper.80

2. Problem description81

We target two PDEs with our ML-assisted preconditioning described later: (1) scalar-valued Poisson equation, and82

(2) vector-valued linear-elasticity equation. Consider a porous domain Ω⊂RD with Lipschitz boundary ∂Ω, where D83

is the number of spatial dimensions. Such a domain is represented here by a pore-scale image (e.g., X-ray µCT) as84

shown in Fig.1a (gray means solid). The boundary ∂Ω consists of the void-solid interface, Γw, and the external surface85

(or bounding box) of the domain, Γex. Another way to partition ∂Ω is into Dirichlet, Γd, and Neumann, Γn, segments86

such that ∂Ω=Γd ∪ Γn and Γd ∩ Γn=∅ hold. We assume Γw⊂Γn, implying a stress-/flux-free fluid-solid interface.87

The Poisson equation reads as follows:88

−∆u = f , on Ω (1a)

u = ud , on Γd (1b)
∇u · n = tn , on Γn (1c)

where we seek the scalar solution u, subject to the known source term f , the prescribed function value ud on Γd, and89

the prescribed flux tn on Γn. The vector n denotes the outward-pointing unit normal on Γn.90

The linear-elasticity equation is given by:91

−∇ · σ(u) = f , on Ω (2a)

u = ud , on Γd (2b)
σ(u)n = tn , on Γn (2c)

where we seek the vector solution u, subject to the body force f , the prescribed displacement ud on Γd, and the92

prescribed traction tn on Γn. The Cauchy stress tensor σ is related to the displacement field u via:93

σ(u) = C : ε(u) (3)

where ε(u)=∇su=1/2
(
∇u + ∇u⊤

)
is the strain tensor and C= [Ci jkl] the fourth-order stiffness tensor. The symbol ∇s

94

denotes the symmetric gradient operator and the superscript ⊤ denotes transposition. For an isotropic material, C is:95

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk) (4)

where λ and µ are Lamé parameters. Substituting Eq.4 into Eq.3 yields:96

σ(u) = λ tr(ε(u))I + 2µ ε(u) (5)

where tr(ε) represents the trace of ε.97

In this work, Eqs.1 and 2 are discretized with a Galerkin finite element method (FEM) over a Cartesian mesh98

that conforms to, or is an integer fraction of, the image pixels comprising Ω. In other words, elements are rectangu-99
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Figure 1: Schematic of a pore-scale image, its decomposition into grain grids, and contact grids. (a) The image consists of a solid phase Ω (gray)
and a void space (white). The solid is where the PDEs in Eqs.1 and 2 are solved. (b) Ω is decomposed into grain grids Ωgi (randomly colored).
(c) Contact grids Ωζk cover a thin region around each contact interface, Γc j , shared between adjacent grain grids. (d) An interface Γc1 (yellow)
between two grain grids Ωg1 and Ωg2 is highlighted. (e) Two basis functions associated with Ωg1 and Γc4 are shown for the linear elasticity PDE.
Black circles denote homogeneous Dirichlet BCs, and arrows are Dirichlet BCs of unit magnitude along the coordinate axes.

lar/cuboid and FEM shape functions are bilinear/trilinear in 2D/3D. This yields the following linear system:100

Âx̂ = b̂ (6)

where Â is the coefficient matrix, b̂ is the right-hand side (RHS) vector, and x̂ the unknown vector of FEM nodal values101

corresponding to u in Eq.1 or u in Eq.2. Solving Eq.6 on typical domain sizes of interest is computationally expensive,102

especially when Ω is large and geometrically complex. This can even lead state-of-the-art algebraic multigrid (AMG)103

[10] solvers to converge slowly [25, 26]. Below, we first review the highly effective PLMM preconditioner, M, for104

such problems that accelerates the convergence of Krylov solvers. We then describe how machine learning (ML) can105

be used to accelerate a key computational bottleneck in building M (i.e., MG). Neither M nor its hybridization with106

ML are limited to FEM or Cartesian grids, as they apply to other solvers (e.g., FVM) and unstructured grids.107

3. Multiscale preconditioner based on PLMM108

We briefly review the multiscale preconditioner, M, based on PLMM [26]. Section 3.1 outlines the overall structure109

of M, consisting of a global (or coarse) preconditioner, MG, and a smoother, ML. We then describe the domain110

decomposition that is central to constructing both MG and ML. Section 3.3 details the various building blocks of MG,111

which is the target of our acceleration via machine learning. In Section 3.4, we only summarize a few essential points112

about ML, as the details are not central to this work. We supplement this with references for the interested reader.113

3.1. Overall structure114

The PLMM preconditioner, M, is formulated as follows:115

M−1 = MG
−1 + ML

−1(I − ÂMG
−1) (7)
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where the global preconditioner MG attenuates low-frequency errors, and the smoother ML removes high-frequency116

errors. Eq.7 is a multiplicative combination, where MG is applied first, and ML next. The smoother itself is written as:117

ML
−1 =

nst∑
i=1

M−1
l

i−1∏
j=1

(I − ÂM−1
l ) (8)

representing a multiplicative application of a base smoother, Ml, in nst repeated stages. For the MG formulated in118

Section 3.3, the best performance is observed when Ml is chosen compatibly as an additive Schwarz preconditioner119

called the contact-grain smoother, or MCG [26]. While other, black-box smoothers like Gauss-Seidel (MGS) and120

incomplete LU-factorization (MILU) are possible, they either converge more slowly (often tenfold) or lead to the121

occasional stagnation of the Krylov solver. We therefore opt for Ml=MCG in this work. We also note that a symmetric122

combination of MG and ML is possible [26], allowing M to be used in symmetric solvers like conjugate gradient.123

3.2. Domain decomposition124

To construct MG and ML, Ω is first decomposed into Ng non-overlapping subdomains, Ωgi , referred to as grain125

grids. For this, a modified watershed segmentation algorithm proposed by [27] is applied to the image representing Ω.126

Fig.1b shows an example of such a decomposition for the pore-scale image in Fig.1a, where grain grids are depicted127

by the randomly colored regions. The interfaces shared between adjacent grain grids, Γc j , are called contact interfaces128

and one is illustrated in Fig.1d. Watershed segmentation is a morphological operation in image analysis [6, 34] whose129

key feature is that Ωgi corresponds to a local enlargement of Ω, and Γc j to a local constriction.130

In addition to Ωgi , we construct a complementary set of Nζ subdomains, Ωζk , called contact grids. Each contact131

grid covers an interface, Γck , plus a thin region around it. Fig.1c provides a visual schematic. To build Ωζk , succes-132

sive morphological dilations, an operation in image analysis [48], of the pixels comprising Γck are performed. The133

thickness of Ωζk is proportional to the number of such dilations and can be adjusted by the user. Typically, a width of134

∼12 pixels (6 per contact side) is sufficient. Notice that the union of contact grids does not cover Ω (i.e., Ω,∪kΩ
ζk ).135

Contact grids are only used by ML, and their function is to remove high-frequency errors that tend to concentrate near136

Γc j after every application of MG. We note that contact grids in the PLMM preconditioner are allowed to overlap137

with each other, which is conceptually simpler and computationally more advantageous than the original geometric138

(non-algebraic) formulation of PLMM [27], wherein such grids had to be merged (see [26] for a discussion).139

3.3. Global preconditioner140

The global (or coarse) preconditioner MG is defined as follows:141

M−1
G = P̂ (R̂ÂP̂)−1R̂ (9)

where P̂ and R̂ are the effective prolongation and effective restriction matrices, respectively.1 Here, we set R̂= P̂
⊤

and142

formulate P̂ as the multiplication of three matrices:143

P̂ = WQP (10)

We refer to W as the permutation matrix, to Q as the reduction matrix, and to P as the (reduced) prolongation matrix.144

Below, we describe the procedure for constructing each one, while referring the reader to [26] for further details.145

146

Permutation (W). The permutation matrix, W, is square and consists of only 0 and 1 entries. Its function is to147

shuffle the columns of any matrix it right-multiplies. Hence, it is unitary, i.e., WW⊤ = I. The shuffling is done in148

accordance with the domain decomposition in Section 3.2, such that the fine-grid entries associated with each grain149

grid Ωgi , and each contact interface Γc j , are grouped together. Applying W to the linear system in Eq.6 yields:150

W⊤ÂW︸  ︷︷  ︸
A

W⊤ x̂︸︷︷︸
x

= W⊤b̂︸︷︷︸
b

⇒ Ax = b (11a)

1Following the terminology introduced in [26], we use the term effective to distinguish P̂ from the prolongation matrix P introduced below.
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where the permuted A, b, and x have the following block structures:151

A =

[
Ag

g Ag
c

Ac
g Ac

c

]
b =

[
bg

bc

]
x =

[
xg

xc

]
(11b)

152

Ag
g =


Ag1

g1 · · · O
...
. . .

...
O · · · AgNg

gNg


N f

g ×N f
g

Ac
g = [Aci

g j ]N f
c ×N f

g

Ag
c = [Agi

c j ]N f
g ×N f

c

Ac
c = [Aci

c j ]N f
c ×N f

c

bg = [bgi ]N f
g ×1

bc = [bci ]N f
c ×1

(11c)

The super/subscripts gi and c j specify the entries/blocks that belong to either Ωgi or Γc j , respectively. N f
gi and N f

c j are153

the number of fine-scale unknowns associated with Ωgi and Γc j , respectively, and N f
g =

∑
i N f

gi and N f
c =

∑
j N f

c j . Recall154

Ng is the total number of grain grids. The matrix Ag
g is square and block-diagonal, with square blocks Agi

gi , while155

Ag
c and Ac

g are thin and rectangular. Moreover, Ag
c = (Ac

g)⊤ and Agi
c j = (Ac j

gi )
⊤ hold because of the self-adjoint nature156

of the PDEs in Eqs.1a and 2a and our choice to use Galerkin FEM to discretize them. Building W is trivial, thus cheap.157

158

Reduction matrix (Q). The reduction matrix, Q, is square and consists of only 0 and 1 entries. Its function is to159

perform a column-sum, when right-multiplying a matrix, over all entries associated with each contact interface Γc j .160

For the linear-elasticity PDE, this summation is done on a per coordinate-direction basis. Hence, Q is expressed as:161

Q =

[
IN f

g ×N f
g

O
O Qo

]
Qo =


1c1 O

. . .

O 1cN


N f

c ×No
c

1ci =


Iω×ω
...

Iω×ω


N f

ci×ω

(12)

where No
c = Ncω, with ω= 1 for Eq.1 and ω= D for Eq.2. Recall Nc is the total number of contact interfaces. The162

parameter ω represents the number of degrees of freedom per fine grid (here, FEM node). Notice Q is block-diagonal,163

with its (1,1)-block an identity matrix and its (2,2)-block a block-diagonal matrix Qo itself. Each block of Qo, namely164

1ci , consists of a series of vertically concatenated identity matrices of dimension ω×ω. A symmetric application of Q165

to the permuted system in Eq.11a yields the reduced system below:166

Ax = b , x ≃ QxM ⇒ Q⊤AQxM = Q⊤b ⇒ AMxM = bM (13a)

where AM possesses the following block structure:167

AM =

[
Ag

g Āg
c

Āc
g Āc

c

] Āc
g = [Āci

g j ]No
c ×N f

g

Āg
c = [Āgi

c j ]N f
g ×No

c

Āc
c = [Āci

c j ]No
c ×No

c

(13b)

The overbared blocks have smaller dimensions compared to those in Eq.11c (note N f
c is replaced by No

c ). The appli-168

cation of Q in Eq.13a simultaneously imposes an (integrated) flux balance across all Γc j and a localization assumption169

that u or u are uniform along each Γc j , both inherent to PLMM [26]. Building Q is trivial, thus cheap.170

171

Prolongation matrix (P). The prolongation matrix, P, is tall and skinny with columns that define a coarse space172

wherein a close approximation to the solution, xM , of the reduced system in Eq.13a exists. Each column of P is173

comprised of local solutions of the PDEs in Eqs.1 or 2 on one/two grain grids. Thus, P is sparse. It is built as follows:174

175

P =

[
B C
I O

]
(N f

g +No
c )×(No

c +Ng)
B =


pg1

1 pg1
2 · · · pg1

n
pg2

1 pg2
2 · · · pg2

n
...

...
. . .

...
pgm

1 pgm
2 · · · pgm

n


N f

g ×No
c

C =


cg1 O

cg2

. . .

O cgm


N f

g ×Ng

(14a)
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The basis matrix, B, and correction matrix, C, are comprised of the following vectors:176

cgi = (Agi
gi )

−1bgi (14b)

pgi
k =

 −(Agi
gi )

−1Āgi
c j R

c j
c ek, gi ∈ Gc j c j = ⌈k/ω⌉

O, gi < Gc j c j = ⌈k/ω⌉
(14c)

ek = [0, · · · , 0, 1, 0,︸ ︷︷ ︸
k−1, k, k+1

· · · , 0]⊤No
c ×1 (14d)

where pgi
k is referred to as a basis vector, and cgi as a correction vector, both defined on the grain grid Ωgi . In Eq.14a,177

we have used n = No
c and m = Ng for brevity. The unit vector ek contains 1 in its kth entry, with k corresponding to178

the contact interface with index c j= ⌈k/ω⌉. The set Gc j contains the indices of the only two grain grids that share Γc j .179

According to Eq.14c, pgi
k is non-zero only if Ωgi shares an interface Γc j with another grain grid. Thus, B is sparse and180

only two of the basis vectors in each column of it are non-zero. Finally, the contraction matrix, Rc j
c , is defined as:181

Rci
c =

[
∆

ci
c1 ,∆

ci
c2 , · · · ,∆

ci
cNo

c

]
ω×No

c
∆ci

c j
=

 Iω×ω if i = j
Oω×ω if i , j

(15)

Left-multiplying a No
c ×1 vector defined on all contact interfaces (e.g., ek) by Rci

c restricts it to a ω×1 vector on Γci .182

Building the prologation matrix P, outlined above is fully parallelizable, as it involves the calculation of 2No
c183

decoupled basis vectors and Ng decoupled correction vectors on non-overlapping subdomains (i.e., grain grids). Even184

so, computing P is the most computationally expensive step in constructing MG via Eq.10 because it involves the185

repeated solution of Eq.1 or Eq.2 over each grain grid subject to different BCs. Since most cgi are zero herein, because186

the source terms f and f in Eqs.1-2 are set to zero (cgi ,0 only if Ωgi intersects the global boundary Γex), the cost of187

building P is dominated by that of building B in Eq.14a. In Section 4, we propose a machine learning (ML) algorithm188

that significantly accelerates the construction of B, and thereby that of MG.189

3.4. Local smoother190

The high-frequency errors that remain after applying MG tend to concentrate near contact interfaces. The compat-191

ible contact-grain smother MCG, proposed by [26], specifically targets these errors by applying two additive schwarz192

preconditioners in immediate succession:193

M−1
CG = M−1

ζ + M−1
g (I − ÂM−1

ζ ) (16)

The first, called the contact-grid smoother Mζ , wipes out all errors within each contact grid (i.e., a small neighborhood194

around each contact interface), and the second, called the grain-grid smoother Mg, removes all errors inside each grain195

grid. Notice the multiplicative composition of Mζ and Mg in Eq.16 resembles Eq.7. Mg and Mζ take the standard196

algebraic forms common to all additive Schwarz preconditioners [9] below:197

M−1
g =

Ng∑
i=1

Egi
f (Rgi

f ÂEgi
f )−1Rgi

f , M−1
ζ =

Nζ∑
i=1

Eζif (Rζif ÂEζif )−1Rζif (17)

The matrices Rgi
f and Egi

f restrict and extend, respectively, any vector they left-multiply to/from Ωgi and Ω. Similarly,198

Rζif and Eζif restrict and extend to/from Ωζi and Ω. In an iterative solver, applying Mg entails solving Ng decoupled199

systems on grain grids, and applying Mζ entails solving Nζ decoupled systems on contact grids; all fully parallelizable.200

4. Building the global preconditioner via machine learning201

We propose a machine learning architecture, modified after ResUnet in [49], that yields the basis vectors, pgi
k , in202

Eq.14c at a much lower computational cost than solving them directly with a numerical solver. From Eq.14c and our203

discussions in Section 3.3, recall that for every contact interface Γc j , two sets of basis vectors are computed: one on204
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each of the two grain grids flanking Γc j . Each set consists of ω basis vectors, where ω= 1 for Poisson and ω=D for205

elasticity. This means that on every grain grid Ωgi , #Cgi × ω basis vectors must be built, where #Cgi is the number of206

contact interfaces intersecting ∂Ωgi . Our ML algorithm aims to accelerate such repeated calculations on Ωgi .207

4.1. Curating labeled training data208

The inputs and outputs of the proposed ML algorithm consist of small images with dimensions 64 × 64 in 2D,209

and 48 × 48 × 48 in 3D. These images contain the geometry of each grain grid and any fields defined on them, as210

exemplified by Fig.2 for the grain grid Ωg1 with three contact interfaces Γc1 , Γc2 , and Γc3 . The outside of Ωg1 is colored211

gray. The small image sizes of the subdomain, unlike whole-domain images required by other ML algorithms in the212

literature (e.g., [39]), ensure that training is rapid and the overhead in computer memory stays low. To capture a grain213

grid’s geometry inside the above-prescribed dimensions, we first circumscribe the grain grid by its minimal bounding214

box, then crop it out of the pore-scale domain’s original image. If this box is smaller/larger than the prescribed image215

dimensions, as it is almost always the case, we up/downsample it to match the required size. Upsampling is straightfor-216

ward, as it involves cutting a pixel into sub-pixels then copying the pixel’s value onto the sub-pixels. Downsampling217

requires mapping pixel values to those of a coarsened image, for which we use bi/trilinear interpolation.218

Subdomain image
Smoothed tag

1g

1c3c

2c

Figure 2: Example of a 2D subdomain (i.e., grain grid) image and its corresponding input features passed to the ML algorithm. The grain grid
Ωg1 consists of three contact interfaces Γc1 , Γc2 , and Γc3 . The smoothed tags are computed via Eq.18. From left to right, they correspond to basis
vectors with BCs: (1) u = 1 on Γc1 and u = 0 on Γc2 ∪ Γc3 ; (2) u = 1 on Γc2 and u = 0 on Γc1 ∪ Γc3 ; and (3) u = 1 on Γc3 and u = 0 on Γc1 ∪ Γc2 .

Before detailing the input feature required by the ML algorithm, let us first focus on what output we seek from it.219

Consider the Poisson problem defined on Ωg1 in Fig.2. There are a total of three basis vectors we need to compute,220

corresponding to local BCs: (1) u = 1 on Γc1 and u = 0 on Γc2 ∪ Γc3 ; (2) u = 1 on Γc2 and u = 0 on Γc1 ∪ Γc3 ; and (3)221

u = 1 on Γc3 and u = 0 on Γc1 ∪Γc2 . Similarly for the 2D elasticity problem, there are six basis vectors in total, two per222

interface. For example, the two bases associated with Γc1 correspond to local BCs: (1) u= (1, 0) on Γc1 and u = (0, 0)223

on Γc2 ∪Γc3 ; (2) u= (0, 1) on Γc1 and u = (0, 0) on Γc2 ∪Γc3 . The other four bases associated with Γc2 and Γc3 follow in224

a similar vein. We do not demand the ML algorithm to produce all basis vectors defined on Ωgi at once, but one at a225

time. This requires the input to not be a mere binary image of Ωgi , but tagged in some fashion to specify which basis226

vector of which interface we desire. This motivates us to now turn our attention to describing the input feature.227

A naïve approach to crafting the input is to take each subdomain’s image and assign integer labels to the various228

pixel types, e.g., interior of Ωgi , interface with non-zero BC, and interfaces with zero BCs. Unfortunately, this ap-229

proach, as we have found, does not work because it leads to very slow (even non-convergent) training; also observed230

by [39]. Instead, we design a smooth input image with pixel values corresponding to a distance map defined by:231

d(x) =
d(x,Γ0)

d(x,Γ0) + d(x,Γ1)
(18)

where Γ1 is the interface at which a non-zero Dirichlet BC is imposed, and Γ0 is the union of all other interfaces232

where the BCs are zero. For example, for the Poisson basis vector that corresponds to u = 1 on Γc1 and u = 0 on233

Γc2 ∪Γc3 in Fig.2, we have Γ1=Γ
c1 and Γ0=Γ

c2 ∪Γc3 . The d(x,Γ0) and d(x,Γ1) are Euclidean distances from the pixel234

position x to the closest pixel on Γ0 and Γ1, respectively. Fig.2 illustrates all three input features, hereafter referred235

to as smoothed tags, corresponding to the three basis vectors of the Poisson problem defined on Ωg1 . Notice for the236

Poisson equation, both the ML input and output are either 64 × 64 images in 2D, or 48 × 48 × 48 images in 3D.237
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Figure 3: Proposed ML architecture, resembling a residual U-Net [49]. The top row shows the overall structure, which consists of encoder layers
(gray and blue) and decoder layers (orange and green) connected by skip connections (black arrows). Each layer is a convolutional block with
internal skip connections, as detailed by the sketches in the bottom row. The layers consist of Residual Blocks I and II, Transposition Blocks, and
one Multiplication Block. The inputs to the ML algorithm are the image and smoothed tag of a subdomain (i.e., grain grid), and the output is the
corresponding basis vector. The image is used (red arrow) by the Multiplication Block to filter out artifacts outside the subdomain’s boundary.

For the elasticity problem, there are D bases associated with an interface, each a vector-valued function. Hence,238

the ML output is a 64 × 64 × D image in 2D, and a 48 × 48 × 48 × D image in 3D, with the last dimension containing239

the D components of the basis vector’s displacement field. To compute the D bases associated with each interface,240

we train D separate ML algorithms, one for each coordinate direction. For example, for the 2D subdomain Ωg1 in241

Fig.2, two architectures are trained. When applied to Γc1 , both accept the associated smoothed tag (second image from242

the left in Fig.2) as input. The first architecture outputs the basis associated with the local BCs u= (1, 0) on Γc1 and243

u = (0, 0) on Γc2 ∪ Γc3 , while the second outputs the basis associated with u= (0, 1) on Γc1 and u = (0, 0) on Γc2 ∪ Γc3 .244

To curate training data, we generate random disk packs in 2D and random sphere packs in 3D; like the one shown245

in Fig.1a. Each domain is decomposed via the watershed-based algorithm described in Section 3.2 into subdomains.246

After cropping and resizing the subdomain images, per the up/downsampling procedure already discussed, we com-247

pute smoothed tags via Eq.18 for all bases of each subdomain. We next compute the basis vectors themselves using248

a FEM solver on the cropped (but unresized) subdomain images, then resize them to match the dimensions of the249

smoothed tags. The smoothed tags and basis vectors are paired to form a labeled dataset. In computing the bases for250

the elasticity problem, we set the Lamé parameters to λ = 8.3 GPa and µ = 44.3 GPa, corresponding to α-quartz [50].251

Later we demonstrate the generalizability of the trained ML algorithms, not only to subdomain geometries other than252

those of disk/sphere packs, but also other stiffness tensors. The datasets for Poisson and elasticity consist, separately,253

of 8,000 data points, each a triplet of a binary image, smoothed tag, and a basis vector. The binary image assigns 1 to254

pixels belonging to the subdomain, and 0 to all other pixels. But if downscaled, this image becomes grayscale with255

pixels along the subdomain’s boundary assuming values between 0 and 1. Finally, we randomly split the dataset into256

5,600 for training, 1,600 for validation (to tune hyperparameters and prevent overfitting), and 800 for testing.257
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4.2. Machine learning architecture258

Fig.3 illustrates the ML architecture we train to predict the basis vector (output) corresponding to a given smoothed259

tag and subdomain image (inputs). For the elasticity problem, D such algorithms are trained separately to predict the D260

basis vectors associated with each smoothed tag (or contact interface). The architecture in Fig.3 resembles a residual261

U-Net [49], consisting of several encoder layers (gray and blue) and decoder layers (orange and green) linked by skip262

connections (black arrows). Each layer is a convolutional block with internal skip connections, as sketched in Fig.3.263

The layers consist of Residual Blocks I and II, Transposition Blocks, and a Multiplication Block. The input subdomain264

image is used (red arrow) by the Multiplication Block to filter out artifacts outside the subdomain’s boundary. The265

activation function used in Residual Blocks I and II is leakyRelu for the Poisson problem, but tanh for the elasticity266

problem. The latter is selected because the displacement variable u in elasticity can assume both negative and positive267

values in a basis vector, whereas the Poisson variable u is guaranteed to be always positive. Fig.3 also annotates the268

size of the convolutional stencils, their stride lengths, and each layer’s input/output dimensions.269

We define the loss functions of the Poisson, Lp, and elasticity, Le, problems as follows:270

Lp =
1
N

N∑
i=1

(ytrue − ypred)2 + αp
1
N

N∑
i=1

(∆ypred + f )2 (19a)

Le =
1
N

N∑
i=1

(ytrue − ypred)2 + αe
1
N

N∑
i=1

(∇ · σ(y)pred + f )2 (19b)

where the first term measures the data mismatch between the true (i.e., solver-computed) and predicted (i.e., ML-271

computed) basis vectors. The second term is the physics mismatch, or norm of the PDE’s residual, in the predicted272

basis vectors. The weights αp and αe control the relative importance of the data- versus physics-based losses. We273

implemented the ML architecture in Fig.3 using MATLAB’s Deep Learning Toolbox and trained it on a machine with274

an NVIDIA GeForce GTX 1660 Super graphics card. The batch size was set to 40, learning rate to 10−5, and training275

was allowed to progress for 200 epochs. Early stoppage was used as the mechanism to prevent overfitting.276

4.3. Enforcing partition of unity on bases277

The basis vectors defined on a subdomain, Ωgi , must satisfy an important constraint: partition of unity. For the278

Poisson equation, this means that if we sum all the bases on Ωgi , the result must be an all-ones function:279 ∑
∀c j∈Cgi

φ
gi
c j = 1 (20)

For emphasis and notational simplicity, we have used φgi
c j , instead of pgi

k , in Eq.20 to denote the basis vector associated280

with grain grid Ωgi and contact interface Γc j . The set Cgi contains the indices of all interfaces intersecting ∂Ωgi .281

For elasticity, this equation takes the form:282 ∑
∀c j∈Cgi

φgi
c jd

= 1d (21)

where we have again used the simpler notations φgi
c j x and φgi

c jy (and φgi
c jz in 3D) to denote the D basis vectors associated283

with Ωgi and Γc j . Here, 1d is a D × 1 constant vector field with 1 for its dth component and 0 for its other compo-284

nents. We have found that if Eqs.20 and 21 are not enforced explicitly on the ML-predicted basis vectors, during a285

postprocessing step, the performance of the ML-preconditioned Krylov solver in Section 6 deteriorates greatly.286

To impose Eq.20, we simply divide (in pointwise fashion) each ML-predicted basis by the sum of all bases on Ωgi .287

To impose Eq.21, we first divide the dth component of each ML-predicted basis by the sum all the d-components of288

all the bases on Ωgi . This ensures the normalized d-components of all bases sum to one. Next, we normalize the other289

(, d) components by subtracting their arithmetic mean over all the bases from that of each individual basis (also in290

pointwise fashion). This ensures that the non-d-components of the normalized bases sum to zero.291
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4.4. Smoothing machine learned bases292

The ML-predicted bases tend to be dominated by high-frequency errors that exhibit a checkerboard-like pattern293

(shown later in Figs.5-6). While in Section 6 we report that such errors have negligible impact on the overall cost of the294

Krylov solver, we propose an iterative strategy to arbitrarily improve the accuracy of ML-predicted bases, and thereby295

the ML-built MG, if so desired. The approach requires performing a small number of iterations with a Gauss-Seidel296

(or any other) smoother that rapidly attenuates high-frequency errors. The lower-triangular matrix used to perform the297

local Gauss-Seidel iterations on Ωgi is derived directly by restricting the global matrix Â in the linear system Eq.6 onto298

Ωgi . Each smoothing iteration is cheap and equivalent to a non-trainable convolution layer appended to the end of the299

ML architecture in Fig.3 (see [51]). Since the accuracy of the ML-predicted basis vectors varies across subdomains,300

one can ensure quality control by adapting the number of smoothing iterations such that the relative error:301

EML =
| ∥Ri∥ − ∥Ri−1∥ |

∥R0∥
(22)

satisfies a desired tolerance, TML. R0 and Ri are local residuals on Ωgi at the 0th and ith smoothing steps. The smaller302

a tolerance we impose on EML, the more iterations are required, and the more costly the basis calculations become.303

5. Problem set304

To test the performance of the ML-built two-level preconditioner, M, in solving the Poisson and elasticity prob-305

lems, we consider the 2D and 3D porous microstructures shown in Fig.4. They consist of a 2D disk pack (P2D), a 2D306

sandstone (S2D) [52], a 3D sphere pack (P3D), and a 3D bone specimen (BONE) [53]. Each domain is decomposed307

into grain grids and contact grids via the watershed segmentation algorithm described in Section 3.2, and they are308

illustrated by the randomly colored regions in Fig.4. Table 1 further summarizes each domain’s image size, physical309

dimensions, number of FEM elements and nodes, number of grain grids Ng, and number of contact grids Nζ .310

With reference to Fig.4, we impose the following BCs on the domains. For the Poisson equation in 2D, we set u=2311

on the left (x=0) and u=0 on the right (x=Lx) side of each domain. In 3D, we set u=2 and u=0 on the top (z=Lz)312

and bottom (z = 0) sides, respectively. All lateral boundaries in 2D/3D are flux-free (i.e., homogeneous Neumann).313

For the elasticity equation in 2D, u = (−1, 0) and u = (0, 0) are set on the left and right boundaries, respectively. In314

3D, u = (0, 0, 0) is imposed on the top side and u = (0, 0,−1) on the bottom side. All lateral boundaries in 2D/3D are315

stress-free. The Lamé parameters of all domains are λ=8.3 GPa and µ=44.3 GPa, same as those used to train the ML316

algorithms in Section 4. In Appendix C, we demonstrate the algorithms’ transferability to other stiffnesses.317

We solve the linear system, Eq.6, associated with the Poisson and elasticity problems for each domain with a318

right-preconditioned GMRES solver. The preconditioners probed herein are: (1) the two-level PLMM preconditioner319

M, whose coarse preconditioner MG is built by a numerical solver; (2) the same two-level preconditioner M, except320

whose coarse preconditioner MG is built by the trained ML algorithms of Section 4; and as benchmark, (3) an AMG321

preconditioner [54] constructed entirely by a numerical solver. To distinguish between preconditioners (1) and (2),322

we refer to them hereafter as MSOL and MML, respectively. As discussed in Section 3.1, MSOL and MML require a323

local smoother, for which we use Eq.8 with the base smoother Ml=MCG and number of smoothing stages nst = 1;324

following recommendations in [26]. Unlike MSOL and MML, the AMG preconditioner is multilevel, with the number325

of levels (>2) determined automatically and summarized in Appendix A. Per custom, one pre- and one post-smoothing326

operation is performed in AMG via Gauss-Seidel per level. We declare GMRES to have “converged” if the normalized327

residual satisfies ∥Âx̂ − b̂∥/∥b̂∥<10−9 or the number of iterations reaches 500. All simulations are run in series.328

Table 1: Geometric and fine/coarse-grid properties of the domains in Fig.4, used to test the ML-built preconditioner proposed.

Image pixels Domain size (mm) FEM elements FEM nodes Grain grids (Ng) Contact grids (Nζ)
P2D 4,000× 4,000 40×40 12,750,317 12,866,447 480 688
S2D 4,000×4,000 40×40 12,704,770 12,775,648 227 383
P3D 150×150×300 1.5×1.5×3 3,971,225 4,506,890 581 1,040

BONE 150×150×300 1.5×1.5×3 4,677,385 5,102,232 319 1,255
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Figure 4: Porous geometries used to test the ML-accelerated multiscale preconditioner for the Poisson and elasticity equations. From top to bottom,
they include a 2D disk pack (P2D), a 2D sandstone (S2D), a 3D sphere pack (P3D), and a 3D bone specimen (BONE). From left to right, each
domain’s geometry and corresponding grain grids and contact grids are illustrated. The last two are obtained from the decomposition algorithm
described in Section 3.2 and are depicted as randomly colored regions.
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6. Results329

We present results in two parts. In Section 6.1, we probe the accuracy of the trained ML algorithms in constructing330

basis vectors on subdomains. Since the algorithms in Section 4 are trained on disk/sphere packs, we consider both331

in-distribution (unseen disk/sphere packs) and out-of-distribution (S2D and BONE) subdomains. For the elasticity332

problem only, we also probe the transferrability of the ML algorithm to Poisson’s ratios different from that used333

during training (i.e., ν,0.08). Next in Section 6.2, we compare the convergence rates and wall-clock times (WCT) of334

the MSOL, MML, and AMG preconditioners applied within GMRES in solving the Poisson and elasticity equations.335

6.1. Basis vectors built by machine learning336

6.1.1. In-distribution subdomains337

Using the notation introduced in Section 4.3 for the basis vectors (i.e., φgi
c j and φgi

c jd
with d∈{x, y, z}), Figs.5 and 6338

compare basis vectors predicted by the trained ML algorithms against those obtained from a numerical solver for the339

Poisson and elasticity problems, respectively. The associated subdomain images and smoothed tags are also shown,340

which are chosen from the testing dataset (i.e., unseen samples) defined in Section 4.1. The ML bases are in good341

agreement with those from the solver, save for high-frequency, checkerboard error patterns that appear to be typical342

of convolutional neural networks (see [45]). The ML algorithms were trained while setting αp=αe=0 in Eq.19.343

Figure 5: Schematic of a subdomain image, one of its smoothed tags, and the corresponding in-distribution basis vector for the Poisson problem.
Two basis vectors are shown, one computed using a numerical solver and another predicted by the trained ML algorithm. The basis is denoted by
φ

gi
c j , instead of pgi

k , to emphasize that it corresponds to the grain grid Ωgi and interface Γc j . Given the annotations in Fig.2, i=1 and j= ‘ here.

Figure 6: Schematic of a subdomain image, one of its smoothed tags, and the two corresponding in-distribution basis vectors for the Elasticity
problem. The bottom row shows basis vectors computed using a numerical solver, and the top row bases predicted by the trained ML algorithms.
Notice two basis vectors are associated with each interface, denoted by φgi

c j x and φgi
c jy, instead of pgi

k , to emphasize they correspond to the grain grid
Ωgi , interface Γc j , and a non-zero Dirichlet BC imposed along the x or y coordinate direction. φgi

c j x and φgi
c jy are output by separate ML algorithms.
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Figure 7: PDFs of L2-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of 2D
disk packs. The top row shows training errors, and the bottom row testing errors. Most errors are <5% for Poisson and <10% for elasticity.

Figure 8: PDFs of L2-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of 3D
sphere packs. The top row shows training errors, and the bottom row testing errors. Most errors are <5% for Poisson and <20% for elasticity.

To quantify the L2-errors between the ML- and solver-computed basis vectors, we define:344

Eχ2 =

(
1

|Ωgi |

∫
Ωgi

∥χml − χsolver∥
2dΩ

)1/2

/ supΩgi ∥ χsolver ∥ (23)
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where χ is a placeholder for either u in Poisson or u in elasticity. χml and χsolver denote the solver- and ML-predicted345

basis vectors, respectively. The PDFs of L2-errors so obtained for all subdomains in the training and testing datasets are346

shown in Figs.7-8 for the Poisson and elasticity problems. Fig.7 corresponds to basis vectors defined on subdomains347

of 2D disk packs, whereas Fig.8 corresponds to basis vectors on subdomains of 3D sphere packs. Given that training348

and testing datasets both consist of disk/sphere-pack subdomains, Figs.7-8 constitute in-distribution errors.349

We see that testing errors for unseen samples are comparable to the training errors, largely <5% for the 2D Poisson350

and <10% for the 2D elasticity problem. In 3D, testing errors are <5% for Poisson and <20% for elasticity. The higher351

3D errors are likely due to the fact that even though an equal number of data points (i.e., 5,600) were used to train352

both ML algorithms in 2D and 3D, each 3D subdomain has on average a larger number of contact interfaces, hence353

basis vectors. Therefore, the 3D training set covers a smaller range of variability in subdomain geometries than the354

2D set. Augmenting the training set in the future could reduce the 2D and 3D testing errors further. Finally, recall the355

ML algorithms in Figs.5-8 were trained in a purely data-driven fashion, with αp=αe=0 in the loss functions given by356

Eq.19. In Appendix B, we set αp = 1 and 10 for the Poisson equation and show that including the PDE’s residual in357

the loss function neither improves training speed nor the accuracy of the predicted bases in any significant way.358

6.1.2. Out-of-distribution subdomains359

A key question we wish to answer here is whether the trained ML algorithms in Section 4 on disk/sphere packs also360

apply to subdomains of other, out-of-distribution, geometries without having to be retrained? Figs.9 and 10 suggest361

the answer is yes. Comparing the ML- and solver-built basis vectors for the Poisson and elasticity problems on two362

subdomains of the S2D domain shows very good agreement. Figs.11-12 also depict the PDFs of L2-errors, obtained363

Figure 9: Schematic of a subdomain image, one of its smoothed tags, and the corresponding out-of-distribution basis vector for the Poisson problem.
Two basis vectors are shown, one computed using a numerical solver and another predicted by the trained ML algorithm.

Figure 10: Schematic of a subdomain image, one of its smoothed tags, and the two corresponding out-of-distribution basis vectors for the Elasticity
problem. The bottom row shows basis vectors computed using a numerical solver, and the top row bases predicted by the trained ML algorithms.
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Figure 11: PDFs of L2-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of the
S2D domain. Most of these out-of-distribution errors are <10% for Poisson and <20% for elasticity.

Figure 12: PDFs of L2-errors associated with the ML-predicted basis vectors for the Poisson and elasticity problems defined on subdomains of the
BONE domain. Most of these out-of-distribution errors are <20% for Poisson and <20% for elasticity.

via Eq.23, for all the ML-built basis vectors of the Poisson and elasticity equations on S2D and BONE subdomains.364

These out-of-distribution errors are slightly larger than the in-distribution errors (computed on the testing dataset)365

in Figs.7-8, often by a factor of ∼2. Specifically, errors are <10% for Poisson and <20% for elasticity in S2D, and366

<20% for Poisson and <20% for elasticity in BONE. Considering no representative subdomains of either geometry367

were included in the training dataset, the accuracy of the ML algorithms is encouraging. Finally, recall that the ML-368

algorithms for the elasticity problem used in Figs.6 and 7-8 were trained in Section 4 on data that assumed a single369

Poisson’s ratio of ν= 0.08; corresponding to α-quartz. In Appendix C, we demonstrate these trained algorithms also370

apply to other values of ν without having to retrain them, with most L2-errors <20%. In the next section, we assess371

the performance of the coarse preconditioner, MG, built from the above ML-predicted basis vectors.372

6.2. Two-level preconditioners built by machine learning373

6.2.1. Accuracy of the first-pass solution374

The coarse preconditioner, MG, outlined in Section 3.3 can be used to obtain an approximate solution via x̂aprx =375

MG
−1b̂. We call x̂aprx the first-pass solution and compute it with MG’s constructed by: (1) a numerical solver (MG,SOL);376

(2) the trained ML algorithms of Section 4 with no smoothing iterations performed on the basis vectors (MG,ML, TML=377

∞); and (3) the trained ML algorithms of Section 4 with smoothing iterations performed on the basis vectors (MG,ML,378

TML<∞). In (3), iterations are performed until EML<TML in Eq.22, where TML is a user-defined tolerance. The MG379

in (2) can thus be viewed as corresponding to TML=∞, which we adopt hereafter to mean “no basis smoothing.”380

Figs.13-15 compare the first-pass solutions obtained from the above MG’s against the exact solution. Fig.13 shows381

the spatial distributions of u in the Poisson equation for all domains, where a very good agreement between all first-382

pass solutions and the exact solution is seen. Specifically, the u from ML with TML = ∞ is impressively accurate.383

Fig.14 shows the spatial distributions of u = (ux, uy) in the elasticity equation for the 2D domains, P2D and S2D.384
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The 3D domains, P3D and BONE, are shown in Fig.15, where only the axial uz and radial (u2
x + u2

y)1/2 displacements385

of u = (ux, uy, uz) are illustrated for brevity. Once again, very good agreement between the first-pass and exact386

solutions are observed, however this time only in the axial direction (i.e., ux in 2D, and uz in 3D). In the lateral/radial387

directions, the displacement component from MG,ML with TML=∞ agrees rather poorly with that of the exact solution.388

Performing basis smoothing iterations in MG,ML with TML = 10−5 improves the accuracy of lateral/radial component389

and brings it close to that of MG,SOL. However, notice the first-pass solution from MG,SOL incurs some errors itself, to390

which the first-pass solution from MG,ML can only asymptote to in the limit TML→0, but never surpass.391

Table 2 lists the relative L2-errors of the first-pass solutions of the Poisson and elasticity equations computed via392

MG,SOL and MG,ML with TML=∞, 1, 10−2, 10−4, and 10−9 on all the domains. The errors are expressed as percentages393

and computed via Eq.23, except with Ωgi replaced by Ω. First, notice that even without basis smoothing (TML =∞),394

the MG,ML approximation has a very low error (<1% in 2D and <5% in 3D) and comparable to that of MG,SOL.395

This renders the first-pass solution of MG,ML with TML =∞ useful in a wide range applications where tolerance for396

error is moderate-to-high (e.g., subsurface engineering). Second, Table 2 suggests that basis smoothing iterations do397

not necessarily improve the accuracy of ML-predicted first-pass solutions unless a very large number is performed.398

Specifically, we see improvement for TML =10−9 where MG,ML and MSOL have identical accuracy. But as mentioned399

earlier, such a small TML comes at a very high cost and is not recommended. In the next section, we show that despite400

the negligible impact on first-pass solutions, basis smoothing noticeably improves convergence in Krylov solvers.401

Table 2: L2-errors (%) for the first-pass solutions of the Poisson and elasticity problems obtained from a single application of the coarse precondi-
tioner MG built via a numerical solver (MG,SOL) and ML algorithm (MG,ML) with different basis-smoothing tolerances (EML<TML in Eq.22).

MG,SOL MG,ML, TML = ∞ MG,ML, TML = 1 MG,ML, TML = 10−2 MG,ML, TML = 10−4 MG,ML, TML = 10−9

P2D 0.01 0.05 0.04 0.07 0.12 0.01
S2D 0.03 0.09 0.07 0.10 0.20 0.03
P3D 1.08 1.69 1.41 2.34 2.31 1.08

Poisson

BONE 2.74 3.09 2.84 2.84 2.80 2.74
P2D 0.27 0.45 0.44 0.41 0.37 0.31
S2D 0.09 0.31 0.27 0.42 0.49 0.09
P3D 3.34 5.15 4.67 4.37 3.77 3.35

Elasticity

BONE 1.95 6.28 4.42 2.90 2.30 1.95

6.2.2. Convergence rate of the Krylov solver402

Fig.16 plots the normalized residual (∥Âx̂ − b̂∥/∥b̂∥) versus the number of GMRES iterations preconditioned by403

AMG, MSOL, and MML with TML=∞, 10−2, and 10−4 for the Poisson and elasticity equations defined on the P2D, S2D,404

P3D and BONE domains. Recall MSOL and MML are obtained by combining the coarse preconditioners MG,SOL and405

MG,ML from the previous section with the contact-grain smoother defined in Section 3.4 using Eq.7 (i.e., ML=MCG).406

Three key observations stand out: (1) The convergence rate of MML with TML =∞ is almost indistinguishable from407

MSOL in the Poisson problem, and only slightly slower than MSOL in the elasticity problem. This is good news, as it408

indicates the ML-built MG is as good as the solver-built one. Therefore, we recommend TML=∞ due to its lower cost;409

(2) As TML→0, the convergence rate of MML improves noticeably and eventually asymptotes to that of MSOL. Recall410

this is contrary to Table 2, where reducing TML had a negligible impact on the first-pass solutions, except at very small411

TML; (3) In all cases, GMRES preconditioned by MSOL or MML converges much faster than AMG, especially in the412

elasticity problem. We remark that the checkerboard errors in the ML-predicted bases (Fig.10) minimally affect the413

convergence rate of GMRES preconditioned by MML with TML=∞, because such high-frequency errors are wiped out414

by the smoother MCG integrated into MML. We next discuss the wall-clock times (WCTs) of the above simulations.415

6.2.3. Computational cost416

Figs.17 and 18 depict the wall-clock times (WCTs) in seconds associated with building the coarse preconditioner417

MG and solving the linear system via GMRES to satisfy ∥Âx̂− b̂∥ / ∥b̂∥<10−9 for the Poisson and elasticity equations,418

respectively, defined on all the domains. The total cost, including that of setting up the smoother in MSOL and MML,419

is also shown. The smoother setup involves performing an LU decomposition of all local systems in Eq.17 defined on420

Ωgi and Ωζk . All WCTs are plotted versus the tolerance (TML) used for basis smoothing iterations in the building of421
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Figure 13: Comparison of the spatial distributions of u in the Poisson equation obtained from a single application of the coarse preconditioner, MG,
against the exact solution over the P2D, S2D, P3D and BONE domains. The preconditioner MG is computed via a numerical solver (MG,SOL), and
the trained ML algorithm of Section 4 (MG,ML) with (TML =10−5) and without (TML =∞) local smoothing of the basis vectors.

MG,ML. Since the costs of MSOL and AMG do not depend on TML, they are depicted by the horizontal lines. In Fig.18422

for the elasticity problem, AMG did not converge within 500 iterations (except for BONE). Therefore, the WCTs423

were extrapolated linearly based on the observed convergence rates, and distinguished by the dashed green lines.424

We make the following observations: (1) In all cases, the cost of building MG,ML with TML =∞ (almost identical425

to TML=1) is much lower than MG,SOL. For the Poisson problem, the speedup is a factor of 4.1 in P2D, 4.0 in S2D, 5.7426

in P3D, and 1.6 in BONE, and for the elasticity problem, the speedup is a factor of 6.0 in P2D, 5.9 in S2D, 9.1 in P3D,427

and 3.1 in BONE; (2) As TML is reduced, the cost of building MG,ML increases, while the solver cost decreases. In the428

Poisson problem, the decrease in solver cost is negligible and the absolute cost is comparable to MSOL. Hence, the total429
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Figure 14: Comparison of the spatial distributions of ux and uy in the elasticity equation obtained from a single application of the coarse precondi-
tioner, MG, against the exact solution over the P2D and S2D domains. The preconditioner MG is computed via a numerical solver (MG,SOL), and
the trained ML algorithm of Section 4 (MG,ML) with (TML =10−5) and without (TML =∞) local smoothing of the basis vectors.

cost (right column in Fig.17) increases monotonically as TML → 0, implying MG,ML with TML =∞ is recommended430

for preconditioning GMRES. In the elasticity problem, the decrease in solver cost as TML → 0 is more noticeable,431

which causes the total cost to remain roughly flat as TML is varied (except for BONE, where the profile is U-shaped;432

although the y-axis range is narrow). Since TML plays a minor role in the total cost, we still recommend MG,ML433

with TML = ∞ for the elasticity problem; (3) Comparing the total costs of MSOL and MML with TML = ∞, we see434

only moderate speedup (less than ×1.5) with MML over MSOL in the Poisson problem, and almost no speedup in the435

elasticity problem. This is because once the build-time of MG is reduced by ML, the total cost is dominated by the436

solve-time of GMRES; especially in the elasticity problem. Another way to frame this is: error control does not come437
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Figure 15: Comparison of the spatial distributions of uz and uxy =

√
u2

x + u2
y in the elasticity equation obtained from a single application of the

coarse preconditioner, MG, against the exact solution on the P3D and BONE domains. The preconditioner MG is computed via a numerical solver
(MG,SOL), and the trained ML algorithm of Section 4 (MG,ML) with (TML =10−5) and without (TML =∞) local smoothing of the basis vectors.

for free. If only a first-pass solution is desired (no GMRES iterations), ML can save time, but not if errors are to be438

reduced. Incidentally, a first-pass solution via MG,ML with TML=∞ is comparable in CPU-time (but lower in memory439

footprint) to predictions from existing ML algorithms trained on whole domains (discussed in Section 7.1). We note440

the build-times of MG,ML in Figs.17-18 include pre-processing costs associated with preparing the ML-input features441

(e.g., up/downscaling, smoothed tags via Eq.18) often excluded from prediction costs reported in the literature.442

Finally, (4) in all cases except the Poisson problems defined on the P3D and BONE domains, the total cost of443

AMG is higher than both MSOL and MML with TML =∞. The exceptions are largely due to AMG’s fast build-time.444

For the elasticity problem, however, AMG’s total cost is one to two orders of magnitude higher than either MSOL and445
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Figure 16: Normalized residual versus number of GMRES iterations preconditioned by AMG, MSOL, and MML with TML =∞, 10−2, and 10−4 for
the Poisson and elasticity problems on the P2D, S2D, P3D and BONE domains. TML =∞ means no basis-smoothing iterations are performed.

MML. In much larger 3D domains than those of Fig.4, where subdomains consist of many more grids, we expect a446

clearer advantage of MML with TML=∞ over MSOL or AMG within GMRES. Moreover, the use of a cheaper smoother447

in series, like ILU(0), or parallelizing MCG would reduce cost further. These claims remains to be substantiated.448

7. Discussion449

7.1. Approximate solutions with machine learning450

In Section 3.3, we outlined a coarse preconditioner, MG, based on the pore-level multiscale method (PLMM) that451

was proposed by [25, 26] for solving elliptic PDEs like the Poisson and elasticity Eqs.1 and 2. One can use MG452

to obtain very accurate approximate, or first-pass, solutions to the discretized system Âx̂ = b̂ via xaprx = M−1
G b̂. In453

Section 4, we proceeded to show how the construction of MG, requiring the computation of multiple basis functions454

on each subdomain, can be significantly accelerated by training ML algorithms. The latter were trained on a set of455

precomputed basis vectors defined on small, cropped images from larger, whole domains. The results in Section 6.2.1456

demonstrated that first-pass solutions obtained from such a ML-built coarse preconditioner, MG,ML, have comparable457

accuracy to those obtained from a solver-built one, MG,SOL. Despite slightly larger errors in the tangential compo-458

nent of displacement in the elasticity problem with respect to the axial loading direction, the overall accuracy (<1%459

errors for 2D and <5% for 3D) and performance (×2-6 speedup for Poisson and ×3-9 for elasticity) of MG,ML were460

impressive. Basis smoothing was deemed unnecessary to obtain such predictions (i.e., TML=∞ is sufficient).461

Notice the approach of using ML to build basis functions on smaller subdomains, packaged in the form of a pro-462

longation matrix P (Eq.14), is more advantageous than training ML algorithms on whole domains. As reasoned in463

Section 1, data curation is cheaper as 102−3 subdomains can be obtained from decomposing one whole domain, train-464

ing is faster because the overhead on computer memory is low, and the ML algorithm is simpler and less data hungry465

because the statistical space of possible subdomain geometries is much smaller than that of whole domains (e.g., sub-466

domains are convex and devoid of holes or cavities). As stated in Section 6.2.3, the CPU-time (not memory footprint)467
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Figure 17: Wall-clock times (WCTs) in seconds associated with building the coarse preconditioner MG (left column) and solving the linear system
via GMRES to satisfy ∥Âx̂ − b̂∥ / ∥b̂∥<10−9 (middle column) for the Poisson equation defined on all the domains. The total cost, including that of
building the smoother in MSOL and MML, is shown in the right column. All WCTs are plotted versus the tolerance (TML) used for basis smoothing
iterations in the building of MG,ML. Notice the costs of MSOL and AMG do not depend on TML and are thus depicted by horizontal lines.

associated with predicting (not training) first-pass solutions via MG,ML with TML=∞ is comparable to those of existing468

ML algorithms trained on whole domains. The seemingly higher than expected WCTs for building MG,ML (TML=1) in469

Figs.17-18 are because they include pre-processing costs of the ML-input features (e.g., up/downsampling, smoothed470
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Figure 18: Wall-clock times (WCTs) in seconds associated with building the coarse preconditioner MG (left column) and solving the linear system
via GMRES to satisfy ∥Âx̂ − b̂∥ / ∥b̂∥<10−9 (middle column) for the elasticity equation defined on all the domains. The total cost, including that of
building the smoother, is shown in the right column. All WCTs are plotted against the tolerance (TML) used for basis smoothing iterations in the
building of MG,ML. Notice the costs of MSOL and AMG do not depend on TML and are thus depicted by horizontal lines.

tag via Eq.18), often excluded from prediction costs in the literature. A final benefit of the approach herein is that by471

using a finite-volume restriction matrix, instead of the Galerkin R̂ = P̂⊤ in Eq.9, one could impose global flux/stress472

conservation across all grain grids and contact interfaces. Future work will probe such a restriction matrix by [26].473
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7.2. Controlling the errors of machine learning474

In addition to reducing the build-time of MG via ML, we also succeeded in controlling the ML algorithms’ errors.475

The latter, however, had interesting implications. Our approach consisted of two measures. First, local smoothing476

iterations were performed on each ML-predicted basis to reduce its high-frequency errors, up to tolerance TML, prior477

to building MG,ML. We concluded this to be superfluous and recommended MG,ML be built with no basis smoothing478

(i.e., TML = ∞). This is because the accuracy and performance of MG,ML is already very good, and reducing TML479

only increases cost. Moreover, even at the limit TML → 0, MG,ML is only as good as MG,SOL, which itself incurs480

high-frequency errors. Our second, and more important, measure was to pair MG,ML with a smoother ML, for which481

we picked the compatible MCG recommended by [26] and introduced in Section 3.4. Still adhering to TML =∞, the482

convergence rate of GMRES preconditioned by MML (combining MG,ML with MCG) is comparable to MSOL (combin-483

ing MG,ML with MCG) in the Poisson problem, but lower by up to ×2 in the Elasticity problem. Reducing TML reduces484

the cost of GMRES for the elasticity problem, but increases the build-time of MG,ML. Overall, the total cost of MML,485

consisting of building MG,ML, setting up MCG, and solving GMRES is comparable or only slightly lower than MSOL.486

This could have several contributors: (1) Once the build-time of MG is reduced, the remaining WCT is dominated487

by GMRES, especially for the elasticity problem. This is likely because we demand such a low tolerance for error (=488

10−9). A larger tolerance would result almost certainly in better speedups for MML over MSOL, as is the case for the489

first-pass solutions via MG,ML with TML=∞; (2) The setup cost of MCG, included in the total WCTs of MML and MSOL,490

is rather high, as it consists of LU decompositions performed on local systems defined on the grain and contact grids.491

Building MCG in parallel, or using a cheaper smoother in series (e.g., ILU(0)) would have reduced the total WCT, but492

by an equal amount for both MML and MSOL; (3) The ML algorithms of Section 4 could have benefited from longer493

training, given the errors are still decreasing after 200 epochs in Fig.B.1, albeit slowly. This could have resulted in494

lower GMRES cost, thus smaller total WCT, especially in the elasticity problem; and (4) ML algorithms, particularly495

of the “deep convolutional” kind, are not as cheap as celebrated. Each layer entails a matrix-vector multiplication, and496

the deeper the network, the more multiplications are required. This is not unlike iterations in a linear solver, and if the497

goal is to beat a rapidly converging preconditioner like MSOL, there is a limit to a network’s depth. Despite said issues,498

MML (and MSOL) outperforms AMG by ×101−2 in the elasticity, but not the more well-trodden Poisson, problem.499

We highlight that controlling and estimating prediction errors is not free of cost. ML algorithms are often used500

to perform blind predictions, whose error bounds are guaranteed empirically and statistically at best (i.e., based on501

a testing set). While appropriate for applications like uncertainty quantification, for deterministic predictions, error502

bounds lack. What this work suggests is that some combination of ML with a physics-solver is needed to fill this gap,503

which involves corrective iterations. The iterations increase cost, but also confidence in the results. If the merit of504

an algorithm were placed solely on the swiftness of its output, then the first-pass solution via MG,ML and TML =∞505

accomplishes what most methods can with fewer data and shorter training time (see Section 7.1). But if added merit506

were placed on the reliability of said outputs, as we think one should, then our approach offers a path forward.507

7.3. Transferability across geometries and material properties508

A pleasantly surprising observation, also made by others (e.g., [40]), is that the ML algorithm trained in Section509

4 on disk/sphere packs also applies to other subdomain geometries. Moreover, in the elasticity problem, training was510

performed by assuming a Poisson’s ratio of ν=0.08 and yet, the ML algorithm predicts with reasonable accuracy bases511

for ν=0.4 and 0.45. Notice one need not probe a second elastic modulus, like λ or µ, in addition to ν. This is because512

once ν is fixed, the other moduli can be matched by simply scaling the ML-predicted bases. In Section 6.1, basis513

errors nearly doubled when the ML algorithms were tested on out-of-distribution geometries or ν. But those errors514

were still <20% and resulted in high-quality first-pass solutions, as listed in Table 2, and rapid GMRES convergence,515

as shown in Figs.16 and C.4. This hints at the promising outlook that pre-training a library of ML algorithms for516

different grain shapes, material properties, and even PDEs can be readily applied to, or minimally transfer-trained517

on new problems. The latter may even be done on-the-fly, while solving a time-dependent or many-query problem518

relevant to optimization or uncertainty quantification with respect to variability in the porous microstructure.519

7.4. Other machine learning methods and architectures520

In Appendix B, we included the L2-norm of the PDE residual in the loss function as specified by Eq.19. This521

is similar to physics-informed neural networks (PINNs) [38, 55, 56], wherein a PDE’s residual and BCs are “softly522
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imposed” through the loss function; as opposed to a “hard imposition” via non-trainable layers. The weights αa and αe523

in Eq.19 control the emphasis on the PDE mismatch over the data mismatch. Figs.B.1-B.2 show that the impact of the524

PDE mismatch is negligible on both the training speed and predictive accuracy of the ML algorithms. Ultimately, an525

ideal algorithm is one that incurs low errors, including those with high-frequency mode, eliminating the need for basis526

smoothing iterations altogether (Section 4.4). While improving the architecture in Fig.3, by perhaps appending non-527

trainable layers to it, is one option [57], adopting whole new emerging architectures such as graph neural networks528

(GNNs) [58, 59] or neural operators [60, 61] is another. Irrespective of the approach, however, close attention must529

be paid to the spectral properties of the errors in the basis functions produced by such ML algorithms.530

8. Conclusion531

We have presented an approach for using machine learning (ML) to build two-level preconditioners for efficiently532

solving elliptic equations on complex porous geometries via iterative solvers. While the preconditioner is based on the533

pore-level multiscale method (PLMM), the proposed approach applies to others based on domain decomposition or534

multigrid techniques. The PLMM preconditioner consists of a coarse preconditioner MG and a smoother ML. We use535

ML to accelerate the construction of MG only, as the U-Net architecture employed herein incurs high-frequency errors536

itself that are in need of smoothing. The overall framework can be viewed as: (1) a way to remove a major bottleneck537

in building multiscale preconditioners; or (2) a robust mechanism to equip ML with error control capabilities.538

The proposed ML algorithms take cropped subdomain images as inputs and yield basis functions that satisfy a539

PDE locally as outputs, which are then used to assemble a prolongation matrix for MG. The training of ML algorithms540

on small subdomains is more advantageous than on whole domains because data generation is cheaper, the statistical541

space of data is smaller, training is faster and requires less memory, and basis functions can be assembled in arbitrary542

ways to satisfy any BCs or reused to solve similar (e.g., linearized, perturbed) PDEs. We tested the ML-built MG,ML543

in solving the Poisson and linear-elasticity equations on challenging 2D/3D geometries and compared its performance544

against the solver-built MG,SOL and AMG. We showed that MG,ML can be used in standalone fashion to obtain approx-545

imate, or first-pass, solutions (without iterations) at a very low cost and almost the same accuracy as MG,SOL, which is546

useful in many practical applications (e.g., subsurface engineering). Moreover, when applied within GMRES, MG,ML547

performed on par or slightly worse than MG,SOL, indicating its high quality as a preconditioner. However, the total cost548

saved with MG,ML was not significant, because once the build-time of MG had been reduced, the solver-time domi-549

nated given our very low tolerance imposed on GMRES (i.e., 10−9). Increasing this tolerance, or applying ML to much550

larger 3D domains, is expected to render cost savings more apparent. Finally, both MG,ML and MG,SOL performed far551

better than AMG in the elasticity problem, but worse in the more well-trodden Poisson problem.552

Future work on other ML architectures like neural operators or graph neural networks, with special attention to er-553

ror spectra, are promising areas of research. While all computations here were in series, MG,ML is fully parallelizable.554
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Appendix A. Coarsening details of the AMG preconditioner559

Table A.1 summarizes the number of coarsening levels and the coarsest matrix achieved by the AMG precondi-560

tioner applied to the Poisson and elasticity problems defined on the P2D, S2D, P3D, and BONE domains.561

Appendix B. Impact of physics-informed loss functions on basis vectors562

In Section 6.1, we probed the basis vectors constructed by ML algorithms trained with αp = αe = 0 in Eq.19. In563

other words, the loss functions were uninformed by the PDEs’ residuals and training was purely data-driven. Here,564
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Table A.1: Summary of the number of coarsening levels and the size of the coarsest matrix achieved in the AMG preconditioner when applied to
the Poisson and elasticity problems defined on the P2D, S2D, P3D and BONE domains.

P2D S2D P3D BONE
No. levels 8 8 8 8

Poisson
Coarsest matrix 280×280 242×242 30×30 22×22

No. levels 8 8 8 8
Elasticity

Coarsest matrix 428×428 361×361 50×50 37×37

we set αp = 1 and 10 while training the ML algorithm of the Poisson equation. The higher αp is, the more physics-565

informed the loss function becomes. Our goal is to assess whether the training speed and/or the algorithm’s testing566

accuracy are improved by increasing αp. Fig.B.1 illustrates the training loss versus the number of training epochs for567

αp = 0, 1, and 10. When αp = 0, the training loss stagnates up to epoch 50, then drops rapidly afterwards. Increasing568

αp to 1 or 10 has minimal impact on this stagnation period, reducing it only slightly to epoch 35.569

As for the L2-errors, Fig.B.2 shows errors corresponding to the predicted basis vectors of the P2D domain. We see570

αp = 0 and 1 yield basis vectors with similar accuracy, while αp = 10 is slightly worse. More precisely, the percentage571

of subdomains with errors below 0.05 are 86.1%, 86.5% and 81.9% for αp = 0, 1, and 10, respectively. While clearer572

benefits may be observed from including PDE residuals within loss functions in training larger ML architectures over573

many more epochs, for the cases studied herein, we do not observe such benefits.574

Figure B.1: Training loss versus number of training epochs for αp = 0, 1, and 10 in the loss function of the Poisson equation (Eq.19). The higher
αp is, the more physics-informed the loss function becomes. The αp = 0 case corresponds to purely data-driven training. A moving average, with
a window size of 100 points, was used to dampen the significant oscillations observed in the training losses.

0p = 1p = 10p =

Figure B.2: PDFs of L2-errors associated with the ML-predicted basis vectors for the Poisson problem defined on subdomains of the P2D domain
(they constitute unseen data). Three ML algorithms are trained with αp = 0, 1, and 10 in their loss functions defined by Eq.19.
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Appendix C. Transferability to different Poisson ratios of the elasticity problem575

In Section 4, we trained ML algorithms for the elasticity equation assuming a single Poisson’s ratio of ν = 0.08,576

corresponding to α-quartz. Here, we determine whether these algorithms apply to other ν without having to retrain577

them. Specifically, we consider ν = 0.4 and 0.45 and predict all basis vectors associated with the subdomains of the578

P2D and S2D domains. Fig.C.3 shows the PDFs of the L2-errors for these bases, computed via Eq.23, where we see579

they are roughly twice as large for ν = 0.4 and 0.45 than ν = 0.08, but still mostly <20%. Fig.C.4 further shows the580

convergence rate of GMRES preconditioned by MML, whose coarse preconditioner MG,ML is built by the predicted581

basis vectors above. In other words, MG,ML is built using the ML algorithms of Section 4, which assume ν=0.08, and582

then applied to solve the elasticity problem defined on P2D and S2D with Poisson’s ratios ν=0.08, 0.4, and 0.45. We583

see the convergence rate is minimally affected by varying ν, implying the ML algorithms of Section 4 are transferable584

to other mechanical properties. In Fig.C.4, no local smoothing of basis vectors was employed (i.e., TML=∞).585
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